Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences

In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {zn+1/zn}is increasing(resp.,decreasing),then the sequence {n√zn} is strictly increasing(resp.,decreasing) s...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 57; no. 11; pp. 2429 - 2435
Main Authors Wang, Yi, Zhu, BaoXuan
Format Journal Article
LanguageEnglish
Published Heidelberg Science China Press 01.11.2014
Subjects
Online AccessGet full text
ISSN1674-7283
1869-1862
DOI10.1007/s11425-014-4851-x

Cover

Abstract In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {zn+1/zn}is increasing(resp.,decreasing),then the sequence {n√zn} is strictly increasing(resp.,decreasing) subject to a certain initial condition. We also give some sufficient conditions when {zn+1/zn} is increasing,which is equivalent to the log-convexity of {zn}. As consequences,a series of conjectures of Zhi-Wei Sun are verified in a unified approach.
AbstractList In 2012, Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form (ProQuest: Formulae and/or non-USASCII text omitted), where {z sub(n)} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {z sub(n)+1/z sub(n)} is increasing (resp., decreasing), then the sequence (ProQuest: Formulae and/or non-USASCII text omitted) is strictly increasing (resp., decreasing) subject to a certain initial condition. We also give some sufficient conditions when {z sub(n)+1/z sub(n)} is increasing, which is equivalent to the log-convexity of {z sub(n)}. As consequences, a series of conjectures of Zhi-Wei Sun are verified in a unified approach.
In 2012, Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form , where { z n } is a familiar number-theoretic or combinatorial sequence. We show that if the sequence { z n +1 / z n } is increasing (resp., decreasing), then the sequence is strictly increasing (resp., decreasing) subject to a certain initial condition. We also give some sufficient conditions when { z n +1 / z n } is increasing, which is equivalent to the log-convexity of { z n }. As consequences, a series of conjectures of Zhi-Wei Sun are verified in a unified approach.
In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {zn+1/zn}is increasing(resp.,decreasing),then the sequence {n√zn} is strictly increasing(resp.,decreasing) subject to a certain initial condition. We also give some sufficient conditions when {zn+1/zn} is increasing,which is equivalent to the log-convexity of {zn}. As consequences,a series of conjectures of Zhi-Wei Sun are verified in a unified approach.
Author WANG Yi ZHU BaoXuan
AuthorAffiliation School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, China
Author_xml – sequence: 1
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  email: wangyi@dlut.edu.cn
  organization: School of Mathematical Sciences, Dalian University of Technology
– sequence: 2
  givenname: BaoXuan
  surname: Zhu
  fullname: Zhu, BaoXuan
  organization: School of Mathematical Sciences, Jiangsu Normal University
BookMark eNp9kE1rHSEUhqWk0DTND-hu6KobW53x6y5L6BcE2kW76UbOdY6JlxlPog4k_75ebuiii7hQkfc5rzyv2VmmjIy9leKDFMJ-rFKqUXMhFVdOS_7wgp1LZ3a8b-NZvxuruB3d9Ipd1noQfU07oex0zv78LESxDhSHSisOgfIBQ9sK9rc8rJSpUU4htcdjJm_rHgtvt0gFWwoD5Lkz6z5laFQSLEPF-w1zwPqGvYywVLx8Oi_Y7y-ff11949c_vn6_-nTNg5Ku8RnsjBbcZNAIYwGdkJMZJeoQlYmzEvNeRhM0KGXGKPUEFsBGHQPCXsN0wd6f5t4V6tW1-TXVgMsCGWmrXhojhNu5UfSoPEVDoVoLRn9X0grl0Uvhjyr9SaXvKv1RpX_ojP2P6TKgJcqtQFqeJccTWXtLvsHiD7SV3F08C717qrulfHPfuX9_NGbUwgmnp78jjpho
CitedBy_id crossref_primary_10_1016_j_jsc_2024_102349
crossref_primary_10_1016_j_jcta_2020_105275
crossref_primary_10_1186_s13660_016_1221_y
crossref_primary_10_1016_j_jmaa_2023_127424
crossref_primary_10_1016_j_bulsci_2021_102992
crossref_primary_10_1017_S0013091515000036
crossref_primary_10_1186_s13660_018_1614_1
crossref_primary_10_1515_ms_2016_0292
crossref_primary_10_1017_S001309151600016X
crossref_primary_10_11650_tjm_20_2016_6770
crossref_primary_10_1007_s11139_016_9842_9
crossref_primary_10_1016_j_disc_2023_113317
crossref_primary_10_1007_s10114_016_5446_y
crossref_primary_10_1090_proc_14599
crossref_primary_10_1080_10236198_2023_2255308
Cites_doi 10.1007/s10440-009-9515-4
10.1017/S0004972712000986
10.1016/j.aam.2006.02.003
10.1016/j.jcta.2012.01.002
10.1016/j.aam.2013.08.003
10.4153/CJM-1949-001-1
10.1016/j.jcta.2004.07.008
10.1016/j.aam.2009.03.004
10.1090/conm/178/01893
10.1016/j.aam.2006.11.002
10.1016/j.aam.2012.11.003
10.1111/j.1749-6632.1989.tb16434.x
10.1142/9789814452458_0014
10.1016/0097-3165(94)90038-8
10.1016/j.jcta.2006.02.001
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2014
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s11425-014-4851-x
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences
EISSN 1869-1862
EndPage 2435
ExternalDocumentID 10_1007_s11425_014_4851_x
662508085
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BAPOH
BDATZ
BGNMA
CAG
CCEZO
CCVFK
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9R
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
~WA
-SA
-S~
0R~
5XA
5XB
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
CJPJV
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c418t-da7de7a836e6067ae8013621e5cf46fd40db1f6c5a4462f153a7aa7f5fceab5a3
IEDL.DBID AGYKE
ISSN 1674-7283
IngestDate Thu Sep 04 20:18:50 EDT 2025
Wed Oct 01 04:33:55 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Fri Feb 21 02:33:43 EST 2025
Wed Feb 14 10:38:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords log-concavity
11B83
05A10
05A20
monotonicity
log-convexity
sequences
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-da7de7a836e6067ae8013621e5cf46fd40db1f6c5a4462f153a7aa7f5fceab5a3
Notes sequences; monotonicity; log-convexity; log-concavity
In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial sequence. We show that if the sequence {zn+1/zn}is increasing(resp.,decreasing),then the sequence {n√zn} is strictly increasing(resp.,decreasing) subject to a certain initial condition. We also give some sufficient conditions when {zn+1/zn} is increasing,which is equivalent to the log-convexity of {zn}. As consequences,a series of conjectures of Zhi-Wei Sun are verified in a unified approach.
11-1787/N
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1660089820
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1660089820
crossref_primary_10_1007_s11425_014_4851_x
crossref_citationtrail_10_1007_s11425_014_4851_x
springer_journals_10_1007_s11425_014_4851_x
chongqing_primary_662508085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Science China. Mathematics
PublicationTitleAbbrev Sci. China Math
PublicationTitleAlternate SCIENCE CHINA Mathematics
PublicationYear 2014
Publisher Science China Press
Publisher_xml – name: Science China Press
References DavenportHPólyaGOn the product of two power serieCanad J Math194911510.4153/CJM-1949-001-10037.32505
JanoskiJ EA collection of problems in combinatorics2012South CarolinaClemson University
EngelKOn the average rank of an element in a filter of the partition latticeJ Combin Theory Ser A1994656778125526410.1016/0097-3165(94)90038-80795.05051
Amdeberhan T, Moll V H, Vignat C. A probabilistic interpretation of a sequence related to Narayana polynomials. Online J Anal Comb, 2013, 8: 25pp
DošlićTSeven (lattice) paths to log-convexityActa Appl Math201011013731392263917610.1007/s10440-009-9515-41225.05018
LassalleMTwo integer sequences related to Catalan numbersJ Combin Theory Ser A2012119923935288123510.1016/j.jcta.2012.01.0021241.05003
Chen W Y C, Guo J J F, Wang L X W. Zeta functions and the log-behavior of combinatorial sequences. Proc Edinburgh Math Soc (2), in press
ChenW Y CGuoJ J FWangL X WInfinitely logarithmically monotonic combinatorial sequencesAdv Appl Math20145299120313192810.1016/j.aam.2013.08.0031281.05019
SunZ-WKanemitsuSLiHLiuJConjectures involving arithmetical sequencesNumbers Theory: Arithmetic in Shangri-La, Proceedings 6th China-Japan Seminar2013SingaporeWorld Scientific244258
WangYYehY NPolynomials with real zeros and Pólya frequency sequencesJ Combin Theory Ser A20051096374211019810.1016/j.jcta.2004.07.0081057.05007
ChenW Y CRecent developments of log-concavity and q-log-concavity of combinatorial polynomials2010San Francisco, CAA talk given at the 22nd Inter Confer on Formal Power Series and Algebraic Combin
LiuL LWangYOn the log-convexity of combinatorial sequencesAdv Appl Math20073945347610.1016/j.aam.2006.11.0021131.05010
GrahamR LKnuthD EPatashnikOConcrete Mathematics: A Foundation for Computer Science19942nd ed.Reading, MassachusettsAddison-Wesley0836.00001
Hou Q H, Sun Z-W, Wen H M. On monotonicity of some combinatorial sequences. Publ Math Debrecen, in press
WangYYehY NLog-concavity and LC-positivityJ Combin Theory Ser A2007114195210229308710.1016/j.jcta.2006.02.0011109.11019
LiuL LWangYA unified approach to polynomial sequences with only real zerosAdv Appl Math20073854256010.1016/j.aam.2006.02.0031123.05009
BrentiFLog-concave and unimodal sequences in algebra, combinatorics, and geometry: An updateContemp Math19941787189131057510.1090/conm/178/01893
StanleyR PLog-concave and unimodal sequences in algebra, combinatorics, and geometryAnn New York Acad Sci198957650053410.1111/j.1749-6632.1989.tb16434.x
SunZ-WOn a sequence involving sums of primesBull Aust Math Soc201388197205310970910.1017/S000497271200098606234290
ChenW Y CTangR LWangL X WThe q-log-convexity of Narayana polynomials of type BAdv Appl Math20104485110257684110.1016/j.aam.2009.03.0041230.05276
ZhuB XLog-convexity and strong q-log-convexity for some triangular arraysAdv Appl Math20135059560610.1016/j.aam.2012.11.0031277.05014
Sloane N J A. The On-Line Encyclopedia of Integer Sequences. http://oeis.org
LucaFStănicăPOn some conjectures on the monotonicity of some arithematical sequencesJ Combin Number Theory2012411512306242441
J E Janoski (4851_CR12) 2012
K Engel (4851_CR9) 1994; 65
4851_CR11
M Lassalle (4851_CR13) 2012; 119
L L Liu (4851_CR14) 2007; 38
4851_CR1
F Luca (4851_CR16) 2012; 4
F Brenti (4851_CR2) 1994; 178
W Y C Chen (4851_CR5) 2014; 52
R P Stanley (4851_CR18) 1989; 576
H Davenport (4851_CR7) 1949; 1
4851_CR4
Y Wang (4851_CR21) 2005; 109
W Y C Chen (4851_CR6) 2010; 44
R L Graham (4851_CR10) 1994
T Došlić (4851_CR8) 2010; 110
B X Zhu (4851_CR23) 2013; 50
Z-W Sun (4851_CR19) 2013; 88
Z-W Sun (4851_CR20) 2013
L L Liu (4851_CR15) 2007; 39
Y Wang (4851_CR22) 2007; 114
W Y C Chen (4851_CR3) 2010
4851_CR17
References_xml – reference: SunZ-WKanemitsuSLiHLiuJConjectures involving arithmetical sequencesNumbers Theory: Arithmetic in Shangri-La, Proceedings 6th China-Japan Seminar2013SingaporeWorld Scientific244258
– reference: Chen W Y C, Guo J J F, Wang L X W. Zeta functions and the log-behavior of combinatorial sequences. Proc Edinburgh Math Soc (2), in press
– reference: Sloane N J A. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/
– reference: EngelKOn the average rank of an element in a filter of the partition latticeJ Combin Theory Ser A1994656778125526410.1016/0097-3165(94)90038-80795.05051
– reference: WangYYehY NPolynomials with real zeros and Pólya frequency sequencesJ Combin Theory Ser A20051096374211019810.1016/j.jcta.2004.07.0081057.05007
– reference: ChenW Y CRecent developments of log-concavity and q-log-concavity of combinatorial polynomials2010San Francisco, CAA talk given at the 22nd Inter Confer on Formal Power Series and Algebraic Combin
– reference: WangYYehY NLog-concavity and LC-positivityJ Combin Theory Ser A2007114195210229308710.1016/j.jcta.2006.02.0011109.11019
– reference: LassalleMTwo integer sequences related to Catalan numbersJ Combin Theory Ser A2012119923935288123510.1016/j.jcta.2012.01.0021241.05003
– reference: LiuL LWangYA unified approach to polynomial sequences with only real zerosAdv Appl Math20073854256010.1016/j.aam.2006.02.0031123.05009
– reference: BrentiFLog-concave and unimodal sequences in algebra, combinatorics, and geometry: An updateContemp Math19941787189131057510.1090/conm/178/01893
– reference: JanoskiJ EA collection of problems in combinatorics2012South CarolinaClemson University
– reference: ChenW Y CGuoJ J FWangL X WInfinitely logarithmically monotonic combinatorial sequencesAdv Appl Math20145299120313192810.1016/j.aam.2013.08.0031281.05019
– reference: DavenportHPólyaGOn the product of two power serieCanad J Math194911510.4153/CJM-1949-001-10037.32505
– reference: SunZ-WOn a sequence involving sums of primesBull Aust Math Soc201388197205310970910.1017/S000497271200098606234290
– reference: GrahamR LKnuthD EPatashnikOConcrete Mathematics: A Foundation for Computer Science19942nd ed.Reading, MassachusettsAddison-Wesley0836.00001
– reference: Hou Q H, Sun Z-W, Wen H M. On monotonicity of some combinatorial sequences. Publ Math Debrecen, in press
– reference: LucaFStănicăPOn some conjectures on the monotonicity of some arithematical sequencesJ Combin Number Theory2012411512306242441
– reference: DošlićTSeven (lattice) paths to log-convexityActa Appl Math201011013731392263917610.1007/s10440-009-9515-41225.05018
– reference: LiuL LWangYOn the log-convexity of combinatorial sequencesAdv Appl Math20073945347610.1016/j.aam.2006.11.0021131.05010
– reference: ChenW Y CTangR LWangL X WThe q-log-convexity of Narayana polynomials of type BAdv Appl Math20104485110257684110.1016/j.aam.2009.03.0041230.05276
– reference: StanleyR PLog-concave and unimodal sequences in algebra, combinatorics, and geometryAnn New York Acad Sci198957650053410.1111/j.1749-6632.1989.tb16434.x
– reference: Amdeberhan T, Moll V H, Vignat C. A probabilistic interpretation of a sequence related to Narayana polynomials. Online J Anal Comb, 2013, 8: 25pp
– reference: ZhuB XLog-convexity and strong q-log-convexity for some triangular arraysAdv Appl Math20135059560610.1016/j.aam.2012.11.0031277.05014
– volume: 110
  start-page: 1373
  year: 2010
  ident: 4851_CR8
  publication-title: Acta Appl Math
  doi: 10.1007/s10440-009-9515-4
– volume-title: Concrete Mathematics: A Foundation for Computer Science
  year: 1994
  ident: 4851_CR10
– volume: 88
  start-page: 197
  year: 2013
  ident: 4851_CR19
  publication-title: Bull Aust Math Soc
  doi: 10.1017/S0004972712000986
– volume-title: A collection of problems in combinatorics
  year: 2012
  ident: 4851_CR12
– volume: 38
  start-page: 542
  year: 2007
  ident: 4851_CR14
  publication-title: Adv Appl Math
  doi: 10.1016/j.aam.2006.02.003
– volume: 119
  start-page: 923
  year: 2012
  ident: 4851_CR13
  publication-title: J Combin Theory Ser A
  doi: 10.1016/j.jcta.2012.01.002
– volume: 52
  start-page: 99
  year: 2014
  ident: 4851_CR5
  publication-title: Adv Appl Math
  doi: 10.1016/j.aam.2013.08.003
– volume: 1
  start-page: 1
  year: 1949
  ident: 4851_CR7
  publication-title: Canad J Math
  doi: 10.4153/CJM-1949-001-1
– volume: 109
  start-page: 63
  year: 2005
  ident: 4851_CR21
  publication-title: J Combin Theory Ser A
  doi: 10.1016/j.jcta.2004.07.008
– volume: 44
  start-page: 85
  year: 2010
  ident: 4851_CR6
  publication-title: Adv Appl Math
  doi: 10.1016/j.aam.2009.03.004
– volume: 4
  start-page: 115
  year: 2012
  ident: 4851_CR16
  publication-title: J Combin Number Theory
– volume: 178
  start-page: 71
  year: 1994
  ident: 4851_CR2
  publication-title: Contemp Math
  doi: 10.1090/conm/178/01893
– volume: 39
  start-page: 453
  year: 2007
  ident: 4851_CR15
  publication-title: Adv Appl Math
  doi: 10.1016/j.aam.2006.11.002
– volume-title: Recent developments of log-concavity and q-log-concavity of combinatorial polynomials
  year: 2010
  ident: 4851_CR3
– ident: 4851_CR11
– volume: 50
  start-page: 595
  year: 2013
  ident: 4851_CR23
  publication-title: Adv Appl Math
  doi: 10.1016/j.aam.2012.11.003
– ident: 4851_CR4
– volume: 576
  start-page: 500
  year: 1989
  ident: 4851_CR18
  publication-title: Ann New York Acad Sci
  doi: 10.1111/j.1749-6632.1989.tb16434.x
– start-page: 244
  volume-title: Numbers Theory: Arithmetic in Shangri-La, Proceedings 6th China-Japan Seminar
  year: 2013
  ident: 4851_CR20
  doi: 10.1142/9789814452458_0014
– volume: 65
  start-page: 67
  year: 1994
  ident: 4851_CR9
  publication-title: J Combin Theory Ser A
  doi: 10.1016/0097-3165(94)90038-8
– ident: 4851_CR1
– volume: 114
  start-page: 195
  year: 2007
  ident: 4851_CR22
  publication-title: J Combin Theory Ser A
  doi: 10.1016/j.jcta.2006.02.001
– ident: 4851_CR17
SSID ssj0000390473
Score 2.104149
Snippet In 2012,Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form {n√zn},where {zn} is a familiar number-theoretic or combinatorial...
In 2012, Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form , where { z n } is a familiar number-theoretic or combinatorial...
In 2012, Zhi-Wei Sun posed many conjectures about the monotonicity of sequences of form (ProQuest: Formulae and/or non-USASCII text omitted), where {z sub(n)}...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2429
SubjectTerms Applications of Mathematics
China
Combinatorial analysis
Equivalence
Initial conditions
Mathematical analysis
Mathematics
Mathematics and Statistics
Sequences
Sun
Texts
Zinc
严格递增
充分条件
单调性
数论
猜想
组合序列
证明

Title Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences
URI http://lib.cqvip.com/qk/60114X/201411/662508085.html
https://link.springer.com/article/10.1007/s11425-014-4851-x
https://www.proquest.com/docview/1660089820
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1869-1862
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000390473
  issn: 1674-7283
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1869-1862
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000390473
  issn: 1674-7283
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBt7i-qOBJiWyzeXSPi_hAUTy4oF5CmiaKj1ZtF8Rf72T7WBQVvJYkbTOT5vs6M18AdizvGW1oTKzpIkFxhhItBSNO84jGPb-t-Hrn8wtxMmCn1_y6quPO62z3OiQ5-lKPi91C9C-kvowwhAkEgeMU9_ykBVP945uz8a-VDvJ4Noot-xR7InEHreOZP43jVRXus_TuFe_5dXcaQ85vUdLR5nM0B1f1Y5c5J4_7wyLeNx_fFB3_-V7zMFuB0aBfes8CTNh0EWbOGyXXfAluLxFauzzIXJBnzzZA-vxQhh3wWhqgE2eFV9dFMO_blAeMkKY8MtBpgn2ekX97do_OHjTJ28swODq8Ojgh1XkMxLAwKkiiZWKljrrCIu2R2kZe8I2GlhvHhEtYJ4lDJwzXyDGpw2-pllpLx52xOua6uwKtNEvtKgSOYjcqrEO8xKSNYgQ6XWGY7Umflhq2Yb2xiXopdTeUQK6GADfibejUVlKmkjL3J2o8qbEIs59UhZOq_KSq9zbsNl3q8f5ovF2bXuFq8yEUndpsmKtQIECMegib2rBXm1NVyz7_fcS1f7Veh2nq_WFU8rgBreJtaDcR-xTxVuXrWzA5oP1P1Vb9aw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hcgAO7IiyBokTyKhJHTs9IgSUpRWHVipcLMexQSwJkFRCfD3jZqmoAIlrZDvJzDjzXmYxwL72W0oqLyRaNZGgGOURyRklRvqBF7asW7H1zp0ua_fp5cAfFHXcaZntXoYkR1_qcbGbi_aF1JcSijCBIHCcpm4Q0BpMH5_fXo1_rTSQx9NRbNmm2BOOHrSMZ_60ju2q8JDE9294z-_eaQw5J6KkI-dztgC98rHznJOno2EWHqnPiY6O_3yvRZgvwKhznFvPEkzpeBnmOlUn13QF7m4QWpvUSYyTJi_aQfr8mIcd8FrsoBEnme2ui2DejskPGCFVeaQj4wjnvCD_tuwejd2pkrdXoX922jtpk-I8BqJQ0BmJJI80l0GTaaQ9XOrANnzzXO0rQ5mJaCMKXcOUL5Fjega_pZJLyY1vlJahL5trUIuTWK-DYzyc5jFtEC9RroMQgU6TKapb3KalunXYrHQiXvO-G4IhV0OAG_h1aJRaEqpoZW5P1HgW4ybMVqgChSqsUMVHHQ6qKeV6fwzeK1UvcLfZEIqMdTJMhcsQIAYthE11OCzVKYptn_6-4sa_Ru_CTLvXuRbXF92rTZj1rG2Myh-3oJa9D_U24qAs3Cns_gvzOf9z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQfRBvOKclwo-KWFrlibt41CHt409OBi-hDRNFHHttB348z3pbSgq-FqSlPac9HxfzzlfEDrVXqCkIiHWqgsExSiCJWcUG-n5JAxsWLH9zoMhux7T24k3Kc85Tatq9yolWfQ0WJWmOGvPItNeNL654GtAgymmABkwgMhlCqHasq8x6dU_WTrA6GmeZbbF9phDLK0ymz-tYvUVnpP46Q3u_jVOLcDnt3xpHob6G2i9xI9OrzD4JlrS8RZaG9Tiq-k2ehwBGjapkxgnTabagUd7KTIFcC12wO-SzAriAv62Y4ozQXDd0ejIOII5U6DMlpCDfzp1vfUOGvevHi6ucXmEAlbU9TMcSR5pLv0u08BUuNS-1WgjrvaUocxEtBOFrmHKk0ALiYHPn-RScuMZpWXoye4uasRJrPeQYwhMI0wbgDiUaz8EbNJliuqA20pSt4la9csTs0IqQzCgV4BJfa-JOtXrFKpUH7eHYLyKhW6ytYYAawhrDfHRRGf1lGq9PwafVDYSsEFs1kPGOpmnwmWA6fwAkE4TnVfGE-VOTX9fcf9fo4_RyuiyL-5vhncttEqsT-UNiweokb3P9SEglyw8yr3zE1QP5qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proofs+of+some+conjectures+on+monotonicity+of+number-theoretic+and+combinatorial+sequences&rft.jtitle=Science+China.+Mathematics&rft.au=Wang%2C+Yi&rft.au=Zhu%2C+BaoXuan&rft.date=2014-11-01&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=57&rft.issue=11&rft.spage=2429&rft.epage=2435&rft_id=info:doi/10.1007%2Fs11425-014-4851-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11425_014_4851_x
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg