Genetic algorithm-generated SNP barcodes of the mitochondrial D-loop for chronic dialysis susceptibility

Abstract Background and aims: Single nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in complex diseases. However, it is less commonly applied to evaluate the predisposition of chronic dialysis and its computational analysis remains...

Full description

Saved in:
Bibliographic Details
Published inMitochondrial DNA Vol. 25; no. 3; pp. 231 - 237
Main Authors Chen, Jin-Bor, Chuang, Li-Yeh, Lin, Yu-Da, Liou, Chia-Wei, Lin, Tsu-Kung, Lee, Wen-Chin, Cheng, Ben-Chung, Chang, Hsueh-Wei, Yang, Cheng-Hong
Format Journal Article
LanguageEnglish
Published England Informa UK Ltd 01.06.2014
Taylor & Francis
Subjects
Online AccessGet full text
ISSN1940-1736
1940-1744
1940-1744
DOI10.3109/19401736.2013.796513

Cover

Abstract Abstract Background and aims: Single nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in complex diseases. However, it is less commonly applied to evaluate the predisposition of chronic dialysis and its computational analysis remains challenging. In this study, we aimed to improve the analysis of SNP-SNP interactions within the mitochondrial D-loop in chronic dialysis. Material & method: The SNP-SNP interactions between 77 reported SNPs within the mitochondrial D-loop in chronic dialysis study were evaluated in terms of SNP barcodes (different SNP combinations with their corresponding genotypes). We propose a genetic algorithm (GA) to generate SNP barcodes. The χ2 values were then calculated by the occurrences of the specific SNP barcodes and their non-specific combinations between cases and controls. Results: Each SNP barcode (2- to 7-SNP) with the highest value in the χ2 test was regarded as the best SNP barcode (11.304 to 23.310; p < 0.001). The best GA-generated SNP barcodes (2- to 7-SNP) were significantly associated with chronic dialysis (odds ratio [OR] = 1.998 to 3.139; p < 0.001). The order of influence for SNPs was the same as the order of their OR values for chronic dialysis in terms of 2- to 7-SNP barcodes. Conclusion: Taken together, we propose an effective algorithm to address the SNP-SNP interactions and demonstrated that many non-significant SNPs within the mitochondrial D-loop may play a role in jointed effects to chronic dialysis susceptibility.
AbstractList Single nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in complex diseases. However, it is less commonly applied to evaluate the predisposition of chronic dialysis and its computational analysis remains challenging. In this study, we aimed to improve the analysis of SNP-SNP interactions within the mitochondrial D-loop in chronic dialysis.BACKGROUND AND AIMSSingle nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in complex diseases. However, it is less commonly applied to evaluate the predisposition of chronic dialysis and its computational analysis remains challenging. In this study, we aimed to improve the analysis of SNP-SNP interactions within the mitochondrial D-loop in chronic dialysis.The SNP-SNP interactions between 77 reported SNPs within the mitochondrial D-loop in chronic dialysis study were evaluated in terms of SNP barcodes (different SNP combinations with their corresponding genotypes). We propose a genetic algorithm (GA) to generate SNP barcodes. The χ(2) values were then calculated by the occurrences of the specific SNP barcodes and their non-specific combinations between cases and controls.MATERIAL & METHODThe SNP-SNP interactions between 77 reported SNPs within the mitochondrial D-loop in chronic dialysis study were evaluated in terms of SNP barcodes (different SNP combinations with their corresponding genotypes). We propose a genetic algorithm (GA) to generate SNP barcodes. The χ(2) values were then calculated by the occurrences of the specific SNP barcodes and their non-specific combinations between cases and controls.Each SNP barcode (2- to 7-SNP) with the highest value in the χ(2) test was regarded as the best SNP barcode (11.304 to 23.310; p < 0.001). The best GA-generated SNP barcodes (2- to 7-SNP) were significantly associated with chronic dialysis (odds ratio [OR] = 1.998 to 3.139; p < 0.001). The order of influence for SNPs was the same as the order of their OR values for chronic dialysis in terms of 2- to 7-SNP barcodes.RESULTSEach SNP barcode (2- to 7-SNP) with the highest value in the χ(2) test was regarded as the best SNP barcode (11.304 to 23.310; p < 0.001). The best GA-generated SNP barcodes (2- to 7-SNP) were significantly associated with chronic dialysis (odds ratio [OR] = 1.998 to 3.139; p < 0.001). The order of influence for SNPs was the same as the order of their OR values for chronic dialysis in terms of 2- to 7-SNP barcodes.Taken together, we propose an effective algorithm to address the SNP-SNP interactions and demonstrated that many non-significant SNPs within the mitochondrial D-loop may play a role in jointed effects to chronic dialysis susceptibility.CONCLUSIONTaken together, we propose an effective algorithm to address the SNP-SNP interactions and demonstrated that many non-significant SNPs within the mitochondrial D-loop may play a role in jointed effects to chronic dialysis susceptibility.
Background and aims: Single nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in complex diseases. However, it is less commonly applied to evaluate the predisposition of chronic dialysis and its computational analysis remains challenging. In this study, we aimed to improve the analysis of SNP-SNP interactions within the mitochondrial D-loop in chronic dialysis. Material & method: The SNP-SNP interactions between 77 reported SNPs within the mitochondrial D-loop in chronic dialysis study were evaluated in terms of SNP barcodes (different SNP combinations with their corresponding genotypes). We propose a genetic algorithm (GA) to generate SNP barcodes. The χ 2 values were then calculated by the occurrences of the specific SNP barcodes and their non-specific combinations between cases and controls. Results: Each SNP barcode (2- to 7-SNP) with the highest value in the χ 2 test was regarded as the best SNP barcode (11.304 to 23.310; p < 0.001). The best GA-generated SNP barcodes (2- to 7-SNP) were significantly associated with chronic dialysis (odds ratio [OR] = 1.998 to 3.139; p < 0.001). The order of influence for SNPs was the same as the order of their OR values for chronic dialysis in terms of 2- to 7-SNP barcodes. Conclusion: Taken together, we propose an effective algorithm to address the SNP-SNP interactions and demonstrated that many non-significant SNPs within the mitochondrial D-loop may play a role in jointed effects to chronic dialysis susceptibility.
Single nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in complex diseases. However, it is less commonly applied to evaluate the predisposition of chronic dialysis and its computational analysis remains challenging. In this study, we aimed to improve the analysis of SNP-SNP interactions within the mitochondrial D-loop in chronic dialysis. The SNP-SNP interactions between 77 reported SNPs within the mitochondrial D-loop in chronic dialysis study were evaluated in terms of SNP barcodes (different SNP combinations with their corresponding genotypes). We propose a genetic algorithm (GA) to generate SNP barcodes. The χ(2) values were then calculated by the occurrences of the specific SNP barcodes and their non-specific combinations between cases and controls. Each SNP barcode (2- to 7-SNP) with the highest value in the χ(2) test was regarded as the best SNP barcode (11.304 to 23.310; p < 0.001). The best GA-generated SNP barcodes (2- to 7-SNP) were significantly associated with chronic dialysis (odds ratio [OR] = 1.998 to 3.139; p < 0.001). The order of influence for SNPs was the same as the order of their OR values for chronic dialysis in terms of 2- to 7-SNP barcodes. Taken together, we propose an effective algorithm to address the SNP-SNP interactions and demonstrated that many non-significant SNPs within the mitochondrial D-loop may play a role in jointed effects to chronic dialysis susceptibility.
Abstract Background and aims: Single nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in complex diseases. However, it is less commonly applied to evaluate the predisposition of chronic dialysis and its computational analysis remains challenging. In this study, we aimed to improve the analysis of SNP-SNP interactions within the mitochondrial D-loop in chronic dialysis. Material & method: The SNP-SNP interactions between 77 reported SNPs within the mitochondrial D-loop in chronic dialysis study were evaluated in terms of SNP barcodes (different SNP combinations with their corresponding genotypes). We propose a genetic algorithm (GA) to generate SNP barcodes. The χ2 values were then calculated by the occurrences of the specific SNP barcodes and their non-specific combinations between cases and controls. Results: Each SNP barcode (2- to 7-SNP) with the highest value in the χ2 test was regarded as the best SNP barcode (11.304 to 23.310; p < 0.001). The best GA-generated SNP barcodes (2- to 7-SNP) were significantly associated with chronic dialysis (odds ratio [OR] = 1.998 to 3.139; p < 0.001). The order of influence for SNPs was the same as the order of their OR values for chronic dialysis in terms of 2- to 7-SNP barcodes. Conclusion: Taken together, we propose an effective algorithm to address the SNP-SNP interactions and demonstrated that many non-significant SNPs within the mitochondrial D-loop may play a role in jointed effects to chronic dialysis susceptibility.
Author Chen, Jin-Bor
Lin, Yu-Da
Cheng, Ben-Chung
Chuang, Li-Yeh
Lin, Tsu-Kung
Chang, Hsueh-Wei
Lee, Wen-Chin
Yang, Cheng-Hong
Liou, Chia-Wei
Author_xml – sequence: 1
  givenname: Jin-Bor
  surname: Chen
  fullname: Chen, Jin-Bor
  email: changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw, changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw
  organization: Division of Nephrology, Department of Internal Medicine, Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine
– sequence: 2
  givenname: Li-Yeh
  surname: Chuang
  fullname: Chuang, Li-Yeh
  email: changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw, changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw
  organization: Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University
– sequence: 3
  givenname: Yu-Da
  surname: Lin
  fullname: Lin, Yu-Da
  email: changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw, changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw
  organization: Department of Electronic Engineering, National Kaohsiung University of Applied Sciences
– sequence: 4
  givenname: Chia-Wei
  surname: Liou
  fullname: Liou, Chia-Wei
  email: changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw, changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw
  organization: Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
– sequence: 5
  givenname: Tsu-Kung
  surname: Lin
  fullname: Lin, Tsu-Kung
  email: changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw, changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw
  organization: Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
– sequence: 6
  givenname: Wen-Chin
  surname: Lee
  fullname: Lee, Wen-Chin
  email: changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw, changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw
  organization: Division of Nephrology, Department of Internal Medicine, Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine
– sequence: 7
  givenname: Ben-Chung
  surname: Cheng
  fullname: Cheng, Ben-Chung
  email: changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw, changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw
  organization: Division of Nephrology, Department of Internal Medicine, Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine
– sequence: 8
  givenname: Hsueh-Wei
  surname: Chang
  fullname: Chang, Hsueh-Wei
  email: changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw, changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw
  organization: Department of Biomedical Science and Environmental Biology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University
– sequence: 9
  givenname: Cheng-Hong
  surname: Yang
  fullname: Yang, Cheng-Hong
  email: changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw, changhw@kmu.edu.tw, chyang@cc.kuas.edu.tw
  organization: Department of Electronic Engineering, National Kaohsiung University of Applied Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23777414$$D View this record in MEDLINE/PubMed
BookMark eNqFUU2LFDEUDLLifug_EMnRS49JujuZeFCWVVdhUUE9h0zysp0lnYxJGpl_b4bZEfSwnupRVBWPqnN0ElMEhJ5Tsuopka-oHAgVPV8xQvuVkHyk_SN0tqc7Kobh5M_d81N0XsodIZwxIp-gU9YLIQY6nKHpGiJUb7AOtyn7Os3dbWOyrmDxt89f8UZnkywUnByuE-DZ12SmFG32OuB3XUhpi13K2Ew5xRZkG78rvuCyFAPb6jc--Lp7ih47HQo8u8cL9OPD--9XH7ubL9efri5vOjPQde20YZZozikDsxEgJeg1A8kHI9dyFKwhN06srRuNtM4No2UENHCQlDsp-gv08pC7zennAqWq2bc_QtAR0lIUHRmnfWuQNemLe-mymcGqbfazzjt1bKcJXh8EJqdSMjhlfNXVp1iz9kFRovZTqOMUaj-FOkzRzMM_5mP-f2xvDzYfW6uz_pVysKrqXUjZZR2NL3v3gwlv_kqYQIc6GZ1B3aUlx9b-wy_8BuKytAw
CitedBy_id crossref_primary_10_1016_j_csbj_2020_07_009
crossref_primary_10_1016_j_compbiomed_2017_02_004
crossref_primary_10_1007_s00005_014_0307_9
crossref_primary_10_3892_or_2016_4956
crossref_primary_10_2196_16886
crossref_primary_10_1089_omi_2014_0121
crossref_primary_10_1093_bib_bbac512
crossref_primary_10_1016_j_cj_2024_01_001
crossref_primary_10_1177_1176934318760856
crossref_primary_10_1109_TNB_2018_2844342
crossref_primary_10_1109_TCBB_2021_3056570
crossref_primary_10_1177_2040622321992624
crossref_primary_10_1016_j_jbi_2016_08_009
Cites_doi 10.1016/j.canep.2009.07.001
10.1023/B:UROL.0000020286.83411.d1
10.1359/jbmr.090516
10.1007/BF03256426
10.1089/omi.2008.0050
10.1186/1753-6561-3-S7-S76
10.1016/j.compbiolchem.2008.07.029
10.1371/journal.pone.0041125
10.1016/j.artmed.2007.07.010
10.3109/19401736.2012.660925
10.1186/1471-2105-11-509
10.1093/bioinformatics/bti419
10.1159/000178772
10.1016/j.jbi.2010.05.011
10.1371/journal.pone.0036962
10.1089/omi.2010.0028
10.1196/annals.1433.012
10.1053/j.ajkd.2008.12.025
10.1016/j.kjms.2012.02.002
10.1053/j.ajkd.2011.09.020
10.3109/19401736.2012.674120
10.2217/bmm.11.32
10.1016/j.kjms.2012.02.012
10.1016/j.molonc.2010.04.011
10.1371/journal.pone.0009903
10.1371/journal.pone.0037018
10.1177/089686080902900112
10.1111/j.1600-0714.2007.00608.x
10.1186/1755-8794-5-11
10.1093/bib/bbr012
10.1089/omi.2009.0007
10.1186/1471-2407-11-208
10.1097/CEJ.0b013e32834e31f6
10.1111/j.1440-1797.2010.01418.x
10.1186/1471-2105-9-146
10.1097/EDE.0b013e31822ffbe7
10.1093/bioinformatics/17.12.1131
10.2215/CJN.04470511
ContentType Journal Article
Copyright 2014 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted 2014
Copyright_xml – notice: 2014 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.3109/19401736.2013.796513
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1940-1744
EndPage 237
ExternalDocumentID 23777414
10_3109_19401736_2013_796513
796513
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
00X
0BK
0R~
4.4
5VS
AAAVI
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABFMO
ABJNI
ABJVF
ABLIJ
ABQHQ
ABXUL
ABXYU
ACFUF
ACGFS
ACTIO
ADCVX
ADFCX
ADGTB
ADRBQ
AEGYZ
AEISY
AENEX
AEYQI
AFWLO
AGDLA
AHDLD
AIJEM
AIRXU
AKBVH
AKOOK
ALIIL
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AWQZV
AWYRJ
BABNJ
BLEHA
CAG
CCCUG
COF
DGEBU
DKSSO
DU5
EAP
EBC
EBD
EBS
EJD
EMK
EMOBN
EPL
EST
ESX
F5P
HZ~
KRBQP
KSSTO
KWAYT
KYCEM
M44
M4Z
O9-
RNANH
ROSJB
RTWRZ
SV3
TFDNU
TFL
TFT
TFW
TQWBC
TTHFI
TUS
V1S
ZGOLN
~1N
AAGDL
ABPAQ
ACUHS
AFRVT
AHDZW
AIYEW
H13
TASJS
TBQAZ
TUROJ
AAYXX
ACFTK
CITATION
ADYSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c418t-ac2d0a6612ecb7e99ea82e964c9895724c96cf78df5c9dff45d20eae6e916f973
ISSN 1940-1736
1940-1744
IngestDate Fri Sep 05 07:38:29 EDT 2025
Mon Jul 21 06:04:59 EDT 2025
Wed Oct 01 02:26:03 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Mon Oct 20 23:46:46 EDT 2025
Wed Jan 31 10:30:28 EST 2024
IsPeerReviewed false
IsScholarly false
Issue 3
Keywords genetic algorithm
Chronic dialysis
single nucleotide polymorphism
mitochondrial D-loop
SNP interaction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-ac2d0a6612ecb7e99ea82e964c9895724c96cf78df5c9dff45d20eae6e916f973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23777414
PQID 1526133102
PQPubID 23479
PageCount 7
ParticipantIDs crossref_citationtrail_10_3109_19401736_2013_796513
informahealthcare_journals_10_3109_19401736_2013_796513
crossref_primary_10_3109_19401736_2013_796513
informaworld_taylorfrancis_310_3109_19401736_2013_796513
proquest_miscellaneous_1526133102
pubmed_primary_23777414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Mitochondrial DNA
PublicationTitleAlternate Mitochondrial DNA
PublicationYear 2014
Publisher Informa UK Ltd
Taylor & Francis
Publisher_xml – name: Informa UK Ltd
– name: Taylor & Francis
References Chuang LY (CIT0007) 2008; 28
Lavender NA (CIT0018) 2012; 5
Chmielewski M (CIT0004) 2008; 26
CIT0011
Kalousova M (CIT0016) 2008; 1126
Li L (CIT0019) 2001; 17
CIT0033
Chuang LY (CIT0005) 2012; 21
Friedman DJ (CIT0010) 2009; 24
Villagra D (CIT0032) 2011; 5
Neuman RJ (CIT0027) 2010; 5
Lane HY (CIT0017) 2012; 16
Poon PY (CIT0028) 2012; 7
Hoh JK (CIT0012) 2012; 28
Jung J (CIT0015) 2009; 3
Wang S (CIT0035) 2007; 41
Chuang LY (CIT0006) 2012; 7
Liu JJ (CIT0023) 2005; 21
Bostrom MA (CIT0001) 2012; 59
Li PK (CIT0020) 2011; 16
Chang HW (CIT0002) 2009; 33
Yang CH (CIT0039) 2011; 15
Shi M (CIT0029) 2011; 22
Wang T (CIT0036) 2003; 35
Lin GT (CIT0022) 2009; 13
Yen CY (CIT0041) 2008; 37
Sperati CJ (CIT0030) 2009; 53
Yang CH (CIT0037) 2009; 33
Yang CH (CIT0038) 2010; 11
Hwang YH (CIT0014) 2009; 29
Mavaddat N (CIT0025) 2010; 4
Steen KV (CIT0031) 2012; 13
Mechanic LE (CIT0026) 2008; 9
Yang CH (CIT0040) 2012; 28
Mahdevar G (CIT0024) 2010; 43
Wan Y (CIT0034) 2011; 11
Chuang LY (CIT0008) 2009; 13
CIT0003
Lin GT (CIT0021) 2008; 51
CIT0009
References_xml – volume: 33
  start-page: 147
  year: 2009
  ident: CIT0037
  publication-title: Cancer Epidemiol
  doi: 10.1016/j.canep.2009.07.001
– volume: 35
  start-page: 267
  year: 2003
  ident: CIT0036
  publication-title: Int Urol Nephrol
  doi: 10.1023/B:UROL.0000020286.83411.d1
– volume: 24
  start-page: 1847
  year: 2009
  ident: CIT0010
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.090516
– volume: 16
  start-page: 15
  year: 2012
  ident: CIT0017
  publication-title: Mol Diagn Ther
  doi: 10.1007/BF03256426
– volume: 13
  start-page: 165
  year: 2009
  ident: CIT0022
  publication-title: OMICS
  doi: 10.1089/omi.2008.0050
– volume: 3
  start-page: S76
  year: 2009
  ident: CIT0015
  publication-title: BMC Proc
  doi: 10.1186/1753-6561-3-S7-S76
– volume: 33
  start-page: 114
  year: 2009
  ident: CIT0002
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2008.07.029
– ident: CIT0003
  doi: 10.1371/journal.pone.0041125
– volume: 41
  start-page: 151
  year: 2007
  ident: CIT0035
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.07.010
– ident: CIT0011
  doi: 10.3109/19401736.2012.660925
– volume: 11
  start-page: 509
  year: 2010
  ident: CIT0038
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-509
– volume: 21
  start-page: 2691
  year: 2005
  ident: CIT0023
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti419
– volume: 26
  start-page: 555
  year: 2008
  ident: CIT0004
  publication-title: Blood Purif
  doi: 10.1159/000178772
– volume: 43
  start-page: 800
  year: 2010
  ident: CIT0024
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2010.05.011
– ident: CIT0033
  doi: 10.1371/journal.pone.0036962
– volume: 15
  start-page: 399
  year: 2011
  ident: CIT0039
  publication-title: OMICS
  doi: 10.1089/omi.2010.0028
– volume: 1126
  start-page: 268
  year: 2008
  ident: CIT0016
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1433.012
– volume: 53
  start-page: 845
  year: 2009
  ident: CIT0030
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2008.12.025
– volume: 28
  start-page: 362
  year: 2012
  ident: CIT0040
  publication-title: Kaohsiung J Med Sci
  doi: 10.1016/j.kjms.2012.02.002
– volume: 59
  start-page: 210
  year: 2012
  ident: CIT0001
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2011.09.020
– ident: CIT0009
  doi: 10.3109/19401736.2012.674120
– volume: 5
  start-page: 427
  year: 2011
  ident: CIT0032
  publication-title: Biomark Med
  doi: 10.2217/bmm.11.32
– volume: 28
  start-page: 423
  year: 2012
  ident: CIT0012
  publication-title: Kaohsiung J Med Sci
  doi: 10.1016/j.kjms.2012.02.012
– volume: 4
  start-page: 174
  year: 2010
  ident: CIT0025
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2010.04.011
– volume: 5
  start-page: e9903
  year: 2010
  ident: CIT0027
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009903
– volume: 7
  start-page: e37018
  year: 2012
  ident: CIT0006
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037018
– volume: 29
  start-page: 81
  year: 2009
  ident: CIT0014
  publication-title: Perit Dial Int
  doi: 10.1177/089686080902900112
– volume: 37
  start-page: 271
  year: 2008
  ident: CIT0041
  publication-title: J Oral Pathol Med
  doi: 10.1111/j.1600-0714.2007.00608.x
– volume: 51
  start-page: 32
  year: 2008
  ident: CIT0021
  publication-title: Chin J Physiol
– volume: 5
  start-page: 11
  year: 2012
  ident: CIT0018
  publication-title: BMC Med Genom
  doi: 10.1186/1755-8794-5-11
– volume: 13
  start-page: 1
  year: 2012
  ident: CIT0031
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr012
– volume: 13
  start-page: 407
  year: 2009
  ident: CIT0008
  publication-title: OMICS
  doi: 10.1089/omi.2009.0007
– volume: 11
  start-page: 208
  year: 2011
  ident: CIT0034
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-11-208
– volume: 21
  start-page: 336
  year: 2012
  ident: CIT0005
  publication-title: Eur J Cancer Prev
  doi: 10.1097/CEJ.0b013e32834e31f6
– volume: 28
  start-page: 2001
  year: 2008
  ident: CIT0007
  publication-title: Anticancer Res
– volume: 16
  start-page: 53
  year: 2011
  ident: CIT0020
  publication-title: Nephrology (Carlton)
  doi: 10.1111/j.1440-1797.2010.01418.x
– volume: 9
  start-page: 146
  year: 2008
  ident: CIT0026
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-9-146
– volume: 22
  start-page: 845
  year: 2011
  ident: CIT0029
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e31822ffbe7
– volume: 17
  start-page: 1131
  year: 2001
  ident: CIT0019
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.12.1131
– volume: 7
  start-page: 304
  year: 2012
  ident: CIT0028
  publication-title: Clin J Am Soc Nephrol
  doi: 10.2215/CJN.04470511
SSID ssj0062209
Score 1.6793072
Snippet Abstract Background and aims: Single nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in...
Background and aims: Single nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in complex...
Single nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in complex diseases. However, it is...
SourceID proquest
pubmed
crossref
informaworld
informahealthcare
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 231
SubjectTerms Algorithms
Chronic dialysis
DNA Barcoding, Taxonomic
DNA, Mitochondrial - chemistry
DNA, Mitochondrial - genetics
Epistasis, Genetic
genetic algorithm
Genetic Predisposition to Disease
Humans
mitochondrial D-loop
Models, Genetic
Nucleic Acid Conformation
Polymorphism, Single Nucleotide
Renal Dialysis
Renal Insufficiency, Chronic - genetics
Renal Insufficiency, Chronic - therapy
Sequence Analysis, DNA
single nucleotide polymorphism
SNP interaction
Title Genetic algorithm-generated SNP barcodes of the mitochondrial D-loop for chronic dialysis susceptibility
URI https://www.tandfonline.com/doi/abs/10.3109/19401736.2013.796513
https://www.ncbi.nlm.nih.gov/pubmed/23777414
https://www.proquest.com/docview/1526133102
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1940-1744
  dateEnd: 20160331
  omitProxy: true
  ssIdentifier: ssj0062209
  issn: 1940-1736
  databaseCode: ABDBF
  dateStart: 20080801
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1940-1744
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062209
  issn: 1940-1736
  databaseCode: AHDZW
  dateStart: 20090101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK98IL2hiXwkBGQrwgj9a5-rGsoAq2iodV23iJHMdeK7XJtCYP8D_4vxxfkqajbLCXNLF8SXo-2-fY53xG6K0QgBwlKPFkLIhPs5hw7UWoBlkEGjmX3FAKnUzC8dT_ch6cdzq_Wl5LVZkeip9b40ruI1VIA7nqKNn_kGxTKSTAPcgXriBhuP6TjDVntCFcXVwWYOTPluTSsEgbLXLy7X0KKC4ySyurFcwldF8Y7vLMHNUxIouiuDJ-hsJS5OqVWEtRsqpWxt_FuM5u7PyebNYxaRBwVMd5zHPysbheJ1duSfp4Ti5ks_p8bMkLLioy4uu0orI-AHNOzuS8vSQx8NeuU9ZMdYFU068t1yQ9uDK9j2xDDWDuaadZDsh6RLah0A55Xnt4dTOGdE_RtknAsxyqumbdmHbf8w4jFgY26PUGvTYYQbpAUmdPdPbEZn-AdihMFv0u2hmOR9_P6ik-pNZ3qPkgG5Op6_mwrdkNnWfXMeLOGv--Gyy5f7d1jM5zuoseOWMFDy3y9lBH5o_R_jDnZbH8gd9h4z5s9mX20cyBEW8BIwYw4hqMuFAYwIg3wIgtGDG8H3ZgxDUY8SYYn6Dp50-nR2PijvEgwh_EJeGCZn0OeiCVIo0kY5LHVLLQFyxmQUThNxQqijMVCJYp5QcZ7UsuQwmmi2KR9xR18yKXzxH2skDEni8CKpgvfLhPVexJFWYp6_czv4e8-o9OhOO410etLJLbxNxDpCl1ZTle7sgf_SHDxA0LqztKxm1JJ6VZlVP2CB1d7Laib2pUJDAD6G09nsuiggYDCjo5FKQ99MzCpfkM6CJg3w38F_d-5Zfo4bqLH6BueV3JV6CHl-lr1yt-A6W51PQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+algorithm-generated+SNP+barcodes+of+the+mitochondrial+D-loop+for+chronic+dialysis+susceptibility&rft.jtitle=Mitochondrial+DNA&rft.au=Chen%2C+Jin-Bor&rft.au=Chuang%2C+Li-Yeh&rft.au=Lin%2C+Yu-Da&rft.au=Liou%2C+Chia-Wei&rft.date=2014-06-01&rft.pub=Informa+UK+Ltd&rft.issn=1940-1736&rft.eissn=1940-1744&rft.volume=25&rft.issue=3&rft.spage=231&rft.epage=237&rft_id=info:doi/10.3109%2F19401736.2013.796513&rft.externalDocID=10_3109_19401736_2013_796513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-1736&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-1736&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-1736&client=summon