Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation

Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Ho...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 6; no. 2; p. e19
Main Authors Kim, Miran, Song, Yongsoo, Wang, Shuang, Xia, Yuhou, Jiang, Xiaoqian
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 17.04.2018
Subjects
Online AccessGet full text
ISSN2291-9694
2291-9694
DOI10.2196/medinform.8805

Cover

Abstract Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still.
AbstractList Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still.
Background: Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. Objective: The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). Methods: We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Results: Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. Conclusions: We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still.
Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis.BACKGROUNDLearning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis.The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression).OBJECTIVEThe goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression).We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques.METHODSWe adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques.Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset.RESULTSUsing real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset.We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still.CONCLUSIONSWe present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still.
Author Kim, Miran
Xia, Yuhou
Wang, Shuang
Song, Yongsoo
Jiang, Xiaoqian
AuthorAffiliation 2 Department of Mathematical Sciences Seoul National University Seoul Republic Of Korea
1 Division of Biomedical Informatics University of California, San Diego San Diego, CA United States
4 Department of Mathematics Princeton University Princeton, NJ United States
3 Department of Computer Science and Engineering University of California, San Diego San Diego, CA United States
AuthorAffiliation_xml – name: 3 Department of Computer Science and Engineering University of California, San Diego San Diego, CA United States
– name: 4 Department of Mathematics Princeton University Princeton, NJ United States
– name: 2 Department of Mathematical Sciences Seoul National University Seoul Republic Of Korea
– name: 1 Division of Biomedical Informatics University of California, San Diego San Diego, CA United States
Author_xml – sequence: 1
  givenname: Miran
  orcidid: 0000-0003-3564-6090
  surname: Kim
  fullname: Kim, Miran
– sequence: 2
  givenname: Yongsoo
  orcidid: 0000-0002-0496-9789
  surname: Song
  fullname: Song, Yongsoo
– sequence: 3
  givenname: Shuang
  orcidid: 0000-0001-6420-983X
  surname: Wang
  fullname: Wang, Shuang
– sequence: 4
  givenname: Yuhou
  orcidid: 0000-0003-3753-9440
  surname: Xia
  fullname: Xia, Yuhou
– sequence: 5
  givenname: Xiaoqian
  orcidid: 0000-0001-9933-2205
  surname: Jiang
  fullname: Jiang, Xiaoqian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29666041$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1PGzEQxS1EBRS49ohW6oVLUn_vmkMloGlTKRKiH2fL650NRrt2sHeR8t_XIQFRJOSDnzy_9zSe-Yj2ffCA0CeCp5Qo-aWHxvk2xH5aVVjsoSNKFZkoqfj-K32ITlO6xxgTTqSU5QE6pCoLzMkRuv0NdoxQLMLSpcHZ4hcsI6Tkgi-uTIKmyGIe-nzi6i7XZ97G9WrI9YviGyS39IXxTTF7NN1oNs8n6ENrugSnu_sY_f0--3M9nyxufvy8vlxMLCfVMFFMKCGZZaUsoS4baEpqGkWoETVwYFQZw1reytJSIVVDBGdQcVXXLJN1xY7R123uaqzzICz4IZpOr6LrTVzrYJz-v-LdnV6GRy0Uw6SUOeB8FxDDwwhp0L1LFrrOeAhj0hTTEstKMJbRz2_Q-zBGn7-nqSBEMV49UWevO3pp5XnaGeBbwMaQUoRWWzc8DS036DpNsN7sVb_sVW_2mm3TN7bn5HcM_wC9nKhP
CitedBy_id crossref_primary_10_1016_j_ins_2020_03_041
crossref_primary_10_1093_bioinformatics_btaa478
crossref_primary_10_1109_ACCESS_2020_3014369
crossref_primary_10_1016_j_marpol_2024_106244
crossref_primary_10_1155_2022_7751845
crossref_primary_10_1111_coin_12613
crossref_primary_10_2196_56893
crossref_primary_10_1109_TBDATA_2022_3231277
crossref_primary_10_1016_j_jisa_2024_103848
crossref_primary_10_1016_j_knosys_2020_106157
crossref_primary_10_1109_RBME_2020_3013489
crossref_primary_10_1089_cmb_2023_0050
crossref_primary_10_1186_s12920_020_0717_y
crossref_primary_10_1109_ACCESS_2020_3045465
crossref_primary_10_1109_ACCESS_2021_3071264
crossref_primary_10_1109_ACCESS_2023_3315655
crossref_primary_10_1016_j_patter_2022_100487
crossref_primary_10_1007_s10796_023_10443_0
crossref_primary_10_1109_TSC_2023_3279839
crossref_primary_10_1109_TDSC_2022_3168556
crossref_primary_10_1145_3514500
crossref_primary_10_1016_j_csi_2024_103857
crossref_primary_10_2196_22555
crossref_primary_10_1155_2021_8876893
crossref_primary_10_1007_s10462_024_10797_0
crossref_primary_10_1109_JBHI_2021_3071270
crossref_primary_10_3390_math10132185
crossref_primary_10_1109_JIOT_2024_3382875
crossref_primary_10_4018_IJSSCI_285593
crossref_primary_10_1109_TKDE_2020_3009221
crossref_primary_10_1007_s10462_024_11076_8
crossref_primary_10_1109_TIFS_2021_3106167
crossref_primary_10_1016_j_oceaneng_2020_107706
crossref_primary_10_1109_TBDATA_2022_3201729
crossref_primary_10_1109_TETC_2019_2902799
crossref_primary_10_1109_TIFS_2019_2925496
crossref_primary_10_1186_s12911_022_01811_y
crossref_primary_10_1186_s12920_020_0724_z
crossref_primary_10_1186_s13677_022_00373_8
crossref_primary_10_1016_j_ins_2021_03_064
crossref_primary_10_1016_j_cose_2024_103801
crossref_primary_10_1016_j_future_2023_02_022
crossref_primary_10_1109_TBDATA_2023_3239116
crossref_primary_10_1186_s12920_020_0722_1
crossref_primary_10_1186_s12864_022_08469_w
crossref_primary_10_3390_app14051743
crossref_primary_10_1109_TIFS_2022_3188145
crossref_primary_10_1055_s_0041_1740630
crossref_primary_10_3390_electronics8080827
crossref_primary_10_3390_bdcc7020084
crossref_primary_10_1155_2021_4793293
crossref_primary_10_1088_1757_899X_740_1_012133
crossref_primary_10_31857_S0132347424040036
crossref_primary_10_1186_s12920_020_0719_9
crossref_primary_10_1109_TGRS_2023_3322554
crossref_primary_10_1109_ACCESS_2024_3353131
crossref_primary_10_3390_math10234469
crossref_primary_10_1007_s10207_024_00941_w
crossref_primary_10_3390_math9212792
crossref_primary_10_1016_j_future_2025_107719
crossref_primary_10_1109_ACCESS_2018_2866697
crossref_primary_10_1186_s12920_018_0401_7
crossref_primary_10_32604_cmes_2023_026920
crossref_primary_10_1002_int_22985
crossref_primary_10_1049_cit2_12339
crossref_primary_10_1109_ACCESS_2021_3078265
crossref_primary_10_1109_TMC_2021_3092271
crossref_primary_10_1155_2020_4169840
crossref_primary_10_1109_TBDATA_2024_3362191
crossref_primary_10_3233_HIS_220006
crossref_primary_10_1109_TIFS_2020_2976612
crossref_primary_10_1109_TNNLS_2022_3169347
crossref_primary_10_62056_andkmp_3y
crossref_primary_10_1109_TBDATA_2020_2992755
crossref_primary_10_1016_j_sysarc_2024_103134
crossref_primary_10_1155_2022_1321198
crossref_primary_10_1155_2021_7621260
crossref_primary_10_1134_S0361768824700117
crossref_primary_10_3389_felec_2022_1091369
crossref_primary_10_1155_2019_3648671
crossref_primary_10_3390_app14219876
crossref_primary_10_1002_spy2_372
crossref_primary_10_1109_TNNLS_2022_3216981
crossref_primary_10_1145_3627993
crossref_primary_10_3389_frai_2021_746497
crossref_primary_10_1155_2022_4653923
crossref_primary_10_3390_math10122006
Cites_doi 10.1016/j.jbi.2013.03.008
10.1201/b13693
10.1137/1037125
10.1016/S1532-0464(03)00034-0
10.1016/j.jbi.2014.04.003
10.1093/oxfordjournals.eurheartj.a015035
10.1093/bib/bbx044
10.1016/S0895-4356(96)00236-3
10.1109/TIFS.2015.2483486
10.1145/2857705.2857731
10.1136/amiajnl-2012-000862
10.1002/bimj.4710290614
10.1177/0272989X0102100106
10.1093/bioinformatics/btt559
ContentType Journal Article
Copyright Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018.
2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018. 2018
Copyright_xml – notice: Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018.
– notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.2196/medinform.8805
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Health Management Database (Proquest)
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID PMC5930176
29666041
10_2196_medinform_8805
Genre Journal Article
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c418t-9359563c3767eb7ded72ad912a5be4e329aa3f4f67c2569d1543e849bb3d72b83
IEDL.DBID M48
ISSN 2291-9694
IngestDate Thu Aug 21 14:14:23 EDT 2025
Fri Sep 05 12:32:08 EDT 2025
Fri Jul 25 04:40:13 EDT 2025
Wed Feb 19 02:44:36 EST 2025
Tue Jul 01 04:31:16 EDT 2025
Thu Apr 24 23:10:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords homomorphic encryption
logistic regression
machine learning
gradient descent
Language English
License Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-9359563c3767eb7ded72ad912a5be4e329aa3f4f67c2569d1543e849bb3d72b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6420-983X
0000-0001-9933-2205
0000-0003-3753-9440
0000-0003-3564-6090
0000-0002-0496-9789
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/medinform.8805
PMID 29666041
PQID 2511934833
PQPubID 4997117
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5930176
proquest_miscellaneous_2027068533
proquest_journals_2511934833
pubmed_primary_29666041
crossref_citationtrail_10_2196_medinform_8805
crossref_primary_10_2196_medinform_8805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180417
PublicationDateYYYYMMDD 2018-04-17
PublicationDate_xml – month: 4
  year: 2018
  text: 20180417
  day: 17
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2018
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref12
ref15
ref14
Trinckes Jr, J (ref1) 2012
ref31
ref30
ref11
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Kennedy, RL (ref27) 1996; 17
ref28
ref29
ref8
ref7
ref9
Dreiseitl, S (ref13) 2002; 35
ref4
ref3
ref6
ref5
Peduzzi, P (ref10) 1996; 49
References_xml – ident: ref6
  doi: 10.1016/j.jbi.2013.03.008
– ident: ref3
– ident: ref7
– year: 2012
  ident: ref1
  publication-title: The Definitive Guide to Complying with the HIPAA/HITECH Privacy and Security Rules
  doi: 10.1201/b13693
– ident: ref20
– ident: ref29
– ident: ref19
  doi: 10.1137/1037125
– ident: ref24
– ident: ref22
– ident: ref25
– volume: 35
  start-page: 352
  issue: 5-6
  year: 2002
  ident: ref13
  publication-title: J Biomed Inform
  doi: 10.1016/S1532-0464(03)00034-0
– ident: ref14
  doi: 10.1016/j.jbi.2014.04.003
– volume: 17
  start-page: 1181
  issue: 8
  year: 1996
  ident: ref27
  publication-title: Eur Heart J
  doi: 10.1093/oxfordjournals.eurheartj.a015035
– ident: ref12
  doi: 10.1093/bib/bbx044
– volume: 49
  start-page: 1373
  issue: 12
  year: 1996
  ident: ref10
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(96)00236-3
– ident: ref23
  doi: 10.1109/TIFS.2015.2483486
– ident: ref16
  doi: 10.1145/2857705.2857731
– ident: ref11
– ident: ref17
– ident: ref15
– ident: ref30
– ident: ref4
  doi: 10.1136/amiajnl-2012-000862
– ident: ref2
– ident: ref8
  doi: 10.1002/bimj.4710290614
– ident: ref9
  doi: 10.1177/0272989X0102100106
– ident: ref28
– ident: ref21
– ident: ref26
– ident: ref5
  doi: 10.1093/bioinformatics/btt559
– ident: ref18
– ident: ref31
SSID ssj0001416667
Score 2.5031447
Snippet Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to...
Background: Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e19
SubjectTerms Approximation
Biomedical research
Efficiency
Machine learning
Methods
Neural networks
Original Paper
Outsourcing
Privacy
Regression analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_OHhRfpH72apUIBZ-W3ibZ7EYQ8fSOQ9pDSwt9W_K1Wqh7bb0--N93JvtxV0XZl4UM7DKTTH6TmfwG4KDKeGEQZ9DxksMARY0Tyy0ahJhPCq6tjFRKxws1P5NfzrPzASy6uzBUVtn5xOio_dLRGfkhQWEtZCHEh6vrhLpGUXa1a6Fh2tYK_n2kGHsAQ3TJBc774WS6-HqyPnWRlCbLG_ZGXKzqkFLY8eIPThnqYbe5O_0FOf-snNzYimY78KjFkOxjY_THMAj1E9g-brPkT-FbPEQP7Cje7rlw7CR8b8pdazbBXcszfJkvf-KDWsbxae1ufkff8Y59jiUdzNSeTXsm8GdwNpuefponbeuExMm0WCXxvq0Sjrhags198Dk3XqfcZDbIILg2RlSyUrlDzKM9AikRCqmtFShpC_EctuplHXaBYbxTqdTZXDovueHapWODoMpjWF1llR5B0qmsdC2vOLW3uCwxviAVl72KS1LxCN728lcNo8Y_Jfc7C5TtyvpVrufBCN70w7gmKNFh6rC8RRmMtccKgQjKvGgM1n-KY3ynxjIdQX7PlL0A8W3fH6kvfkTe7UyjN8zV3v9_6yU8RFBVUMYpzfdha3VzG14hcFnZ1-1svAMM6PFV
  priority: 102
  providerName: ProQuest
Title Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation
URI https://www.ncbi.nlm.nih.gov/pubmed/29666041
https://www.proquest.com/docview/2511934833
https://www.proquest.com/docview/2027068533
https://pubmed.ncbi.nlm.nih.gov/PMC5930176
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ta9swED62Fsa-lHWvWbugwmCfvMWSLFmFMdY2JZSlbGWBfDOSLG-FzunSFNZ_3zvZ8Zq-4C8GHTbc6eV5dKdHAO-rjOcWcQZtL3kkKGqQOO4wIKR8knPjZJRSGh-r0UQeTbPp__qn1oEX91I7uk9qMj_7-O_v1Rcc8J-pjBk70CfKQsezOxh1kjNdx1VJEREbt1A_7rdISpDR6WnOTZoYZWSj4XjPJ0ghGGmAGsh0dbm6g0Fvl1LeWJsOn8FGCyrZ16YXbMKjUD-HJ-M2bf4CfsRd9cC-xeM-p56dhF9N_WvN9nAZKxm-jGZ_8EG3Y_uw9vOrOJnssoNY48FsXbJhJw3-EiaHw5_7o6S9SyHxMs0XSTyAq4Qn8ZbgdBlKzW1pUm4zF2QQ3FgrKlkp7REEmRKRlQi5NM4JtHS5eAVr9awOb4AhAapU6p2WvpTccuPTgUWUVSLPrrLK9CBZuqzwrdA43XdxViDhIG8XnbcL8nYPPnT2543ExoOW28sIFMueUhBHMkLmQvRgp2vGQUKZD1uH2SXaIPkeKEQmaPO6CVj3q2Wke6BXQtkZkAD3akt9-jsKcWcGp0et3j74zS14igArp-xTqrdhbTG_DO8QxCxcHx7rqe7D-t7w-PtJP24F9GOPvQZZ8PQm
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB7RRWp5qXqz5agrtepTxMZ2nBgJVRyLlrK7ahFIvKW-AkiQ5ViE-HP9bR07B9CqfUP7EsmjZDVjj7_xeL4B-FQkNFOIM_zxksEARfQiTTUaxDOfZFRqHqiURmMxOODfDpPDGfjV1ML4a5WNTwyO2k6MPyNf8VBYMp4x9vX8IvJdo3x2tWmhoerWCnYtUIzVhR277vYGQ7irtZ0ttPdnSrf7-5uDqO4yEBkeZ9MolKYKZjytidOpdTalysqYqkQ77hiVSrGCFyI1CA-kRczBXMal1gwldcbwvU9gFmGH5B2Y3eiPv-_dnfJwn5ZLK7ZIdA5ixafMQ6ERTlHfM-_-bvgXxP3zpua9rW_7BTyvMStZrybZS5hx5St4Oqqz8q_hRzi0d2QYqolODNlzR9X12pJs4C5pCT4MJmf4Q6vieL80l7fBV62SrXCFhKjSkn7LPP4GDh5FiW-hU05KNw8E46tCxEan3FhOFZUm7ikEcRbD-CIpZBeiRmW5qXnMfTuN0xzjGa_ivFVx7lXchS-t_HnF4PFPycXGAnm9kq_yu3nXhY_tMK5Bn1hRpZtcowzG9j2BwAdl3lUGaz9FMZ4UPR53IX1gylbA83s_HClPjgPPdyLR-6bi_f__1gd4NtgfDfPhznh3AeYQ0GU-2xWni9CZXl67JQRNU71cz0wCPx97MfwG14ot7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJMQX4renqDXR-LS527bbbk2IEe8uh8AFiSS8rf1aIME9hCOEf5G_ymn3A9DoG7mXTTq5vZvpTGc6M78BeFdmNNfoZ4TrJYsBihgkhhoUSEA-yakyPEIpbU_FZI9_3c_2F-Cq7YUJZZWtTYyG2s1suCPvB1dYMZ4z1i-bsoid4fjTya8kTJAKmdZ2nIZuxiy4tQg31jR5bPrLCwznztY2hij795SOR9-_TJJm4kBieZrPk9imKpgNECfeSOedpNqplOrMeO4ZVVqzkpdCWnQVlEP_g_mcK2MYUpqc4ffegyWJ_xl1bml9NN3Zvb7x4SFFJ2vkSDQUoh_S57HpCLdrmJ9382T8y939s2rzxjE4fgArjf9KPtcb7iEs-OoRLG83GfrH8C1e4HuyFTuLjizZ9Qd1qW1F1vHEdAQfJrOf-EEJ4_qosqeX0W59JMNYTkJ05cioQyF_Ant3wsSnsFjNKv8cCMZapUitkdw6TjVVNh1odOgchvRlVqoeJC3LCttgmofRGscFxjaBxUXH4iKwuAcfOvqTGs3jn5SrrQSKRqvPius92IO33TLqY0iy6MrPzpEG4_yBQCcIaZ7VAuteRTG2FAOe9kDeEmVHELC-b69UR4cR8ztTaImlePH_n_UGllEpiq2N6eZLuI--XR4SX6lchcX56bl_hf7T3LxuNiaBH3etC78BZ6syGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+Logistic+Regression+Based+on+Homomorphic+Encryption%3A+Design+and+Evaluation&rft.jtitle=JMIR+medical+informatics&rft.au=Kim%2C+Miran&rft.au=Song%2C+Yongsoo&rft.au=Wang%2C+Shuang&rft.au=Xia%2C+Yuhou&rft.date=2018-04-17&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=6&rft.issue=2&rft.spage=e19&rft_id=info:doi/10.2196%2Fmedinform.8805&rft_id=info%3Apmid%2F29666041&rft.externalDocID=29666041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon