Patient Similarity in Prediction Models Based on Health Data: A Scoping Review

Physicians and health policy makers are required to make predictions during their decision making in various medical problems. Many advances have been made in predictive modeling toward outcome prediction, but these innovations target an average patient and are insufficiently adjustable for individu...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 5; no. 1; p. e7
Main Authors Sharafoddini, Anis, Dubin, Joel A, Lee, Joon
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 03.03.2017
Subjects
Online AccessGet full text
ISSN2291-9694
2291-9694
DOI10.2196/medinform.6730

Cover

Abstract Physicians and health policy makers are required to make predictions during their decision making in various medical problems. Many advances have been made in predictive modeling toward outcome prediction, but these innovations target an average patient and are insufficiently adjustable for individual patients. One developing idea in this field is individualized predictive analytics based on patient similarity. The goal of this approach is to identify patients who are similar to an index patient and derive insights from the records of similar patients to provide personalized predictions.. The aim is to summarize and review published studies describing computer-based approaches for predicting patients' future health status based on health data and patient similarity, identify gaps, and provide a starting point for related future research. The method involved (1) conducting the review by performing automated searches in Scopus, PubMed, and ISI Web of Science, selecting relevant studies by first screening titles and abstracts then analyzing full-texts, and (2) documenting by extracting publication details and information on context, predictors, missing data, modeling algorithm, outcome, and evaluation methods into a matrix table, synthesizing data, and reporting results. After duplicate removal, 1339 articles were screened in abstracts and titles and 67 were selected for full-text review. In total, 22 articles met the inclusion criteria. Within included articles, hospitals were the main source of data (n=10). Cardiovascular disease (n=7) and diabetes (n=4) were the dominant patient diseases. Most studies (n=18) used neighborhood-based approaches in devising prediction models. Two studies showed that patient similarity-based modeling outperformed population-based predictive methods. Interest in patient similarity-based predictive modeling for diagnosis and prognosis has been growing. In addition to raw/coded health data, wavelet transform and term frequency-inverse document frequency methods were employed to extract predictors. Selecting predictors with potential to highlight special cases and defining new patient similarity metrics were among the gaps identified in the existing literature that provide starting points for future work. Patient status prediction models based on patient similarity and health data offer exciting potential for personalizing and ultimately improving health care, leading to better patient outcomes.
AbstractList Physicians and health policy makers are required to make predictions during their decision making in various medical problems. Many advances have been made in predictive modeling toward outcome prediction, but these innovations target an average patient and are insufficiently adjustable for individual patients. One developing idea in this field is individualized predictive analytics based on patient similarity. The goal of this approach is to identify patients who are similar to an index patient and derive insights from the records of similar patients to provide personalized predictions.. The aim is to summarize and review published studies describing computer-based approaches for predicting patients' future health status based on health data and patient similarity, identify gaps, and provide a starting point for related future research. The method involved (1) conducting the review by performing automated searches in Scopus, PubMed, and ISI Web of Science, selecting relevant studies by first screening titles and abstracts then analyzing full-texts, and (2) documenting by extracting publication details and information on context, predictors, missing data, modeling algorithm, outcome, and evaluation methods into a matrix table, synthesizing data, and reporting results. After duplicate removal, 1339 articles were screened in abstracts and titles and 67 were selected for full-text review. In total, 22 articles met the inclusion criteria. Within included articles, hospitals were the main source of data (n=10). Cardiovascular disease (n=7) and diabetes (n=4) were the dominant patient diseases. Most studies (n=18) used neighborhood-based approaches in devising prediction models. Two studies showed that patient similarity-based modeling outperformed population-based predictive methods. Interest in patient similarity-based predictive modeling for diagnosis and prognosis has been growing. In addition to raw/coded health data, wavelet transform and term frequency-inverse document frequency methods were employed to extract predictors. Selecting predictors with potential to highlight special cases and defining new patient similarity metrics were among the gaps identified in the existing literature that provide starting points for future work. Patient status prediction models based on patient similarity and health data offer exciting potential for personalizing and ultimately improving health care, leading to better patient outcomes.
Physicians and health policy makers are required to make predictions during their decision making in various medical problems. Many advances have been made in predictive modeling toward outcome prediction, but these innovations target an average patient and are insufficiently adjustable for individual patients. One developing idea in this field is individualized predictive analytics based on patient similarity. The goal of this approach is to identify patients who are similar to an index patient and derive insights from the records of similar patients to provide personalized predictions..BACKGROUNDPhysicians and health policy makers are required to make predictions during their decision making in various medical problems. Many advances have been made in predictive modeling toward outcome prediction, but these innovations target an average patient and are insufficiently adjustable for individual patients. One developing idea in this field is individualized predictive analytics based on patient similarity. The goal of this approach is to identify patients who are similar to an index patient and derive insights from the records of similar patients to provide personalized predictions..The aim is to summarize and review published studies describing computer-based approaches for predicting patients' future health status based on health data and patient similarity, identify gaps, and provide a starting point for related future research.OBJECTIVEThe aim is to summarize and review published studies describing computer-based approaches for predicting patients' future health status based on health data and patient similarity, identify gaps, and provide a starting point for related future research.The method involved (1) conducting the review by performing automated searches in Scopus, PubMed, and ISI Web of Science, selecting relevant studies by first screening titles and abstracts then analyzing full-texts, and (2) documenting by extracting publication details and information on context, predictors, missing data, modeling algorithm, outcome, and evaluation methods into a matrix table, synthesizing data, and reporting results.METHODSThe method involved (1) conducting the review by performing automated searches in Scopus, PubMed, and ISI Web of Science, selecting relevant studies by first screening titles and abstracts then analyzing full-texts, and (2) documenting by extracting publication details and information on context, predictors, missing data, modeling algorithm, outcome, and evaluation methods into a matrix table, synthesizing data, and reporting results.After duplicate removal, 1339 articles were screened in abstracts and titles and 67 were selected for full-text review. In total, 22 articles met the inclusion criteria. Within included articles, hospitals were the main source of data (n=10). Cardiovascular disease (n=7) and diabetes (n=4) were the dominant patient diseases. Most studies (n=18) used neighborhood-based approaches in devising prediction models. Two studies showed that patient similarity-based modeling outperformed population-based predictive methods.RESULTSAfter duplicate removal, 1339 articles were screened in abstracts and titles and 67 were selected for full-text review. In total, 22 articles met the inclusion criteria. Within included articles, hospitals were the main source of data (n=10). Cardiovascular disease (n=7) and diabetes (n=4) were the dominant patient diseases. Most studies (n=18) used neighborhood-based approaches in devising prediction models. Two studies showed that patient similarity-based modeling outperformed population-based predictive methods.Interest in patient similarity-based predictive modeling for diagnosis and prognosis has been growing. In addition to raw/coded health data, wavelet transform and term frequency-inverse document frequency methods were employed to extract predictors. Selecting predictors with potential to highlight special cases and defining new patient similarity metrics were among the gaps identified in the existing literature that provide starting points for future work. Patient status prediction models based on patient similarity and health data offer exciting potential for personalizing and ultimately improving health care, leading to better patient outcomes.CONCLUSIONSInterest in patient similarity-based predictive modeling for diagnosis and prognosis has been growing. In addition to raw/coded health data, wavelet transform and term frequency-inverse document frequency methods were employed to extract predictors. Selecting predictors with potential to highlight special cases and defining new patient similarity metrics were among the gaps identified in the existing literature that provide starting points for future work. Patient status prediction models based on patient similarity and health data offer exciting potential for personalizing and ultimately improving health care, leading to better patient outcomes.
Background: Physicians and health policy makers are required to make predictions during their decision making in various medical problems. Many advances have been made in predictive modeling toward outcome prediction, but these innovations target an average patient and are insufficiently adjustable for individual patients. One developing idea in this field is individualized predictive analytics based on patient similarity. The goal of this approach is to identify patients who are similar to an index patient and derive insights from the records of similar patients to provide personalized predictions.. Objective: The aim is to summarize and review published studies describing computer-based approaches for predicting patients’ future health status based on health data and patient similarity, identify gaps, and provide a starting point for related future research. Methods: The method involved (1) conducting the review by performing automated searches in Scopus, PubMed, and ISI Web of Science, selecting relevant studies by first screening titles and abstracts then analyzing full-texts, and (2) documenting by extracting publication details and information on context, predictors, missing data, modeling algorithm, outcome, and evaluation methods into a matrix table, synthesizing data, and reporting results. Results: After duplicate removal, 1339 articles were screened in abstracts and titles and 67 were selected for full-text review. In total, 22 articles met the inclusion criteria. Within included articles, hospitals were the main source of data (n=10). Cardiovascular disease (n=7) and diabetes (n=4) were the dominant patient diseases. Most studies (n=18) used neighborhood-based approaches in devising prediction models. Two studies showed that patient similarity-based modeling outperformed population-based predictive methods. Conclusions: Interest in patient similarity-based predictive modeling for diagnosis and prognosis has been growing. In addition to raw/coded health data, wavelet transform and term frequency-inverse document frequency methods were employed to extract predictors. Selecting predictors with potential to highlight special cases and defining new patient similarity metrics were among the gaps identified in the existing literature that provide starting points for future work. Patient status prediction models based on patient similarity and health data offer exciting potential for personalizing and ultimately improving health care, leading to better patient outcomes.
Author Dubin, Joel A
Lee, Joon
Sharafoddini, Anis
AuthorAffiliation 1 Health Data Science Lab School of Public Health and Health Systems University of Waterloo Waterloo, ON Canada
2 Department of Statistics and Actuarial Science University of Waterloo Waterloo, ON Canada
AuthorAffiliation_xml – name: 1 Health Data Science Lab School of Public Health and Health Systems University of Waterloo Waterloo, ON Canada
– name: 2 Department of Statistics and Actuarial Science University of Waterloo Waterloo, ON Canada
Author_xml – sequence: 1
  givenname: Anis
  orcidid: 0000-0003-4231-8116
  surname: Sharafoddini
  fullname: Sharafoddini, Anis
– sequence: 2
  givenname: Joel A
  orcidid: 0000-0001-9863-7752
  surname: Dubin
  fullname: Dubin, Joel A
– sequence: 3
  givenname: Joon
  orcidid: 0000-0001-8593-9321
  surname: Lee
  fullname: Lee, Joon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28258046$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtLXDEYDcVSH3XbZQm4cTNjkptnF4L1UQvaStV1yL2Tq5HcZJrkKvPvzTDWqlC6yhe-cw7nnG8TrIUYLACfMJoSrPjeYGcu9DENUy4a9A5sEKLwRHFF117M62A75zuEEKaYcy4-gHUiCZOI8g3w48IUZ0OBl25w3iRXFtAFeJGqdFdcDPA8zqzP8KvJdgbr_9QaX27hkSnmCzyAl12cu3ADf9l7Zx8-gve98dluP71b4Prk-OrwdHL289v3w4OzSUexLBMhORNGNILPpMVGINxK1mKB-sYIiTBitJpFvWwwYy1lRPUESaokbTkhvGu2wN5Kdwxzs3gw3ut5coNJC42RXpajn8vRy3IqY3_FmI9tXXU1czJ_WdE4_XoT3K2-ifeaNUw0WFaB3SeBFH-PNhc9uNxZ702wccwaS0EpZVywCt15A72LYwq1EE0YxgorpWhFfX7p6NnKn-NUwHQF6FLMOdn-_xnpG0LnillesSZy_l-0R_i1tKg
CitedBy_id crossref_primary_10_2196_medinform_6959
crossref_primary_10_1186_s12938_019_0718_2
crossref_primary_10_1016_j_jbi_2020_103664
crossref_primary_10_1002_lrh2_10362
crossref_primary_10_3390_ijms23115963
crossref_primary_10_1109_TVCG_2019_2934546
crossref_primary_10_1016_j_jcmg_2019_12_018
crossref_primary_10_1093_gigascience_giy085
crossref_primary_10_1124_pr_119_017921
crossref_primary_10_1186_s12911_019_0965_y
crossref_primary_10_1186_s12911_019_0985_7
crossref_primary_10_2196_mhealth_7141
crossref_primary_10_1016_j_jbi_2018_06_001
crossref_primary_10_3390_s22010131
crossref_primary_10_1186_s12911_020_01217_8
crossref_primary_10_1016_j_asoc_2022_109773
crossref_primary_10_1093_jrsssc_qlae070
crossref_primary_10_1136_bmjresp_2018_000302
crossref_primary_10_1016_j_ejvs_2021_12_040
crossref_primary_10_1088_1755_1315_332_3_032024
crossref_primary_10_1093_jrsssc_qlaf001
crossref_primary_10_3389_fcell_2021_735687
crossref_primary_10_3390_jpm11080699
crossref_primary_10_1016_j_coisb_2017_04_012
crossref_primary_10_1093_bib_bbac207
crossref_primary_10_1186_s12911_020_01262_3
crossref_primary_10_1109_JBHI_2020_3033323
crossref_primary_10_1186_s12911_021_01432_x
crossref_primary_10_1371_journal_pone_0319782
crossref_primary_10_1007_s40201_020_00584_8
crossref_primary_10_1016_j_jbi_2019_103308
crossref_primary_10_2196_11605
crossref_primary_10_2196_51540
crossref_primary_10_1007_s10619_018_7249_x
crossref_primary_10_1016_j_health_2022_100024
crossref_primary_10_2196_30720
crossref_primary_10_3934_mbe_2023685
crossref_primary_10_1186_s12911_024_02812_9
crossref_primary_10_1088_1742_6596_1732_1_012013
crossref_primary_10_1371_journal_pone_0319992
crossref_primary_10_1002_wics_1549
crossref_primary_10_1136_bmjment_2023_300701
crossref_primary_10_2196_51092
crossref_primary_10_1093_jamia_ocaa242
crossref_primary_10_1007_s10462_022_10202_8
crossref_primary_10_1016_j_jbi_2019_103237
crossref_primary_10_1016_j_jbi_2024_104761
crossref_primary_10_1038_s41598_021_80967_5
crossref_primary_10_3389_fphys_2018_00985
crossref_primary_10_1371_journal_pone_0287264
crossref_primary_10_2139_ssrn_4117247
crossref_primary_10_1016_j_bdr_2018_05_001
crossref_primary_10_1109_TNB_2018_2837622
crossref_primary_10_1016_j_compbiomed_2020_104182
crossref_primary_10_1016_j_jcmg_2020_02_008
crossref_primary_10_1093_jamia_ocaa159
Cites_doi 10.1007/978-3-540-88192-6-7
10.1097/CCM.0b013e31820a92c6
10.1109/JBHI.2014.2358715
10.1145/1823746.1823752
10.1007/BF01709751
10.4338/ACI-2015-12-RA-0178
10.1109/CIC.2007.4745440
10.1155/2009/421425
10.2174/1874241601104010010
10.1109/ICDM.2010.102
10.1055/s-0038-1634051
10.1007/978-1-4614-6849-3_3
10.1016/B978-0-12-411643-6.00003-X
10.1016/j.jbi.2015.01.009
10.1371/journal.pone.0071991
10.1097/00003246-198510000-00009
10.1056/NEJMp1500523
10.1214/08-AOAS169
10.1371/journal.pone.0127428
10.1016/S0933-3657(97)00037-7
10.1002/widm.23
10.1111/j.1468-0394.2006.00321.x
10.1093/ije/dyp394
10.1109/CBMS.2014.28
10.1097/00003246-198411000-00012
10.1177/014662168701100401
10.1109/ICPR.2010.1009
10.1002/sim.5673
10.1002/biot.201100297
10.1109/Tsmcc.2010.2071862
10.1109/Tsmcb.2010.2101593
10.1145/223904.223929
10.1093/ndt/gfi198
10.1145/223904.223931
10.1089/cmb.2010.0213
10.1186/1741-7015-11-194
10.1109/ICDM.2013.129
10.1109/JBHI.2015.2425365
10.1080/10618600.2014.983641
10.1136/ebm1154
ContentType Journal Article
Copyright Anis Sharafoddini, Joel A Dubin, Joon Lee. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.03.2017.
2017. This work is licensed under http://creativecommons.org/licenses/by/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Anis Sharafoddini, Joel A Dubin, Joon Lee. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.03.2017. 2017
Copyright_xml – notice: Anis Sharafoddini, Joel A Dubin, Joon Lee. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.03.2017.
– notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Anis Sharafoddini, Joel A Dubin, Joon Lee. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.03.2017. 2017
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.2196/medinform.6730
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Healthcare Administration Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID 10.2196/medinform.6730
PMC5357318
28258046
10_2196_medinform_6730
Genre Journal Article
Scoping Review
GeographicLocations United States--US
Wisconsin
GeographicLocations_xml – name: Wisconsin
– name: United States--US
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PUEGO
RPM
UKHRP
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
AFFHD
EMOBN
UNPAY
ID FETCH-LOGICAL-c418t-78657a7376d8e1a701b85b170f3a78010541410f83155b4529f2084984b6226c3
IEDL.DBID M48
ISSN 2291-9694
IngestDate Wed Oct 29 12:04:56 EDT 2025
Tue Sep 30 16:37:15 EDT 2025
Thu Sep 04 17:50:08 EDT 2025
Tue Oct 07 07:01:50 EDT 2025
Mon Jul 21 05:26:28 EDT 2025
Wed Oct 01 05:10:09 EDT 2025
Thu Apr 24 23:03:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords patient similarity
health data
predictive modeling
review
electronic health records
medical records
data-driven prediction
personalized medicine
Language English
License Anis Sharafoddini, Joel A Dubin, Joon Lee. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.03.2017.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-78657a7376d8e1a701b85b170f3a78010541410f83155b4529f2084984b6226c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-3
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9863-7752
0000-0001-8593-9321
0000-0003-4231-8116
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/medinform.6730
PMID 28258046
PQID 2511919994
PQPubID 4997117
ParticipantIDs unpaywall_primary_10_2196_medinform_6730
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5357318
proquest_miscellaneous_1874445675
proquest_journals_2511919994
pubmed_primary_28258046
crossref_primary_10_2196_medinform_6730
crossref_citationtrail_10_2196_medinform_6730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170303
PublicationDateYYYYMMDD 2017-03-03
PublicationDate_xml – month: 3
  year: 2017
  text: 20170303
  day: 3
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2017
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref13
ref12
Le Gall, JR (ref55) 1984; 12
ref15
ref14
ref53
ref11
Vincent, JL (ref54) 1996; 22
ref10
Gotz, D (ref6) 2012; 2012
Bobrowski, L (ref18) 2001; 84
ref19
Bobrowski, L (ref17) 2006; 45
Saeed, M (ref21) 2006
ref51
Jurisica, I (ref16) 1998; 12
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref3
Zhang, P (ref36) 2014; 2014
ref5
ref35
Ng, K (ref40) 2015; 2015
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref39
Kuhn, M (ref56) 2013
ref38
Miner, L (ref1) 2015
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
Reddy, CK (ref50) 2015
Panahiazar, M (ref41) 2015; 210
Knaus, WA (ref4) 1985; 13
Deza, M (ref52) 2006
References_xml – ident: ref23
  doi: 10.1007/978-3-540-88192-6-7
– ident: ref22
  doi: 10.1097/CCM.0b013e31820a92c6
– ident: ref20
– volume: 210
  start-page: 369
  year: 2015
  ident: ref41
  publication-title: Stud Health Technol Inform
– ident: ref37
  doi: 10.1109/JBHI.2014.2358715
– ident: ref27
– ident: ref48
  doi: 10.1145/1823746.1823752
– volume: 22
  start-page: 707
  issue: 7
  year: 1996
  ident: ref54
  publication-title: Intensive Care Med
  doi: 10.1007/BF01709751
– ident: ref11
  doi: 10.4338/ACI-2015-12-RA-0178
– ident: ref38
  doi: 10.1109/CIC.2007.4745440
– start-page: 679
  year: 2006
  ident: ref21
  publication-title: AMIA Annu Symp Proc
– ident: ref13
– volume: 2014
  start-page: 132
  year: 2014
  ident: ref36
  publication-title: AMIA Jt Summits Transl Sci Proc
– ident: ref10
  doi: 10.1155/2009/421425
– ident: ref26
  doi: 10.2174/1874241601104010010
– ident: ref44
– ident: ref25
  doi: 10.1109/ICDM.2010.102
– volume: 45
  start-page: 200
  issue: 2
  year: 2006
  ident: ref17
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1634051
– start-page: 27
  year: 2013
  ident: ref56
  publication-title: Applied Predictive Modeling
  doi: 10.1007/978-1-4614-6849-3_3
– start-page: 42
  year: 2015
  ident: ref1
  publication-title: Practical Predictive Analytics and Decisioning Systems for Medicine
  doi: 10.1016/B978-0-12-411643-6.00003-X
– ident: ref42
  doi: 10.1016/j.jbi.2015.01.009
– ident: ref30
  doi: 10.1371/journal.pone.0071991
– volume: 13
  start-page: 818
  issue: 10
  year: 1985
  ident: ref4
  publication-title: Crit Care Med
  doi: 10.1097/00003246-198510000-00009
– ident: ref12
  doi: 10.1056/NEJMp1500523
– ident: ref46
  doi: 10.1214/08-AOAS169
– ident: ref39
  doi: 10.1371/journal.pone.0127428
– year: 2006
  ident: ref52
  publication-title: Dictionary of Distances
– volume: 12
  start-page: 1
  issue: 1
  year: 1998
  ident: ref16
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(97)00037-7
– ident: ref3
  doi: 10.1002/widm.23
– ident: ref19
  doi: 10.1111/j.1468-0394.2006.00321.x
– ident: ref35
  doi: 10.1093/ije/dyp394
– ident: ref34
  doi: 10.1109/CBMS.2014.28
– ident: ref45
– ident: ref29
– volume: 2015
  start-page: 132
  year: 2015
  ident: ref40
  publication-title: AMIA Jt Summits Transl Sci Proc
– volume: 12
  start-page: 975
  issue: 11
  year: 1984
  ident: ref55
  publication-title: Crit Care Med
  doi: 10.1097/00003246-198411000-00012
– ident: ref53
  doi: 10.1177/014662168701100401
– ident: ref24
  doi: 10.1109/ICPR.2010.1009
– ident: ref33
  doi: 10.1002/sim.5673
– ident: ref2
  doi: 10.1002/biot.201100297
– ident: ref14
  doi: 10.1109/Tsmcc.2010.2071862
– volume: 84
  start-page: 1309
  issue: Pt 2
  year: 2001
  ident: ref18
  publication-title: Stud Health Technol Inform
– ident: ref47
  doi: 10.1109/Tsmcb.2010.2101593
– ident: ref8
  doi: 10.1145/223904.223929
– ident: ref31
  doi: 10.1093/ndt/gfi198
– ident: ref15
– ident: ref7
  doi: 10.1145/223904.223931
– ident: ref49
  doi: 10.1089/cmb.2010.0213
– ident: ref32
  doi: 10.1186/1741-7015-11-194
– ident: ref51
  doi: 10.1109/ICDM.2013.129
– start-page: 343
  year: 2015
  ident: ref50
  publication-title: Healthcare Data Analytics
– ident: ref28
– ident: ref43
  doi: 10.1109/JBHI.2015.2425365
– volume: 2012
  start-page: 264
  year: 2012
  ident: ref6
  publication-title: AMIA Annu Symp Proc
– ident: ref9
  doi: 10.1080/10618600.2014.983641
– ident: ref5
  doi: 10.1136/ebm1154
SSID ssj0001416667
Score 2.3144677
SecondaryResourceType review_article
Snippet Physicians and health policy makers are required to make predictions during their decision making in various medical problems. Many advances have been made in...
Background: Physicians and health policy makers are required to make predictions during their decision making in various medical problems. Many advances have...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e7
SubjectTerms Algorithms
Breast cancer
Clinics
Comorbidity
Data warehouses
Datasets
Diabetes
Electronic health records
Health care networks
Hospitals
Intensive care
Laboratories
Medicine
Patients
Predictive analytics
Review
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ZS8QwEB50BfVFvK0XEQR9qbbbtImCiNcigsviAb6VpAcWand1u4j_3pleq4j6GBIoyWRmvnSOD2CX-Gw9VBszjC1uco0YTkY4VBq9Q6yd0I0ponvb9a4f-c2T-zQB3boWhtIqa5tYGOqwH9A_8kOCwkdUM89PB68msUZRdLWm0FAVtUJ4UrQYm4SpNnXGasHU-VW3dzf-68IpTCbK7o2orN4hhbCLwp8DT1Aq9Ffv9ANy_sycnBllA_XxrtL0i1vqzMNchSfZWXkBFmAiyhZh-raKmC9Bt1c2TmX3yUuCr1gE3SzJWO-NVpBQGLGhpUN2ju4sZDguC5PYpcrVMTtj90FRUsXKIMIyPHauHi6uzYpDwQy4LXNTSM8VSqAZCWVkK2HZWrraFlbsKCGJHpNTpmcsHTw4TVHYuG1JfiS59hCZBc4KtLJ-Fq0BCxypLTvksYVidQOpUIyR9iIlFD2abAPM-uz8oGowTjwXqY8PDTprvzlryiazDNhr1g_K1hq_rtysReFXKjb0xxfCgJ1mGpWDIh4qi_qjoU-EgxwhonANWC0l13yKinalxT0DxDeZNguo8fb3mSx5Lhpwu44r0BYasN9I_58drP-9gw2YbRNcoNw2ZxNa-dso2kKwk-vt6gZ_AtPyAhQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB7aE6wvbbXWxtqygtC-5Ewu-yu-ndpDBI8De2Cfwm6yoWnPKHc5SvvXdyaJ4awUfVx2SNjMzO63mZlvAA6on61Et_GzPOA-t4jhtMOhsXg65DbKRE4R3YuxPJvy8ytx1f7voFoYiijXdTj9H9fFvA7lD4jiOTx06nByOnoOa1Ig6u7B2nQ8GX6j3nGDOPRjGfOGkxFdUK48RipKcF49cx4AyYf5kC-W5a35_cvMZiuHzehVw3y0qDkKKcfkZ39Z2X765x8Gx6es4zW8bBEnGzYmsgnPXLkF6xdtTP0NjCcNtSq7LK4LvOciLGdFySZzkiC1MeqXNluwYzzwMobjpnSJnZrKHLEhu0zroivWhBm2YTr68vXkzG-7LPgpD3XlKy2FMgo3mky70KggtFrYUAV5ZJSmBpqcckFzHSH0sBSnzQeB5rHmViJ2S6O30CtvSvcOWBppG4QZzwNUvEi1QUU7K51Rhq5VoQf-nR6StKUgp04YswSvIqS3pPtslG8WePCpk79tyDf-K7l3p9akdcJFQrenmGgWuAf73TS6D8VETOlulouEWhJyBJFKeLDTWEH3Kirr1QGXHqh79tEJEDX3_Zmy-F5TdItIKNwtPfjcWdIjK9h9uuh72CBbqjPhoj3oVfOl-4DQqLIfW6_4C1HmENc
  priority: 102
  providerName: Unpaywall
Title Patient Similarity in Prediction Models Based on Health Data: A Scoping Review
URI https://www.ncbi.nlm.nih.gov/pubmed/28258046
https://www.proquest.com/docview/2511919994
https://www.proquest.com/docview/1874445675
https://pubmed.ncbi.nlm.nih.gov/PMC5357318
https://medinform.jmir.org/2017/1/e7/PDF
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: M48
  dateStart: 20131001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ZS8QwEB48QH0Rb-uxRBD0pdpu0yYVRNYLEXZZ1IX1qSQ9cKFW3QP13zvTdqui4mOa0JCZSeabzGQGYJfq2Xq4bcwosbjJNWI4GWNTadQOiXYiNyGPbrPlXXX4ddftfsY_lQQc_GraUT2pTj89eHt5P8ENf0xhzChAh-SFzt_uHHgor5MwjVrKpzIOzRLq5_ctnBxk9Hq6Xvdt0_d8XuRw_OUXlCEYLSdpESz-qq5-YNCfoZSzo-xZvb-qNP2ipy4XYL4EmKxRSMQiTMTZEsw0Sxf6MrTaRSZVdtt77OHaEYWzXsbafRpBXGJUHi0dsFPUbxHDdvFSiZ2roTpiDXYb5m-sWOFVWIHO5cXd2ZVZFlUwQ27LoSmk5wol8FyJZGwrYdlautoWVuIoIaleJqfQz0Q6iDQ0uWWTuiW5L7n2EKqFzipMZU9ZvA4sdKS27IgnFvLZDaVCvsbai5VQZEXZBphj2gVhmXGcCl-kAVoeRPagIjuFl1kG7FXjn4tcG3-O3BqzIhiLTEDGkk9ZFbgBO1U37hZygagsfhoNAqpAyBEzCteAtYJz1VRjlhsgvvG0GkCZuL_3ZL2HPCO367gCD0cD9ivu_7OCjT-n34S5OkEHinNztmBq2B_F2wh8hroGk6IrajB9etFq39Ty64NaLuX4rdNqN-4_AIhABoE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB5RkAovqKUUQqEYqRV9CSQbJ_ZWQohTy7GrVQGJt2AnjlhpyW730Io_19_WmVyAEPDEoxUrkT0z9jeZ4wP4QXy2AZqNHScOt7lGDCcNDpXG2yHRXuwnFNFttoLGFT-99q-n4F9ZC0NpleWZmB3UcS-if-TbBIXrVDPPd_t_bWKNouhqSaGhCmqFeCdrMVYUdpyZ-wm6cMOdk0OU989a7fjo8qBhFywDdsRdObKFDHyhBBpaLI2rhONq6WtXOImnhCQCSU65kIn08NWa4pRJzZG8LrkOELtEHr73A8xwj9fR-ZvZP2q1_zz85eEUlhN5t0g8HIJtCplnhUZbgaDU68e34TOI-zxTc3ac9tX9RHW7j67B408wX-BXtpcr3GeYMukCfGwWEfov0GrnjVrZReeug14zgnzWSVl7QDNICRixr3WHbB-vz5jhOC-EYodqpH6zPXYRZSVcLA9aLMLVu-zmV5hOe6lZBhZ5UjtuzBMH1ciPpEK1MTowSihy0lwL7HLvwqhoaE68Gt0QHRva67Daa8pecyzYrOb381YeL85cLUURFiY9DB8U0IKN6jEaI0VYVGp642FIBIccIanwLVjKJVd9ioqEpcMDC8QTmVYTqNH30ydp5zZr-O17vsCz14JflfTfWMHK6ytYh9nGZfM8PD9pnX2DuRpBFcqr81ZhejQYmzUEWiP9vdBmBjfvbUD_AV-HOrY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQyp7QcBgyxhgpCF4CU1qJ3YnTWhQqo2yqtKY1LdgJ45WqUvL2mraX-PXcU5uW1WxPe3RspXIPrfPPjeAPepnG6LYuEnqCVcYxHDK4lAbtA6p4UmQkkf3pB8enYkfw2C4Bn-rXBgKq6x0Yq6ok0lMb-RNgsJtypkXzbQMixh0ul-mf1zqIEWe1qqdRsEiPXt9hde32cFxB2n9odXqfv_17cgtOwy4sfDV3JUqDKSWKGSJsr6Wnm9UYHzppVxLRc0jBcVBpoqj2TXko0xbnhJtJUyIuCXm-N1H8Fhy3qZwQjmUN-87ghxysqgTiWohbJKzPE8x-hxKCrq-bQdXwO1qjOaTRTbV11d6PL5lALvP4GmJXNlhwWrPYc1mL6BxUvrmN6E_KEq0stPRxQjvywjv2Shjg0taQeRn1HdtPGNf0XAmDMdFChTr6LneZ4fsNM6Tt1jhrngJZw9ylq9gPZtkdhtYzJXx_ESkHjJQECuNDGNNaLXUdD3zHXCrs4vispQ5ddQYR3ilobOO6rOmuDXPgY_1-mlRxOO_K3crUkSlMM-iG9Zz4H09jWJIvhWd2cliFlFrQ4FgVAYObBWUq39F6cHKE6EDcomm9QIq8b08k43O81LfAQ8kal0HPtXUv2cHO3fv4B00UGyin8f93mvYaBFGoYA6vgvr88uFfYMIa27e5qzM4PdDy84_usw4UA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB7aE6wvbbXWxtqygtC-5Ewu-yu-ndpDBI8De2Cfwm6yoWnPKHc5SvvXdyaJ4awUfVx2SNjMzO63mZlvAA6on61Et_GzPOA-t4jhtMOhsXg65DbKRE4R3YuxPJvy8ytx1f7voFoYiijXdTj9H9fFvA7lD4jiOTx06nByOnoOa1Ig6u7B2nQ8GX6j3nGDOPRjGfOGkxFdUK48RipKcF49cx4AyYf5kC-W5a35_cvMZiuHzehVw3y0qDkKKcfkZ39Z2X765x8Gx6es4zW8bBEnGzYmsgnPXLkF6xdtTP0NjCcNtSq7LK4LvOciLGdFySZzkiC1MeqXNluwYzzwMobjpnSJnZrKHLEhu0zroivWhBm2YTr68vXkzG-7LPgpD3XlKy2FMgo3mky70KggtFrYUAV5ZJSmBpqcckFzHSH0sBSnzQeB5rHmViJ2S6O30CtvSvcOWBppG4QZzwNUvEi1QUU7K51Rhq5VoQf-nR6StKUgp04YswSvIqS3pPtslG8WePCpk79tyDf-K7l3p9akdcJFQrenmGgWuAf73TS6D8VETOlulouEWhJyBJFKeLDTWEH3Kirr1QGXHqh79tEJEDX3_Zmy-F5TdItIKNwtPfjcWdIjK9h9uuh72CBbqjPhoj3oVfOl-4DQqLIfW6_4C1HmENc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient+Similarity+in+Prediction+Models+Based+on+Health+Data%3A+A+Scoping+Review&rft.jtitle=JMIR+medical+informatics&rft.au=Sharafoddini%2C+Anis&rft.au=Dubin%2C+Joel+A&rft.au=Lee%2C+Joon&rft.date=2017-03-03&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=5&rft.issue=1&rft.spage=e7&rft_id=info:doi/10.2196%2Fmedinform.6730&rft_id=info%3Apmid%2F28258046&rft.externalDocID=28258046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon