Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation
Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Ho...
Saved in:
Published in | JMIR medical informatics Vol. 6; no. 2; p. e19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
JMIR Publications
17.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2291-9694 2291-9694 |
DOI | 10.2196/medinform.8805 |
Cover
Abstract | Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis.
The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression).
We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques.
Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset.
We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. |
---|---|
AbstractList | Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis.
The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression).
We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques.
Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset.
We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. Background: Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. Objective: The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). Methods: We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Results: Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. Conclusions: We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis.BACKGROUNDLearning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis.The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression).OBJECTIVEThe goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression).We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques.METHODSWe adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques.Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset.RESULTSUsing real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset.We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still.CONCLUSIONSWe present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. |
Author | Kim, Miran Xia, Yuhou Wang, Shuang Song, Yongsoo Jiang, Xiaoqian |
AuthorAffiliation | 2 Department of Mathematical Sciences Seoul National University Seoul Republic Of Korea 1 Division of Biomedical Informatics University of California, San Diego San Diego, CA United States 4 Department of Mathematics Princeton University Princeton, NJ United States 3 Department of Computer Science and Engineering University of California, San Diego San Diego, CA United States |
AuthorAffiliation_xml | – name: 3 Department of Computer Science and Engineering University of California, San Diego San Diego, CA United States – name: 4 Department of Mathematics Princeton University Princeton, NJ United States – name: 2 Department of Mathematical Sciences Seoul National University Seoul Republic Of Korea – name: 1 Division of Biomedical Informatics University of California, San Diego San Diego, CA United States |
Author_xml | – sequence: 1 givenname: Miran orcidid: 0000-0003-3564-6090 surname: Kim fullname: Kim, Miran – sequence: 2 givenname: Yongsoo orcidid: 0000-0002-0496-9789 surname: Song fullname: Song, Yongsoo – sequence: 3 givenname: Shuang orcidid: 0000-0001-6420-983X surname: Wang fullname: Wang, Shuang – sequence: 4 givenname: Yuhou orcidid: 0000-0003-3753-9440 surname: Xia fullname: Xia, Yuhou – sequence: 5 givenname: Xiaoqian orcidid: 0000-0001-9933-2205 surname: Jiang fullname: Jiang, Xiaoqian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29666041$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1PGzEQxS1EBRS49ohW6oVLUn_vmkMloGlTKRKiH2fL650NRrt2sHeR8t_XIQFRJOSDnzy_9zSe-Yj2ffCA0CeCp5Qo-aWHxvk2xH5aVVjsoSNKFZkoqfj-K32ITlO6xxgTTqSU5QE6pCoLzMkRuv0NdoxQLMLSpcHZ4hcsI6Tkgi-uTIKmyGIe-nzi6i7XZ97G9WrI9YviGyS39IXxTTF7NN1oNs8n6ENrugSnu_sY_f0--3M9nyxufvy8vlxMLCfVMFFMKCGZZaUsoS4baEpqGkWoETVwYFQZw1reytJSIVVDBGdQcVXXLJN1xY7R123uaqzzICz4IZpOr6LrTVzrYJz-v-LdnV6GRy0Uw6SUOeB8FxDDwwhp0L1LFrrOeAhj0hTTEstKMJbRz2_Q-zBGn7-nqSBEMV49UWevO3pp5XnaGeBbwMaQUoRWWzc8DS036DpNsN7sVb_sVW_2mm3TN7bn5HcM_wC9nKhP |
CitedBy_id | crossref_primary_10_1016_j_ins_2020_03_041 crossref_primary_10_1093_bioinformatics_btaa478 crossref_primary_10_1109_ACCESS_2020_3014369 crossref_primary_10_1016_j_marpol_2024_106244 crossref_primary_10_1155_2022_7751845 crossref_primary_10_1111_coin_12613 crossref_primary_10_2196_56893 crossref_primary_10_1109_TBDATA_2022_3231277 crossref_primary_10_1016_j_jisa_2024_103848 crossref_primary_10_1016_j_knosys_2020_106157 crossref_primary_10_1109_RBME_2020_3013489 crossref_primary_10_1089_cmb_2023_0050 crossref_primary_10_1186_s12920_020_0717_y crossref_primary_10_1109_ACCESS_2020_3045465 crossref_primary_10_1109_ACCESS_2021_3071264 crossref_primary_10_1109_ACCESS_2023_3315655 crossref_primary_10_1016_j_patter_2022_100487 crossref_primary_10_1007_s10796_023_10443_0 crossref_primary_10_1109_TSC_2023_3279839 crossref_primary_10_1109_TDSC_2022_3168556 crossref_primary_10_1145_3514500 crossref_primary_10_1016_j_csi_2024_103857 crossref_primary_10_2196_22555 crossref_primary_10_1155_2021_8876893 crossref_primary_10_1007_s10462_024_10797_0 crossref_primary_10_1109_JBHI_2021_3071270 crossref_primary_10_3390_math10132185 crossref_primary_10_1109_JIOT_2024_3382875 crossref_primary_10_4018_IJSSCI_285593 crossref_primary_10_1109_TKDE_2020_3009221 crossref_primary_10_1007_s10462_024_11076_8 crossref_primary_10_1109_TIFS_2021_3106167 crossref_primary_10_1016_j_oceaneng_2020_107706 crossref_primary_10_1109_TBDATA_2022_3201729 crossref_primary_10_1109_TETC_2019_2902799 crossref_primary_10_1109_TIFS_2019_2925496 crossref_primary_10_1186_s12911_022_01811_y crossref_primary_10_1186_s12920_020_0724_z crossref_primary_10_1186_s13677_022_00373_8 crossref_primary_10_1016_j_ins_2021_03_064 crossref_primary_10_1016_j_cose_2024_103801 crossref_primary_10_1016_j_future_2023_02_022 crossref_primary_10_1109_TBDATA_2023_3239116 crossref_primary_10_1186_s12920_020_0722_1 crossref_primary_10_1186_s12864_022_08469_w crossref_primary_10_3390_app14051743 crossref_primary_10_1109_TIFS_2022_3188145 crossref_primary_10_1055_s_0041_1740630 crossref_primary_10_3390_electronics8080827 crossref_primary_10_3390_bdcc7020084 crossref_primary_10_1155_2021_4793293 crossref_primary_10_1088_1757_899X_740_1_012133 crossref_primary_10_31857_S0132347424040036 crossref_primary_10_1186_s12920_020_0719_9 crossref_primary_10_1109_TGRS_2023_3322554 crossref_primary_10_1109_ACCESS_2024_3353131 crossref_primary_10_3390_math10234469 crossref_primary_10_1007_s10207_024_00941_w crossref_primary_10_3390_math9212792 crossref_primary_10_1016_j_future_2025_107719 crossref_primary_10_1109_ACCESS_2018_2866697 crossref_primary_10_1186_s12920_018_0401_7 crossref_primary_10_32604_cmes_2023_026920 crossref_primary_10_1002_int_22985 crossref_primary_10_1049_cit2_12339 crossref_primary_10_1109_ACCESS_2021_3078265 crossref_primary_10_1109_TMC_2021_3092271 crossref_primary_10_1155_2020_4169840 crossref_primary_10_1109_TBDATA_2024_3362191 crossref_primary_10_3233_HIS_220006 crossref_primary_10_1109_TIFS_2020_2976612 crossref_primary_10_1109_TNNLS_2022_3169347 crossref_primary_10_62056_andkmp_3y crossref_primary_10_1109_TBDATA_2020_2992755 crossref_primary_10_1016_j_sysarc_2024_103134 crossref_primary_10_1155_2022_1321198 crossref_primary_10_1155_2021_7621260 crossref_primary_10_1134_S0361768824700117 crossref_primary_10_3389_felec_2022_1091369 crossref_primary_10_1155_2019_3648671 crossref_primary_10_3390_app14219876 crossref_primary_10_1002_spy2_372 crossref_primary_10_1109_TNNLS_2022_3216981 crossref_primary_10_1145_3627993 crossref_primary_10_3389_frai_2021_746497 crossref_primary_10_1155_2022_4653923 crossref_primary_10_3390_math10122006 |
Cites_doi | 10.1016/j.jbi.2013.03.008 10.1201/b13693 10.1137/1037125 10.1016/S1532-0464(03)00034-0 10.1016/j.jbi.2014.04.003 10.1093/oxfordjournals.eurheartj.a015035 10.1093/bib/bbx044 10.1016/S0895-4356(96)00236-3 10.1109/TIFS.2015.2483486 10.1145/2857705.2857731 10.1136/amiajnl-2012-000862 10.1002/bimj.4710290614 10.1177/0272989X0102100106 10.1093/bioinformatics/btt559 |
ContentType | Journal Article |
Copyright | Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018. 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018. 2018 |
Copyright_xml | – notice: Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018. – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018. 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88C 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M0T PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.2196/medinform.8805 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Health Management Database (Proquest) ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2291-9694 |
ExternalDocumentID | PMC5930176 29666041 10_2196_medinform_8805 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV ADRAZ AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA GROUPED_DOAJ HMCUK HYE KQ8 M0T M48 M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c418t-9359563c3767eb7ded72ad912a5be4e329aa3f4f67c2569d1543e849bb3d72b83 |
IEDL.DBID | M48 |
ISSN | 2291-9694 |
IngestDate | Thu Aug 21 14:14:23 EDT 2025 Fri Sep 05 12:32:08 EDT 2025 Fri Jul 25 04:40:13 EDT 2025 Wed Feb 19 02:44:36 EST 2025 Tue Jul 01 04:31:16 EDT 2025 Thu Apr 24 23:10:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | homomorphic encryption logistic regression machine learning gradient descent |
Language | English |
License | Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-9359563c3767eb7ded72ad912a5be4e329aa3f4f67c2569d1543e849bb3d72b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6420-983X 0000-0001-9933-2205 0000-0003-3753-9440 0000-0003-3564-6090 0000-0002-0496-9789 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/medinform.8805 |
PMID | 29666041 |
PQID | 2511934833 |
PQPubID | 4997117 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5930176 proquest_miscellaneous_2027068533 proquest_journals_2511934833 pubmed_primary_29666041 crossref_citationtrail_10_2196_medinform_8805 crossref_primary_10_2196_medinform_8805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180417 |
PublicationDateYYYYMMDD | 2018-04-17 |
PublicationDate_xml | – month: 4 year: 2018 text: 20180417 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Toronto – name: Toronto, Canada |
PublicationTitle | JMIR medical informatics |
PublicationTitleAlternate | JMIR Med Inform |
PublicationYear | 2018 |
Publisher | JMIR Publications |
Publisher_xml | – name: JMIR Publications |
References | ref12 ref15 ref14 Trinckes Jr, J (ref1) 2012 ref31 ref30 ref11 ref2 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Kennedy, RL (ref27) 1996; 17 ref28 ref29 ref8 ref7 ref9 Dreiseitl, S (ref13) 2002; 35 ref4 ref3 ref6 ref5 Peduzzi, P (ref10) 1996; 49 |
References_xml | – ident: ref6 doi: 10.1016/j.jbi.2013.03.008 – ident: ref3 – ident: ref7 – year: 2012 ident: ref1 publication-title: The Definitive Guide to Complying with the HIPAA/HITECH Privacy and Security Rules doi: 10.1201/b13693 – ident: ref20 – ident: ref29 – ident: ref19 doi: 10.1137/1037125 – ident: ref24 – ident: ref22 – ident: ref25 – volume: 35 start-page: 352 issue: 5-6 year: 2002 ident: ref13 publication-title: J Biomed Inform doi: 10.1016/S1532-0464(03)00034-0 – ident: ref14 doi: 10.1016/j.jbi.2014.04.003 – volume: 17 start-page: 1181 issue: 8 year: 1996 ident: ref27 publication-title: Eur Heart J doi: 10.1093/oxfordjournals.eurheartj.a015035 – ident: ref12 doi: 10.1093/bib/bbx044 – volume: 49 start-page: 1373 issue: 12 year: 1996 ident: ref10 publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(96)00236-3 – ident: ref23 doi: 10.1109/TIFS.2015.2483486 – ident: ref16 doi: 10.1145/2857705.2857731 – ident: ref11 – ident: ref17 – ident: ref15 – ident: ref30 – ident: ref4 doi: 10.1136/amiajnl-2012-000862 – ident: ref2 – ident: ref8 doi: 10.1002/bimj.4710290614 – ident: ref9 doi: 10.1177/0272989X0102100106 – ident: ref28 – ident: ref21 – ident: ref26 – ident: ref5 doi: 10.1093/bioinformatics/btt559 – ident: ref18 – ident: ref31 |
SSID | ssj0001416667 |
Score | 2.5031447 |
Snippet | Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to... Background: Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e19 |
SubjectTerms | Approximation Biomedical research Efficiency Machine learning Methods Neural networks Original Paper Outsourcing Privacy Regression analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_OHhRfpH72apUIBZ-W3ibZ7EYQ8fSOQ9pDSwt9W_K1Wqh7bb0--N93JvtxV0XZl4UM7DKTTH6TmfwG4KDKeGEQZ9DxksMARY0Tyy0ahJhPCq6tjFRKxws1P5NfzrPzASy6uzBUVtn5xOio_dLRGfkhQWEtZCHEh6vrhLpGUXa1a6Fh2tYK_n2kGHsAQ3TJBc774WS6-HqyPnWRlCbLG_ZGXKzqkFLY8eIPThnqYbe5O_0FOf-snNzYimY78KjFkOxjY_THMAj1E9g-brPkT-FbPEQP7Cje7rlw7CR8b8pdazbBXcszfJkvf-KDWsbxae1ufkff8Y59jiUdzNSeTXsm8GdwNpuefponbeuExMm0WCXxvq0Sjrhags198Dk3XqfcZDbIILg2RlSyUrlDzKM9AikRCqmtFShpC_EctuplHXaBYbxTqdTZXDovueHapWODoMpjWF1llR5B0qmsdC2vOLW3uCwxviAVl72KS1LxCN728lcNo8Y_Jfc7C5TtyvpVrufBCN70w7gmKNFh6rC8RRmMtccKgQjKvGgM1n-KY3ynxjIdQX7PlL0A8W3fH6kvfkTe7UyjN8zV3v9_6yU8RFBVUMYpzfdha3VzG14hcFnZ1-1svAMM6PFV priority: 102 providerName: ProQuest |
Title | Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29666041 https://www.proquest.com/docview/2511934833 https://www.proquest.com/docview/2027068533 https://pubmed.ncbi.nlm.nih.gov/PMC5930176 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ta9swED62Fsa-lHWvWbugwmCfvMWSLFmFMdY2JZSlbGWBfDOSLG-FzunSFNZ_3zvZ8Zq-4C8GHTbc6eV5dKdHAO-rjOcWcQZtL3kkKGqQOO4wIKR8knPjZJRSGh-r0UQeTbPp__qn1oEX91I7uk9qMj_7-O_v1Rcc8J-pjBk70CfKQsezOxh1kjNdx1VJEREbt1A_7rdISpDR6WnOTZoYZWSj4XjPJ0ghGGmAGsh0dbm6g0Fvl1LeWJsOn8FGCyrZ16YXbMKjUD-HJ-M2bf4CfsRd9cC-xeM-p56dhF9N_WvN9nAZKxm-jGZ_8EG3Y_uw9vOrOJnssoNY48FsXbJhJw3-EiaHw5_7o6S9SyHxMs0XSTyAq4Qn8ZbgdBlKzW1pUm4zF2QQ3FgrKlkp7REEmRKRlQi5NM4JtHS5eAVr9awOb4AhAapU6p2WvpTccuPTgUWUVSLPrrLK9CBZuqzwrdA43XdxViDhIG8XnbcL8nYPPnT2543ExoOW28sIFMueUhBHMkLmQvRgp2vGQUKZD1uH2SXaIPkeKEQmaPO6CVj3q2Wke6BXQtkZkAD3akt9-jsKcWcGp0et3j74zS14igArp-xTqrdhbTG_DO8QxCxcHx7rqe7D-t7w-PtJP24F9GOPvQZZ8PQm |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB7RRWp5qXqz5agrtepTxMZ2nBgJVRyLlrK7ahFIvKW-AkiQ5ViE-HP9bR07B9CqfUP7EsmjZDVjj7_xeL4B-FQkNFOIM_zxksEARfQiTTUaxDOfZFRqHqiURmMxOODfDpPDGfjV1ML4a5WNTwyO2k6MPyNf8VBYMp4x9vX8IvJdo3x2tWmhoerWCnYtUIzVhR277vYGQ7irtZ0ttPdnSrf7-5uDqO4yEBkeZ9MolKYKZjytidOpdTalysqYqkQ77hiVSrGCFyI1CA-kRczBXMal1gwldcbwvU9gFmGH5B2Y3eiPv-_dnfJwn5ZLK7ZIdA5ixafMQ6ERTlHfM-_-bvgXxP3zpua9rW_7BTyvMStZrybZS5hx5St4Oqqz8q_hRzi0d2QYqolODNlzR9X12pJs4C5pCT4MJmf4Q6vieL80l7fBV62SrXCFhKjSkn7LPP4GDh5FiW-hU05KNw8E46tCxEan3FhOFZUm7ikEcRbD-CIpZBeiRmW5qXnMfTuN0xzjGa_ivFVx7lXchS-t_HnF4PFPycXGAnm9kq_yu3nXhY_tMK5Bn1hRpZtcowzG9j2BwAdl3lUGaz9FMZ4UPR53IX1gylbA83s_HClPjgPPdyLR-6bi_f__1gd4NtgfDfPhznh3AeYQ0GU-2xWni9CZXl67JQRNU71cz0wCPx97MfwG14ot7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJMQX4renqDXR-LS527bbbk2IEe8uh8AFiSS8rf1aIME9hCOEf5G_ymn3A9DoG7mXTTq5vZvpTGc6M78BeFdmNNfoZ4TrJYsBihgkhhoUSEA-yakyPEIpbU_FZI9_3c_2F-Cq7YUJZZWtTYyG2s1suCPvB1dYMZ4z1i-bsoid4fjTya8kTJAKmdZ2nIZuxiy4tQg31jR5bPrLCwznztY2hij795SOR9-_TJJm4kBieZrPk9imKpgNECfeSOedpNqplOrMeO4ZVVqzkpdCWnQVlEP_g_mcK2MYUpqc4ffegyWJ_xl1bml9NN3Zvb7x4SFFJ2vkSDQUoh_S57HpCLdrmJ9382T8y939s2rzxjE4fgArjf9KPtcb7iEs-OoRLG83GfrH8C1e4HuyFTuLjizZ9Qd1qW1F1vHEdAQfJrOf-EEJ4_qosqeX0W59JMNYTkJ05cioQyF_Ant3wsSnsFjNKv8cCMZapUitkdw6TjVVNh1odOgchvRlVqoeJC3LCttgmofRGscFxjaBxUXH4iKwuAcfOvqTGs3jn5SrrQSKRqvPius92IO33TLqY0iy6MrPzpEG4_yBQCcIaZ7VAuteRTG2FAOe9kDeEmVHELC-b69UR4cR8ztTaImlePH_n_UGllEpiq2N6eZLuI--XR4SX6lchcX56bl_hf7T3LxuNiaBH3etC78BZ6syGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+Logistic+Regression+Based+on+Homomorphic+Encryption%3A+Design+and+Evaluation&rft.jtitle=JMIR+medical+informatics&rft.au=Kim%2C+Miran&rft.au=Song%2C+Yongsoo&rft.au=Wang%2C+Shuang&rft.au=Xia%2C+Yuhou&rft.date=2018-04-17&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=6&rft.issue=2&rft.spage=e19&rft_id=info:doi/10.2196%2Fmedinform.8805&rft_id=info%3Apmid%2F29666041&rft.externalDocID=29666041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon |