Unifying tensor factorization and tensor nuclear norm approaches for low-rank tensor completion

Low-rank tensor completion (LRTC) has gained significant attention due to its powerful capability of recovering missing entries. However, it has to repeatedly calculate the time-consuming singular value decomposition (SVD). To address this drawback, we, based on the tensor-tensor product (t-product)...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 458; pp. 204 - 218
Main Authors Du, Shiqiang, Xiao, Qingjiang, Shi, Yuqing, Cucchiara, Rita, Ma, Yide
Format Journal Article
LanguageEnglish
Published Elsevier B.V 11.10.2021
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
1872-8286
DOI10.1016/j.neucom.2021.06.020

Cover

Abstract Low-rank tensor completion (LRTC) has gained significant attention due to its powerful capability of recovering missing entries. However, it has to repeatedly calculate the time-consuming singular value decomposition (SVD). To address this drawback, we, based on the tensor-tensor product (t-product), propose a new LRTC method-the unified tensor factorization (UTF)-for 3-way tensor completion. We first integrate the tensor factorization (TF) and the tensor nuclear norm (TNN) regularization into a framework that inherits the benefits of both TF and TNN: fast calculation and convex optimization. The conditions under which TF and TNN are equivalent are analyzed. Then, UTF for tensor completion is presented and an efficient iterative updated algorithm based on the alternate direction method of multipliers (ADMM) is used for our UTF optimization, and the solution of the proposed alternate minimization algorithm is also proven to be able to converge to a Karush–Kuhn–Tucker (KKT) point. Finally, numerical experiments on synthetic data completion and image/video inpainting tasks demonstrate the effectiveness of our method over other state-of-the-art tensor completion methods.
AbstractList Low-rank tensor completion (LRTC) has gained significant attention due to its powerful capability of recovering missing entries. However, it has to repeatedly calculate the time-consuming singular value decomposition (SVD). To address this drawback, we, based on the tensor-tensor product (t-product), propose a new LRTC method-the unified tensor factorization (UTF)-for 3-way tensor completion. We first integrate the tensor factorization (TF) and the tensor nuclear norm (TNN) regularization into a framework that inherits the benefits of both TF and TNN: fast calculation and convex optimization. The conditions under which TF and TNN are equivalent are analyzed. Then, UTF for tensor completion is presented and an efficient iterative updated algorithm based on the alternate direction method of multipliers (ADMM) is used for our UTF optimization, and the solution of the proposed alternate minimization algorithm is also proven to be able to converge to a Karush–Kuhn–Tucker (KKT) point. Finally, numerical experiments on synthetic data completion and image/video inpainting tasks demonstrate the effectiveness of our method over other state-of-the-art tensor completion methods.
Author Xiao, Qingjiang
Ma, Yide
Shi, Yuqing
Du, Shiqiang
Cucchiara, Rita
Author_xml – sequence: 1
  givenname: Shiqiang
  surname: Du
  fullname: Du, Shiqiang
  email: shiqiangdu@hotmail.com
  organization: College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730000, China
– sequence: 2
  givenname: Qingjiang
  surname: Xiao
  fullname: Xiao, Qingjiang
  organization: China National Information Technology Research Institute, Northwest Minzu University, Lanzhou 730030, China
– sequence: 3
  givenname: Yuqing
  surname: Shi
  fullname: Shi, Yuqing
  organization: College of Electrical Engineering, Northwest Minzu University, Lanzhou 730030, China
– sequence: 4
  givenname: Rita
  surname: Cucchiara
  fullname: Cucchiara, Rita
  organization: Department of Engineering, University of Modena and Reggio Emilia, Modena 41121, Italy
– sequence: 5
  givenname: Yide
  surname: Ma
  fullname: Ma, Yide
  organization: School of Information Science and Engineering, Lanzhou University, Lanzhou 730030, China
BookMark eNqNkEFPwyAUx4mZidv0G3joF2jl0ZVSDyZm0WmyxIs7E0pBmR000LnMTy-z7uJBPT3Ce78_vN8EjayzCqFLwBlgoFfrzKqtdJuMYAIZphkm-ASNgZUkZYTRERrjihQpyYGcoUkIa4yhBFKNEV9Zo_fGviS9ssH5RAvZO28-RG-cTYRtjg27la0SsTq_SUTXeSfkqwqJjr3W7VIv7NtxNv6la9Uh4RydatEGdfFdp2h1f_c8f0iXT4vH-e0ylTNgfVpRkKXWUANoACZmTYFzrWiT0zJe1oySgjKmQZOyzKs6rxuphdBFKYs6nvIpKobcre3EfifalnfebITfc8D8YImv-WCJHyxxTHm0FLnrgZPeheCV5tL0X7v3Xpj2L3j2A_7nmzcDpqKQd6M8D9IoK1VjvJI9b5z5PeAT9pOceA
CitedBy_id crossref_primary_10_3390_rs15153862
crossref_primary_10_1080_1206212X_2023_2219836
crossref_primary_10_1007_s10915_023_02364_6
crossref_primary_10_1016_j_geothermics_2024_103204
crossref_primary_10_1007_s10915_022_02006_3
crossref_primary_10_1016_j_sigpro_2025_109935
crossref_primary_10_1109_ACCESS_2023_3291744
crossref_primary_10_1016_j_patcog_2022_109169
crossref_primary_10_1016_j_neucom_2021_10_013
crossref_primary_10_1007_s10489_023_04477_9
crossref_primary_10_1007_s10489_023_04538_z
crossref_primary_10_1016_j_neucom_2024_127513
crossref_primary_10_1109_TIP_2024_3489272
crossref_primary_10_1007_s11063_023_11260_x
crossref_primary_10_1109_TITS_2023_3308938
crossref_primary_10_3390_app15010322
crossref_primary_10_1109_TSP_2024_3504292
Cites_doi 10.1117/12.2224039
10.1080/10556788.2012.700713
10.1109/TPAMI.2012.39
10.1109/ALLERTON.2009.5394534
10.1109/TSP.2016.2572047
10.1145/2512329
10.1007/s10994-013-5366-3
10.1137/110841229
10.1109/TPAMI.2015.2392756
10.1007/s10208-009-9045-5
10.1109/TIP.2014.2305840
10.1109/TIP.2017.2762595
10.1109/TPAMI.2017.2748590
10.1137/110837711
10.1109/TCYB.2018.2832085
10.1016/j.neucom.2013.11.020
10.1090/S0025-5718-2012-02598-1
10.1088/0266-5611/27/2/025010
10.1007/BF02289464
10.1016/j.knosys.2016.11.013
10.1609/aaai.v30i1.10266
10.1016/j.laa.2015.07.021
10.1007/s11263-018-1086-2
10.1016/j.laa.2010.09.020
10.1016/j.chemolab.2010.08.004
10.1109/TSP.2016.2639466
10.3934/ipi.2015.9.601
10.1109/TCYB.2014.2374695
10.1109/ALLERTON.2017.8262792
10.1109/TNNLS.2018.2796606
10.1007/s10543-013-0455-z
10.1007/s10618-013-0341-y
10.1109/TNNLS.2016.2611525
10.1109/TNNLS.2015.2423694
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.neucom.2021.06.020
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 218
ExternalDocumentID oai:iris.unimore.it:11380/1248510
10_1016_j_neucom_2021_06_020
S0925231221009243
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c418t-961c7ff1b11f118a4d503fe6d3671b1b8625688f1f27739b3bdcfaaf57c5bcfa3
IEDL.DBID .~1
ISSN 0925-2312
1872-8286
IngestDate Sun Oct 26 04:08:13 EDT 2025
Thu Oct 16 04:35:43 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Fri Feb 23 02:43:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tensor completion
Low-rank tensor
Tensor nuclear norm
Tensor factorization
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-961c7ff1b11f118a4d503fe6d3671b1b8625688f1f27739b3bdcfaaf57c5bcfa3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11380/1248510
PageCount 15
ParticipantIDs unpaywall_primary_10_1016_j_neucom_2021_06_020
crossref_citationtrail_10_1016_j_neucom_2021_06_020
crossref_primary_10_1016_j_neucom_2021_06_020
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_06_020
PublicationCentury 2000
PublicationDate 2021-10-11
PublicationDateYYYYMMDD 2021-10-11
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-11
  day: 11
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hillar, Lim (b0195) 2013; 60
Du, Ma, Ma (b0190) 2017; 118
Shang, Cheng, Liu, Luo, Lin (b0255) 2018; 40
Jing, Su, Jin, Zhang (b0030) 2018; 49
Kernfeld, Kilmer, Aeron (b0235) 2015; 485
J. Liu, P. Musialski, P. Wonka, J. Ye, Tensor completion for estimating missing values in visual data., IEEE transactions on pattern analysis and machine intelligence 35 (1) (2013) 208–220.
Ashraphijuo, Wang (b0115) 2017; 18
Liu, Shang, Jiao, Cheng, Cheng (b0210) 2015; 45
Zhang, Ely, Aeron, Hao, Kilmer (b0170) 2014
F. Shang, Y. Liu, J. Cheng, Scalable algorithms for tractable schatten quasi-norm minimization, in: Thirtieth AAAI Conference on Artificial Intelligence, 2016.
D. Tao, X. Li, W. Hu, S. Maybank, X. Wu, Supervised tensor learning, in: Fifth IEEE International Conference on Data Mining (ICDM’05), IEEE, 2005, pp. 8–pp.
Lu, Peng, Wei (b0240) 2019
Yang, Fang, Li, Zeng (b0215) 2016; 64
M. Ashraphijuo, X. Wang, V. Aggarwal, An approximation of the cp-rank of a partially sampled tensor, in: 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE, 2017, pp. 604–611.
Chen, Han, Wang, Zhao, Meng, Tang (b0050) 2016
Gandy, Recht, Yamada (b0080) 2011; 27
Landsberg (b0010) 2012; 381
Zhou, Lu, Lin, Zhang (b0150) 2018; 3
Martin, Shafer, LaRue (b0165) 2013; 35
Shen, Wen, Zhang (b0245) 2014; 29
Xie, Tao, Zhang, Liu, Zhang, Qu (b0035) 2018; 126
Hu, Tao, Zhang, Xie, Yang (b0180) 2016; 28
Cabral, De la Torre, Costeira, Bernardino (b0250) 2013
Acar, Dunlavy, Kolda, Mørup (b0205) 2011; 106
Xu, Hao, Yin, Su (b0135) 2015; 9
Mørup (b0045) 2011; 1
Ermiş, Acar, Cemgil (b0065) 2015; 29
X.-Y. Liu, S. Aeron, V. Aggarwal, X. Wang, Low-tubal-rank tensor completion using alternating minimization, in: Modeling and Simulation for Defense Systems and Applications XI, Vol. 9848, International Society for Optics and Photonics, 2016, p. 984809.
Candès, Recht (b0275) 2008; 9
Zhang, Liu, Aeron, Vetro (b0175) 2016
Zhao, Zhou, Zhang, Cichocki, Amari (b0260) 2016; 27
Ashraphijuo, Aggarwal, Wang (b0120) 2017
Zhao, Zhang, Cichocki (b0130) 2015; 37
Semerci, Hao, Kilmer, Miller (b0230) 2014; 23
Mu, Huang, Wright, Goldfarb (b0200) 2014
Zhang, Aeron (b0185) 2016; 65
Feng, Xu, Yan (b0280) 2013
W. Wang, V. Aggarwal, S. Aeron, Tensor completion by alternating minimization under the tensor train (tt) model, arXiv preprint arXiv:1609.05587.
Jain, Oh (b0095) 2014
Han, Wang, Zhao, Meng, Lin, Tang (b0265) 2018; 29
Kressner, Steinlechner, Vandereycken (b0070) 2014; 54
Lu, Feng, Chen, Liu, Lin, Yan (b0020) 2016
Symeonidis, Nanopoulos, Manolopoulos (b0060) 2008
Liu, Musialski, Wonka, Ye (b0015) 2012; 35
C. Lu, J. Feng, W. Liu, Z. Lin, S. Yan, et al., Tensor robust principal component analysis with a new tensor nuclear norm, IEEE transactions on pattern analysis and machine intelligence.
R. Tomioka, K. Hayashi, H. Kashima, Estimation of low-rank tensors via convex optimization, arXiv preprint arXiv:1010.0789.
Tan, Cheng, Wang, Zhang, Ran (b0225) 2014; 133
Yang, Yuan (b0110) 2013; 82
R.A. Harshman, et al., Foundations of the parafac procedure: Models and conditions for an explanatory multimodal factor analysis.
Tucker (b0145) 1966; 31
Y. Xie, J. Liu, Y. Qu, D. Tao, W. Zhang, L. Dai, L. Ma, Robust kernelized multiview self-representation for subspace clustering, IEEE Transactions on Neural Networks and Learning Systems.
R.H. Keshavan, A. Montanari, S. Oh, Low-rank matrix completion with noisy observations: a quantitative comparison, in: 47th Annual Allerton Conference on Communication, Control, and Computing, IEEE, 2009, pp. 1216–1222.
Kilmer, Martin (b0005) 2011; 435
Kilmer, Braman, Hao, Hoover (b0160) 2013; 34
Karatzoglou, Amatriain, Baltrunas, Oliver (b0055) 2010
Signoretto, Dinh, De Lathauwer, Suykens (b0090) 2014; 94
10.1016/j.neucom.2021.06.020_b0155
Ermiş (10.1016/j.neucom.2021.06.020_b0065) 2015; 29
Signoretto (10.1016/j.neucom.2021.06.020_b0090) 2014; 94
Hu (10.1016/j.neucom.2021.06.020_b0180) 2016; 28
Liu (10.1016/j.neucom.2021.06.020_b0210) 2015; 45
Martin (10.1016/j.neucom.2021.06.020_b0165) 2013; 35
Xu (10.1016/j.neucom.2021.06.020_b0135) 2015; 9
Landsberg (10.1016/j.neucom.2021.06.020_b0010) 2012; 381
Kernfeld (10.1016/j.neucom.2021.06.020_b0235) 2015; 485
Shen (10.1016/j.neucom.2021.06.020_b0245) 2014; 29
10.1016/j.neucom.2021.06.020_b0270
10.1016/j.neucom.2021.06.020_b0075
10.1016/j.neucom.2021.06.020_b0025
10.1016/j.neucom.2021.06.020_b0100
Chen (10.1016/j.neucom.2021.06.020_b0050) 2016
10.1016/j.neucom.2021.06.020_b0105
Candès (10.1016/j.neucom.2021.06.020_b0275) 2008; 9
Zhang (10.1016/j.neucom.2021.06.020_b0170) 2014
Du (10.1016/j.neucom.2021.06.020_b0190) 2017; 118
Kressner (10.1016/j.neucom.2021.06.020_b0070) 2014; 54
Liu (10.1016/j.neucom.2021.06.020_b0015) 2012; 35
Lu (10.1016/j.neucom.2021.06.020_b0240) 2019
10.1016/j.neucom.2021.06.020_b0220
Han (10.1016/j.neucom.2021.06.020_b0265) 2018; 29
10.1016/j.neucom.2021.06.020_b0140
Kilmer (10.1016/j.neucom.2021.06.020_b0005) 2011; 435
Cabral (10.1016/j.neucom.2021.06.020_b0250) 2013
Yang (10.1016/j.neucom.2021.06.020_b0110) 2013; 82
Gandy (10.1016/j.neucom.2021.06.020_b0080) 2011; 27
Semerci (10.1016/j.neucom.2021.06.020_b0230) 2014; 23
Lu (10.1016/j.neucom.2021.06.020_b0020) 2016
Zhao (10.1016/j.neucom.2021.06.020_b0130) 2015; 37
Zhou (10.1016/j.neucom.2021.06.020_b0150) 2018; 3
Feng (10.1016/j.neucom.2021.06.020_b0280) 2013
Ashraphijuo (10.1016/j.neucom.2021.06.020_b0115) 2017; 18
Tan (10.1016/j.neucom.2021.06.020_b0225) 2014; 133
Xie (10.1016/j.neucom.2021.06.020_b0035) 2018; 126
Jing (10.1016/j.neucom.2021.06.020_b0030) 2018; 49
Symeonidis (10.1016/j.neucom.2021.06.020_b0060) 2008
Ashraphijuo (10.1016/j.neucom.2021.06.020_b0120) 2017
10.1016/j.neucom.2021.06.020_b0125
Karatzoglou (10.1016/j.neucom.2021.06.020_b0055) 2010
Zhang (10.1016/j.neucom.2021.06.020_b0175) 2016
Shang (10.1016/j.neucom.2021.06.020_b0255) 2018; 40
Yang (10.1016/j.neucom.2021.06.020_b0215) 2016; 64
Mørup (10.1016/j.neucom.2021.06.020_b0045) 2011; 1
Kilmer (10.1016/j.neucom.2021.06.020_b0160) 2013; 34
Mu (10.1016/j.neucom.2021.06.020_b0200) 2014
Jain (10.1016/j.neucom.2021.06.020_b0095) 2014
Acar (10.1016/j.neucom.2021.06.020_b0205) 2011; 106
Zhao (10.1016/j.neucom.2021.06.020_b0260) 2016; 27
10.1016/j.neucom.2021.06.020_b0040
Tucker (10.1016/j.neucom.2021.06.020_b0145) 1966; 31
Zhang (10.1016/j.neucom.2021.06.020_b0185) 2016; 65
10.1016/j.neucom.2021.06.020_b0085
Hillar (10.1016/j.neucom.2021.06.020_b0195) 2013; 60
References_xml – volume: 29
  start-page: 5380
  year: 2018
  end-page: 5393
  ident: b0265
  article-title: A generalized model for robust tensor factorization with noise modeling by mixture of gaussians
  publication-title: IEEE Trans. Neural Networks Learning Syst.
– volume: 118
  start-page: 56
  year: 2017
  end-page: 69
  ident: b0190
  article-title: Graph regularized compact low rank representation for subspace clustering
  publication-title: Knowl.-Based Syst.
– start-page: 73
  year: 2014
  end-page: 81
  ident: b0200
  article-title: Square deal: Lower bounds and improved relaxations for tensor recovery
  publication-title: International conference on machine learning
– start-page: 2434
  year: 2016
  end-page: 2438
  ident: b0175
  article-title: An online tensor robust pca algorithm for sequential 2d data
  publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 94
  start-page: 303
  year: 2014
  end-page: 351
  ident: b0090
  article-title: Learning with tensors: a framework based on convex optimization and spectral regularization
  publication-title: Mach. Learn.
– volume: 82
  start-page: 301
  year: 2013
  end-page: 329
  ident: b0110
  article-title: Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization
  publication-title: Math. Comput.
– volume: 3
  start-page: 1152
  year: 2018
  end-page: 1163
  ident: b0150
  article-title: Tensor factorization for low-rank tensor completion
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 239
  year: 2014
  end-page: 263
  ident: b0245
  article-title: Augmented lagrangian alternating direction method for matrix separation based on low-rank factorization
  publication-title: Optim. Methods Softw.
– volume: 29
  start-page: 203
  year: 2015
  end-page: 236
  ident: b0065
  article-title: Link prediction in heterogeneous data via generalized coupled tensor factorization
  publication-title: Data Min. Knowl. Disc.
– start-page: 404
  year: 2013
  end-page: 412
  ident: b0280
  article-title: Online robust pca via stochastic optimization
  publication-title: Adv. Neural Inform. Processing Syst.
– reference: C. Lu, J. Feng, W. Liu, Z. Lin, S. Yan, et al., Tensor robust principal component analysis with a new tensor nuclear norm, IEEE transactions on pattern analysis and machine intelligence.
– volume: 34
  start-page: 148
  year: 2013
  end-page: 172
  ident: b0160
  article-title: Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging
  publication-title: SIAM J. Matrix Anal. Appl.
– start-page: 5249
  year: 2016
  end-page: 5257
  ident: b0020
  article-title: Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 54
  start-page: 447
  year: 2014
  end-page: 468
  ident: b0070
  article-title: Low-rank tensor completion by riemannian optimization
  publication-title: BIT Numer. Math.
– volume: 31
  start-page: 279
  year: 1966
  end-page: 311
  ident: b0145
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
– volume: 37
  start-page: 1751
  year: 2015
  end-page: 1763
  ident: b0130
  article-title: Bayesian cp factorization of incomplete tensors with automatic rank determination
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 1
  start-page: 24
  year: 2011
  end-page: 40
  ident: b0045
  article-title: Applications of tensor (multiway array) factorizations and decompositions in data mining
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– reference: F. Shang, Y. Liu, J. Cheng, Scalable algorithms for tractable schatten quasi-norm minimization, in: Thirtieth AAAI Conference on Artificial Intelligence, 2016.
– volume: 49
  start-page: 2385
  year: 2018
  end-page: 2397
  ident: b0030
  article-title: High-order temporal correlation model learning for time-series prediction
  publication-title: IEEE Trans. Cybern.
– start-page: 5213
  year: 2016
  end-page: 5221
  ident: b0050
  article-title: Robust tensor factorization with unknown noise
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: R.A. Harshman, et al., Foundations of the parafac procedure: Models and conditions for an explanatory multimodal factor analysis.
– start-page: 2488
  year: 2013
  end-page: 2495
  ident: b0250
  article-title: Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 35
  start-page: 208
  year: 2012
  end-page: 220
  ident: b0015
  article-title: Tensor completion for estimating missing values in visual data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  year: 2011
  ident: b0080
  article-title: Tensor completion and low-n-rank tensor recovery via convex optimization
  publication-title: Inverse Prob.
– volume: 60
  start-page: 45
  year: 2013
  ident: b0195
  article-title: Most tensor problems are np-hard
  publication-title: J. ACM (JACM)
– volume: 435
  start-page: 641
  year: 2011
  end-page: 658
  ident: b0005
  article-title: Factorization strategies for third-order tensors
  publication-title: Linear Algebra Appl.
– volume: 485
  start-page: 545
  year: 2015
  end-page: 570
  ident: b0235
  article-title: Tensor–tensor products with invertible linear transforms
  publication-title: Linear Algebra Appl.
– volume: 126
  start-page: 1157
  year: 2018
  end-page: 1179
  ident: b0035
  article-title: On unifying multi-view self-representations for clustering by tensor multi-rank minimization
  publication-title: Int. J. Comput. Vision
– reference: J. Liu, P. Musialski, P. Wonka, J. Ye, Tensor completion for estimating missing values in visual data., IEEE transactions on pattern analysis and machine intelligence 35 (1) (2013) 208–220.
– volume: 9
  start-page: 601
  year: 2015
  end-page: 624
  ident: b0135
  article-title: Parallel matrix factorization for low-rank tensor completion
  publication-title: Inverse Problems Imaging
– volume: 28
  start-page: 2961
  year: 2016
  end-page: 2973
  ident: b0180
  article-title: The twist tensor nuclear norm for video completion
  publication-title: IEEE Trans. Neural Networks Learning Syst.
– volume: 35
  start-page: A474
  year: 2013
  end-page: A490
  ident: b0165
  article-title: An order-p tensor factorization with applications in imaging
  publication-title: SIAM J. Sci. Comput.
– reference: X.-Y. Liu, S. Aeron, V. Aggarwal, X. Wang, Low-tubal-rank tensor completion using alternating minimization, in: Modeling and Simulation for Defense Systems and Applications XI, Vol. 9848, International Society for Optics and Photonics, 2016, p. 984809.
– start-page: 43
  year: 2008
  end-page: 50
  ident: b0060
  article-title: Tag recommendations based on tensor dimensionality reduction
  publication-title: Proceedings of the 2008 ACM conference on Recommender systems
– reference: D. Tao, X. Li, W. Hu, S. Maybank, X. Wu, Supervised tensor learning, in: Fifth IEEE International Conference on Data Mining (ICDM’05), IEEE, 2005, pp. 8–pp.
– volume: 381
  start-page: 3
  year: 2012
  ident: b0010
  article-title: Tensors: geometry and applications
  publication-title: Representation Theory
– start-page: 3842
  year: 2014
  end-page: 3849
  ident: b0170
  article-title: Novel methods for multilinear data completion and de-noising based on tensor-svd
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 531
  year: 2017
  end-page: 535
  ident: b0120
  article-title: A characterization of sampling patterns for low-tucker-rank tensor completion problem
  publication-title: 2017 IEEE International Symposium on Information Theory (ISIT)
– volume: 45
  start-page: 2437
  year: 2015
  end-page: 2448
  ident: b0210
  article-title: Trace norm regularized candecomp/parafac decomposition with missing data
  publication-title: IEEE Trans. Cybern.
– reference: W. Wang, V. Aggarwal, S. Aeron, Tensor completion by alternating minimization under the tensor train (tt) model, arXiv preprint arXiv:1609.05587.
– volume: 9
  start-page: 717
  year: 2008
  end-page: 772
  ident: b0275
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
– reference: Y. Xie, J. Liu, Y. Qu, D. Tao, W. Zhang, L. Dai, L. Ma, Robust kernelized multiview self-representation for subspace clustering, IEEE Transactions on Neural Networks and Learning Systems.
– reference: R.H. Keshavan, A. Montanari, S. Oh, Low-rank matrix completion with noisy observations: a quantitative comparison, in: 47th Annual Allerton Conference on Communication, Control, and Computing, IEEE, 2009, pp. 1216–1222.
– start-page: 79
  year: 2010
  end-page: 86
  ident: b0055
  article-title: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering
  publication-title: Proceedings of the fourth ACM conference on Recommender systems
– volume: 27
  start-page: 736
  year: 2016
  end-page: 748
  ident: b0260
  article-title: Bayesian robust tensor factorization for incomplete multiway data
  publication-title: IEEE Trans. Neural Networks Learning Syst.
– volume: 18
  start-page: 2116
  year: 2017
  end-page: 2145
  ident: b0115
  article-title: Fundamental conditions for low-cp-rank tensor completion
  publication-title: J. Mach. Learning Res.
– volume: 40
  start-page: 2066
  year: 2018
  end-page: 2080
  ident: b0255
  article-title: Bilinear factor matrix norm minimization for robust pca: Algorithms and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 133
  start-page: 161
  year: 2014
  end-page: 169
  ident: b0225
  article-title: Tensor completion via a multi-linear low-n-rank factorization model
  publication-title: Neurocomputing
– reference: M. Ashraphijuo, X. Wang, V. Aggarwal, An approximation of the cp-rank of a partially sampled tensor, in: 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE, 2017, pp. 604–611.
– volume: 65
  start-page: 1511
  year: 2016
  end-page: 1526
  ident: b0185
  article-title: Exact tensor completion using t-svd
  publication-title: IEEE Trans. Signal Process.
– start-page: 5996
  year: 2019
  end-page: 6004
  ident: b0240
  article-title: Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1431
  year: 2014
  end-page: 1439
  ident: b0095
  article-title: Provable tensor factorization with missing data
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 64
  start-page: 4817
  year: 2016
  end-page: 4829
  ident: b0215
  article-title: An iterative reweighted method for tucker decomposition of incomplete tensors
  publication-title: IEEE Trans. Signal Process.
– reference: R. Tomioka, K. Hayashi, H. Kashima, Estimation of low-rank tensors via convex optimization, arXiv preprint arXiv:1010.0789.
– volume: 106
  start-page: 41
  year: 2011
  end-page: 56
  ident: b0205
  article-title: Scalable tensor factorizations for incomplete data
  publication-title: Chemometrics Intell. Lab. Syst.
– volume: 23
  start-page: 1678
  year: 2014
  end-page: 1693
  ident: b0230
  article-title: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography
  publication-title: IEEE Trans. Image Process.
– ident: 10.1016/j.neucom.2021.06.020_b0105
  doi: 10.1117/12.2224039
– volume: 29
  start-page: 239
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2021.06.020_b0245
  article-title: Augmented lagrangian alternating direction method for matrix separation based on low-rank factorization
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2012.700713
– ident: 10.1016/j.neucom.2021.06.020_b0155
– volume: 35
  start-page: 208
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2021.06.020_b0015
  article-title: Tensor completion for estimating missing values in visual data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.39
– ident: 10.1016/j.neucom.2021.06.020_b0270
  doi: 10.1109/ALLERTON.2009.5394534
– start-page: 1431
  year: 2014
  ident: 10.1016/j.neucom.2021.06.020_b0095
  article-title: Provable tensor factorization with missing data
  publication-title: Adv. Neural Inform. Process. Syst.
– ident: 10.1016/j.neucom.2021.06.020_b0075
  doi: 10.1109/TPAMI.2012.39
– volume: 64
  start-page: 4817
  issue: 18
  year: 2016
  ident: 10.1016/j.neucom.2021.06.020_b0215
  article-title: An iterative reweighted method for tucker decomposition of incomplete tensors
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2572047
– start-page: 404
  year: 2013
  ident: 10.1016/j.neucom.2021.06.020_b0280
  article-title: Online robust pca via stochastic optimization
  publication-title: Adv. Neural Inform. Processing Syst.
– volume: 60
  start-page: 45
  issue: 6
  year: 2013
  ident: 10.1016/j.neucom.2021.06.020_b0195
  article-title: Most tensor problems are np-hard
  publication-title: J. ACM (JACM)
  doi: 10.1145/2512329
– ident: 10.1016/j.neucom.2021.06.020_b0085
– volume: 94
  start-page: 303
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2021.06.020_b0090
  article-title: Learning with tensors: a framework based on convex optimization and spectral regularization
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5366-3
– volume: 35
  start-page: A474
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2021.06.020_b0165
  article-title: An order-p tensor factorization with applications in imaging
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110841229
– start-page: 2488
  year: 2013
  ident: 10.1016/j.neucom.2021.06.020_b0250
  article-title: Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition
– volume: 37
  start-page: 1751
  issue: 9
  year: 2015
  ident: 10.1016/j.neucom.2021.06.020_b0130
  article-title: Bayesian cp factorization of incomplete tensors with automatic rank determination
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2392756
– volume: 9
  start-page: 717
  issue: 6
  year: 2008
  ident: 10.1016/j.neucom.2021.06.020_b0275
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– volume: 23
  start-page: 1678
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2021.06.020_b0230
  article-title: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2305840
– volume: 3
  start-page: 1152
  issue: 27
  year: 2018
  ident: 10.1016/j.neucom.2021.06.020_b0150
  article-title: Tensor factorization for low-rank tensor completion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2762595
– ident: 10.1016/j.neucom.2021.06.020_b0100
– volume: 40
  start-page: 2066
  issue: 9
  year: 2018
  ident: 10.1016/j.neucom.2021.06.020_b0255
  article-title: Bilinear factor matrix norm minimization for robust pca: Algorithms and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2748590
– start-page: 5249
  year: 2016
  ident: 10.1016/j.neucom.2021.06.020_b0020
  article-title: Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization
– volume: 34
  start-page: 148
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2021.06.020_b0160
  article-title: Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/110837711
– volume: 381
  start-page: 3
  issue: 402
  year: 2012
  ident: 10.1016/j.neucom.2021.06.020_b0010
  article-title: Tensors: geometry and applications
  publication-title: Representation Theory
– volume: 49
  start-page: 2385
  issue: 6
  year: 2018
  ident: 10.1016/j.neucom.2021.06.020_b0030
  article-title: High-order temporal correlation model learning for time-series prediction
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2832085
– volume: 133
  start-page: 161
  year: 2014
  ident: 10.1016/j.neucom.2021.06.020_b0225
  article-title: Tensor completion via a multi-linear low-n-rank factorization model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.11.020
– volume: 82
  start-page: 301
  issue: 281
  year: 2013
  ident: 10.1016/j.neucom.2021.06.020_b0110
  article-title: Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2012-02598-1
– ident: 10.1016/j.neucom.2021.06.020_b0040
– volume: 27
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2021.06.020_b0080
  article-title: Tensor completion and low-n-rank tensor recovery via convex optimization
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/27/2/025010
– start-page: 2434
  year: 2016
  ident: 10.1016/j.neucom.2021.06.020_b0175
  article-title: An online tensor robust pca algorithm for sequential 2d data
– start-page: 73
  year: 2014
  ident: 10.1016/j.neucom.2021.06.020_b0200
  article-title: Square deal: Lower bounds and improved relaxations for tensor recovery
– volume: 31
  start-page: 279
  issue: 3
  year: 1966
  ident: 10.1016/j.neucom.2021.06.020_b0145
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: 118
  start-page: 56
  year: 2017
  ident: 10.1016/j.neucom.2021.06.020_b0190
  article-title: Graph regularized compact low rank representation for subspace clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.11.013
– start-page: 3842
  year: 2014
  ident: 10.1016/j.neucom.2021.06.020_b0170
  article-title: Novel methods for multilinear data completion and de-noising based on tensor-svd
– start-page: 5213
  year: 2016
  ident: 10.1016/j.neucom.2021.06.020_b0050
  article-title: Robust tensor factorization with unknown noise
– ident: 10.1016/j.neucom.2021.06.020_b0220
  doi: 10.1609/aaai.v30i1.10266
– ident: 10.1016/j.neucom.2021.06.020_b0140
– volume: 485
  start-page: 545
  year: 2015
  ident: 10.1016/j.neucom.2021.06.020_b0235
  article-title: Tensor–tensor products with invertible linear transforms
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2015.07.021
– volume: 126
  start-page: 1157
  issue: 11
  year: 2018
  ident: 10.1016/j.neucom.2021.06.020_b0035
  article-title: On unifying multi-view self-representations for clustering by tensor multi-rank minimization
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-018-1086-2
– volume: 435
  start-page: 641
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2021.06.020_b0005
  article-title: Factorization strategies for third-order tensors
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.09.020
– start-page: 79
  year: 2010
  ident: 10.1016/j.neucom.2021.06.020_b0055
  article-title: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering
– start-page: 531
  year: 2017
  ident: 10.1016/j.neucom.2021.06.020_b0120
  article-title: A characterization of sampling patterns for low-tucker-rank tensor completion problem
– start-page: 43
  year: 2008
  ident: 10.1016/j.neucom.2021.06.020_b0060
  article-title: Tag recommendations based on tensor dimensionality reduction
– volume: 106
  start-page: 41
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2021.06.020_b0205
  article-title: Scalable tensor factorizations for incomplete data
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2010.08.004
– volume: 1
  start-page: 24
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2021.06.020_b0045
  article-title: Applications of tensor (multiway array) factorizations and decompositions in data mining
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– start-page: 5996
  year: 2019
  ident: 10.1016/j.neucom.2021.06.020_b0240
  article-title: Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms
– volume: 65
  start-page: 1511
  issue: 6
  year: 2016
  ident: 10.1016/j.neucom.2021.06.020_b0185
  article-title: Exact tensor completion using t-svd
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2639466
– volume: 9
  start-page: 601
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2021.06.020_b0135
  article-title: Parallel matrix factorization for low-rank tensor completion
  publication-title: Inverse Problems Imaging
  doi: 10.3934/ipi.2015.9.601
– volume: 45
  start-page: 2437
  issue: 11
  year: 2015
  ident: 10.1016/j.neucom.2021.06.020_b0210
  article-title: Trace norm regularized candecomp/parafac decomposition with missing data
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2374695
– ident: 10.1016/j.neucom.2021.06.020_b0125
  doi: 10.1109/ALLERTON.2017.8262792
– volume: 29
  start-page: 5380
  issue: 11
  year: 2018
  ident: 10.1016/j.neucom.2021.06.020_b0265
  article-title: A generalized model for robust tensor factorization with noise modeling by mixture of gaussians
  publication-title: IEEE Trans. Neural Networks Learning Syst.
  doi: 10.1109/TNNLS.2018.2796606
– volume: 54
  start-page: 447
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2021.06.020_b0070
  article-title: Low-rank tensor completion by riemannian optimization
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-013-0455-z
– volume: 29
  start-page: 203
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2021.06.020_b0065
  article-title: Link prediction in heterogeneous data via generalized coupled tensor factorization
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-013-0341-y
– volume: 28
  start-page: 2961
  issue: 12
  year: 2016
  ident: 10.1016/j.neucom.2021.06.020_b0180
  article-title: The twist tensor nuclear norm for video completion
  publication-title: IEEE Trans. Neural Networks Learning Syst.
  doi: 10.1109/TNNLS.2016.2611525
– volume: 27
  start-page: 736
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2021.06.020_b0260
  article-title: Bayesian robust tensor factorization for incomplete multiway data
  publication-title: IEEE Trans. Neural Networks Learning Syst.
  doi: 10.1109/TNNLS.2015.2423694
– ident: 10.1016/j.neucom.2021.06.020_b0025
– volume: 18
  start-page: 2116
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2021.06.020_b0115
  article-title: Fundamental conditions for low-cp-rank tensor completion
  publication-title: J. Mach. Learning Res.
SSID ssj0017129
Score 2.4597018
Snippet Low-rank tensor completion (LRTC) has gained significant attention due to its powerful capability of recovering missing entries. However, it has to repeatedly...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 204
SubjectTerms Low-rank tensor
Tensor completion
Tensor factorization
Tensor nuclear norm
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jO-jF-Ynzixy8ZibNkrTHoY4hODw4mKfSZMlBRzfmxtC_3pe2GaLi9NSmzUfhpbzfI-_3ewhdUmGUVwkn1GlDOkpTEktHiUikhpblCfNs5PuB7A87dyMxqqFQ8O6LvABjPKZXzMtueRpVQ8IUtI4aw8FD96lQ0YsEAYRSnGnGKipI0YEgV2Rx5Xbps0IgxGeFTqev6_2zA9pa5rPsbZVNJp8cTK-JbgJNp8wreWkvF7pt3r-rNv727btopwKYuFvuiD1Us_k-aobiDbj6lw9QCmiz4Dhhn8M-neOy8k5Fy8SwQniRe8njDK4Ab3HQILevGOAunkxXxJd9D32LDHXrZzhEw97t43WfVNUWiOmweEESyYxyjmnGHEQdWWcsKHdWjrlU8FBD6CNkHDvmIqV4orkeG5dlTigjNNzxI1TPp7k9RhggmolFxl0EMW_iqM6sjaiVViobM8VaiAcTpKaSIvcVMSZpyDl7TkvDpd5wqU-9i2gLkfWoWSnFsaG_CtZNKzhRwoQUvMWGke31ZvjTUif_HXCKtn3LO0HGzlB9MV_ac0A3C31R7e4PkcD3Vw
  priority: 102
  providerName: Unpaywall
Title Unifying tensor factorization and tensor nuclear norm approaches for low-rank tensor completion
URI https://dx.doi.org/10.1016/j.neucom.2021.06.020
http://hdl.handle.net/11380/1248510
UnpaywallVersion submittedVersion
Volume 458
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB734Ft_k4DVukjZJe1xEWRUXQRf0VJJuAsrSXXQX8eJvd6ZtFgVB8ZRHk6ZM0swMfPMNISdclQZZwhkPrmSpcZxlOnCmcu2g5ZNcYDTyTV_3BunVg3pYIGcxFgZhle3d39zp9W3d9nRaaXYmT0-dO55L8KKEBKcFqikyfqapwSwGpx9zmIcwQjZ8e1IxHB3D52qMV-VniBmRoOhqFk_M-v2zelqeVRP7_mZHoy_q52KdrLZ2I-02n7ZBFny1SdZiTgba_qJbpAAjsg5doghNH7_QJqFOG21JbTWMDypkMrZQgtVKI7W4f6VgxdLR-I1hNvc4tgaee3zDNhlcnN-f9VibRIGVqcimLNeiNCEIJ0QAZ8KmQ8WT4PUw0QY6HXg0SmdZEEEak-QuccMyWBuUKZWDWrJDFqtx5XcJBcurzJRNggRXNg_cWe8l99pr4zMQ9B5JouyKsmUYx0QXoyJCyZ6LRuIFSrxARJ3ke4TNZ00aho1fxpu4LcW3k1KAEvhl5ul8F_-01P6_lzogK9hCJSfEIVmcvsz8EVgvU3dcH89jstS9vO71oRz0b7uPnxUe8nQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rHvTiW3ybg9e4eTRJe5RFWZ8XFbyFpJuAsnQX3UW8-NudtM2iICiemuZZJmlmBr75BqFjKksdWcIJDa4kmXaU5CpQIgvl4M2LgsVo5Jtb1X_ILh_lYwf1UixMhFW2d39zp9e3dVvTbaXZHT89de9owcGLYhycFihmYg4tZJLr6IGdfMxwHkwz3hDucUli9xQ_V4O8Kj-NoBEOmq6m8Yxpv3_WT4vTamzf3-xw-EX_nK-i5dZwxKfNt62hjq_W0UpKyoDbf3QDGbAi69glHLHpoxfcZNRpwy2xrQapoYpUxhaeYLbixC3uXzGYsXg4eiMxnXvqWyPPfZxhEz2cn933-qTNokDKjOUTUihW6hCYYyyAN2GzgaQieDUQSkOlA5dGqjwPLIDsROGEG5TB2iB1KR2UxBaar0aV30YYTK8yl1YEDr5sEaiz3nPqlVfa5yDoHSSS7EzZUozHTBdDk7Bkz6aRuIkSNxFSx-kOIrNR44Zi45f-Om2L-XZUDGiBX0aezHbxT0vt_nupI7TYv7-5NtcXt1d7aCm2RI3H2D6an7xM_QGYMhN3WB_VTx8S8lk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jO-jF-Ynzixy8ZibNkrTHoY4hODw4mKfSZMlBRzfmxtC_3pe2GaLi9NSmzUfhpbzfI-_3ewhdUmGUVwkn1GlDOkpTEktHiUikhpblCfNs5PuB7A87dyMxqqFQ8O6LvABjPKZXzMtueRpVQ8IUtI4aw8FD96lQ0YsEAYRSnGnGKipI0YEgV2Rx5Xbps0IgxGeFTqev6_2zA9pa5rPsbZVNJp8cTK-JbgJNp8wreWkvF7pt3r-rNv727btopwKYuFvuiD1Us_k-aobiDbj6lw9QCmiz4Dhhn8M-neOy8k5Fy8SwQniRe8njDK4Ab3HQILevGOAunkxXxJd9D32LDHXrZzhEw97t43WfVNUWiOmweEESyYxyjmnGHEQdWWcsKHdWjrlU8FBD6CNkHDvmIqV4orkeG5dlTigjNNzxI1TPp7k9RhggmolFxl0EMW_iqM6sjaiVViobM8VaiAcTpKaSIvcVMSZpyDl7TkvDpd5wqU-9i2gLkfWoWSnFsaG_CtZNKzhRwoQUvMWGke31ZvjTUif_HXCKtn3LO0HGzlB9MV_ac0A3C31R7e4PkcD3Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unifying+tensor+factorization+and+tensor+nuclear+norm+approaches+for+low-rank+tensor+completion&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Du%2C+Shiqiang&rft.au=Xiao%2C+Qingjiang&rft.au=Shi%2C+Yuqing&rft.au=Cucchiara%2C+Rita&rft.date=2021-10-11&rft.issn=0925-2312&rft.volume=458&rft.spage=204&rft.epage=218&rft_id=info:doi/10.1016%2Fj.neucom.2021.06.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2021_06_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon