Lossy Source Compression Using Low-Density Generator Matrix Codes: Analysis and Algorithms
We study the use of low-density generator matrix (LDGM) codes for lossy compression of the Bernoulli symmetric source. First, we establish rigorous upper bounds on the average distortion achieved by check-regular ensemble of LDGM codes under optimal minimum distance source encoding. These bounds est...
Saved in:
| Published in | IEEE transactions on information theory Vol. 56; no. 3; pp. 1351 - 1368 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.03.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9448 1557-9654 |
| DOI | 10.1109/TIT.2009.2039160 |
Cover
| Summary: | We study the use of low-density generator matrix (LDGM) codes for lossy compression of the Bernoulli symmetric source. First, we establish rigorous upper bounds on the average distortion achieved by check-regular ensemble of LDGM codes under optimal minimum distance source encoding. These bounds establish that the average distortion using such bounded degree families rapidly approaches the Shannon limit as the degrees are increased. Second, we propose a family of message-passing algorithms, ranging from the standard belief propagation algorithm at one extreme to a variant of survey propagation algorithm at the other. When combined with a decimation subroutine and applied to LDGM codes with suitably irregular degree distributions, we show that such a message-passing/decimation algorithm yields distortion very close to the Shannon rate-distortion bound for the binary symmetric source. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2009.2039160 |