Space-filling single square and square fractal grids induced turbulence: Reynolds stress model parameters-optimization

The employment of grid-induced turbulent flow structures as a passive means of augmenting solid-fluid heat transfer is receiving considerable attention, especially in HVAC applications. However, there presently exists a gap in simulation approaches, where industry-accessible CFD packages are unable...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 17; p. 100806
Main Authors Mok, Michael Chee Hoe, Yeoh, Chin Vern, Tan, Ming Kwang, Foo, Ji Jinn
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Elsevier
Subjects
Online AccessGet full text
ISSN2590-1230
2590-1230
DOI10.1016/j.rineng.2022.100806

Cover

Abstract The employment of grid-induced turbulent flow structures as a passive means of augmenting solid-fluid heat transfer is receiving considerable attention, especially in HVAC applications. However, there presently exists a gap in simulation approaches, where industry-accessible CFD packages are unable to accurately express crucial second-order turbulent flow statistics generated by space-filling single square grids (SSGs) and square fractal grids (SFGs). The present study reports a successful application of a revised Reynolds Stress Model (RSM), which accurately replicates the streamwise distributions of centerline mean flow velocity and turbulence intensity in the lee of one SSG (operating under three different flow Reynolds number ReDh) and five geometrically different SFG test cases after undergoing Nelder-Mead downhill simplex optimization of key RSM kernel parameters. The optimized RSM presents a disagreement of, at worst, 4.30% and 9.98%, respectively against experimental hot-wire anemometry measurements of first-order and second-order statistics, and is the first known instance of the RSM being validated for turbulence intensity predictions of SSG- and SFG-induced turbulence. Examination of RSM parameters reveals that the pre-factors for the rates of turbulence dissipation production and destruction (C1,ε and C2,ε) hold greatest effect on simulation accuracy, with additional optimization of the turbulent viscosity pre-factor (Cμ) required for SFG cases. This is attributed to the effect of enhanced turbulent transport due to the cascading and multiscale nature of SFG turbulence, which insofar could not be replicated by Reynolds-Averaged Navier-Stokes (RANS) models. The values of optimized C1,ε, C2,ε, and Cμ range between 1.057 to 1.697, 2.226 to 2.556, and 0.17 to 2.27, respectively. This leads to the largest deviation of −26.6%, 33.1%, and 200% for C1,ε, C2,ε, and Cμ, respectively, when compared to their corresponding default values. With regards to the sensitivity of this parameter set on grid design, it is shown that the grid's fractal iteration number N and thickness ratio tr have greatest influence on the variation of C1,ε, C2,ε, and Cμ, while the effect of ReDh is insignificant. Overall, this study presents an alternative approach to capture the anisotropic and inhomogeneous nature of SSG- and SFG-induced turbulence for industrial heat-transfer applications via an accessible RANS package, which was previously constrained to expensive DNS and LES studies. •RSM parameters simplex optimization to predict multilength-scale grid turbulence.•RSM(C1,ε, C2,ε) optimization ensue a 9.70% deviation in SSG-induced turbulence.•RSM(C1,ε,C2,ε,Cμ) optimization gives 9.98% deviation on SFG-induced turbulence.•SSG-promoted turbulent statistics are independent of flow Reynolds number ReDh.•SFG-induced turbulence intensity is sensitive towards grid geometric properties.
AbstractList The employment of grid-induced turbulent flow structures as a passive means of augmenting solid-fluid heat transfer is receiving considerable attention, especially in HVAC applications. However, there presently exists a gap in simulation approaches, where industry-accessible CFD packages are unable to accurately express crucial second-order turbulent flow statistics generated by space-filling single square grids (SSGs) and square fractal grids (SFGs). The present study reports a successful application of a revised Reynolds Stress Model (RSM), which accurately replicates the streamwise distributions of centerline mean flow velocity and turbulence intensity in the lee of one SSG (operating under three different flow Reynolds number ReDh) and five geometrically different SFG test cases after undergoing Nelder-Mead downhill simplex optimization of key RSM kernel parameters. The optimized RSM presents a disagreement of, at worst, 4.30% and 9.98%, respectively against experimental hot-wire anemometry measurements of first-order and second-order statistics, and is the first known instance of the RSM being validated for turbulence intensity predictions of SSG- and SFG-induced turbulence. Examination of RSM parameters reveals that the pre-factors for the rates of turbulence dissipation production and destruction (C1,ε and C2,ε) hold greatest effect on simulation accuracy, with additional optimization of the turbulent viscosity pre-factor (Cμ) required for SFG cases. This is attributed to the effect of enhanced turbulent transport due to the cascading and multiscale nature of SFG turbulence, which insofar could not be replicated by Reynolds-Averaged Navier-Stokes (RANS) models. The values of optimized C1,ε, C2,ε, and Cμ range between 1.057 to 1.697, 2.226 to 2.556, and 0.17 to 2.27, respectively. This leads to the largest deviation of −26.6%, 33.1%, and 200% for C1,ε, C2,ε, and Cμ, respectively, when compared to their corresponding default values. With regards to the sensitivity of this parameter set on grid design, it is shown that the grid's fractal iteration number N and thickness ratio tr have greatest influence on the variation of C1,ε, C2,ε, and Cμ, while the effect of ReDh is insignificant. Overall, this study presents an alternative approach to capture the anisotropic and inhomogeneous nature of SSG- and SFG-induced turbulence for industrial heat-transfer applications via an accessible RANS package, which was previously constrained to expensive DNS and LES studies.
The employment of grid-induced turbulent flow structures as a passive means of augmenting solid-fluid heat transfer is receiving considerable attention, especially in HVAC applications. However, there presently exists a gap in simulation approaches, where industry-accessible CFD packages are unable to accurately express crucial second-order turbulent flow statistics generated by space-filling single square grids (SSGs) and square fractal grids (SFGs). The present study reports a successful application of a revised Reynolds Stress Model (RSM), which accurately replicates the streamwise distributions of centerline mean flow velocity and turbulence intensity in the lee of one SSG (operating under three different flow Reynolds number ReDh) and five geometrically different SFG test cases after undergoing Nelder-Mead downhill simplex optimization of key RSM kernel parameters. The optimized RSM presents a disagreement of, at worst, 4.30% and 9.98%, respectively against experimental hot-wire anemometry measurements of first-order and second-order statistics, and is the first known instance of the RSM being validated for turbulence intensity predictions of SSG- and SFG-induced turbulence. Examination of RSM parameters reveals that the pre-factors for the rates of turbulence dissipation production and destruction (C1,ε and C2,ε) hold greatest effect on simulation accuracy, with additional optimization of the turbulent viscosity pre-factor (Cμ) required for SFG cases. This is attributed to the effect of enhanced turbulent transport due to the cascading and multiscale nature of SFG turbulence, which insofar could not be replicated by Reynolds-Averaged Navier-Stokes (RANS) models. The values of optimized C1,ε, C2,ε, and Cμ range between 1.057 to 1.697, 2.226 to 2.556, and 0.17 to 2.27, respectively. This leads to the largest deviation of −26.6%, 33.1%, and 200% for C1,ε, C2,ε, and Cμ, respectively, when compared to their corresponding default values. With regards to the sensitivity of this parameter set on grid design, it is shown that the grid's fractal iteration number N and thickness ratio tr have greatest influence on the variation of C1,ε, C2,ε, and Cμ, while the effect of ReDh is insignificant. Overall, this study presents an alternative approach to capture the anisotropic and inhomogeneous nature of SSG- and SFG-induced turbulence for industrial heat-transfer applications via an accessible RANS package, which was previously constrained to expensive DNS and LES studies. •RSM parameters simplex optimization to predict multilength-scale grid turbulence.•RSM(C1,ε, C2,ε) optimization ensue a 9.70% deviation in SSG-induced turbulence.•RSM(C1,ε,C2,ε,Cμ) optimization gives 9.98% deviation on SFG-induced turbulence.•SSG-promoted turbulent statistics are independent of flow Reynolds number ReDh.•SFG-induced turbulence intensity is sensitive towards grid geometric properties.
ArticleNumber 100806
Author Yeoh, Chin Vern
Tan, Ming Kwang
Foo, Ji Jinn
Mok, Michael Chee Hoe
Author_xml – sequence: 1
  givenname: Michael Chee Hoe
  orcidid: 0000-0002-3527-7689
  surname: Mok
  fullname: Mok, Michael Chee Hoe
– sequence: 2
  givenname: Chin Vern
  orcidid: 0000-0002-3145-0640
  surname: Yeoh
  fullname: Yeoh, Chin Vern
– sequence: 3
  givenname: Ming Kwang
  orcidid: 0000-0002-1585-9358
  surname: Tan
  fullname: Tan, Ming Kwang
– sequence: 4
  givenname: Ji Jinn
  surname: Foo
  fullname: Foo, Ji Jinn
  email: Foo.Ji.Jinn@monash.edu
BookMark eNqNkdtq3DAQhk1JIWmaN8iFX8BbHWzLzkWhhDYJBAI9XIvxaLRo0cquJKdsn77euC2lF2lvpGHE94mZ_1VxEsZARXHJ2YYz3r7ZbaILFLYbwYRYWqxj7YviTDQ9q7iQ7OSP-rS4SGnHGBPdwkp1Vjx-mgCpss57F7ZlWg5PZfo6Q6QSgvlV2giYwZfb6EwqXTAzkinzHIfZU0C6Kj_SIYx-eUw5UkrlfjTkywki7ClTTNU4Zbd33yG7MbwuXlrwiS5-3ufFlw_vP1_fVvcPN3fX7-4rrHmXK0DZWEIrLVnZoGy7jlvFlTC2X-ZUxhjse26UapGrVgkpBKuJSWplZ7iV58Xd6jUj7PQU3R7iQY_g9FNjjFsNMTv0pCW2AzZSwdCwuh7qngyqlvqm4R0O0CyuZnXNYYLDN_D-t5AzfcxC7_SahT5modcsFu5q5TCOKUWyGl1-2kKO4Py_4Pov-D__fLtitCz30VHUCd0xJ-MiYV6md88LfgAYnb0x
CitedBy_id crossref_primary_10_1007_s10494_023_00480_9
crossref_primary_10_1007_s11227_023_05775_2
crossref_primary_10_1016_j_euromechflu_2024_03_002
Cites_doi 10.1103/PhysRevE.86.046302
10.1016/j.rineng.2021.100254
10.1017/S0022112091000101
10.1017/S0022112066000338
10.1016/0142-727X(89)90017-9
10.1007/BF01330059
10.1016/0045-7930(94)90001-9
10.1016/j.rineng.2019.100052
10.1016/j.ijheatmasstransfer.2014.03.049
10.1016/j.expthermflusci.2018.07.001
10.1007/s12008-019-00537-y
10.1017/jfm.2017.54
10.1016/j.compfluid.2015.12.007
10.1017/jfm.2012.394
10.1017/S0022112078001251
10.1063/1.4870167
10.1016/j.cma.2014.06.008
10.1016/j.cherd.2019.12.004
10.1017/jfm.2011.353
10.1016/0045-7825(74)90029-2
10.1080/10618562.2015.1058371
10.1088/0169-5983/45/6/061409
10.1016/j.compfluid.2015.11.010
10.1016/j.rineng.2022.100458
10.1063/1.4890746
10.1017/S002211207200268X
10.1016/j.enbuild.2007.03.007
10.1016/j.rineng.2022.100669
10.1016/j.cherd.2019.05.001
10.1093/comjnl/7.4.308
10.1016/j.rineng.2019.100073
10.1088/0031-8949/91/7/074007
10.1063/1.2676448
10.1007/s10494-011-9351-2
10.1017/S0022112075001814
10.1016/j.csite.2015.08.003
10.1016/j.applthermaleng.2019.114066
10.1088/0031-8949/2008/T132/014054
10.1016/j.compfluid.2019.104296
10.1063/1.3453708
10.1016/j.apm.2021.10.044
10.1007/s12008-017-0434-8
10.1016/j.rineng.2019.100037
10.1016/j.rineng.2021.100288
10.1016/j.rineng.2022.100471
10.1016/j.rineng.2019.100078
10.1016/j.ijthermalsci.2019.04.035
10.1080/14484846.2017.1325118
10.1063/1.2795211
10.1016/j.apm.2014.07.001
10.1016/j.rineng.2019.100030
10.1063/1.4811402
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.rineng.2022.100806
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_3c6bc537ab5044b49edc76e95518cba5
10.1016/j.rineng.2022.100806
10_1016_j_rineng_2022_100806
S2590123022004765
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c418t-ac35fecf3fef35c36881f7172df90807dddc991d776c1767232204e03e638d1f3
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Fri Oct 03 12:52:21 EDT 2025
Tue Aug 19 09:14:17 EDT 2025
Wed Oct 01 05:55:42 EDT 2025
Thu Apr 24 22:54:25 EDT 2025
Sat Jul 05 17:11:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Turbulence
Simplex optimization
Fractal geometry
Computational Fluid Dynamics
SFG
SSG
RSM
Reynolds Stress Model
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-ac35fecf3fef35c36881f7172df90807dddc991d776c1767232204e03e638d1f3
ORCID 0000-0002-3527-7689
0000-0002-1585-9358
0000-0002-3145-0640
OpenAccessLink https://doaj.org/article/3c6bc537ab5044b49edc76e95518cba5
ParticipantIDs doaj_primary_oai_doaj_org_article_3c6bc537ab5044b49edc76e95518cba5
unpaywall_primary_10_1016_j_rineng_2022_100806
crossref_citationtrail_10_1016_j_rineng_2022_100806
crossref_primary_10_1016_j_rineng_2022_100806
elsevier_sciencedirect_doi_10_1016_j_rineng_2022_100806
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hanjalić, Launder (bib55) 1972; 52
Shuvo, Sakib, Rahman, Saha (bib33) 2022; 16
Nagata, Suzuki, Sakai, Hayase, Kubo (bib12) 2008
Jha, Danjuma (bib20) 2020; 5
Yang, Tucker (bib41) 2016; 126
Mazellier, Vassilicos (bib7) 2010; 22
Schenk, Vinuesa (bib19) 2019; 3
Laizet, Nedić, Vassilicos (bib58) 2015; 29
Belhocine, Wan Omar (bib25) 2017
Hurst, Vassilicos (bib6) 2007; 19
Valente, Vassilicos (bib8) 2011; 687
Nagata, Sakai, Inaba, Suzuki, Terashima, Suzuki (bib60) 2013; 25
Gatski, Rumsey (bib29) 2001
Belhocine, Abdullah (bib44) 2019; 13
Simmons, Salter (bib5) 1934; 145
Belhocine, Abdullah (bib27) 2018; 12
Pérez-Álvarez, Acosta-Iborra, Santana (bib45) 2020; 5
Nelder, Mead (bib46) 1965; 7
Zhou, Nagata, Sakai, Suzuki, Ito, Terashima, Hayase (bib14) 2014; 26
Ejeh, Akhabue, Boah, Tandoh (bib31) 2019; 4
Reynolds (bib28) 1995; 451
Paul, Papadakis, Vassilicos (bib61) 2017; 815
Abdelwahab, Ghazal, Aboshosha (bib24) 2022; 14
(bib52) 2015
Ouyang, Tang, Xiang, Zou, Chu, Agarwal, Chen (bib21) 2019; 194
Launder, Reece, Rodi (bib37) 1975; 68
Argyropoulos, Markatos (bib22) 2015; 39
Cafiero, Discetti, Astarita (bib1) 2014; 75
Launder (bib49) 1989; 10
Launder, Sandham (bib56) 2002
Zhou, Nagata, Sakai, Suzuki, Ito, Terashima, Hayase (bib15) 2014; 26
Lien, Leschziner (bib51) 1994; 23
Launder, Spalding (bib57) 1974; 3
Suzuki, Nagata, Sakai, Hayase, Hasegawa, Ushijima (bib11) 2013; 45
Gomes-Fernandes, Ganapathisubramani, Vassilicos (bib9) 2012; 711
Speziale, Sarkar, Gatski (bib38) 1991; 227
Laizet, Vassilicos (bib10) 2012; 86
Launder (bib50) 1972
Naot, Shavit, Wolfshtein (bib54) 1970; 8
Pérez-Lombard, Ortiz, Pout (bib3) 2008; 40
Gibson, Launder (bib48) 1978; 86
Bauer, Tyacke (bib23) 2022; 103
Panda, Mitra, Joshi, Warrior (bib39) 2018; 98
Al-Qadami, id Abdurrasheed, Mustaffa, Yusof, Malek, Ghani (bib30) 2019; 4
Versteeg, Malalasekera (bib47) 2007
Laizet, Vassilicos (bib13) 2011; 87
Guillas, Glover, Malki-Epshtein (bib35) 2014; 279
Hoi, Teh, Ooi, Chew, Foo (bib2) 2019; 160
Seoud, Vassilicos (bib16) 2007; 19
Vinuesa (bib18) 2021; 11
Rotta (bib53) 1951; 129
Teh, Phoo, Chin, Ooi, Foo (bib40) 2020; 156
Wang, Reviol, Ren, Böhle (bib43) 2019; 147
Comte-Bellot, Corrsin (bib4) 1966; 25
Belhocine, Wan Omar (bib26) 2015; 6
Hoi, Teh, Ooi, Chew, Foo (bib17) 2019; 142
Teodosio, Timpone, Napolitano dell'Annunziata, Genovese (bib32) 2021; 12
Yang, Tucker (bib42) 2016; 126
Hammoodi, Hasan, Abed, Basem, Al-Tajer (bib34) 2022; 15
Watanabe, Sakai, Nagata, Ito, Hayase (bib59) 2016; 91
Hanjalic, Jakirlić (bib36) 2001
Launder (10.1016/j.rineng.2022.100806_bib37) 1975; 68
Abdelwahab (10.1016/j.rineng.2022.100806_bib24) 2022; 14
Teh (10.1016/j.rineng.2022.100806_bib40) 2020; 156
Laizet (10.1016/j.rineng.2022.100806_bib58) 2015; 29
Gatski (10.1016/j.rineng.2022.100806_bib29) 2001
Launder (10.1016/j.rineng.2022.100806_bib49) 1989; 10
Mazellier (10.1016/j.rineng.2022.100806_bib7) 2010; 22
Al-Qadami (10.1016/j.rineng.2022.100806_bib30) 2019; 4
Cafiero (10.1016/j.rineng.2022.100806_bib1) 2014; 75
Hammoodi (10.1016/j.rineng.2022.100806_bib34) 2022; 15
Paul (10.1016/j.rineng.2022.100806_bib61) 2017; 815
Belhocine (10.1016/j.rineng.2022.100806_bib26) 2015; 6
Speziale (10.1016/j.rineng.2022.100806_bib38) 1991; 227
Panda (10.1016/j.rineng.2022.100806_bib39) 2018; 98
Gomes-Fernandes (10.1016/j.rineng.2022.100806_bib9) 2012; 711
Launder (10.1016/j.rineng.2022.100806_bib50) 1972
(10.1016/j.rineng.2022.100806_bib52) 2015
Laizet (10.1016/j.rineng.2022.100806_bib13) 2011; 87
Reynolds (10.1016/j.rineng.2022.100806_bib28) 1995; 451
Rotta (10.1016/j.rineng.2022.100806_bib53) 1951; 129
Zhou (10.1016/j.rineng.2022.100806_bib14) 2014; 26
Ejeh (10.1016/j.rineng.2022.100806_bib31) 2019; 4
Shuvo (10.1016/j.rineng.2022.100806_bib33) 2022; 16
Hoi (10.1016/j.rineng.2022.100806_bib2) 2019; 160
Nagata (10.1016/j.rineng.2022.100806_bib12) 2008
Yang (10.1016/j.rineng.2022.100806_bib42) 2016; 126
Belhocine (10.1016/j.rineng.2022.100806_bib25) 2017
Hanjalic (10.1016/j.rineng.2022.100806_bib36) 2001
Belhocine (10.1016/j.rineng.2022.100806_bib44) 2019; 13
Nelder (10.1016/j.rineng.2022.100806_bib46) 1965; 7
Nagata (10.1016/j.rineng.2022.100806_bib60) 2013; 25
Gibson (10.1016/j.rineng.2022.100806_bib48) 1978; 86
Hanjalić (10.1016/j.rineng.2022.100806_bib55) 1972; 52
Teodosio (10.1016/j.rineng.2022.100806_bib32) 2021; 12
Ouyang (10.1016/j.rineng.2022.100806_bib21) 2019; 194
Bauer (10.1016/j.rineng.2022.100806_bib23) 2022; 103
Yang (10.1016/j.rineng.2022.100806_bib41) 2016; 126
Zhou (10.1016/j.rineng.2022.100806_bib15) 2014; 26
Launder (10.1016/j.rineng.2022.100806_bib56) 2002
Laizet (10.1016/j.rineng.2022.100806_bib10) 2012; 86
Lien (10.1016/j.rineng.2022.100806_bib51) 1994; 23
Hoi (10.1016/j.rineng.2022.100806_bib17) 2019; 142
Valente (10.1016/j.rineng.2022.100806_bib8) 2011; 687
Comte-Bellot (10.1016/j.rineng.2022.100806_bib4) 1966; 25
Watanabe (10.1016/j.rineng.2022.100806_bib59) 2016; 91
Versteeg (10.1016/j.rineng.2022.100806_bib47) 2007
Guillas (10.1016/j.rineng.2022.100806_bib35) 2014; 279
Naot (10.1016/j.rineng.2022.100806_bib54) 1970; 8
Simmons (10.1016/j.rineng.2022.100806_bib5) 1934; 145
Vinuesa (10.1016/j.rineng.2022.100806_bib18) 2021; 11
Suzuki (10.1016/j.rineng.2022.100806_bib11) 2013; 45
Pérez-Lombard (10.1016/j.rineng.2022.100806_bib3) 2008; 40
Hurst (10.1016/j.rineng.2022.100806_bib6) 2007; 19
Pérez-Álvarez (10.1016/j.rineng.2022.100806_bib45) 2020; 5
Seoud (10.1016/j.rineng.2022.100806_bib16) 2007; 19
Launder (10.1016/j.rineng.2022.100806_bib57) 1974; 3
Wang (10.1016/j.rineng.2022.100806_bib43) 2019; 147
Jha (10.1016/j.rineng.2022.100806_bib20) 2020; 5
Schenk (10.1016/j.rineng.2022.100806_bib19) 2019; 3
Argyropoulos (10.1016/j.rineng.2022.100806_bib22) 2015; 39
Belhocine (10.1016/j.rineng.2022.100806_bib27) 2018; 12
References_xml – volume: 75
  start-page: 173
  year: 2014
  end-page: 183
  ident: bib1
  article-title: Heat transfer enhancement of impinging jets with fractal-generated turbulence
  publication-title: Int. J. Heat Mass Tran.
– start-page: 9
  year: 2001
  end-page: 46
  ident: bib29
  article-title: Linear and Nonlinear Eddy Viscosity Models
– volume: 68
  start-page: 537
  year: 1975
  end-page: 566
  ident: bib37
  article-title: Progress in the development of a Reynolds-stress turbulence closure
  publication-title: J. Fluid Mech.
– volume: 14
  year: 2022
  ident: bib24
  article-title: Designing a multi-purpose wind tunnel suitable for limited spaces
  publication-title: Results Eng.
– year: 2007
  ident: bib47
  article-title: An Introduction to Computational Fluid Dynamics : the Finite Volume Method
– volume: 19
  year: 2007
  ident: bib16
  article-title: Dissipation and decay of fractal-generated turbulence
  publication-title: Phys. Fluids
– volume: 40
  start-page: 394
  year: 2008
  end-page: 398
  ident: bib3
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build.
– volume: 3
  year: 2019
  ident: bib19
  article-title: Enhanced large-scale atmospheric flow interaction with ice sheets at high model resolution
  publication-title: Results Eng.
– year: 2015
  ident: bib52
  article-title: Fluent Theory Guide
– volume: 13
  start-page: 633
  year: 2019
  end-page: 644
  ident: bib44
  article-title: Numerical simulation of thermally developing turbulent flow through a cylindrical tube
  publication-title: Int. J. Interact. Des. Manuf.
– volume: 142
  start-page: 392
  year: 2019
  end-page: 406
  ident: bib17
  article-title: Plate-fin heat sink forced convective heat transfer augmentation with a fractal insert
  publication-title: Int. J. Therm. Sci.
– volume: 29
  start-page: 286
  year: 2015
  end-page: 302
  ident: bib58
  article-title: Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid
  publication-title: Int. J. Comput. Fluid Dynam.
– volume: 103
  start-page: 696
  year: 2022
  end-page: 713
  ident: bib23
  article-title: Comparison of low Reynolds number turbulence and conjugate heat transfer modelling for pin-fin roughness elements
  publication-title: Appl. Math. Model.
– volume: 10
  start-page: 282
  year: 1989
  end-page: 300
  ident: bib49
  article-title: Second-moment closure: present… and future?
  publication-title: Int. J. Heat Fluid Flow
– year: 2002
  ident: bib56
  article-title: Closure Strategies for Turbulent and Transitional Flows, Cambridge, UK New York
– volume: 86
  year: 2012
  ident: bib10
  article-title: Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing
  publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys.
– volume: 126
  start-page: 91
  year: 2016
  end-page: 101
  ident: bib41
  article-title: Assessment of turbulence model performance: large streamline curvature and integral length scales
  publication-title: Comput. Fluids
– volume: 23
  start-page: 983
  year: 1994
  end-page: 1004
  ident: bib51
  article-title: Assessment of turbulence-transport models including non-linear rng eddy-viscosity formulation and second-moment closure for flow over a backward-facing step
  publication-title: Comput. Fluids
– volume: 39
  start-page: 693
  year: 2015
  end-page: 732
  ident: bib22
  article-title: Recent advances on the numerical modelling of turbulent flows
  publication-title: Appl. Math. Model.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: bib46
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– volume: 129
  start-page: 547
  year: 1951
  end-page: 572
  ident: bib53
  article-title: Statistische theorie nichthomogener turbulenz
  publication-title: Z. Phys.
– volume: 12
  start-page: 1015
  year: 2018
  end-page: 1025
  ident: bib27
  article-title: Similarity and numerical analysis of the generalized Levèque problem to predict the thermal boundary layer
  publication-title: Int. J. Interact. Des. Manuf.
– volume: 815
  start-page: 295
  year: 2017
  end-page: 332
  ident: bib61
  article-title: Genesis and evolution of velocity gradients in near-field spatially developing turbulence
  publication-title: J. Fluid Mech.
– year: 2008
  ident: bib12
  article-title: Direct numerical simulation of turbulent mixing in grid-generated turbulence
  publication-title: Phys. Scripta
– volume: 3
  start-page: 269
  year: 1974
  end-page: 289
  ident: bib57
  article-title: The numerical computation of turbulent flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 194
  year: 2019
  ident: bib21
  article-title: Evaluation of various turbulence models for numerical simulation of a multiphase system in a rotating packed bed
  publication-title: Comput. Fluids
– volume: 16
  year: 2022
  ident: bib33
  article-title: Particle deposition and characteristics of turbulent flow in converging and diverging nozzles using Eulerian-Lagrangian approach
  publication-title: Results Eng.
– volume: 145
  start-page: 212
  year: 1934
  end-page: 234
  ident: bib5
  article-title: Experimental investigation and analysis of the velocity variations in turbulent flow
  publication-title: Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character
– volume: 4
  year: 2019
  ident: bib30
  article-title: Numerical modelling of flow characteristics over sharp crested triangular hump
  publication-title: Results Eng.
– volume: 87
  start-page: 673
  year: 2011
  end-page: 705
  ident: bib13
  article-title: DNS of fractal-generated turbulence
  publication-title: Flow, Turbul. Combust.
– volume: 26
  year: 2014
  ident: bib14
  article-title: Development of turbulence behind the single square grid
  publication-title: Phys. Fluids
– volume: 12
  year: 2021
  ident: bib32
  article-title: RANS 3D CFD simulations to enhance the thermal prediction of tyre thermodynamic model: a hierarchical approach
  publication-title: Results Eng.
– volume: 86
  start-page: 491
  year: 1978
  end-page: 511
  ident: bib48
  article-title: Ground effects on pressure fluctuations in the atmospheric boundary layer
  publication-title: J. Fluid Mech.
– volume: 156
  start-page: 226
  year: 2020
  end-page: 239
  ident: bib40
  article-title: Forced convective heat transfer enhancement of 90° bend plate-fin heat sink with grid generated turbulence
  publication-title: Chem. Eng. Res. Des.
– volume: 711
  start-page: 306
  year: 2012
  end-page: 336
  ident: bib9
  article-title: Particle image velocimetry study of fractal-generated turbulence
  publication-title: J. Fluid Mech.
– volume: 45
  year: 2013
  ident: bib11
  article-title: Direct numerical simulation of fractal-generated turbulence
  publication-title: Fluid Dynam. Res.
– volume: 15
  year: 2022
  ident: bib34
  article-title: Control of heat transfer in circular channels using oblique triangular ribs
  publication-title: Results Eng.
– volume: 279
  start-page: 536
  year: 2014
  end-page: 553
  ident: bib35
  article-title: Bayesian calibration of the constants of the k–ε turbulence model for a CFD model of street canyon flow
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 19
  year: 2007
  ident: bib6
  article-title: Scalings and decay of fractal-generated turbulence
  publication-title: Phys. Fluids
– volume: 25
  year: 2013
  ident: bib60
  article-title: Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence
  publication-title: Phys. Fluids
– volume: 25
  start-page: 657
  year: 1966
  end-page: 682
  ident: bib4
  article-title: The use of a contraction to improve the isotropy of grid-generated turbulence
  publication-title: J. Fluid Mech.
– year: 1972
  ident: bib50
  article-title: Lectures in Mathematical Models of Turbulence, London, New York
– volume: 4
  year: 2019
  ident: bib31
  article-title: Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics
  publication-title: Results Eng.
– volume: 11
  year: 2021
  ident: bib18
  article-title: High-fidelity simulations in complex geometries: towards better flow understanding and development of turbulence models
  publication-title: Results Eng.
– volume: 5
  year: 2020
  ident: bib45
  article-title: Thermal and mechanical stresses in bayonet tubes of solar central receivers working with molten salt and liquid sodium
  publication-title: Results in Engineering
– volume: 160
  year: 2019
  ident: bib2
  article-title: Forced convective heat transfer optimization of plate-fin heat sink with insert-induced turbulence
  publication-title: Appl. Therm. Eng.
– volume: 5
  year: 2020
  ident: bib20
  article-title: Unsteady Dean flow formation in an annulus with partial slippage: a riemann-sum approximation approach
  publication-title: Results Eng.
– volume: 98
  start-page: 594
  year: 2018
  end-page: 603
  ident: bib39
  article-title: Experimental and numerical analysis of grid generated turbulence with and without mean strain
  publication-title: Exp. Therm. Fluid Sci.
– volume: 147
  start-page: 259
  year: 2019
  end-page: 277
  ident: bib43
  article-title: Effects of turbulence modeling on the prediction of flow characteristics of mixing non-Newtonian fluids in a stirred vessel
  publication-title: Chem. Eng. Res. Des.
– volume: 22
  year: 2010
  ident: bib7
  article-title: Turbulence without richardson–Kolmogorov cascade
  publication-title: Phys. Fluids
– volume: 52
  start-page: 609
  year: 1972
  end-page: 638
  ident: bib55
  article-title: A Reynolds stress model of turbulence and its application to thin shear flows
  publication-title: J. Fluid Mech.
– volume: 26
  year: 2014
  ident: bib15
  article-title: Relevance of turbulence behind the single square grid to turbulence generated by regular- and multiscale-grids
  publication-title: Phys. Fluids
– start-page: 1
  year: 2017
  end-page: 18
  ident: bib25
  article-title: Computational fluid dynamics (CFD) analysis and numerical aerodynamic investigations of automotive disc brake rotor
  publication-title: Aust. J. Mech. Eng.
– volume: 126
  start-page: 181
  year: 2016
  end-page: 191
  ident: bib42
  article-title: Assessment of turbulence model performance: severe acceleration with large integral length scales
  publication-title: Comput. Fluids
– start-page: 47
  year: 2001
  end-page: 101
  ident: bib36
  article-title: Second-Moment Turbulence Closure Modelling
– volume: 6
  start-page: 116
  year: 2015
  end-page: 127
  ident: bib26
  article-title: Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature
  publication-title: Case Stud. Therm. Eng.
– volume: 227
  year: 1991
  ident: bib38
  article-title: Modelling the pressure-strain correlation of turbulence - an invariant dynamical systems approach
  publication-title: J. Fluid Mech.
– volume: 91
  year: 2016
  ident: bib59
  article-title: Implicit large eddy simulation of a scalar mixing layer in fractal grid turbulence
  publication-title: Phys. Scripta
– volume: 8
  year: 1970
  ident: bib54
  article-title: Interaction between components of the turbulent-velocity correlation tensor
  publication-title: Isr. J. Technol.
– volume: 687
  start-page: 300
  year: 2011
  end-page: 340
  ident: bib8
  article-title: The decay of turbulence generated by a class of multiscale grids
  publication-title: J. Fluid Mech.
– volume: 451
  start-page: 5
  year: 1995
  end-page: 47
  ident: bib28
  article-title: On the dynamical theory of incompressible viscous fluids and the determination of the criterion
  publication-title: Proc. Roy. Soc. A, Math. Phys. Sci.
– volume: 86
  year: 2012
  ident: 10.1016/j.rineng.2022.100806_bib10
  article-title: Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing
  publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.86.046302
– volume: 11
  year: 2021
  ident: 10.1016/j.rineng.2022.100806_bib18
  article-title: High-fidelity simulations in complex geometries: towards better flow understanding and development of turbulence models
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2021.100254
– volume: 227
  year: 1991
  ident: 10.1016/j.rineng.2022.100806_bib38
  article-title: Modelling the pressure-strain correlation of turbulence - an invariant dynamical systems approach
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112091000101
– year: 1972
  ident: 10.1016/j.rineng.2022.100806_bib50
– volume: 25
  start-page: 657
  year: 1966
  ident: 10.1016/j.rineng.2022.100806_bib4
  article-title: The use of a contraction to improve the isotropy of grid-generated turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112066000338
– volume: 10
  start-page: 282
  year: 1989
  ident: 10.1016/j.rineng.2022.100806_bib49
  article-title: Second-moment closure: present… and future?
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(89)90017-9
– volume: 129
  start-page: 547
  year: 1951
  ident: 10.1016/j.rineng.2022.100806_bib53
  article-title: Statistische theorie nichthomogener turbulenz
  publication-title: Z. Phys.
  doi: 10.1007/BF01330059
– volume: 23
  start-page: 983
  year: 1994
  ident: 10.1016/j.rineng.2022.100806_bib51
  article-title: Assessment of turbulence-transport models including non-linear rng eddy-viscosity formulation and second-moment closure for flow over a backward-facing step
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(94)90001-9
– volume: 4
  year: 2019
  ident: 10.1016/j.rineng.2022.100806_bib30
  article-title: Numerical modelling of flow characteristics over sharp crested triangular hump
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2019.100052
– volume: 75
  start-page: 173
  year: 2014
  ident: 10.1016/j.rineng.2022.100806_bib1
  article-title: Heat transfer enhancement of impinging jets with fractal-generated turbulence
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2014.03.049
– volume: 98
  start-page: 594
  year: 2018
  ident: 10.1016/j.rineng.2022.100806_bib39
  article-title: Experimental and numerical analysis of grid generated turbulence with and without mean strain
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2018.07.001
– volume: 13
  start-page: 633
  year: 2019
  ident: 10.1016/j.rineng.2022.100806_bib44
  article-title: Numerical simulation of thermally developing turbulent flow through a cylindrical tube
  publication-title: Int. J. Interact. Des. Manuf.
  doi: 10.1007/s12008-019-00537-y
– volume: 815
  start-page: 295
  year: 2017
  ident: 10.1016/j.rineng.2022.100806_bib61
  article-title: Genesis and evolution of velocity gradients in near-field spatially developing turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.54
– volume: 126
  start-page: 181
  year: 2016
  ident: 10.1016/j.rineng.2022.100806_bib42
  article-title: Assessment of turbulence model performance: severe acceleration with large integral length scales
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.12.007
– volume: 711
  start-page: 306
  year: 2012
  ident: 10.1016/j.rineng.2022.100806_bib9
  article-title: Particle image velocimetry study of fractal-generated turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.394
– volume: 86
  start-page: 491
  year: 1978
  ident: 10.1016/j.rineng.2022.100806_bib48
  article-title: Ground effects on pressure fluctuations in the atmospheric boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112078001251
– volume: 26
  year: 2014
  ident: 10.1016/j.rineng.2022.100806_bib14
  article-title: Development of turbulence behind the single square grid
  publication-title: Phys. Fluids
  doi: 10.1063/1.4870167
– volume: 279
  start-page: 536
  year: 2014
  ident: 10.1016/j.rineng.2022.100806_bib35
  article-title: Bayesian calibration of the constants of the k–ε turbulence model for a CFD model of street canyon flow
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.06.008
– volume: 156
  start-page: 226
  year: 2020
  ident: 10.1016/j.rineng.2022.100806_bib40
  article-title: Forced convective heat transfer enhancement of 90° bend plate-fin heat sink with grid generated turbulence
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.12.004
– start-page: 9
  year: 2001
  ident: 10.1016/j.rineng.2022.100806_bib29
– volume: 451
  start-page: 5
  year: 1995
  ident: 10.1016/j.rineng.2022.100806_bib28
  article-title: On the dynamical theory of incompressible viscous fluids and the determination of the criterion
  publication-title: Proc. Roy. Soc. A, Math. Phys. Sci.
– volume: 687
  start-page: 300
  year: 2011
  ident: 10.1016/j.rineng.2022.100806_bib8
  article-title: The decay of turbulence generated by a class of multiscale grids
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.353
– volume: 3
  start-page: 269
  year: 1974
  ident: 10.1016/j.rineng.2022.100806_bib57
  article-title: The numerical computation of turbulent flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(74)90029-2
– volume: 29
  start-page: 286
  year: 2015
  ident: 10.1016/j.rineng.2022.100806_bib58
  article-title: Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid
  publication-title: Int. J. Comput. Fluid Dynam.
  doi: 10.1080/10618562.2015.1058371
– volume: 45
  year: 2013
  ident: 10.1016/j.rineng.2022.100806_bib11
  article-title: Direct numerical simulation of fractal-generated turbulence
  publication-title: Fluid Dynam. Res.
  doi: 10.1088/0169-5983/45/6/061409
– volume: 126
  start-page: 91
  year: 2016
  ident: 10.1016/j.rineng.2022.100806_bib41
  article-title: Assessment of turbulence model performance: large streamline curvature and integral length scales
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.11.010
– volume: 14
  year: 2022
  ident: 10.1016/j.rineng.2022.100806_bib24
  article-title: Designing a multi-purpose wind tunnel suitable for limited spaces
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100458
– volume: 26
  year: 2014
  ident: 10.1016/j.rineng.2022.100806_bib15
  article-title: Relevance of turbulence behind the single square grid to turbulence generated by regular- and multiscale-grids
  publication-title: Phys. Fluids
  doi: 10.1063/1.4890746
– volume: 52
  start-page: 609
  year: 1972
  ident: 10.1016/j.rineng.2022.100806_bib55
  article-title: A Reynolds stress model of turbulence and its application to thin shear flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211207200268X
– year: 2002
  ident: 10.1016/j.rineng.2022.100806_bib56
– volume: 40
  start-page: 394
  year: 2008
  ident: 10.1016/j.rineng.2022.100806_bib3
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.03.007
– volume: 16
  year: 2022
  ident: 10.1016/j.rineng.2022.100806_bib33
  article-title: Particle deposition and characteristics of turbulent flow in converging and diverging nozzles using Eulerian-Lagrangian approach
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100669
– volume: 147
  start-page: 259
  year: 2019
  ident: 10.1016/j.rineng.2022.100806_bib43
  article-title: Effects of turbulence modeling on the prediction of flow characteristics of mixing non-Newtonian fluids in a stirred vessel
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.05.001
– volume: 7
  start-page: 308
  year: 1965
  ident: 10.1016/j.rineng.2022.100806_bib46
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 5
  year: 2020
  ident: 10.1016/j.rineng.2022.100806_bib45
  article-title: Thermal and mechanical stresses in bayonet tubes of solar central receivers working with molten salt and liquid sodium
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2019.100073
– volume: 91
  year: 2016
  ident: 10.1016/j.rineng.2022.100806_bib59
  article-title: Implicit large eddy simulation of a scalar mixing layer in fractal grid turbulence
  publication-title: Phys. Scripta
  doi: 10.1088/0031-8949/91/7/074007
– volume: 145
  start-page: 212
  year: 1934
  ident: 10.1016/j.rineng.2022.100806_bib5
  article-title: Experimental investigation and analysis of the velocity variations in turbulent flow
  publication-title: Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character
– volume: 19
  year: 2007
  ident: 10.1016/j.rineng.2022.100806_bib6
  article-title: Scalings and decay of fractal-generated turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.2676448
– volume: 87
  start-page: 673
  year: 2011
  ident: 10.1016/j.rineng.2022.100806_bib13
  article-title: DNS of fractal-generated turbulence
  publication-title: Flow, Turbul. Combust.
  doi: 10.1007/s10494-011-9351-2
– volume: 68
  start-page: 537
  year: 1975
  ident: 10.1016/j.rineng.2022.100806_bib37
  article-title: Progress in the development of a Reynolds-stress turbulence closure
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075001814
– volume: 6
  start-page: 116
  year: 2015
  ident: 10.1016/j.rineng.2022.100806_bib26
  article-title: Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2015.08.003
– volume: 160
  year: 2019
  ident: 10.1016/j.rineng.2022.100806_bib2
  article-title: Forced convective heat transfer optimization of plate-fin heat sink with insert-induced turbulence
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114066
– year: 2008
  ident: 10.1016/j.rineng.2022.100806_bib12
  article-title: Direct numerical simulation of turbulent mixing in grid-generated turbulence
  publication-title: Phys. Scripta
  doi: 10.1088/0031-8949/2008/T132/014054
– start-page: 47
  year: 2001
  ident: 10.1016/j.rineng.2022.100806_bib36
– volume: 194
  year: 2019
  ident: 10.1016/j.rineng.2022.100806_bib21
  article-title: Evaluation of various turbulence models for numerical simulation of a multiphase system in a rotating packed bed
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2019.104296
– year: 2007
  ident: 10.1016/j.rineng.2022.100806_bib47
– volume: 22
  year: 2010
  ident: 10.1016/j.rineng.2022.100806_bib7
  article-title: Turbulence without richardson–Kolmogorov cascade
  publication-title: Phys. Fluids
  doi: 10.1063/1.3453708
– volume: 103
  start-page: 696
  year: 2022
  ident: 10.1016/j.rineng.2022.100806_bib23
  article-title: Comparison of low Reynolds number turbulence and conjugate heat transfer modelling for pin-fin roughness elements
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.10.044
– year: 2015
  ident: 10.1016/j.rineng.2022.100806_bib52
– volume: 12
  start-page: 1015
  year: 2018
  ident: 10.1016/j.rineng.2022.100806_bib27
  article-title: Similarity and numerical analysis of the generalized Levèque problem to predict the thermal boundary layer
  publication-title: Int. J. Interact. Des. Manuf.
  doi: 10.1007/s12008-017-0434-8
– volume: 4
  year: 2019
  ident: 10.1016/j.rineng.2022.100806_bib31
  article-title: Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2019.100037
– volume: 8
  year: 1970
  ident: 10.1016/j.rineng.2022.100806_bib54
  article-title: Interaction between components of the turbulent-velocity correlation tensor
  publication-title: Isr. J. Technol.
– volume: 12
  year: 2021
  ident: 10.1016/j.rineng.2022.100806_bib32
  article-title: RANS 3D CFD simulations to enhance the thermal prediction of tyre thermodynamic model: a hierarchical approach
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2021.100288
– volume: 15
  year: 2022
  ident: 10.1016/j.rineng.2022.100806_bib34
  article-title: Control of heat transfer in circular channels using oblique triangular ribs
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100471
– volume: 5
  year: 2020
  ident: 10.1016/j.rineng.2022.100806_bib20
  article-title: Unsteady Dean flow formation in an annulus with partial slippage: a riemann-sum approximation approach
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2019.100078
– volume: 142
  start-page: 392
  year: 2019
  ident: 10.1016/j.rineng.2022.100806_bib17
  article-title: Plate-fin heat sink forced convective heat transfer augmentation with a fractal insert
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2019.04.035
– start-page: 1
  year: 2017
  ident: 10.1016/j.rineng.2022.100806_bib25
  article-title: Computational fluid dynamics (CFD) analysis and numerical aerodynamic investigations of automotive disc brake rotor
  publication-title: Aust. J. Mech. Eng.
  doi: 10.1080/14484846.2017.1325118
– volume: 19
  year: 2007
  ident: 10.1016/j.rineng.2022.100806_bib16
  article-title: Dissipation and decay of fractal-generated turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.2795211
– volume: 39
  start-page: 693
  year: 2015
  ident: 10.1016/j.rineng.2022.100806_bib22
  article-title: Recent advances on the numerical modelling of turbulent flows
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.07.001
– volume: 3
  year: 2019
  ident: 10.1016/j.rineng.2022.100806_bib19
  article-title: Enhanced large-scale atmospheric flow interaction with ice sheets at high model resolution
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2019.100030
– volume: 25
  year: 2013
  ident: 10.1016/j.rineng.2022.100806_bib60
  article-title: Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.4811402
SSID ssj0002810137
Score 2.2425737
Snippet The employment of grid-induced turbulent flow structures as a passive means of augmenting solid-fluid heat transfer is receiving considerable attention,...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 100806
SubjectTerms Computational Fluid Dynamics
Fractal geometry
Reynolds Stress Model
Simplex optimization
Turbulence
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF6hcKh6aCktIhWgPXDEke192b1RBEKVQIg2EpysfaKA4wBJiuivZ8aPiCAh6M2yd9fj2VnPzO7MN4TsghA5FjhGT9UlzISJcqWzyCG2ihZxsHUQzcmpPB7yXxfiYoXsdbkwS-f3dRwWJsFVV-DJpSke6WeIr70qBVjePbI6PD3bv8T6cSLHIAMWd9lxr3Rd0j41SP-SEvowr27144Muy2dK5ugzOenIa2JLbgbzmRnYfy-QG99L_xr51FqbdL8Rjy9kxVfr5OMzDMKv5O9v8Jp9FEY1ODfFrYPS0-kdiI6nunLdZcB0Khjr6n7kphQ8eZAJR0FhmXmdt_SDnvvHalLCwyb_hNZFdihii48x5mYaTeD3NG7zPr-R4dHhn4PjqC3GEFmeZLNIWyaCt4EFH5iwTGZZEsAXTF3I4aOUc86CremUkjZRUoGllsbcx8zDCndJYBukV00qv0loknPtpQFNaC1PeciMUDZI3IZR2jjfJ6ybpMK2SOVYMKMsupC066LhaoFcLRqu9km06HXbIHW80f4nzv-iLeJs1zdg-op22RbMSmMFA7JEzLnhuXdWSZ8jjp01WvSJ6qSnaE2WxhSBoUZvvH6wELZ30fv9fztskd7sfu63wWiamZ12rTwB9zcWRA
  priority: 102
  providerName: Unpaywall
Title Space-filling single square and square fractal grids induced turbulence: Reynolds stress model parameters-optimization
URI https://dx.doi.org/10.1016/j.rineng.2022.100806
https://doi.org/10.1016/j.rineng.2022.100806
https://doaj.org/article/3c6bc537ab5044b49edc76e95518cba5
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: AKRWK
  dateStart: 20190301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQHFoOFZQitqXIh15Dk9iJk96WahGqBKqAlegp8idaFLLA7oK48NuZsZNVOC2HXqIocWzLM87MWG_eEPIDlMgwxxE95UuYZSoqhSwig9wqMoud9iCa07P8ZMz_XGVXvVJfiAkL9MBh4X4ynSudMSFVFnOueGmNFrktkUlMK-nZS-Oi7AVTN_7IKGkJM8G9R_gBi7u8OQ_uwsy65hrCwzRFnECBBY96dsnT978xTx8WzZ18fpJ13TM_x1vkU-s30mGY7zZZs81nstljE9whjxcQ_9rITTzNNsVDgNrS2T0ogaWyMd2tw8Qo6Ov6YWJmFGJykK6hYHrUwmcg_aLn9rmZ1vAyZJJQXy6HIkv4LaJnZtEUfjS3bQbnFzI-Hl3-PonasgqR5kkxj6RmmbPaMWcdyzTLiyJxENWlxpWwEsIYo8FrNELkOhG5AJ8rjbmNmYW9ahLHdsl6M23sHqFJyaXNFdg0rXnKXaEyoV2OByogMGMHhHWLWumWcxxLX9RVBy67qYIoKhRFFUQxINHyq7vAubGi_RHKa9kWGbP9A9CjqtWjapUeDYjopF21zkdwKqCryYrhD5fK8a75fv0f8_1GPkKXLMDh9sn6_GFhv4N_NFcHfivA9fRldEA2xmd_h_9eATBxEIM
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF6hcKh6aCktIhWgPXDEke192b1RBEKVQIg2EpysfaKA4wBJiuivZ8aPiCAh6M2yd9fj2VnPzO7MN4TsghA5FjhGT9UlzISJcqWzyCG2ihZxsHUQzcmpPB7yXxfiYoXsdbkwS-f3dRwWJsFVV-DJpSke6WeIr70qBVjePbI6PD3bv8T6cSLHIAMWd9lxr3Rd0j41SP-SEvowr27144Muy2dK5ugzOenIa2JLbgbzmRnYfy-QG99L_xr51FqbdL8Rjy9kxVfr5OMzDMKv5O9v8Jp9FEY1ODfFrYPS0-kdiI6nunLdZcB0Khjr6n7kphQ8eZAJR0FhmXmdt_SDnvvHalLCwyb_hNZFdihii48x5mYaTeD3NG7zPr-R4dHhn4PjqC3GEFmeZLNIWyaCt4EFH5iwTGZZEsAXTF3I4aOUc86CremUkjZRUoGllsbcx8zDCndJYBukV00qv0loknPtpQFNaC1PeciMUDZI3IZR2jjfJ6ybpMK2SOVYMKMsupC066LhaoFcLRqu9km06HXbIHW80f4nzv-iLeJs1zdg-op22RbMSmMFA7JEzLnhuXdWSZ8jjp01WvSJ6qSnaE2WxhSBoUZvvH6wELZ30fv9fztskd7sfu63wWiamZ12rTwB9zcWRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-filling+single+square+and+square+fractal+grids+induced+turbulence%3A+Reynolds+stress+model+parameters-optimization&rft.jtitle=Results+in+engineering&rft.au=Michael+Chee+Hoe+Mok&rft.au=Chin+Vern+Yeoh&rft.au=Ming+Kwang+Tan&rft.au=Ji+Jinn+Foo&rft.date=2023-03-01&rft.pub=Elsevier&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=17&rft.spage=100806&rft_id=info:doi/10.1016%2Fj.rineng.2022.100806&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3c6bc537ab5044b49edc76e95518cba5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon