Deep learning-based defect detection in industrial CT volumes of castings

Industrial X-ray computed tomography (CT) has proven to be one of the most powerful non-destructive testing (NDT) methods for the inspection of light metal castings. The generated CT volume allows for the internal and external geometry of the specimen to be measured, casting defects to be localised...

Full description

Saved in:
Bibliographic Details
Published inInsight (Northampton) Vol. 64; no. 11; pp. 647 - 658
Main Authors Dakak, A R, Kaftandjian, V, Duvauchelle, P, Bouvet, P
Format Journal Article
LanguageEnglish
Published The British Institute of Non-Destructive Testing 01.11.2022
British Institute of Non-destructive Testing
Subjects
Online AccessGet full text
ISSN1354-2575
DOI10.1784/insi.2022.64.11.647

Cover

Abstract Industrial X-ray computed tomography (CT) has proven to be one of the most powerful non-destructive testing (NDT) methods for the inspection of light metal castings. The generated CT volume allows for the internal and external geometry of the specimen to be measured, casting defects to be localised and their statistical properties to be investigated. On the other hand, CT volumes are very prone to artefacts that can be mistaken for defects by conventional segmentation algorithms. These artefacts require trained operators to distinguish them from real defects, which makes CT inspection very time consuming if it is to be implemented on the production line. Foundries using this inspection method are constantly looking for a module that can perform this interpretation automatically. Based on CT data of aluminium alloy automotive and aerospace specimens provided by industrial partners, an automated approach for the analysis of discontinuities inside CT volumes is developed in this paper based on a two-stage pipeline: 2D segmentation of CT slices with automatic deep segmentation using U-Net to detect suspicious greyscale discontinuities; and classification of these discontinuities into true alarms (defects) or false alarms (artefacts and noise) using a new convolutional neural network classifier called CT-Casting-Net. The choice of each model and the training results are presented and discussed, as well as the efficiency of the approach as an automatic defect detection algorithm for industrial CT volumes using metrics relevant to the field of non-destructive testing. The approach is tested on six new CT volumes with 301 defects and achieves an object-level recall of 99%, a precision of 87% and a voxel-level intersection-over-union (IoU) of 62%.
AbstractList Industrial X-ray computed tomography (CT) has proven to be one of the most powerful non-destructive testing (NDT) methods for the inspection of light metal castings. The generated CT volume allows for the internal and external geometry of the specimen to be measured, casting defects to be localised and their statistical properties to be investigated. On the other hand, CT volumes are very prone to artefacts that can be mistaken for defects by conventional segmentation algorithms. These artefacts require trained operators to distinguish them from real defects, which makes CT inspection very time consuming if it is to be implemented on the production line. Foundries using this inspection method are constantly looking for a module that can perform this interpretation automatically. Based on CT data of aluminium alloy automotive and aerospace specimens provided by industrial partners, an automated approach for the analysis of discontinuities inside CT volumes is developed in this paper based on a two-stage pipeline: 2D segmentation of CT slices with automatic deep segmentation using U-Net to detect suspicious greyscale discontinuities; and classification of these discontinuities into true alarms (defects) or false alarms (artefacts and noise) using a new convolutional neural network classifier called CT-Casting-Net. The choice of each model and the training results are presented and discussed, as well as the efficiency of the approach as an automatic defect detection algorithm for industrial CT volumes using metrics relevant to the field of non-destructive testing. The approach is tested on six new CT volumes with 301 defects and achieves an object-level recall of 99%, a precision of 87% and a voxel-level intersection-over-union (IoU) of 62%.
Industrial X-ray computed tomography (CT) has proven to be one of the most powerful non-destructive testing (NDT) methods for the inspection of light metal castings. The generated CT volume allows for the internal and external geometry of the specimen to be measured, casting defects to be localised and their statistical properties to be investigated. On the other hand, CT volumes are very prone to artefacts that can be mistaken for defects by conventional segmentation algorithms. These artefacts require trained operators to distinguish them from real defects, which makes CT inspection very time consuming if it is to be implemented on the production line. Foundries using this inspection method are constantly looking for a module that can perform this interpretation automatically. Based on CT data of aluminium alloy automotive and aerospace specimens provided by industrial partners, an automated approach for the analysis of discontinuities inside CT volumes is developed in this paper based on a two-stage pipeline: 2D segmentation of CT slices with automatic deep segmentation using U-Net to detect suspicious greyscale discontinuities; and classification of these discontinuities into true alarms (defects) or false alarms (artefacts and noise) using a new convolutional neural network classifier called CT-Casting-Net. The choice of each model and the training results are presented and discussed, as well as the efficiency of the approach as an automatic defect detection algorithm for industrial CT volumes using metrics relevant to the field of non-destructive testing. The approach is tested on six new CT volumes with 301 defects and achieves an object-level recall of 99%, a precision of 87% and a voxel-level intersection-over-union (IoU) of 62%.
Author Duvauchelle
Kaftandjian
Dakak
Bouvet
Author_xml – sequence: 1
  givenname: A R
  surname: Dakak
  fullname: Dakak, A R
  organization: University of Lyon, INSA Lyon, LVA EA677, 69621 Villeurbanne, France
– sequence: 2
  givenname: V
  surname: Kaftandjian
  fullname: Kaftandjian, V
  organization: University of Lyon, INSA Lyon, LVA EA677, 69621 Villeurbanne, France
– sequence: 3
  givenname: P
  surname: Duvauchelle
  fullname: Duvauchelle, P
  organization: University of Lyon, INSA Lyon, LVA EA677, 69621 Villeurbanne, France
– sequence: 4
  givenname: P
  surname: Bouvet
  fullname: Bouvet, P
  organization: Centre Technique des Industries de la Fonderie (CTIF), S??vres, France
BackLink https://hal.science/hal-03858982$$DView record in HAL
BookMark eNp9kU1P3DAQhn2gEh_lF_SSaw_Z-iNZ20e0QBdppfZAz6OJYy9GwUG2dyX667EJvSAVy5oZWfO8I79zTk7CHCwh3xhdMam6Hz4kv-KU89W6WzFWojwhZ0z0Xct72Z-S85QeKRWaMXpG7q6tfW4mizH4sG8HTHZsRuusySXlkvwcGl_veEg5epyazX1znKfDk03N7BqDKRc0fSVfHE7JXr7nC_Ln9uZ-s213v37eba52remYym3v9Gg1N1IOyrmec41IhRy1GrXgqEZuB6RcKcmtReS9ctQqx5nR1ohuEBfk-6L7gBM8R_-E8QVm9LC92kF9o0L1Sit-ZKVXL70mzilF68D4jPVLOaKfgFGonkH1DKpnsO6AsRJlYcUH9t-wz6mbhSqW2JARHudDDMUPGIqD-Y3ZP-QFo2-nwEtRJDDmWlWd3__R8eZdqq60bhSO6y4UtkoyxopsJziUHeJhypAxwv4vJCleASiMpok
CitedBy_id crossref_primary_10_46810_tdfd_1236584
crossref_primary_10_1007_s40962_024_01542_y
Cites_doi 10.1109/ACCESS.2020.3048432
10.1016/0031-3203(95)00169-7
10.1016/j.patrec.2010.10.004
10.1134/S1061830916090072
10.1016/j.csndt.2016.07.001
10.1016/j.promfg.2019.12.065
10.1016/j.jacr.2017.12.028
10.1109/TVCG.2008.147
10.1179/136404605225023018
10.1007/s11604-018-0796-2
10.1016/j.neucom.2021.04.094
10.1145/3065386
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1784/insi.2022.64.11.647
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 658
ExternalDocumentID oai:HAL:hal-03858982v1
10_1784_insi_2022_64_11_647
bindt/insight/2022/00000064/00000011/art00007
GroupedDBID 5GY
ABDBF
AENEX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
ESX
I-F
IPNFZ
RIG
SC5
TUS
~8M
AAYXX
ACUHS
ADMLS
CITATION
1XC
ID FETCH-LOGICAL-c418t-5f9de92c77b8ff5229aa037d98d932a8d2eba028872eeaa258f0e8f21c9ec34b3
ISSN 1354-2575
IngestDate Tue Oct 14 20:34:24 EDT 2025
Tue Jul 01 03:41:29 EDT 2025
Thu Apr 24 22:51:47 EDT 2025
Fri Nov 08 05:58:28 EST 2024
Mon Nov 14 01:43:21 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-5f9de92c77b8ff5229aa037d98d932a8d2eba028872eeaa258f0e8f21c9ec34b3
Notes 1354-2575(20221101)64:11L.647;1-
ORCID 0000-0002-2582-8563
PageCount 12
ParticipantIDs ingenta_journals_bindt_insight_2022_00000064_00000011_art00007
crossref_primary_10_1784_insi_2022_64_11_647
ingenta_journals_ic_bindt_13542575_v64n11_20221112_0432_default_tar_gz_s7
crossref_citationtrail_10_1784_insi_2022_64_11_647
hal_primary_oai_HAL_hal_03858982v1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221101
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221101
  day: 01
PublicationDecade 2020
PublicationTitle Insight (Northampton)
PublicationTitleAbbrev Insight
PublicationYear 2022
Publisher The British Institute of Non-Destructive Testing
British Institute of Non-destructive Testing
Publisher_xml – name: The British Institute of Non-Destructive Testing
– name: British Institute of Non-destructive Testing
References (R44_474_518) 2021; 9
(R45_63_368) 2019; 37
(R44_428_253) 2002; 44
(R44_461_173) 2005; 18
(R45_327_380) 2017; 60
(R46_419_230) 2006; 148
(R45_238_322) 2018; 15
(R45_485_173) 1948; 5
(R46_365_58) 2015; 111
(R44_450_219) 2015; 34
(R46_430_138) 1978; 19
(R44_517_92) 2016; 52
(R45_87_230) 2011; 32
(R45_327_621) 2826; 2016
(R44_390_564) 2016; 6
(R45_327_748) 1996; 29
(R45_63_437) 2021; 453
(R44_232_725) 2010; 28
(R46_445_311) 2019; 38
(R44_401_644) 2008; 14
(R44_510_345) 2019; 37
(R45_95_414) 2019; 46
References_xml – volume: 9
  start-page: 12209
  year: 2021
  ident: R44_474_518
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048432
– volume: 29
  start-page: 1335
  issn: 00313203
  issue: 8
  year: 1996
  ident: R45_327_748
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(95)00169-7
– volume: 46
  start-page: 823
  issn: 00942405
  issue: 12
  year: 2019
  ident: R45_95_414
  publication-title: Medical Physics
– volume: 34
  start-page: 1
  issn: 01959298
  issue: 4
  year: 2015
  ident: R44_450_219
  publication-title: Journal of Nondestructive Evaluation
– volume: 32
  start-page: 168
  issn: 01678655
  issue: 2
  year: 2011
  ident: R45_87_230
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2010.10.004
– volume: 5
  start-page: 1
  issue: 4
  year: 1948
  ident: R45_485_173
  publication-title: In: Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter
– volume: 38
  start-page: 1
  issn: 01959298
  issue: 4
  year: 2019
  ident: R46_445_311
  publication-title: Journal of Nondestructive Evaluation
– volume: 52
  start-page: 492
  issn: 10618309
  issue: 9
  year: 2016
  ident: R44_517_92
  publication-title: Russian Journal of Nondestructive Testing
  doi: 10.1134/S1061830916090072
– volume: 2016
  start-page: 2818
  year: 2826
  ident: R45_327_621
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 6
  start-page: 17
  year: 2016
  ident: R44_390_564
  publication-title: Case Studies in Nondestructive Testing and Evaluation
  doi: 10.1016/j.csndt.2016.07.001
– volume: 28
  start-page: 18
  issn: 03936074
  issue: 2
  year: 2010
  ident: R44_232_725
  publication-title: Metallurgical Science and Technology
– volume: 19
  start-page: 213
  issue: 2
  year: 1978
  ident: R46_430_138
  publication-title: Journal of Nuclear Medicine, Society of Nuclear Medicine
– volume: 111
  start-page: 98
  year: 2015
  ident: R46_365_58
  publication-title: 'The Pascal visual object classes challenge: a retrospective', International Journal of Computer Vision
– volume: 37
  start-page: 394
  year: 2019
  ident: R44_510_345
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2019.12.065
– volume: 15
  start-page: 512
  issn: 15461440
  issue: 3
  year: 2018
  ident: R45_238_322
  publication-title: Journal of the American College of Radiology
  doi: 10.1016/j.jacr.2017.12.028
– volume: 14
  start-page: 1507
  issn: 10772626
  issue: 6
  year: 2008
  ident: R44_401_644
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2008.147
– volume: 18
  start-page: 129
  issn: 10010521
  issue: 3
  year: 2005
  ident: R44_461_173
  publication-title: International Journal of Cast Metals Research
  doi: 10.1179/136404605225023018
– volume: 148
  start-page: 233
  year: 2006
  ident: R46_419_230
  publication-title: ACM International Conference Proceeding Series
– volume: 37
  start-page: 73
  issue: 1
  year: 2019
  ident: R45_63_368
  publication-title: Japanese Journal of Radiology
  doi: 10.1007/s11604-018-0796-2
– volume: 44
  start-page: 428
  issn: 13542575
  issue: 7
  year: 2002
  ident: R44_428_253
  publication-title: Insight: Non-Destructive Testing and Condition Monitoring
– volume: 453
  start-page: 85
  issn: 09252312
  year: 2021
  ident: R45_63_437
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.094
– volume: 60
  start-page: 84
  issn: 00010782
  issue: 6
  year: 2017
  ident: R45_327_380
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
SSID ssj0039110
Score 2.3032777
Snippet Industrial X-ray computed tomography (CT) has proven to be one of the most powerful non-destructive testing (NDT) methods for the inspection of light metal...
SourceID hal
crossref
ingenta
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 647
SubjectTerms Casting
Classification
Computed Tomography
Computer Science
Deep Learning
Defect Detection
Engineering Sciences
Segmentation
Title Deep learning-based defect detection in industrial CT volumes of castings
URI https://www.ingentaconnect.com/content/bindt/insight/2022/00000064/00000011/art00007
https://hal.science/hal-03858982
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1354-2575
  databaseCode: ABDBF
  dateStart: 20040801
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0039110
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1354-2575
  databaseCode: ADMLS
  dateStart: 20040801
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssj0039110
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY9wIPiE9RvhQh3kZKPpw4eUEqLaiDDSHRSXuz_LllG221pn3YX885dtyUTRNDqqzIii-17-fznX13Ruh9hAnOuNQhl0qEOCEqZBwMVxGxLGWcCd0E0h7-yCdH-NtxdrzxVW2iS2o-EFc3xpX8D1ehDvhqomTvwFlPFCrgGfgLJXAYyn_i8VipRXvvw0loFiS5J1WTjliqWonWkbHa3M8xmu5ZgdS4cAi2rP1W-Vnr1L40BntzTY851GG_F41-6HcMxuycnVuZ4o-JvjNt9iTOKruf6j1nx6s1W1ln061gss_z1doeg_zs7juAyRr7fQcrKtMMhzDhs64stRnJW8zEHcmY28SabpHNbb72a_KbFBgGvYKODsw3BzkGmT7wbbvZsv9axbxvobFqgAw1RKghQnMMdg6UZAftJiD8ox7aHY4PD361S3YKEt-Gk7suufRUQObjDf9lS4XZOTUOtG0kXEc3mT5CD51REQwtQh6je2r2BD3opJp8ivYNVoJtrAQWK4HHSlCZX4uVYDQNHFaCuQ5arDxDR1-_TEeT0F2jEQocF3WY6VKqMhGE8EJr0LdLxqKUyLKQoLyzQiaKM1AzC5IoxViSFTpShU5iUSqRYp4-R73ZfKZeoKBUMZEYR1qC3spBz8m5ILEmKRc8y1jWR0k7MlS4HPPmqpMLegtX-uiDb7SwKVZuf_0dDLl_06RHnwwPqKlrTrnLIlnHffTJcYS6-bqk3ATINBRhElmijYkMSrl7gA_AXG5O9_to_xqBSjgaBicGJnSd4xk0MrRAZwB6OE0o8I6tLmpas0t6ckWX5OXdOvgK3d_Mt9eoV1-u1BvQfGv-1uH2DyiTqkc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+defect+detection+in+industrial+CT+volumes+of+castings&rft.jtitle=Insight+%28Northampton%29&rft.au=Dakak%2C+A+R&rft.au=Kaftandjian%2C+V&rft.au=Duvauchelle%2C+P&rft.au=Bouvet%2C+P&rft.date=2022-11-01&rft.issn=1354-2575&rft.volume=64&rft.issue=11&rft.spage=647&rft.epage=658&rft_id=info:doi/10.1784%2Finsi.2022.64.11.647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1784_insi_2022_64_11_647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-2575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-2575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-2575&client=summon