Space-filling single square and square fractal grids induced turbulence: Reynolds stress model parameters-optimization
The employment of grid-induced turbulent flow structures as a passive means of augmenting solid-fluid heat transfer is receiving considerable attention, especially in HVAC applications. However, there presently exists a gap in simulation approaches, where industry-accessible CFD packages are unable...
        Saved in:
      
    
          | Published in | Results in engineering Vol. 17; p. 100806 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.03.2023
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2590-1230 2590-1230  | 
| DOI | 10.1016/j.rineng.2022.100806 | 
Cover
| Abstract | The employment of grid-induced turbulent flow structures as a passive means of augmenting solid-fluid heat transfer is receiving considerable attention, especially in HVAC applications. However, there presently exists a gap in simulation approaches, where industry-accessible CFD packages are unable to accurately express crucial second-order turbulent flow statistics generated by space-filling single square grids (SSGs) and square fractal grids (SFGs). The present study reports a successful application of a revised Reynolds Stress Model (RSM), which accurately replicates the streamwise distributions of centerline mean flow velocity and turbulence intensity in the lee of one SSG (operating under three different flow Reynolds number ReDh) and five geometrically different SFG test cases after undergoing Nelder-Mead downhill simplex optimization of key RSM kernel parameters. The optimized RSM presents a disagreement of, at worst, 4.30% and 9.98%, respectively against experimental hot-wire anemometry measurements of first-order and second-order statistics, and is the first known instance of the RSM being validated for turbulence intensity predictions of SSG- and SFG-induced turbulence. Examination of RSM parameters reveals that the pre-factors for the rates of turbulence dissipation production and destruction (C1,ε and C2,ε) hold greatest effect on simulation accuracy, with additional optimization of the turbulent viscosity pre-factor (Cμ) required for SFG cases. This is attributed to the effect of enhanced turbulent transport due to the cascading and multiscale nature of SFG turbulence, which insofar could not be replicated by Reynolds-Averaged Navier-Stokes (RANS) models. The values of optimized C1,ε, C2,ε, and Cμ range between 1.057 to 1.697, 2.226 to 2.556, and 0.17 to 2.27, respectively. This leads to the largest deviation of −26.6%, 33.1%, and 200% for C1,ε, C2,ε, and Cμ, respectively, when compared to their corresponding default values. With regards to the sensitivity of this parameter set on grid design, it is shown that the grid's fractal iteration number N and thickness ratio tr have greatest influence on the variation of C1,ε, C2,ε, and Cμ, while the effect of ReDh is insignificant. Overall, this study presents an alternative approach to capture the anisotropic and inhomogeneous nature of SSG- and SFG-induced turbulence for industrial heat-transfer applications via an accessible RANS package, which was previously constrained to expensive DNS and LES studies.
•RSM parameters simplex optimization to predict multilength-scale grid turbulence.•RSM(C1,ε, C2,ε) optimization ensue a 9.70% deviation in SSG-induced turbulence.•RSM(C1,ε,C2,ε,Cμ) optimization gives 9.98% deviation on SFG-induced turbulence.•SSG-promoted turbulent statistics are independent of flow Reynolds number ReDh.•SFG-induced turbulence intensity is sensitive towards grid geometric properties. | 
    
|---|---|
| AbstractList | The employment of grid-induced turbulent flow structures as a passive means of augmenting solid-fluid heat transfer is receiving considerable attention, especially in HVAC applications. However, there presently exists a gap in simulation approaches, where industry-accessible CFD packages are unable to accurately express crucial second-order turbulent flow statistics generated by space-filling single square grids (SSGs) and square fractal grids (SFGs). The present study reports a successful application of a revised Reynolds Stress Model (RSM), which accurately replicates the streamwise distributions of centerline mean flow velocity and turbulence intensity in the lee of one SSG (operating under three different flow Reynolds number ReDh) and five geometrically different SFG test cases after undergoing Nelder-Mead downhill simplex optimization of key RSM kernel parameters. The optimized RSM presents a disagreement of, at worst, 4.30% and 9.98%, respectively against experimental hot-wire anemometry measurements of first-order and second-order statistics, and is the first known instance of the RSM being validated for turbulence intensity predictions of SSG- and SFG-induced turbulence. Examination of RSM parameters reveals that the pre-factors for the rates of turbulence dissipation production and destruction (C1,ε and C2,ε) hold greatest effect on simulation accuracy, with additional optimization of the turbulent viscosity pre-factor (Cμ) required for SFG cases. This is attributed to the effect of enhanced turbulent transport due to the cascading and multiscale nature of SFG turbulence, which insofar could not be replicated by Reynolds-Averaged Navier-Stokes (RANS) models. The values of optimized C1,ε, C2,ε, and Cμ range between 1.057 to 1.697, 2.226 to 2.556, and 0.17 to 2.27, respectively. This leads to the largest deviation of −26.6%, 33.1%, and 200% for C1,ε, C2,ε, and Cμ, respectively, when compared to their corresponding default values. With regards to the sensitivity of this parameter set on grid design, it is shown that the grid's fractal iteration number N and thickness ratio tr have greatest influence on the variation of C1,ε, C2,ε, and Cμ, while the effect of ReDh is insignificant. Overall, this study presents an alternative approach to capture the anisotropic and inhomogeneous nature of SSG- and SFG-induced turbulence for industrial heat-transfer applications via an accessible RANS package, which was previously constrained to expensive DNS and LES studies. The employment of grid-induced turbulent flow structures as a passive means of augmenting solid-fluid heat transfer is receiving considerable attention, especially in HVAC applications. However, there presently exists a gap in simulation approaches, where industry-accessible CFD packages are unable to accurately express crucial second-order turbulent flow statistics generated by space-filling single square grids (SSGs) and square fractal grids (SFGs). The present study reports a successful application of a revised Reynolds Stress Model (RSM), which accurately replicates the streamwise distributions of centerline mean flow velocity and turbulence intensity in the lee of one SSG (operating under three different flow Reynolds number ReDh) and five geometrically different SFG test cases after undergoing Nelder-Mead downhill simplex optimization of key RSM kernel parameters. The optimized RSM presents a disagreement of, at worst, 4.30% and 9.98%, respectively against experimental hot-wire anemometry measurements of first-order and second-order statistics, and is the first known instance of the RSM being validated for turbulence intensity predictions of SSG- and SFG-induced turbulence. Examination of RSM parameters reveals that the pre-factors for the rates of turbulence dissipation production and destruction (C1,ε and C2,ε) hold greatest effect on simulation accuracy, with additional optimization of the turbulent viscosity pre-factor (Cμ) required for SFG cases. This is attributed to the effect of enhanced turbulent transport due to the cascading and multiscale nature of SFG turbulence, which insofar could not be replicated by Reynolds-Averaged Navier-Stokes (RANS) models. The values of optimized C1,ε, C2,ε, and Cμ range between 1.057 to 1.697, 2.226 to 2.556, and 0.17 to 2.27, respectively. This leads to the largest deviation of −26.6%, 33.1%, and 200% for C1,ε, C2,ε, and Cμ, respectively, when compared to their corresponding default values. With regards to the sensitivity of this parameter set on grid design, it is shown that the grid's fractal iteration number N and thickness ratio tr have greatest influence on the variation of C1,ε, C2,ε, and Cμ, while the effect of ReDh is insignificant. Overall, this study presents an alternative approach to capture the anisotropic and inhomogeneous nature of SSG- and SFG-induced turbulence for industrial heat-transfer applications via an accessible RANS package, which was previously constrained to expensive DNS and LES studies. •RSM parameters simplex optimization to predict multilength-scale grid turbulence.•RSM(C1,ε, C2,ε) optimization ensue a 9.70% deviation in SSG-induced turbulence.•RSM(C1,ε,C2,ε,Cμ) optimization gives 9.98% deviation on SFG-induced turbulence.•SSG-promoted turbulent statistics are independent of flow Reynolds number ReDh.•SFG-induced turbulence intensity is sensitive towards grid geometric properties.  | 
    
| ArticleNumber | 100806 | 
    
| Author | Yeoh, Chin Vern Tan, Ming Kwang Foo, Ji Jinn Mok, Michael Chee Hoe  | 
    
| Author_xml | – sequence: 1 givenname: Michael Chee Hoe orcidid: 0000-0002-3527-7689 surname: Mok fullname: Mok, Michael Chee Hoe – sequence: 2 givenname: Chin Vern orcidid: 0000-0002-3145-0640 surname: Yeoh fullname: Yeoh, Chin Vern – sequence: 3 givenname: Ming Kwang orcidid: 0000-0002-1585-9358 surname: Tan fullname: Tan, Ming Kwang – sequence: 4 givenname: Ji Jinn surname: Foo fullname: Foo, Ji Jinn email: Foo.Ji.Jinn@monash.edu  | 
    
| BookMark | eNqNkdtq3DAQhk1JIWmaN8iFX8BbHWzLzkWhhDYJBAI9XIvxaLRo0cquJKdsn77euC2lF2lvpGHE94mZ_1VxEsZARXHJ2YYz3r7ZbaILFLYbwYRYWqxj7YviTDQ9q7iQ7OSP-rS4SGnHGBPdwkp1Vjx-mgCpss57F7ZlWg5PZfo6Q6QSgvlV2giYwZfb6EwqXTAzkinzHIfZU0C6Kj_SIYx-eUw5UkrlfjTkywki7ClTTNU4Zbd33yG7MbwuXlrwiS5-3ufFlw_vP1_fVvcPN3fX7-4rrHmXK0DZWEIrLVnZoGy7jlvFlTC2X-ZUxhjse26UapGrVgkpBKuJSWplZ7iV58Xd6jUj7PQU3R7iQY_g9FNjjFsNMTv0pCW2AzZSwdCwuh7qngyqlvqm4R0O0CyuZnXNYYLDN_D-t5AzfcxC7_SahT5modcsFu5q5TCOKUWyGl1-2kKO4Py_4Pov-D__fLtitCz30VHUCd0xJ-MiYV6md88LfgAYnb0x | 
    
| CitedBy_id | crossref_primary_10_1007_s10494_023_00480_9 crossref_primary_10_1007_s11227_023_05775_2 crossref_primary_10_1016_j_euromechflu_2024_03_002  | 
    
| Cites_doi | 10.1103/PhysRevE.86.046302 10.1016/j.rineng.2021.100254 10.1017/S0022112091000101 10.1017/S0022112066000338 10.1016/0142-727X(89)90017-9 10.1007/BF01330059 10.1016/0045-7930(94)90001-9 10.1016/j.rineng.2019.100052 10.1016/j.ijheatmasstransfer.2014.03.049 10.1016/j.expthermflusci.2018.07.001 10.1007/s12008-019-00537-y 10.1017/jfm.2017.54 10.1016/j.compfluid.2015.12.007 10.1017/jfm.2012.394 10.1017/S0022112078001251 10.1063/1.4870167 10.1016/j.cma.2014.06.008 10.1016/j.cherd.2019.12.004 10.1017/jfm.2011.353 10.1016/0045-7825(74)90029-2 10.1080/10618562.2015.1058371 10.1088/0169-5983/45/6/061409 10.1016/j.compfluid.2015.11.010 10.1016/j.rineng.2022.100458 10.1063/1.4890746 10.1017/S002211207200268X 10.1016/j.enbuild.2007.03.007 10.1016/j.rineng.2022.100669 10.1016/j.cherd.2019.05.001 10.1093/comjnl/7.4.308 10.1016/j.rineng.2019.100073 10.1088/0031-8949/91/7/074007 10.1063/1.2676448 10.1007/s10494-011-9351-2 10.1017/S0022112075001814 10.1016/j.csite.2015.08.003 10.1016/j.applthermaleng.2019.114066 10.1088/0031-8949/2008/T132/014054 10.1016/j.compfluid.2019.104296 10.1063/1.3453708 10.1016/j.apm.2021.10.044 10.1007/s12008-017-0434-8 10.1016/j.rineng.2019.100037 10.1016/j.rineng.2021.100288 10.1016/j.rineng.2022.100471 10.1016/j.rineng.2019.100078 10.1016/j.ijthermalsci.2019.04.035 10.1080/14484846.2017.1325118 10.1063/1.2795211 10.1016/j.apm.2014.07.001 10.1016/j.rineng.2019.100030 10.1063/1.4811402  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 The Authors | 
    
| Copyright_xml | – notice: 2022 The Authors | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.1016/j.rineng.2022.100806 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2590-1230 | 
    
| ExternalDocumentID | oai_doaj_org_article_3c6bc537ab5044b49edc76e95518cba5 10.1016/j.rineng.2022.100806 10_1016_j_rineng_2022_100806 S2590123022004765  | 
    
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYXX CITATION ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c418t-ac35fecf3fef35c36881f7172df90807dddc991d776c1767232204e03e638d1f3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2590-1230 | 
    
| IngestDate | Fri Oct 03 12:52:21 EDT 2025 Tue Aug 19 09:14:17 EDT 2025 Wed Oct 01 05:55:42 EDT 2025 Thu Apr 24 22:54:25 EDT 2025 Sat Jul 05 17:11:31 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Turbulence Simplex optimization Fractal geometry Computational Fluid Dynamics SFG SSG RSM Reynolds Stress Model  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c418t-ac35fecf3fef35c36881f7172df90807dddc991d776c1767232204e03e638d1f3 | 
    
| ORCID | 0000-0002-3527-7689 0000-0002-1585-9358 0000-0002-3145-0640  | 
    
| OpenAccessLink | https://doaj.org/article/3c6bc537ab5044b49edc76e95518cba5 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3c6bc537ab5044b49edc76e95518cba5 unpaywall_primary_10_1016_j_rineng_2022_100806 crossref_citationtrail_10_1016_j_rineng_2022_100806 crossref_primary_10_1016_j_rineng_2022_100806 elsevier_sciencedirect_doi_10_1016_j_rineng_2022_100806  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2023 2023-03-00 2023-03-01  | 
    
| PublicationDateYYYYMMDD | 2023-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Results in engineering | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Hanjalić, Launder (bib55) 1972; 52 Shuvo, Sakib, Rahman, Saha (bib33) 2022; 16 Nagata, Suzuki, Sakai, Hayase, Kubo (bib12) 2008 Jha, Danjuma (bib20) 2020; 5 Yang, Tucker (bib41) 2016; 126 Mazellier, Vassilicos (bib7) 2010; 22 Schenk, Vinuesa (bib19) 2019; 3 Laizet, Nedić, Vassilicos (bib58) 2015; 29 Belhocine, Wan Omar (bib25) 2017 Hurst, Vassilicos (bib6) 2007; 19 Valente, Vassilicos (bib8) 2011; 687 Nagata, Sakai, Inaba, Suzuki, Terashima, Suzuki (bib60) 2013; 25 Gatski, Rumsey (bib29) 2001 Belhocine, Abdullah (bib44) 2019; 13 Simmons, Salter (bib5) 1934; 145 Belhocine, Abdullah (bib27) 2018; 12 Pérez-Álvarez, Acosta-Iborra, Santana (bib45) 2020; 5 Nelder, Mead (bib46) 1965; 7 Zhou, Nagata, Sakai, Suzuki, Ito, Terashima, Hayase (bib14) 2014; 26 Ejeh, Akhabue, Boah, Tandoh (bib31) 2019; 4 Reynolds (bib28) 1995; 451 Paul, Papadakis, Vassilicos (bib61) 2017; 815 Abdelwahab, Ghazal, Aboshosha (bib24) 2022; 14 (bib52) 2015 Ouyang, Tang, Xiang, Zou, Chu, Agarwal, Chen (bib21) 2019; 194 Launder, Reece, Rodi (bib37) 1975; 68 Argyropoulos, Markatos (bib22) 2015; 39 Cafiero, Discetti, Astarita (bib1) 2014; 75 Launder (bib49) 1989; 10 Launder, Sandham (bib56) 2002 Zhou, Nagata, Sakai, Suzuki, Ito, Terashima, Hayase (bib15) 2014; 26 Lien, Leschziner (bib51) 1994; 23 Launder, Spalding (bib57) 1974; 3 Suzuki, Nagata, Sakai, Hayase, Hasegawa, Ushijima (bib11) 2013; 45 Gomes-Fernandes, Ganapathisubramani, Vassilicos (bib9) 2012; 711 Speziale, Sarkar, Gatski (bib38) 1991; 227 Laizet, Vassilicos (bib10) 2012; 86 Launder (bib50) 1972 Naot, Shavit, Wolfshtein (bib54) 1970; 8 Pérez-Lombard, Ortiz, Pout (bib3) 2008; 40 Gibson, Launder (bib48) 1978; 86 Bauer, Tyacke (bib23) 2022; 103 Panda, Mitra, Joshi, Warrior (bib39) 2018; 98 Al-Qadami, id Abdurrasheed, Mustaffa, Yusof, Malek, Ghani (bib30) 2019; 4 Versteeg, Malalasekera (bib47) 2007 Laizet, Vassilicos (bib13) 2011; 87 Guillas, Glover, Malki-Epshtein (bib35) 2014; 279 Hoi, Teh, Ooi, Chew, Foo (bib2) 2019; 160 Seoud, Vassilicos (bib16) 2007; 19 Vinuesa (bib18) 2021; 11 Rotta (bib53) 1951; 129 Teh, Phoo, Chin, Ooi, Foo (bib40) 2020; 156 Wang, Reviol, Ren, Böhle (bib43) 2019; 147 Comte-Bellot, Corrsin (bib4) 1966; 25 Belhocine, Wan Omar (bib26) 2015; 6 Hoi, Teh, Ooi, Chew, Foo (bib17) 2019; 142 Teodosio, Timpone, Napolitano dell'Annunziata, Genovese (bib32) 2021; 12 Yang, Tucker (bib42) 2016; 126 Hammoodi, Hasan, Abed, Basem, Al-Tajer (bib34) 2022; 15 Watanabe, Sakai, Nagata, Ito, Hayase (bib59) 2016; 91 Hanjalic, Jakirlić (bib36) 2001 Launder (10.1016/j.rineng.2022.100806_bib37) 1975; 68 Abdelwahab (10.1016/j.rineng.2022.100806_bib24) 2022; 14 Teh (10.1016/j.rineng.2022.100806_bib40) 2020; 156 Laizet (10.1016/j.rineng.2022.100806_bib58) 2015; 29 Gatski (10.1016/j.rineng.2022.100806_bib29) 2001 Launder (10.1016/j.rineng.2022.100806_bib49) 1989; 10 Mazellier (10.1016/j.rineng.2022.100806_bib7) 2010; 22 Al-Qadami (10.1016/j.rineng.2022.100806_bib30) 2019; 4 Cafiero (10.1016/j.rineng.2022.100806_bib1) 2014; 75 Hammoodi (10.1016/j.rineng.2022.100806_bib34) 2022; 15 Paul (10.1016/j.rineng.2022.100806_bib61) 2017; 815 Belhocine (10.1016/j.rineng.2022.100806_bib26) 2015; 6 Speziale (10.1016/j.rineng.2022.100806_bib38) 1991; 227 Panda (10.1016/j.rineng.2022.100806_bib39) 2018; 98 Gomes-Fernandes (10.1016/j.rineng.2022.100806_bib9) 2012; 711 Launder (10.1016/j.rineng.2022.100806_bib50) 1972 (10.1016/j.rineng.2022.100806_bib52) 2015 Laizet (10.1016/j.rineng.2022.100806_bib13) 2011; 87 Reynolds (10.1016/j.rineng.2022.100806_bib28) 1995; 451 Rotta (10.1016/j.rineng.2022.100806_bib53) 1951; 129 Zhou (10.1016/j.rineng.2022.100806_bib14) 2014; 26 Ejeh (10.1016/j.rineng.2022.100806_bib31) 2019; 4 Shuvo (10.1016/j.rineng.2022.100806_bib33) 2022; 16 Hoi (10.1016/j.rineng.2022.100806_bib2) 2019; 160 Nagata (10.1016/j.rineng.2022.100806_bib12) 2008 Yang (10.1016/j.rineng.2022.100806_bib42) 2016; 126 Belhocine (10.1016/j.rineng.2022.100806_bib25) 2017 Hanjalic (10.1016/j.rineng.2022.100806_bib36) 2001 Belhocine (10.1016/j.rineng.2022.100806_bib44) 2019; 13 Nelder (10.1016/j.rineng.2022.100806_bib46) 1965; 7 Nagata (10.1016/j.rineng.2022.100806_bib60) 2013; 25 Gibson (10.1016/j.rineng.2022.100806_bib48) 1978; 86 Hanjalić (10.1016/j.rineng.2022.100806_bib55) 1972; 52 Teodosio (10.1016/j.rineng.2022.100806_bib32) 2021; 12 Ouyang (10.1016/j.rineng.2022.100806_bib21) 2019; 194 Bauer (10.1016/j.rineng.2022.100806_bib23) 2022; 103 Yang (10.1016/j.rineng.2022.100806_bib41) 2016; 126 Zhou (10.1016/j.rineng.2022.100806_bib15) 2014; 26 Launder (10.1016/j.rineng.2022.100806_bib56) 2002 Laizet (10.1016/j.rineng.2022.100806_bib10) 2012; 86 Lien (10.1016/j.rineng.2022.100806_bib51) 1994; 23 Hoi (10.1016/j.rineng.2022.100806_bib17) 2019; 142 Valente (10.1016/j.rineng.2022.100806_bib8) 2011; 687 Comte-Bellot (10.1016/j.rineng.2022.100806_bib4) 1966; 25 Watanabe (10.1016/j.rineng.2022.100806_bib59) 2016; 91 Versteeg (10.1016/j.rineng.2022.100806_bib47) 2007 Guillas (10.1016/j.rineng.2022.100806_bib35) 2014; 279 Naot (10.1016/j.rineng.2022.100806_bib54) 1970; 8 Simmons (10.1016/j.rineng.2022.100806_bib5) 1934; 145 Vinuesa (10.1016/j.rineng.2022.100806_bib18) 2021; 11 Suzuki (10.1016/j.rineng.2022.100806_bib11) 2013; 45 Pérez-Lombard (10.1016/j.rineng.2022.100806_bib3) 2008; 40 Hurst (10.1016/j.rineng.2022.100806_bib6) 2007; 19 Pérez-Álvarez (10.1016/j.rineng.2022.100806_bib45) 2020; 5 Seoud (10.1016/j.rineng.2022.100806_bib16) 2007; 19 Launder (10.1016/j.rineng.2022.100806_bib57) 1974; 3 Wang (10.1016/j.rineng.2022.100806_bib43) 2019; 147 Jha (10.1016/j.rineng.2022.100806_bib20) 2020; 5 Schenk (10.1016/j.rineng.2022.100806_bib19) 2019; 3 Argyropoulos (10.1016/j.rineng.2022.100806_bib22) 2015; 39 Belhocine (10.1016/j.rineng.2022.100806_bib27) 2018; 12  | 
    
| References_xml | – volume: 75 start-page: 173 year: 2014 end-page: 183 ident: bib1 article-title: Heat transfer enhancement of impinging jets with fractal-generated turbulence publication-title: Int. J. Heat Mass Tran. – start-page: 9 year: 2001 end-page: 46 ident: bib29 article-title: Linear and Nonlinear Eddy Viscosity Models – volume: 68 start-page: 537 year: 1975 end-page: 566 ident: bib37 article-title: Progress in the development of a Reynolds-stress turbulence closure publication-title: J. Fluid Mech. – volume: 14 year: 2022 ident: bib24 article-title: Designing a multi-purpose wind tunnel suitable for limited spaces publication-title: Results Eng. – year: 2007 ident: bib47 article-title: An Introduction to Computational Fluid Dynamics : the Finite Volume Method – volume: 19 year: 2007 ident: bib16 article-title: Dissipation and decay of fractal-generated turbulence publication-title: Phys. Fluids – volume: 40 start-page: 394 year: 2008 end-page: 398 ident: bib3 article-title: A review on buildings energy consumption information publication-title: Energy Build. – volume: 3 year: 2019 ident: bib19 article-title: Enhanced large-scale atmospheric flow interaction with ice sheets at high model resolution publication-title: Results Eng. – year: 2015 ident: bib52 article-title: Fluent Theory Guide – volume: 13 start-page: 633 year: 2019 end-page: 644 ident: bib44 article-title: Numerical simulation of thermally developing turbulent flow through a cylindrical tube publication-title: Int. J. Interact. Des. Manuf. – volume: 142 start-page: 392 year: 2019 end-page: 406 ident: bib17 article-title: Plate-fin heat sink forced convective heat transfer augmentation with a fractal insert publication-title: Int. J. Therm. Sci. – volume: 29 start-page: 286 year: 2015 end-page: 302 ident: bib58 article-title: Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid publication-title: Int. J. Comput. Fluid Dynam. – volume: 103 start-page: 696 year: 2022 end-page: 713 ident: bib23 article-title: Comparison of low Reynolds number turbulence and conjugate heat transfer modelling for pin-fin roughness elements publication-title: Appl. Math. Model. – volume: 10 start-page: 282 year: 1989 end-page: 300 ident: bib49 article-title: Second-moment closure: present… and future? publication-title: Int. J. Heat Fluid Flow – year: 2002 ident: bib56 article-title: Closure Strategies for Turbulent and Transitional Flows, Cambridge, UK New York – volume: 86 year: 2012 ident: bib10 article-title: Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. – volume: 126 start-page: 91 year: 2016 end-page: 101 ident: bib41 article-title: Assessment of turbulence model performance: large streamline curvature and integral length scales publication-title: Comput. Fluids – volume: 23 start-page: 983 year: 1994 end-page: 1004 ident: bib51 article-title: Assessment of turbulence-transport models including non-linear rng eddy-viscosity formulation and second-moment closure for flow over a backward-facing step publication-title: Comput. Fluids – volume: 39 start-page: 693 year: 2015 end-page: 732 ident: bib22 article-title: Recent advances on the numerical modelling of turbulent flows publication-title: Appl. Math. Model. – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: bib46 article-title: A simplex method for function minimization publication-title: Comput. J. – volume: 129 start-page: 547 year: 1951 end-page: 572 ident: bib53 article-title: Statistische theorie nichthomogener turbulenz publication-title: Z. Phys. – volume: 12 start-page: 1015 year: 2018 end-page: 1025 ident: bib27 article-title: Similarity and numerical analysis of the generalized Levèque problem to predict the thermal boundary layer publication-title: Int. J. Interact. Des. Manuf. – volume: 815 start-page: 295 year: 2017 end-page: 332 ident: bib61 article-title: Genesis and evolution of velocity gradients in near-field spatially developing turbulence publication-title: J. Fluid Mech. – year: 2008 ident: bib12 article-title: Direct numerical simulation of turbulent mixing in grid-generated turbulence publication-title: Phys. Scripta – volume: 3 start-page: 269 year: 1974 end-page: 289 ident: bib57 article-title: The numerical computation of turbulent flows publication-title: Comput. Methods Appl. Mech. Eng. – volume: 194 year: 2019 ident: bib21 article-title: Evaluation of various turbulence models for numerical simulation of a multiphase system in a rotating packed bed publication-title: Comput. Fluids – volume: 16 year: 2022 ident: bib33 article-title: Particle deposition and characteristics of turbulent flow in converging and diverging nozzles using Eulerian-Lagrangian approach publication-title: Results Eng. – volume: 145 start-page: 212 year: 1934 end-page: 234 ident: bib5 article-title: Experimental investigation and analysis of the velocity variations in turbulent flow publication-title: Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character – volume: 4 year: 2019 ident: bib30 article-title: Numerical modelling of flow characteristics over sharp crested triangular hump publication-title: Results Eng. – volume: 87 start-page: 673 year: 2011 end-page: 705 ident: bib13 article-title: DNS of fractal-generated turbulence publication-title: Flow, Turbul. Combust. – volume: 26 year: 2014 ident: bib14 article-title: Development of turbulence behind the single square grid publication-title: Phys. Fluids – volume: 12 year: 2021 ident: bib32 article-title: RANS 3D CFD simulations to enhance the thermal prediction of tyre thermodynamic model: a hierarchical approach publication-title: Results Eng. – volume: 86 start-page: 491 year: 1978 end-page: 511 ident: bib48 article-title: Ground effects on pressure fluctuations in the atmospheric boundary layer publication-title: J. Fluid Mech. – volume: 156 start-page: 226 year: 2020 end-page: 239 ident: bib40 article-title: Forced convective heat transfer enhancement of 90° bend plate-fin heat sink with grid generated turbulence publication-title: Chem. Eng. Res. Des. – volume: 711 start-page: 306 year: 2012 end-page: 336 ident: bib9 article-title: Particle image velocimetry study of fractal-generated turbulence publication-title: J. Fluid Mech. – volume: 45 year: 2013 ident: bib11 article-title: Direct numerical simulation of fractal-generated turbulence publication-title: Fluid Dynam. Res. – volume: 15 year: 2022 ident: bib34 article-title: Control of heat transfer in circular channels using oblique triangular ribs publication-title: Results Eng. – volume: 279 start-page: 536 year: 2014 end-page: 553 ident: bib35 article-title: Bayesian calibration of the constants of the k–ε turbulence model for a CFD model of street canyon flow publication-title: Comput. Methods Appl. Mech. Eng. – volume: 19 year: 2007 ident: bib6 article-title: Scalings and decay of fractal-generated turbulence publication-title: Phys. Fluids – volume: 25 year: 2013 ident: bib60 article-title: Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence publication-title: Phys. Fluids – volume: 25 start-page: 657 year: 1966 end-page: 682 ident: bib4 article-title: The use of a contraction to improve the isotropy of grid-generated turbulence publication-title: J. Fluid Mech. – year: 1972 ident: bib50 article-title: Lectures in Mathematical Models of Turbulence, London, New York – volume: 4 year: 2019 ident: bib31 article-title: Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics publication-title: Results Eng. – volume: 11 year: 2021 ident: bib18 article-title: High-fidelity simulations in complex geometries: towards better flow understanding and development of turbulence models publication-title: Results Eng. – volume: 5 year: 2020 ident: bib45 article-title: Thermal and mechanical stresses in bayonet tubes of solar central receivers working with molten salt and liquid sodium publication-title: Results in Engineering – volume: 160 year: 2019 ident: bib2 article-title: Forced convective heat transfer optimization of plate-fin heat sink with insert-induced turbulence publication-title: Appl. Therm. Eng. – volume: 5 year: 2020 ident: bib20 article-title: Unsteady Dean flow formation in an annulus with partial slippage: a riemann-sum approximation approach publication-title: Results Eng. – volume: 98 start-page: 594 year: 2018 end-page: 603 ident: bib39 article-title: Experimental and numerical analysis of grid generated turbulence with and without mean strain publication-title: Exp. Therm. Fluid Sci. – volume: 147 start-page: 259 year: 2019 end-page: 277 ident: bib43 article-title: Effects of turbulence modeling on the prediction of flow characteristics of mixing non-Newtonian fluids in a stirred vessel publication-title: Chem. Eng. Res. Des. – volume: 22 year: 2010 ident: bib7 article-title: Turbulence without richardson–Kolmogorov cascade publication-title: Phys. Fluids – volume: 52 start-page: 609 year: 1972 end-page: 638 ident: bib55 article-title: A Reynolds stress model of turbulence and its application to thin shear flows publication-title: J. Fluid Mech. – volume: 26 year: 2014 ident: bib15 article-title: Relevance of turbulence behind the single square grid to turbulence generated by regular- and multiscale-grids publication-title: Phys. Fluids – start-page: 1 year: 2017 end-page: 18 ident: bib25 article-title: Computational fluid dynamics (CFD) analysis and numerical aerodynamic investigations of automotive disc brake rotor publication-title: Aust. J. Mech. Eng. – volume: 126 start-page: 181 year: 2016 end-page: 191 ident: bib42 article-title: Assessment of turbulence model performance: severe acceleration with large integral length scales publication-title: Comput. Fluids – start-page: 47 year: 2001 end-page: 101 ident: bib36 article-title: Second-Moment Turbulence Closure Modelling – volume: 6 start-page: 116 year: 2015 end-page: 127 ident: bib26 article-title: Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature publication-title: Case Stud. Therm. Eng. – volume: 227 year: 1991 ident: bib38 article-title: Modelling the pressure-strain correlation of turbulence - an invariant dynamical systems approach publication-title: J. Fluid Mech. – volume: 91 year: 2016 ident: bib59 article-title: Implicit large eddy simulation of a scalar mixing layer in fractal grid turbulence publication-title: Phys. Scripta – volume: 8 year: 1970 ident: bib54 article-title: Interaction between components of the turbulent-velocity correlation tensor publication-title: Isr. J. Technol. – volume: 687 start-page: 300 year: 2011 end-page: 340 ident: bib8 article-title: The decay of turbulence generated by a class of multiscale grids publication-title: J. Fluid Mech. – volume: 451 start-page: 5 year: 1995 end-page: 47 ident: bib28 article-title: On the dynamical theory of incompressible viscous fluids and the determination of the criterion publication-title: Proc. Roy. Soc. A, Math. Phys. Sci. – volume: 86 year: 2012 ident: 10.1016/j.rineng.2022.100806_bib10 article-title: Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.86.046302 – volume: 11 year: 2021 ident: 10.1016/j.rineng.2022.100806_bib18 article-title: High-fidelity simulations in complex geometries: towards better flow understanding and development of turbulence models publication-title: Results Eng. doi: 10.1016/j.rineng.2021.100254 – volume: 227 year: 1991 ident: 10.1016/j.rineng.2022.100806_bib38 article-title: Modelling the pressure-strain correlation of turbulence - an invariant dynamical systems approach publication-title: J. Fluid Mech. doi: 10.1017/S0022112091000101 – year: 1972 ident: 10.1016/j.rineng.2022.100806_bib50 – volume: 25 start-page: 657 year: 1966 ident: 10.1016/j.rineng.2022.100806_bib4 article-title: The use of a contraction to improve the isotropy of grid-generated turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112066000338 – volume: 10 start-page: 282 year: 1989 ident: 10.1016/j.rineng.2022.100806_bib49 article-title: Second-moment closure: present… and future? publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(89)90017-9 – volume: 129 start-page: 547 year: 1951 ident: 10.1016/j.rineng.2022.100806_bib53 article-title: Statistische theorie nichthomogener turbulenz publication-title: Z. Phys. doi: 10.1007/BF01330059 – volume: 23 start-page: 983 year: 1994 ident: 10.1016/j.rineng.2022.100806_bib51 article-title: Assessment of turbulence-transport models including non-linear rng eddy-viscosity formulation and second-moment closure for flow over a backward-facing step publication-title: Comput. Fluids doi: 10.1016/0045-7930(94)90001-9 – volume: 4 year: 2019 ident: 10.1016/j.rineng.2022.100806_bib30 article-title: Numerical modelling of flow characteristics over sharp crested triangular hump publication-title: Results Eng. doi: 10.1016/j.rineng.2019.100052 – volume: 75 start-page: 173 year: 2014 ident: 10.1016/j.rineng.2022.100806_bib1 article-title: Heat transfer enhancement of impinging jets with fractal-generated turbulence publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2014.03.049 – volume: 98 start-page: 594 year: 2018 ident: 10.1016/j.rineng.2022.100806_bib39 article-title: Experimental and numerical analysis of grid generated turbulence with and without mean strain publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2018.07.001 – volume: 13 start-page: 633 year: 2019 ident: 10.1016/j.rineng.2022.100806_bib44 article-title: Numerical simulation of thermally developing turbulent flow through a cylindrical tube publication-title: Int. J. Interact. Des. Manuf. doi: 10.1007/s12008-019-00537-y – volume: 815 start-page: 295 year: 2017 ident: 10.1016/j.rineng.2022.100806_bib61 article-title: Genesis and evolution of velocity gradients in near-field spatially developing turbulence publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.54 – volume: 126 start-page: 181 year: 2016 ident: 10.1016/j.rineng.2022.100806_bib42 article-title: Assessment of turbulence model performance: severe acceleration with large integral length scales publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.12.007 – volume: 711 start-page: 306 year: 2012 ident: 10.1016/j.rineng.2022.100806_bib9 article-title: Particle image velocimetry study of fractal-generated turbulence publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.394 – volume: 86 start-page: 491 year: 1978 ident: 10.1016/j.rineng.2022.100806_bib48 article-title: Ground effects on pressure fluctuations in the atmospheric boundary layer publication-title: J. Fluid Mech. doi: 10.1017/S0022112078001251 – volume: 26 year: 2014 ident: 10.1016/j.rineng.2022.100806_bib14 article-title: Development of turbulence behind the single square grid publication-title: Phys. Fluids doi: 10.1063/1.4870167 – volume: 279 start-page: 536 year: 2014 ident: 10.1016/j.rineng.2022.100806_bib35 article-title: Bayesian calibration of the constants of the k–ε turbulence model for a CFD model of street canyon flow publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.06.008 – volume: 156 start-page: 226 year: 2020 ident: 10.1016/j.rineng.2022.100806_bib40 article-title: Forced convective heat transfer enhancement of 90° bend plate-fin heat sink with grid generated turbulence publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.12.004 – start-page: 9 year: 2001 ident: 10.1016/j.rineng.2022.100806_bib29 – volume: 451 start-page: 5 year: 1995 ident: 10.1016/j.rineng.2022.100806_bib28 article-title: On the dynamical theory of incompressible viscous fluids and the determination of the criterion publication-title: Proc. Roy. Soc. A, Math. Phys. Sci. – volume: 687 start-page: 300 year: 2011 ident: 10.1016/j.rineng.2022.100806_bib8 article-title: The decay of turbulence generated by a class of multiscale grids publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.353 – volume: 3 start-page: 269 year: 1974 ident: 10.1016/j.rineng.2022.100806_bib57 article-title: The numerical computation of turbulent flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(74)90029-2 – volume: 29 start-page: 286 year: 2015 ident: 10.1016/j.rineng.2022.100806_bib58 article-title: Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid publication-title: Int. J. Comput. Fluid Dynam. doi: 10.1080/10618562.2015.1058371 – volume: 45 year: 2013 ident: 10.1016/j.rineng.2022.100806_bib11 article-title: Direct numerical simulation of fractal-generated turbulence publication-title: Fluid Dynam. Res. doi: 10.1088/0169-5983/45/6/061409 – volume: 126 start-page: 91 year: 2016 ident: 10.1016/j.rineng.2022.100806_bib41 article-title: Assessment of turbulence model performance: large streamline curvature and integral length scales publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.11.010 – volume: 14 year: 2022 ident: 10.1016/j.rineng.2022.100806_bib24 article-title: Designing a multi-purpose wind tunnel suitable for limited spaces publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100458 – volume: 26 year: 2014 ident: 10.1016/j.rineng.2022.100806_bib15 article-title: Relevance of turbulence behind the single square grid to turbulence generated by regular- and multiscale-grids publication-title: Phys. Fluids doi: 10.1063/1.4890746 – volume: 52 start-page: 609 year: 1972 ident: 10.1016/j.rineng.2022.100806_bib55 article-title: A Reynolds stress model of turbulence and its application to thin shear flows publication-title: J. Fluid Mech. doi: 10.1017/S002211207200268X – year: 2002 ident: 10.1016/j.rineng.2022.100806_bib56 – volume: 40 start-page: 394 year: 2008 ident: 10.1016/j.rineng.2022.100806_bib3 article-title: A review on buildings energy consumption information publication-title: Energy Build. doi: 10.1016/j.enbuild.2007.03.007 – volume: 16 year: 2022 ident: 10.1016/j.rineng.2022.100806_bib33 article-title: Particle deposition and characteristics of turbulent flow in converging and diverging nozzles using Eulerian-Lagrangian approach publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100669 – volume: 147 start-page: 259 year: 2019 ident: 10.1016/j.rineng.2022.100806_bib43 article-title: Effects of turbulence modeling on the prediction of flow characteristics of mixing non-Newtonian fluids in a stirred vessel publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.05.001 – volume: 7 start-page: 308 year: 1965 ident: 10.1016/j.rineng.2022.100806_bib46 article-title: A simplex method for function minimization publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 5 year: 2020 ident: 10.1016/j.rineng.2022.100806_bib45 article-title: Thermal and mechanical stresses in bayonet tubes of solar central receivers working with molten salt and liquid sodium publication-title: Results in Engineering doi: 10.1016/j.rineng.2019.100073 – volume: 91 year: 2016 ident: 10.1016/j.rineng.2022.100806_bib59 article-title: Implicit large eddy simulation of a scalar mixing layer in fractal grid turbulence publication-title: Phys. Scripta doi: 10.1088/0031-8949/91/7/074007 – volume: 145 start-page: 212 year: 1934 ident: 10.1016/j.rineng.2022.100806_bib5 article-title: Experimental investigation and analysis of the velocity variations in turbulent flow publication-title: Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character – volume: 19 year: 2007 ident: 10.1016/j.rineng.2022.100806_bib6 article-title: Scalings and decay of fractal-generated turbulence publication-title: Phys. Fluids doi: 10.1063/1.2676448 – volume: 87 start-page: 673 year: 2011 ident: 10.1016/j.rineng.2022.100806_bib13 article-title: DNS of fractal-generated turbulence publication-title: Flow, Turbul. Combust. doi: 10.1007/s10494-011-9351-2 – volume: 68 start-page: 537 year: 1975 ident: 10.1016/j.rineng.2022.100806_bib37 article-title: Progress in the development of a Reynolds-stress turbulence closure publication-title: J. Fluid Mech. doi: 10.1017/S0022112075001814 – volume: 6 start-page: 116 year: 2015 ident: 10.1016/j.rineng.2022.100806_bib26 article-title: Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2015.08.003 – volume: 160 year: 2019 ident: 10.1016/j.rineng.2022.100806_bib2 article-title: Forced convective heat transfer optimization of plate-fin heat sink with insert-induced turbulence publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114066 – year: 2008 ident: 10.1016/j.rineng.2022.100806_bib12 article-title: Direct numerical simulation of turbulent mixing in grid-generated turbulence publication-title: Phys. Scripta doi: 10.1088/0031-8949/2008/T132/014054 – start-page: 47 year: 2001 ident: 10.1016/j.rineng.2022.100806_bib36 – volume: 194 year: 2019 ident: 10.1016/j.rineng.2022.100806_bib21 article-title: Evaluation of various turbulence models for numerical simulation of a multiphase system in a rotating packed bed publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2019.104296 – year: 2007 ident: 10.1016/j.rineng.2022.100806_bib47 – volume: 22 year: 2010 ident: 10.1016/j.rineng.2022.100806_bib7 article-title: Turbulence without richardson–Kolmogorov cascade publication-title: Phys. Fluids doi: 10.1063/1.3453708 – volume: 103 start-page: 696 year: 2022 ident: 10.1016/j.rineng.2022.100806_bib23 article-title: Comparison of low Reynolds number turbulence and conjugate heat transfer modelling for pin-fin roughness elements publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.10.044 – year: 2015 ident: 10.1016/j.rineng.2022.100806_bib52 – volume: 12 start-page: 1015 year: 2018 ident: 10.1016/j.rineng.2022.100806_bib27 article-title: Similarity and numerical analysis of the generalized Levèque problem to predict the thermal boundary layer publication-title: Int. J. Interact. Des. Manuf. doi: 10.1007/s12008-017-0434-8 – volume: 4 year: 2019 ident: 10.1016/j.rineng.2022.100806_bib31 article-title: Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics publication-title: Results Eng. doi: 10.1016/j.rineng.2019.100037 – volume: 8 year: 1970 ident: 10.1016/j.rineng.2022.100806_bib54 article-title: Interaction between components of the turbulent-velocity correlation tensor publication-title: Isr. J. Technol. – volume: 12 year: 2021 ident: 10.1016/j.rineng.2022.100806_bib32 article-title: RANS 3D CFD simulations to enhance the thermal prediction of tyre thermodynamic model: a hierarchical approach publication-title: Results Eng. doi: 10.1016/j.rineng.2021.100288 – volume: 15 year: 2022 ident: 10.1016/j.rineng.2022.100806_bib34 article-title: Control of heat transfer in circular channels using oblique triangular ribs publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100471 – volume: 5 year: 2020 ident: 10.1016/j.rineng.2022.100806_bib20 article-title: Unsteady Dean flow formation in an annulus with partial slippage: a riemann-sum approximation approach publication-title: Results Eng. doi: 10.1016/j.rineng.2019.100078 – volume: 142 start-page: 392 year: 2019 ident: 10.1016/j.rineng.2022.100806_bib17 article-title: Plate-fin heat sink forced convective heat transfer augmentation with a fractal insert publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2019.04.035 – start-page: 1 year: 2017 ident: 10.1016/j.rineng.2022.100806_bib25 article-title: Computational fluid dynamics (CFD) analysis and numerical aerodynamic investigations of automotive disc brake rotor publication-title: Aust. J. Mech. Eng. doi: 10.1080/14484846.2017.1325118 – volume: 19 year: 2007 ident: 10.1016/j.rineng.2022.100806_bib16 article-title: Dissipation and decay of fractal-generated turbulence publication-title: Phys. Fluids doi: 10.1063/1.2795211 – volume: 39 start-page: 693 year: 2015 ident: 10.1016/j.rineng.2022.100806_bib22 article-title: Recent advances on the numerical modelling of turbulent flows publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.07.001 – volume: 3 year: 2019 ident: 10.1016/j.rineng.2022.100806_bib19 article-title: Enhanced large-scale atmospheric flow interaction with ice sheets at high model resolution publication-title: Results Eng. doi: 10.1016/j.rineng.2019.100030 – volume: 25 year: 2013 ident: 10.1016/j.rineng.2022.100806_bib60 article-title: Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence publication-title: Phys. Fluids doi: 10.1063/1.4811402  | 
    
| SSID | ssj0002810137 | 
    
| Score | 2.2425737 | 
    
| Snippet | The employment of grid-induced turbulent flow structures as a passive means of augmenting solid-fluid heat transfer is receiving considerable attention,... | 
    
| SourceID | doaj unpaywall crossref elsevier  | 
    
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 100806 | 
    
| SubjectTerms | Computational Fluid Dynamics Fractal geometry Reynolds Stress Model Simplex optimization Turbulence  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF6hcKh6aCktIhWgPXDEke192b1RBEKVQIg2EpysfaKA4wBJiuivZ8aPiCAh6M2yd9fj2VnPzO7MN4TsghA5FjhGT9UlzISJcqWzyCG2ihZxsHUQzcmpPB7yXxfiYoXsdbkwS-f3dRwWJsFVV-DJpSke6WeIr70qBVjePbI6PD3bv8T6cSLHIAMWd9lxr3Rd0j41SP-SEvowr27144Muy2dK5ugzOenIa2JLbgbzmRnYfy-QG99L_xr51FqbdL8Rjy9kxVfr5OMzDMKv5O9v8Jp9FEY1ODfFrYPS0-kdiI6nunLdZcB0Khjr6n7kphQ8eZAJR0FhmXmdt_SDnvvHalLCwyb_hNZFdihii48x5mYaTeD3NG7zPr-R4dHhn4PjqC3GEFmeZLNIWyaCt4EFH5iwTGZZEsAXTF3I4aOUc86CremUkjZRUoGllsbcx8zDCndJYBukV00qv0loknPtpQFNaC1PeciMUDZI3IZR2jjfJ6ybpMK2SOVYMKMsupC066LhaoFcLRqu9km06HXbIHW80f4nzv-iLeJs1zdg-op22RbMSmMFA7JEzLnhuXdWSZ8jjp01WvSJ6qSnaE2WxhSBoUZvvH6wELZ30fv9fztskd7sfu63wWiamZ12rTwB9zcWRA priority: 102 providerName: Unpaywall  | 
    
| Title | Space-filling single square and square fractal grids induced turbulence: Reynolds stress model parameters-optimization | 
    
| URI | https://dx.doi.org/10.1016/j.rineng.2022.100806 https://doi.org/10.1016/j.rineng.2022.100806 https://doaj.org/article/3c6bc537ab5044b49edc76e95518cba5  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2590-1230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2590-1230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2590-1230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: AKRWK dateStart: 20190301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQHFoOFZQitqXIh15Dk9iJk96WahGqBKqAlegp8idaFLLA7oK48NuZsZNVOC2HXqIocWzLM87MWG_eEPIDlMgwxxE95UuYZSoqhSwig9wqMoud9iCa07P8ZMz_XGVXvVJfiAkL9MBh4X4ynSudMSFVFnOueGmNFrktkUlMK-nZS-Oi7AVTN_7IKGkJM8G9R_gBi7u8OQ_uwsy65hrCwzRFnECBBY96dsnT978xTx8WzZ18fpJ13TM_x1vkU-s30mGY7zZZs81nstljE9whjxcQ_9rITTzNNsVDgNrS2T0ogaWyMd2tw8Qo6Ov6YWJmFGJykK6hYHrUwmcg_aLn9rmZ1vAyZJJQXy6HIkv4LaJnZtEUfjS3bQbnFzI-Hl3-PonasgqR5kkxj6RmmbPaMWcdyzTLiyJxENWlxpWwEsIYo8FrNELkOhG5AJ8rjbmNmYW9ahLHdsl6M23sHqFJyaXNFdg0rXnKXaEyoV2OByogMGMHhHWLWumWcxxLX9RVBy67qYIoKhRFFUQxINHyq7vAubGi_RHKa9kWGbP9A9CjqtWjapUeDYjopF21zkdwKqCryYrhD5fK8a75fv0f8_1GPkKXLMDh9sn6_GFhv4N_NFcHfivA9fRldEA2xmd_h_9eATBxEIM | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF6hcKh6aCktIhWgPXDEke192b1RBEKVQIg2EpysfaKA4wBJiuivZ8aPiCAh6M2yd9fj2VnPzO7MN4TsghA5FjhGT9UlzISJcqWzyCG2ihZxsHUQzcmpPB7yXxfiYoXsdbkwS-f3dRwWJsFVV-DJpSke6WeIr70qBVjePbI6PD3bv8T6cSLHIAMWd9lxr3Rd0j41SP-SEvowr27144Muy2dK5ugzOenIa2JLbgbzmRnYfy-QG99L_xr51FqbdL8Rjy9kxVfr5OMzDMKv5O9v8Jp9FEY1ODfFrYPS0-kdiI6nunLdZcB0Khjr6n7kphQ8eZAJR0FhmXmdt_SDnvvHalLCwyb_hNZFdihii48x5mYaTeD3NG7zPr-R4dHhn4PjqC3GEFmeZLNIWyaCt4EFH5iwTGZZEsAXTF3I4aOUc86CremUkjZRUoGllsbcx8zDCndJYBukV00qv0loknPtpQFNaC1PeciMUDZI3IZR2jjfJ6ybpMK2SOVYMKMsupC066LhaoFcLRqu9km06HXbIHW80f4nzv-iLeJs1zdg-op22RbMSmMFA7JEzLnhuXdWSZ8jjp01WvSJ6qSnaE2WxhSBoUZvvH6wELZ30fv9fztskd7sfu63wWiamZ12rTwB9zcWRA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-filling+single+square+and+square+fractal+grids+induced+turbulence%3A+Reynolds+stress+model+parameters-optimization&rft.jtitle=Results+in+engineering&rft.au=Michael+Chee+Hoe+Mok&rft.au=Chin+Vern+Yeoh&rft.au=Ming+Kwang+Tan&rft.au=Ji+Jinn+Foo&rft.date=2023-03-01&rft.pub=Elsevier&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=17&rft.spage=100806&rft_id=info:doi/10.1016%2Fj.rineng.2022.100806&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3c6bc537ab5044b49edc76e95518cba5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |