Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences
In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {zn+1/zn}is increasing(resp.,decreasing),then the sequence {n√zn} is strictly increasing(resp.,decreasing) s...
Saved in:
Published in | Science China. Mathematics Vol. 57; no. 11; pp. 2429 - 2435 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Science China Press
01.11.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-7283 1869-1862 |
DOI | 10.1007/s11425-014-4851-x |
Cover
Abstract | In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {zn+1/zn}is increasing(resp.,decreasing),then the sequence {n√zn} is strictly increasing(resp.,decreasing) subject to a certain initial condition. We also give some sufficient conditions when {zn+1/zn} is increasing,which is equivalent to the log-convexity of {zn}. As consequences,a series of conjectures of Zhi-Wei Sun are verified in a unified approach. |
---|---|
AbstractList | In 2012, Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form (ProQuest: Formulae and/or non-USASCII text omitted), where {z sub(n)} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {z sub(n)+1/z sub(n)} is increasing (resp., decreasing), then the sequence (ProQuest: Formulae and/or non-USASCII text omitted) is strictly increasing (resp., decreasing) subject to a certain initial condition. We also give some sufficient conditions when {z sub(n)+1/z sub(n)} is increasing, which is equivalent to the log-convexity of {z sub(n)}. As consequences, a series of conjectures of Zhi-Wei Sun are verified in a unified approach. In 2012, Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form , where { z n } is a familiar number-theoretic or combinatorial sequence. We show that if the sequence { z n +1 / z n } is increasing (resp., decreasing), then the sequence is strictly increasing (resp., decreasing) subject to a certain initial condition. We also give some sufficient conditions when { z n +1 / z n } is increasing, which is equivalent to the log-convexity of { z n }. As consequences, a series of conjectures of Zhi-Wei Sun are verified in a unified approach. In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {zn+1/zn}is increasing(resp.,decreasing),then the sequence {n√zn} is strictly increasing(resp.,decreasing) subject to a certain initial condition. We also give some sufficient conditions when {zn+1/zn} is increasing,which is equivalent to the log-convexity of {zn}. As consequences,a series of conjectures of Zhi-Wei Sun are verified in a unified approach. |
Author | WANG Yi ZHU BaoXuan |
AuthorAffiliation | School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, China |
Author_xml | – sequence: 1 givenname: Yi surname: Wang fullname: Wang, Yi email: wangyi@dlut.edu.cn organization: School of Mathematical Sciences, Dalian University of Technology – sequence: 2 givenname: BaoXuan surname: Zhu fullname: Zhu, BaoXuan organization: School of Mathematical Sciences, Jiangsu Normal University |
BookMark | eNp9kE1rHSEUhqWk0DTND-hu6KobW53x6y5L6BcE2kW76UbOdY6JlxlPog4k_75ebuiii7hQkfc5rzyv2VmmjIy9leKDFMJ-rFKqUXMhFVdOS_7wgp1LZ3a8b-NZvxuruB3d9Ipd1noQfU07oex0zv78LESxDhSHSisOgfIBQ9sK9rc8rJSpUU4htcdjJm_rHgtvt0gFWwoD5Lkz6z5laFQSLEPF-w1zwPqGvYywVLx8Oi_Y7y-ff11949c_vn6_-nTNg5Ku8RnsjBbcZNAIYwGdkJMZJeoQlYmzEvNeRhM0KGXGKPUEFsBGHQPCXsN0wd6f5t4V6tW1-TXVgMsCGWmrXhojhNu5UfSoPEVDoVoLRn9X0grl0Uvhjyr9SaXvKv1RpX_ojP2P6TKgJcqtQFqeJccTWXtLvsHiD7SV3F08C717qrulfHPfuX9_NGbUwgmnp78jjpho |
CitedBy_id | crossref_primary_10_1016_j_jsc_2024_102349 crossref_primary_10_1016_j_jcta_2020_105275 crossref_primary_10_1186_s13660_016_1221_y crossref_primary_10_1016_j_jmaa_2023_127424 crossref_primary_10_1016_j_bulsci_2021_102992 crossref_primary_10_1017_S0013091515000036 crossref_primary_10_1186_s13660_018_1614_1 crossref_primary_10_1515_ms_2016_0292 crossref_primary_10_1017_S001309151600016X crossref_primary_10_11650_tjm_20_2016_6770 crossref_primary_10_1007_s11139_016_9842_9 crossref_primary_10_1016_j_disc_2023_113317 crossref_primary_10_1007_s10114_016_5446_y crossref_primary_10_1090_proc_14599 crossref_primary_10_1080_10236198_2023_2255308 |
Cites_doi | 10.1007/s10440-009-9515-4 10.1017/S0004972712000986 10.1016/j.aam.2006.02.003 10.1016/j.jcta.2012.01.002 10.1016/j.aam.2013.08.003 10.4153/CJM-1949-001-1 10.1016/j.jcta.2004.07.008 10.1016/j.aam.2009.03.004 10.1090/conm/178/01893 10.1016/j.aam.2006.11.002 10.1016/j.aam.2012.11.003 10.1111/j.1749-6632.1989.tb16434.x 10.1142/9789814452458_0014 10.1016/0097-3165(94)90038-8 10.1016/j.jcta.2006.02.001 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2014 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1007/s11425-014-4851-x |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences |
EISSN | 1869-1862 |
EndPage | 2435 |
ExternalDocumentID | 10_1007_s11425_014_4851_x 662508085 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BAPOH BDATZ BGNMA CAG CCEZO CCVFK CHBEP COF CQIGP CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9R PF0 PT4 QOS R89 RIG ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 ~WA -SA -S~ 0R~ 5XA 5XB AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AGQEE AGRTI AIGIU BSONS CAJEA CJPJV H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ABRTQ AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c418t-da7de7a836e6067ae8013621e5cf46fd40db1f6c5a4462f153a7aa7f5fceab5a3 |
IEDL.DBID | AGYKE |
ISSN | 1674-7283 |
IngestDate | Thu Sep 04 20:18:50 EDT 2025 Wed Oct 01 04:33:55 EDT 2025 Thu Apr 24 23:05:56 EDT 2025 Fri Feb 21 02:33:43 EST 2025 Wed Feb 14 10:38:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | log-concavity 11B83 05A10 05A20 monotonicity log-convexity sequences |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-da7de7a836e6067ae8013621e5cf46fd40db1f6c5a4462f153a7aa7f5fceab5a3 |
Notes | sequences; monotonicity; log-convexity; log-concavity In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {zn+1/zn}is increasing(resp.,decreasing),then the sequence {n√zn} is strictly increasing(resp.,decreasing) subject to a certain initial condition. We also give some sufficient conditions when {zn+1/zn} is increasing,which is equivalent to the log-convexity of {zn}. As consequences,a series of conjectures of Zhi-Wei Sun are verified in a unified approach. 11-1787/N ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1660089820 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1660089820 crossref_primary_10_1007_s11425_014_4851_x crossref_citationtrail_10_1007_s11425_014_4851_x springer_journals_10_1007_s11425_014_4851_x chongqing_primary_662508085 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Science China. Mathematics |
PublicationTitleAbbrev | Sci. China Math |
PublicationTitleAlternate | SCIENCE CHINA Mathematics |
PublicationYear | 2014 |
Publisher | Science China Press |
Publisher_xml | – name: Science China Press |
References | DavenportHPólyaGOn the product of two power serieCanad J Math194911510.4153/CJM-1949-001-10037.32505 JanoskiJ EA collection of problems in combinatorics2012South CarolinaClemson University EngelKOn the average rank of an element in a filter of the partition latticeJ Combin Theory Ser A1994656778125526410.1016/0097-3165(94)90038-80795.05051 Amdeberhan T, Moll V H, Vignat C. A probabilistic interpretation of a sequence related to Narayana polynomials. Online J Anal Comb, 2013, 8: 25pp DošlićTSeven (lattice) paths to log-convexityActa Appl Math201011013731392263917610.1007/s10440-009-9515-41225.05018 LassalleMTwo integer sequences related to Catalan numbersJ Combin Theory Ser A2012119923935288123510.1016/j.jcta.2012.01.0021241.05003 Chen W Y C, Guo J J F, Wang L X W. Zeta functions and the log-behavior of combinatorial sequences. Proc Edinburgh Math Soc (2), in press ChenW Y CGuoJ J FWangL X WInfinitely logarithmically monotonic combinatorial sequencesAdv Appl Math20145299120313192810.1016/j.aam.2013.08.0031281.05019 SunZ-WKanemitsuSLiHLiuJConjectures involving arithmetical sequencesNumbers Theory: Arithmetic in Shangri-La, Proceedings 6th China-Japan Seminar2013SingaporeWorld Scientific244258 WangYYehY NPolynomials with real zeros and Pólya frequency sequencesJ Combin Theory Ser A20051096374211019810.1016/j.jcta.2004.07.0081057.05007 ChenW Y CRecent developments of log-concavity and q-log-concavity of combinatorial polynomials2010San Francisco, CAA talk given at the 22nd Inter Confer on Formal Power Series and Algebraic Combin LiuL LWangYOn the log-convexity of combinatorial sequencesAdv Appl Math20073945347610.1016/j.aam.2006.11.0021131.05010 GrahamR LKnuthD EPatashnikOConcrete Mathematics: A Foundation for Computer Science19942nd ed.Reading, MassachusettsAddison-Wesley0836.00001 Hou Q H, Sun Z-W, Wen H M. On monotonicity of some combinatorial sequences. Publ Math Debrecen, in press WangYYehY NLog-concavity and LC-positivityJ Combin Theory Ser A2007114195210229308710.1016/j.jcta.2006.02.0011109.11019 LiuL LWangYA unified approach to polynomial sequences with only real zerosAdv Appl Math20073854256010.1016/j.aam.2006.02.0031123.05009 BrentiFLog-concave and unimodal sequences in algebra, combinatorics, and geometry: An updateContemp Math19941787189131057510.1090/conm/178/01893 StanleyR PLog-concave and unimodal sequences in algebra, combinatorics, and geometryAnn New York Acad Sci198957650053410.1111/j.1749-6632.1989.tb16434.x SunZ-WOn a sequence involving sums of primesBull Aust Math Soc201388197205310970910.1017/S000497271200098606234290 ChenW Y CTangR LWangL X WThe q-log-convexity of Narayana polynomials of type BAdv Appl Math20104485110257684110.1016/j.aam.2009.03.0041230.05276 ZhuB XLog-convexity and strong q-log-convexity for some triangular arraysAdv Appl Math20135059560610.1016/j.aam.2012.11.0031277.05014 Sloane N J A. The On-Line Encyclopedia of Integer Sequences. http://oeis.org LucaFStănicăPOn some conjectures on the monotonicity of some arithematical sequencesJ Combin Number Theory2012411512306242441 J E Janoski (4851_CR12) 2012 K Engel (4851_CR9) 1994; 65 4851_CR11 M Lassalle (4851_CR13) 2012; 119 L L Liu (4851_CR14) 2007; 38 4851_CR1 F Luca (4851_CR16) 2012; 4 F Brenti (4851_CR2) 1994; 178 W Y C Chen (4851_CR5) 2014; 52 R P Stanley (4851_CR18) 1989; 576 H Davenport (4851_CR7) 1949; 1 4851_CR4 Y Wang (4851_CR21) 2005; 109 W Y C Chen (4851_CR6) 2010; 44 R L Graham (4851_CR10) 1994 T Došlić (4851_CR8) 2010; 110 B X Zhu (4851_CR23) 2013; 50 Z-W Sun (4851_CR19) 2013; 88 Z-W Sun (4851_CR20) 2013 L L Liu (4851_CR15) 2007; 39 Y Wang (4851_CR22) 2007; 114 W Y C Chen (4851_CR3) 2010 4851_CR17 |
References_xml | – reference: SunZ-WKanemitsuSLiHLiuJConjectures involving arithmetical sequencesNumbers Theory: Arithmetic in Shangri-La, Proceedings 6th China-Japan Seminar2013SingaporeWorld Scientific244258 – reference: Chen W Y C, Guo J J F, Wang L X W. Zeta functions and the log-behavior of combinatorial sequences. Proc Edinburgh Math Soc (2), in press – reference: Sloane N J A. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/ – reference: EngelKOn the average rank of an element in a filter of the partition latticeJ Combin Theory Ser A1994656778125526410.1016/0097-3165(94)90038-80795.05051 – reference: WangYYehY NPolynomials with real zeros and Pólya frequency sequencesJ Combin Theory Ser A20051096374211019810.1016/j.jcta.2004.07.0081057.05007 – reference: ChenW Y CRecent developments of log-concavity and q-log-concavity of combinatorial polynomials2010San Francisco, CAA talk given at the 22nd Inter Confer on Formal Power Series and Algebraic Combin – reference: WangYYehY NLog-concavity and LC-positivityJ Combin Theory Ser A2007114195210229308710.1016/j.jcta.2006.02.0011109.11019 – reference: LassalleMTwo integer sequences related to Catalan numbersJ Combin Theory Ser A2012119923935288123510.1016/j.jcta.2012.01.0021241.05003 – reference: LiuL LWangYA unified approach to polynomial sequences with only real zerosAdv Appl Math20073854256010.1016/j.aam.2006.02.0031123.05009 – reference: BrentiFLog-concave and unimodal sequences in algebra, combinatorics, and geometry: An updateContemp Math19941787189131057510.1090/conm/178/01893 – reference: JanoskiJ EA collection of problems in combinatorics2012South CarolinaClemson University – reference: ChenW Y CGuoJ J FWangL X WInfinitely logarithmically monotonic combinatorial sequencesAdv Appl Math20145299120313192810.1016/j.aam.2013.08.0031281.05019 – reference: DavenportHPólyaGOn the product of two power serieCanad J Math194911510.4153/CJM-1949-001-10037.32505 – reference: SunZ-WOn a sequence involving sums of primesBull Aust Math Soc201388197205310970910.1017/S000497271200098606234290 – reference: GrahamR LKnuthD EPatashnikOConcrete Mathematics: A Foundation for Computer Science19942nd ed.Reading, MassachusettsAddison-Wesley0836.00001 – reference: Hou Q H, Sun Z-W, Wen H M. On monotonicity of some combinatorial sequences. Publ Math Debrecen, in press – reference: LucaFStănicăPOn some conjectures on the monotonicity of some arithematical sequencesJ Combin Number Theory2012411512306242441 – reference: DošlićTSeven (lattice) paths to log-convexityActa Appl Math201011013731392263917610.1007/s10440-009-9515-41225.05018 – reference: LiuL LWangYOn the log-convexity of combinatorial sequencesAdv Appl Math20073945347610.1016/j.aam.2006.11.0021131.05010 – reference: ChenW Y CTangR LWangL X WThe q-log-convexity of Narayana polynomials of type BAdv Appl Math20104485110257684110.1016/j.aam.2009.03.0041230.05276 – reference: StanleyR PLog-concave and unimodal sequences in algebra, combinatorics, and geometryAnn New York Acad Sci198957650053410.1111/j.1749-6632.1989.tb16434.x – reference: Amdeberhan T, Moll V H, Vignat C. A probabilistic interpretation of a sequence related to Narayana polynomials. Online J Anal Comb, 2013, 8: 25pp – reference: ZhuB XLog-convexity and strong q-log-convexity for some triangular arraysAdv Appl Math20135059560610.1016/j.aam.2012.11.0031277.05014 – volume: 110 start-page: 1373 year: 2010 ident: 4851_CR8 publication-title: Acta Appl Math doi: 10.1007/s10440-009-9515-4 – volume-title: Concrete Mathematics: A Foundation for Computer Science year: 1994 ident: 4851_CR10 – volume: 88 start-page: 197 year: 2013 ident: 4851_CR19 publication-title: Bull Aust Math Soc doi: 10.1017/S0004972712000986 – volume-title: A collection of problems in combinatorics year: 2012 ident: 4851_CR12 – volume: 38 start-page: 542 year: 2007 ident: 4851_CR14 publication-title: Adv Appl Math doi: 10.1016/j.aam.2006.02.003 – volume: 119 start-page: 923 year: 2012 ident: 4851_CR13 publication-title: J Combin Theory Ser A doi: 10.1016/j.jcta.2012.01.002 – volume: 52 start-page: 99 year: 2014 ident: 4851_CR5 publication-title: Adv Appl Math doi: 10.1016/j.aam.2013.08.003 – volume: 1 start-page: 1 year: 1949 ident: 4851_CR7 publication-title: Canad J Math doi: 10.4153/CJM-1949-001-1 – volume: 109 start-page: 63 year: 2005 ident: 4851_CR21 publication-title: J Combin Theory Ser A doi: 10.1016/j.jcta.2004.07.008 – volume: 44 start-page: 85 year: 2010 ident: 4851_CR6 publication-title: Adv Appl Math doi: 10.1016/j.aam.2009.03.004 – volume: 4 start-page: 115 year: 2012 ident: 4851_CR16 publication-title: J Combin Number Theory – volume: 178 start-page: 71 year: 1994 ident: 4851_CR2 publication-title: Contemp Math doi: 10.1090/conm/178/01893 – volume: 39 start-page: 453 year: 2007 ident: 4851_CR15 publication-title: Adv Appl Math doi: 10.1016/j.aam.2006.11.002 – volume-title: Recent developments of log-concavity and q-log-concavity of combinatorial polynomials year: 2010 ident: 4851_CR3 – ident: 4851_CR11 – volume: 50 start-page: 595 year: 2013 ident: 4851_CR23 publication-title: Adv Appl Math doi: 10.1016/j.aam.2012.11.003 – ident: 4851_CR4 – volume: 576 start-page: 500 year: 1989 ident: 4851_CR18 publication-title: Ann New York Acad Sci doi: 10.1111/j.1749-6632.1989.tb16434.x – start-page: 244 volume-title: Numbers Theory: Arithmetic in Shangri-La, Proceedings 6th China-Japan Seminar year: 2013 ident: 4851_CR20 doi: 10.1142/9789814452458_0014 – volume: 65 start-page: 67 year: 1994 ident: 4851_CR9 publication-title: J Combin Theory Ser A doi: 10.1016/0097-3165(94)90038-8 – ident: 4851_CR1 – volume: 114 start-page: 195 year: 2007 ident: 4851_CR22 publication-title: J Combin Theory Ser A doi: 10.1016/j.jcta.2006.02.001 – ident: 4851_CR17 |
SSID | ssj0000390473 |
Score | 2.104149 |
Snippet | In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial... In 2012, Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form , where { z n } is a familiar number-theoretic or combinatorial... In 2012, Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form (ProQuest: Formulae and/or non-USASCII text omitted), where {z sub(n)}... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2429 |
SubjectTerms | Applications of Mathematics China Combinatorial analysis Equivalence Initial conditions Mathematical analysis Mathematics Mathematics and Statistics Sequences Sun Texts Zinc 严格递增 充分条件 单调性 数论 猜想 组合序列 证明 锌 |
Title | Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences |
URI | http://lib.cqvip.com/qk/60114X/201411/662508085.html https://link.springer.com/article/10.1007/s11425-014-4851-x https://www.proquest.com/docview/1660089820 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1869-1862 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000390473 issn: 1674-7283 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1869-1862 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000390473 issn: 1674-7283 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBt7i-qOBJiWyzeXSPi_hAUTy4oF5CmiaKj1ZtF8Rf72T7WBQVvJYkbTOT5vs6M18AdizvGW1oTKzpIkFxhhItBSNO84jGPb-t-Hrn8wtxMmCn1_y6quPO62z3OiQ5-lKPi91C9C-kvowwhAkEgeMU9_ykBVP945uz8a-VDvJ4Noot-xR7InEHreOZP43jVRXus_TuFe_5dXcaQ85vUdLR5nM0B1f1Y5c5J4_7wyLeNx_fFB3_-V7zMFuB0aBfes8CTNh0EWbOGyXXfAluLxFauzzIXJBnzzZA-vxQhh3wWhqgE2eFV9dFMO_blAeMkKY8MtBpgn2ekX97do_OHjTJ28swODq8Ojgh1XkMxLAwKkiiZWKljrrCIu2R2kZe8I2GlhvHhEtYJ4lDJwzXyDGpw2-pllpLx52xOua6uwKtNEvtKgSOYjcqrEO8xKSNYgQ6XWGY7Umflhq2Yb2xiXopdTeUQK6GADfibejUVlKmkjL3J2o8qbEIs59UhZOq_KSq9zbsNl3q8f5ovF2bXuFq8yEUndpsmKtQIECMegib2rBXm1NVyz7_fcS1f7Veh2nq_WFU8rgBreJtaDcR-xTxVuXrWzA5oP1P1Vb9aw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hcgAO7IiyBokTyKhJHTs9IgSUpRWHVipcLMexQSwJkFRCfD3jZqmoAIlrZDvJzDjzXmYxwL72W0oqLyRaNZGgGOURyRklRvqBF7asW7H1zp0ua_fp5cAfFHXcaZntXoYkR1_qcbGbi_aF1JcSijCBIHCcpm4Q0BpMH5_fXo1_rTSQx9NRbNmm2BOOHrSMZ_60ju2q8JDE9294z-_eaQw5J6KkI-dztgC98rHznJOno2EWHqnPiY6O_3yvRZgvwKhznFvPEkzpeBnmOlUn13QF7m4QWpvUSYyTJi_aQfr8mIcd8FrsoBEnme2ui2DejskPGCFVeaQj4wjnvCD_tuwejd2pkrdXoX922jtpk-I8BqJQ0BmJJI80l0GTaaQ9XOrANnzzXO0rQ5mJaCMKXcOUL5Fjega_pZJLyY1vlJahL5trUIuTWK-DYzyc5jFtEC9RroMQgU6TKapb3KalunXYrHQiXvO-G4IhV0OAG_h1aJRaEqpoZW5P1HgW4ybMVqgChSqsUMVHHQ6qKeV6fwzeK1UvcLfZEIqMdTJMhcsQIAYthE11OCzVKYptn_6-4sa_Ru_CTLvXuRbXF92rTZj1rG2Myh-3oJa9D_U24qAs3Cns_gvzOf9z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQfRBvOKclwo-KWFrlibt41CHt409OBi-hDRNFHHttB348z3pbSgq-FqSlPac9HxfzzlfEDrVXqCkIiHWqgsExSiCJWcUG-n5JAxsWLH9zoMhux7T24k3Kc85Tatq9yolWfQ0WJWmOGvPItNeNL654GtAgymmABkwgMhlCqHasq8x6dU_WTrA6GmeZbbF9phDLK0ymz-tYvUVnpP46Q3u_jVOLcDnt3xpHob6G2i9xI9OrzD4JlrS8RZaG9Tiq-k2ehwBGjapkxgnTabagUd7KTIFcC12wO-SzAriAv62Y4ozQXDd0ejIOII5U6DMlpCDfzp1vfUOGvevHi6ucXmEAlbU9TMcSR5pLv0u08BUuNS-1WgjrvaUocxEtBOFrmHKk0ALiYHPn-RScuMZpWXoye4uasRJrPeQYwhMI0wbgDiUaz8EbNJliuqA20pSt4la9csTs0IqQzCgV4BJfa-JOtXrFKpUH7eHYLyKhW6ytYYAawhrDfHRRGf1lGq9PwafVDYSsEFs1kPGOpmnwmWA6fwAkE4TnVfGE-VOTX9fcf9fo4_RyuiyL-5vhncttEqsT-UNiweokb3P9SEglyw8yr3zE1QP5qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proofs+of+some+conjectures+on+monotonicity+of+number-theoretic+and+combinatorial+sequences&rft.jtitle=Science+China.+Mathematics&rft.au=Wang%2C+Yi&rft.au=Zhu%2C+BaoXuan&rft.date=2014-11-01&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=57&rft.issue=11&rft.spage=2429&rft.epage=2435&rft_id=info:doi/10.1007%2Fs11425-014-4851-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11425_014_4851_x |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg |