Lossy Source Compression Using Low-Density Generator Matrix Codes: Analysis and Algorithms

We study the use of low-density generator matrix (LDGM) codes for lossy compression of the Bernoulli symmetric source. First, we establish rigorous upper bounds on the average distortion achieved by check-regular ensemble of LDGM codes under optimal minimum distance source encoding. These bounds est...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 56; no. 3; pp. 1351 - 1368
Main Authors Wainwright, M.J., Maneva, E., Martinian, E.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2009.2039160

Cover

More Information
Summary:We study the use of low-density generator matrix (LDGM) codes for lossy compression of the Bernoulli symmetric source. First, we establish rigorous upper bounds on the average distortion achieved by check-regular ensemble of LDGM codes under optimal minimum distance source encoding. These bounds establish that the average distortion using such bounded degree families rapidly approaches the Shannon limit as the degrees are increased. Second, we propose a family of message-passing algorithms, ranging from the standard belief propagation algorithm at one extreme to a variant of survey propagation algorithm at the other. When combined with a decimation subroutine and applied to LDGM codes with suitably irregular degree distributions, we show that such a message-passing/decimation algorithm yields distortion very close to the Shannon rate-distortion bound for the binary symmetric source.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2009.2039160