Argument-based assessment of predictive uncertainty of data-driven environmental models

Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing framew...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental modelling & software : with environment data news Vol. 134; p. 104754
Main Authors Knüsel, Benedikt, Baumberger, Christoph, Zumwald, Marius, Bresch, David N., Knutti, Reto
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN1364-8152
1873-6726
1873-6726
DOI10.1016/j.envsoft.2020.104754

Cover

Abstract Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing frameworks for characterizing uncertainties are not appropriate for data-driven models because of their focus on distinct locations of uncertainty. We propose a framework for uncertainty assessment that uses argument analysis to assess the justification of the assumption that the model is fit for the predictive purpose at hand. Its flexibility makes the framework applicable to data-driven models. The framework is illustrated using a case study from environmental science. We show that data-driven models can be subject to substantial second-order uncertainty, i.e., uncertainty in the assessment of the predictive uncertainty, because they are often applied to ill-understood problems. We close by discussing the implications of the predictive uncertainties of data-driven models for decision-making. •Discusses the predictive uncertainty of data-driven environmental models.•Shows that existing frameworks are not informative for this task.•Introduces a new framework based on argument analysis.•Illustrates how to apply the framework to a case study from environmental science.
AbstractList Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing frameworks for characterizing uncertainties are not appropriate for data-driven models because of their focus on distinct locations of uncertainty. We propose a framework for uncertainty assessment that uses argument analysis to assess the justification of the assumption that the model is fit for the predictive purpose at hand. Its flexibility makes the framework applicable to data-driven models. The framework is illustrated using a case study from environmental science. We show that data-driven models can be subject to substantial second-order uncertainty, i.e., uncertainty in the assessment of the predictive uncertainty, because they are often applied to ill-understood problems. We close by discussing the implications of the predictive uncertainties of data-driven models for decision-making.
Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing frameworks for characterizing uncertainties are not appropriate for data-driven models because of their focus on distinct locations of uncertainty. We propose a framework for uncertainty assessment that uses argument analysis to assess the justification of the assumption that the model is fit for the predictive purpose at hand. Its flexibility makes the framework applicable to data-driven models. The framework is illustrated using a case study from environmental science. We show that data-driven models can be subject to substantial second-order uncertainty, i.e., uncertainty in the assessment of the predictive uncertainty, because they are often applied to ill-understood problems. We close by discussing the implications of the predictive uncertainties of data-driven models for decision-making. •Discusses the predictive uncertainty of data-driven environmental models.•Shows that existing frameworks are not informative for this task.•Introduces a new framework based on argument analysis.•Illustrates how to apply the framework to a case study from environmental science.
ArticleNumber 104754
Author Bresch, David N.
Zumwald, Marius
Knutti, Reto
Knüsel, Benedikt
Baumberger, Christoph
Author_xml – sequence: 1
  givenname: Benedikt
  surname: Knüsel
  fullname: Knüsel, Benedikt
  email: benedikt.knuesel@alumni.ethz.ch
  organization: Institute for Environmental Decisions, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland
– sequence: 2
  givenname: Christoph
  surname: Baumberger
  fullname: Baumberger, Christoph
  organization: Institute for Environmental Decisions, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland
– sequence: 3
  givenname: Marius
  surname: Zumwald
  fullname: Zumwald, Marius
  organization: Institute for Environmental Decisions, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland
– sequence: 4
  givenname: David N.
  surname: Bresch
  fullname: Bresch, David N.
  organization: Institute for Environmental Decisions, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland
– sequence: 5
  givenname: Reto
  surname: Knutti
  fullname: Knutti, Reto
  organization: Institute for Atmospheric and Climate Science, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland
BookMark eNqNkU1LxDAQhoOsoLv6E4SCFy9dkzZNUjzIsvgFghfFY0jTqWTpJmuSruy_N6WevOhphpn3mUnemaOZdRYQuiB4STBh15sl2H1wXVwWuBhrlFf0CJ0Swcuc8YLNUl4ymgtSFSdoHsIGY5xyeoreV_5j2IKNeaMCtJkKAUIYC5nrsp2H1uho9pANVoOPyth4GDutiipvferYLG033tkRUn22dS304Qwdd6oPcP4TF-jt_u51_Zg_vzw8rVfPuaaExxwwFazWrFaVJjWhVUM57mqqCXQVFw10milGRcF5VepGA-UgGqF1DQqAd-UCsWnuYHfq8KX6Xu682Sp_kATL0R65kT_2yNEeOdmTwKsJ3Hn3OUCIcmuChr5XFtwQZFFxWpa84CJJL39JN27wNn1LFpQJJmpel0lVTSrtXQgeun8_5OYXp01U0TgbvTL9n_TtRCfPYW_Ay6ANpFu1xoOOsnXmjwnfxSC1DQ
CitedBy_id crossref_primary_10_1016_j_eiar_2022_106924
crossref_primary_10_1016_j_jclepro_2021_129451
crossref_primary_10_1080_13241583_2023_2211357
crossref_primary_10_1007_s10584_021_03061_9
crossref_primary_10_1038_s43247_023_00998_w
crossref_primary_10_1155_2020_8823674
crossref_primary_10_1002_wcc_654
crossref_primary_10_3390_s24113661
crossref_primary_10_5194_gmd_15_7177_2022
crossref_primary_10_1038_s41467_024_53200_w
Cites_doi 10.1016/j.envsoft.2007.02.004
10.1016/j.envsoft.2017.02.019
10.1038/nclimate2959
10.1002/2017WR020609
10.1504/IJTPM.2010.036918
10.1111/j.1467-8349.2009.00179.x
10.1076/iaij.4.1.5.16466
10.1016/j.envsoft.2018.04.005
10.1016/j.envsoft.2015.04.004
10.1086/683328
10.1086/708691
10.1038/s41586-019-0912-1
10.1086/687942
10.1016/j.envsoft.2018.09.021
10.1126/science.1197869
10.1007/s10670-013-9518-4
10.1038/nature14541
10.1073/pnas.1611576114
10.1016/j.envsoft.2009.06.009
10.1016/j.envsoft.2014.05.020
10.1073/pnas.1319946111
10.1111/j.1467-8349.2009.00180.x
10.1016/j.envsoft.2019.04.008
10.1016/j.envsci.2015.05.011
10.1175/BAMS-86-11-1609
10.1038/s41558-019-0404-1
10.1016/j.envsoft.2019.02.013
10.1016/j.shpsb.2010.07.006
ContentType Journal Article
Copyright 2020 The Authors
Copyright Elsevier Science Ltd. Dec 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright Elsevier Science Ltd. Dec 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7QH
7SC
7ST
7UA
8FD
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.envsoft.2020.104754
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aqualine
Computer and Information Systems Abstracts
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Computer Science
Environmental Sciences
EISSN 1873-6726
ExternalDocumentID 10.1016/j.envsoft.2020.104754
10_1016_j_envsoft_2020_104754
S1364815220300463
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSV
SSZ
T5K
UHS
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QH
7SC
7ST
7UA
8FD
AGCQF
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c417t-e04869c69a5c19145b470f94c1ef578befc6a64827753cbce47e8b8cc9eaee7f3
IEDL.DBID .~1
ISSN 1364-8152
1873-6726
IngestDate Wed Aug 20 00:06:27 EDT 2025
Sat Sep 27 19:56:17 EDT 2025
Wed Aug 13 11:35:44 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
Wed Oct 01 01:52:55 EDT 2025
Fri Feb 23 02:48:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Decision-making
Data-driven models
Uncertainty
Argument analysis
Predictions
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-e04869c69a5c19145b470f94c1ef578befc6a64827753cbce47e8b8cc9eaee7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1364815220300463
PQID 2468689793
PQPubID 2047471
ParticipantIDs unpaywall_primary_10_1016_j_envsoft_2020_104754
proquest_miscellaneous_2574337278
proquest_journals_2468689793
crossref_primary_10_1016_j_envsoft_2020_104754
crossref_citationtrail_10_1016_j_envsoft_2020_104754
elsevier_sciencedirect_doi_10_1016_j_envsoft_2020_104754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Environmental modelling & software : with environment data news
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Betz (bib4) 2016
Blundell, Cornebise, Kavukcuoglu, Wierstra (bib5) 2015; vol. 32
Hamilton, Fu, Guillaume, Badham, Elsawah, Gober, Randall (bib15) 2019; 118
Knüsel, Zumwald, Baumberger, Hirsch Hadorn, Fischer, Bresch, Knutti (bib23) 2019; 9
Parker (bib35) 2009; 83
Kwakkel, Walker, Vincent (bib25) 2010; 10
Overpeck, Meehl, Bony, Easterling (bib32) 2011; 331
Kloprogge, Jeroen, van der, Petersen (bib21) 2011; 26
Bradley, Drechsler (bib6) 2014; 79
Kendall, Gal (bib20) 2017; vol. 11
Betz (bib3) 2016; vol. 10
Gal, Ghahramani (bib8) 2016; vol. 33
Haasnoot, van Deursen, Guillaume, Kwakkel, van Beek, Middelkoop (bib14) 2014; 60
Gibert, Izquierdo, Sànchez-Marrè, Hamilton, Rodríguez-Roda, Holmes (bib11) 2018; 110
Parker (bib33) 2020
Knutti (bib24) 2018; vol. 59
Oppenheimer, Little, Cooke (bib31) 2016; 6
Northcott (bib30) 2019
Winsberg (bib44) 2018
Jones, Boris, Peter, Gottschalk, Poffet, McGrath, Seneviratne, Smith, Lenny, Winkel (bib19) 2017; 114
Lahtinen, Guillaume, Hämäläinen (bib26) 2017; 92
Brun, Gregor Betz (bib7) 2016; vol. 10
Morgan (bib29) 2014; 111
Parker (bib34) 2010; 41
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bib39) 2019; 566
Baumberger, Knutti, Hirsch Hadorn (bib2) 2017; 8
Meinshausen (bib28) 2006; 7
Badham, Elsawah, Joseph, Guillaume, Hamilton, Hunt, Jakeman, Pierce (bib1) 2019; 116
Knüsel, Benedikt, and Christoph Baumberger. under review. “Understanding climate phenomena with data-driven models.”.
Hirsch, Gertrude, Brun, Riccarda Soliva, Stenke, Peter (bib18) 2015; 52
Refsgaard, Jeroen, van der (bib38) 2007; 22
Held (bib17) 2005; 86
Parker, Risbey (bib36) 2015; 373
(bib16) 2016; vol. 10
Walker, Harremoës, Rotmans, van der Sluijs, van Asselt, Janssen, Krayer von Krauss (bib42) 2003; 4
Weaver, Lempert, Casey, John A, David, Sarewitz (bib43) 2013; 4
Guillaume, Kummu, Räsänen, Jakeman (bib12) 2015; 70
Guillaume, Casey, Elsawah, Jakeman, Kummu (bib13) 2017; 53
Ghahramani (bib9) 2015; 521
Gibert, Horsburgh, Athanasiadis, Holmes (bib10) 2018; 106
Pietsch (bib37) 2015; 82
Winsberg (bib45) 2018
Roussos, Bradley, Roman (bib40) 2020
Thompson, Roman, Casey (bib41) 2016; 83
Lloyd (bib27) 2009; 83
Kloprogge (10.1016/j.envsoft.2020.104754_bib21) 2011; 26
Hirsch (10.1016/j.envsoft.2020.104754_bib18) 2015; 52
Winsberg (10.1016/j.envsoft.2020.104754_bib45) 2018
Brun (10.1016/j.envsoft.2020.104754_bib7) 2016; vol. 10
Knutti (10.1016/j.envsoft.2020.104754_bib24) 2018; vol. 59
Blundell (10.1016/j.envsoft.2020.104754_bib5) 2015; vol. 32
Meinshausen (10.1016/j.envsoft.2020.104754_bib28) 2006; 7
Badham (10.1016/j.envsoft.2020.104754_bib1) 2019; 116
Knüsel (10.1016/j.envsoft.2020.104754_bib23) 2019; 9
Baumberger (10.1016/j.envsoft.2020.104754_bib2) 2017; 8
10.1016/j.envsoft.2020.104754_bib22
Kendall (10.1016/j.envsoft.2020.104754_bib20) 2017; vol. 11
Guillaume (10.1016/j.envsoft.2020.104754_bib12) 2015; 70
Bradley (10.1016/j.envsoft.2020.104754_bib6) 2014; 79
Held (10.1016/j.envsoft.2020.104754_bib17) 2005; 86
Kwakkel (10.1016/j.envsoft.2020.104754_bib25) 2010; 10
Roussos (10.1016/j.envsoft.2020.104754_bib40)
Pietsch (10.1016/j.envsoft.2020.104754_bib37) 2015; 82
Parker (10.1016/j.envsoft.2020.104754_bib35) 2009; 83
Guillaume (10.1016/j.envsoft.2020.104754_bib13) 2017; 53
Reichstein (10.1016/j.envsoft.2020.104754_bib39) 2019; 566
Thompson (10.1016/j.envsoft.2020.104754_bib41) 2016; 83
Hamilton (10.1016/j.envsoft.2020.104754_bib15) 2019; 118
Parker (10.1016/j.envsoft.2020.104754_bib34) 2010; 41
Haasnoot (10.1016/j.envsoft.2020.104754_bib14) 2014; 60
Refsgaard (10.1016/j.envsoft.2020.104754_bib38) 2007; 22
(10.1016/j.envsoft.2020.104754_bib16) 2016; vol. 10
Betz (10.1016/j.envsoft.2020.104754_bib3) 2016; vol. 10
Winsberg (10.1016/j.envsoft.2020.104754_bib44) 2018
Gibert (10.1016/j.envsoft.2020.104754_bib11) 2018; 110
Oppenheimer (10.1016/j.envsoft.2020.104754_bib31) 2016; 6
Walker (10.1016/j.envsoft.2020.104754_bib42) 2003; 4
Gal (10.1016/j.envsoft.2020.104754_bib8) 2016; vol. 33
Parker (10.1016/j.envsoft.2020.104754_bib33) 2020
Weaver (10.1016/j.envsoft.2020.104754_bib43) 2013; 4
Morgan (10.1016/j.envsoft.2020.104754_bib29) 2014; 111
Jones (10.1016/j.envsoft.2020.104754_bib19) 2017; 114
Ghahramani (10.1016/j.envsoft.2020.104754_bib9) 2015; 521
Parker (10.1016/j.envsoft.2020.104754_bib36) 2015; 373
Northcott (10.1016/j.envsoft.2020.104754_bib30) 2019
Lloyd (10.1016/j.envsoft.2020.104754_bib27) 2009; 83
Overpeck (10.1016/j.envsoft.2020.104754_bib32) 2011; 331
Betz (10.1016/j.envsoft.2020.104754_bib4) 2016
Gibert (10.1016/j.envsoft.2020.104754_bib10) 2018; 106
Lahtinen (10.1016/j.envsoft.2020.104754_bib26) 2017; 92
References_xml – volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: bib39
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
– volume: 114
  start-page: 2848
  year: 2017
  end-page: 2853
  ident: bib19
  article-title: Selenium deficiency risk predicted to increase under future climate change
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– start-page: 381
  year: 2018
  end-page: 412
  ident: bib44
  article-title: Communicating uncertainty to policymakers: the ineliminable role of values
  publication-title: , Edited by Elisabeth A. Lloyd and Eric Winsberg
– volume: vol. 33
  start-page: 10
  year: 2016
  ident: bib8
  article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning
  publication-title: Proceedings of the 33rd International Conference on Machine Learning
– volume: 331
  start-page: 700
  year: 2011
  end-page: 702
  ident: bib32
  article-title: Climate data challenges in the 21st century
  publication-title: Science
– volume: 41
  start-page: 263
  year: 2010
  end-page: 272
  ident: bib34
  article-title: Predicting weather and climate: uncertainty, ensembles and probability
  publication-title: Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys.
– volume: 53
  start-page: 6744
  year: 2017
  end-page: 6762
  ident: bib13
  article-title: Toward best practice framing of uncertainty in scientific publications: a review of water resources research abstracts
  publication-title: Water Resour. Res.
– volume: 373
  start-page: 20140453
  year: 2015
  ident: bib36
  article-title: False precision, surprise and improved uncertainty assessment
  publication-title: Phil. Trans. Math. Phys. Eng. Sci.
– volume: 22
  start-page: 1543
  year: 2007
  end-page: 1556
  ident: bib38
  article-title: Anker lajer højberg, and peter A. Vanrolleghem. “Uncertainty in the environmental modelling process – a framework and guidance
  publication-title: Environ. Model. Software
– year: 2020
  ident: bib33
  article-title: “Model evaluation: an adequacy-for-purpose view
  publication-title: Philos. Sci.
– volume: vol. 11
  year: 2017
  ident: bib20
  article-title: What uncertainties do we need in bayesian deep learning for computer vision?
  publication-title: Proceedings of the 31st Conference on Neural Information Processing Systems
– volume: 116
  start-page: 40
  year: 2019
  end-page: 56
  ident: bib1
  article-title: Effective modeling for integrated water resource management: a guide to contextual practices by phases and steps and future opportunities
  publication-title: Environ. Model. Software
– volume: 70
  start-page: 97
  year: 2015
  end-page: 112
  ident: bib12
  article-title: Prediction under uncertainty as a boundary problem: a general formulation using iterative closed question modelling
  publication-title: Environ. Model. Software
– volume: 118
  start-page: 83
  year: 2019
  end-page: 98
  ident: bib15
  article-title: A framework for characterising and evaluating the effectiveness of environmental modelling
  publication-title: Environ. Model. Software
– volume: 79
  start-page: 1225
  year: 2014
  end-page: 1248
  ident: bib6
  article-title: Types of uncertainty
  publication-title: Erkenntnis
– volume: vol. 59
  start-page: 325
  year: 2018
  ident: bib24
  article-title: Climate model confirmation: from philosophy to predicting climate in the real world
  publication-title: , Edited by Elisabeth A. Lloyd and Eric Winsberg
– year: 2018
  ident: bib45
  article-title: Philosophy and Climate Science
– volume: 83
  start-page: 213
  year: 2009
  end-page: 232
  ident: bib27
  article-title: “I—elisabeth A. Lloyd: varieties of support and confirmation of climate models
  publication-title: Aristotelian Society Supplementary
– volume: vol. 10
  start-page: 39
  year: 2016
  end-page: 77
  ident: bib7
  article-title: “Analysing practical argumentation.” in
  publication-title: Sven Ove Hansson and Gertrude Hirsch Hadorn
– volume: vol. 32
  year: 2015
  ident: bib5
  article-title: Weight uncertainty in neural networks
  publication-title: Proceedings of the 32nd International Conference on Machine Learning
– year: 2019
  ident: bib30
  article-title: Big data and prediction: four case studies
  publication-title: Studies in History and Philosophy of Science
– volume: 111
  start-page: 7176
  year: 2014
  end-page: 7184
  ident: bib29
  article-title: Use (and abuse) of expert elicitation in support of decision making for public policy
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 6
  start-page: 445
  year: 2016
  end-page: 451
  ident: bib31
  article-title: Expert judgement and uncertainty quantification for climate change
  publication-title: Nat. Clim. Change
– volume: 60
  start-page: 99
  year: 2014
  end-page: 120
  ident: bib14
  article-title: Fit for purpose? Building and evaluating a fast, integrated model for exploring water policy pathways
  publication-title: Environ. Model. Software
– volume: 9
  start-page: 196
  year: 2019
  end-page: 202
  ident: bib23
  article-title: Applying big data beyond small problems in climate research
  publication-title: Nat. Clim. Change
– volume: 10
  start-page: 299
  year: 2010
  ident: bib25
  article-title: Classifying and communicating uncertainties in model-based policy analysis
  publication-title: Int. J. Technol. Pol. Manag.
– volume: 83
  start-page: 1110
  year: 2016
  end-page: 1121
  ident: bib41
  article-title: Expert judgment for climate change adaptation
  publication-title: Philos. Sci.
– volume: 110
  start-page: 3
  year: 2018
  end-page: 27
  ident: bib11
  article-title: Which method to use? An assessment of data mining methods in environmental data science
  publication-title: Environ. Model. Software
– volume: 7
  start-page: 983
  year: 2006
  end-page: 999
  ident: bib28
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: e454
  year: 2017
  ident: bib2
  article-title: Building confidence in climate model projections: an analysis of inferences from fit
  publication-title: Wiley Interdisciplinary Reviews: Climate Change
– volume: 86
  start-page: 1609
  year: 2005
  end-page: 1614
  ident: bib17
  article-title: The gap between simulation and understanding in climate modeling
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 92
  start-page: 74
  year: 2017
  end-page: 81
  ident: bib26
  article-title: Why pay attention to paths in the practice of environmental modelling?
  publication-title: Environ. Model. Software
– year: 2020
  ident: bib40
  article-title: Forthcoming. “Making confident decisions with model ensembles.”
– volume: 4
  start-page: 39
  year: 2013
  end-page: 60
  ident: bib43
  article-title: Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks: the value and demands of robust decision frameworks
  publication-title: Wiley Interdisciplinary Reviews: Climate Change
– year: 2016
  ident: bib4
  article-title: Logik und Argumentationstheorie
  publication-title: Neues Handbuch des Philosophie-Unterrichts, edited by Jonas Pfister and Peter Zimmermann, 1. Auflage. UTB Philosophie, Ethik, Didaktik 4514. Bern
– reference: Knüsel, Benedikt, and Christoph Baumberger. under review. “Understanding climate phenomena with data-driven models.”.
– volume: 26
  start-page: 289
  year: 2011
  end-page: 301
  ident: bib21
  article-title: A method for the analysis of assumptions in model-based environmental assessments
  publication-title: Environ. Model. Software
– volume: 83
  start-page: 233
  year: 2009
  end-page: 249
  ident: bib35
  article-title: Confirmation and adequacy-for-purpose in climate modelling
  publication-title: Aristotelian Society Supplementary
– volume: vol. 10
  year: 2016
  ident: bib16
  publication-title: The Argumentative Turn in Policy Analysis
– volume: 52
  start-page: 110
  year: 2015
  end-page: 119
  ident: bib18
  article-title: Decision strategies for policy decisions under uncertainties: the case of mitigation measures addressing methane emissions from ruminants
  publication-title: Environ. Sci. Pol.
– volume: 521
  start-page: 452
  year: 2015
  end-page: 459
  ident: bib9
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
– volume: 106
  start-page: 4
  year: 2018
  end-page: 12
  ident: bib10
  article-title: Environmental data science
  publication-title: Environ. Model. Software
– volume: vol. 10
  start-page: 135
  year: 2016
  end-page: 169
  ident: bib3
  article-title: “Accounting for possibilities in decision making.” in
  publication-title: Sven Ove Hansson and Gertrude Hirsch Hadorn
– volume: 82
  start-page: 905
  year: 2015
  end-page: 916
  ident: bib37
  article-title: Aspects of theory-ladenness in data-intensive science
  publication-title: Philos. Sci.
– volume: 4
  start-page: 5
  year: 2003
  end-page: 17
  ident: bib42
  article-title: Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support
  publication-title: Integrated Assess.
– volume: 22
  start-page: 1543
  issue: 11
  year: 2007
  ident: 10.1016/j.envsoft.2020.104754_bib38
  article-title: Anker lajer højberg, and peter A. Vanrolleghem. “Uncertainty in the environmental modelling process – a framework and guidance
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2007.02.004
– volume: vol. 32
  year: 2015
  ident: 10.1016/j.envsoft.2020.104754_bib5
  article-title: Weight uncertainty in neural networks
– volume: vol. 59
  start-page: 325
  year: 2018
  ident: 10.1016/j.envsoft.2020.104754_bib24
  article-title: Climate model confirmation: from philosophy to predicting climate in the real world
– volume: 92
  start-page: 74
  issue: June
  year: 2017
  ident: 10.1016/j.envsoft.2020.104754_bib26
  article-title: Why pay attention to paths in the practice of environmental modelling?
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2017.02.019
– volume: vol. 10
  start-page: 135
  year: 2016
  ident: 10.1016/j.envsoft.2020.104754_bib3
  article-title: “Accounting for possibilities in decision making.” in the argumentative Turn in policy analysis
– volume: 6
  start-page: 445
  issue: 5
  year: 2016
  ident: 10.1016/j.envsoft.2020.104754_bib31
  article-title: Expert judgement and uncertainty quantification for climate change
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2959
– volume: 53
  start-page: 6744
  issue: 8
  year: 2017
  ident: 10.1016/j.envsoft.2020.104754_bib13
  article-title: Toward best practice framing of uncertainty in scientific publications: a review of water resources research abstracts
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR020609
– volume: 10
  start-page: 299
  issue: 4
  year: 2010
  ident: 10.1016/j.envsoft.2020.104754_bib25
  article-title: Classifying and communicating uncertainties in model-based policy analysis
  publication-title: Int. J. Technol. Pol. Manag.
  doi: 10.1504/IJTPM.2010.036918
– volume: vol. 11
  year: 2017
  ident: 10.1016/j.envsoft.2020.104754_bib20
  article-title: What uncertainties do we need in bayesian deep learning for computer vision?
– volume: 83
  start-page: 213
  issue: 1
  year: 2009
  ident: 10.1016/j.envsoft.2020.104754_bib27
  article-title: “I—elisabeth A. Lloyd: varieties of support and confirmation of climate models
  publication-title: Aristotelian Society Supplementary
  doi: 10.1111/j.1467-8349.2009.00179.x
– volume: 4
  start-page: 5
  issue: 1
  year: 2003
  ident: 10.1016/j.envsoft.2020.104754_bib42
  article-title: Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support
  publication-title: Integrated Assess.
  doi: 10.1076/iaij.4.1.5.16466
– volume: 106
  start-page: 4
  issue: August
  year: 2018
  ident: 10.1016/j.envsoft.2020.104754_bib10
  article-title: Environmental data science
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2018.04.005
– volume: 70
  start-page: 97
  issue: August
  year: 2015
  ident: 10.1016/j.envsoft.2020.104754_bib12
  article-title: Prediction under uncertainty as a boundary problem: a general formulation using iterative closed question modelling
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2015.04.004
– volume: 82
  start-page: 905
  issue: 5
  year: 2015
  ident: 10.1016/j.envsoft.2020.104754_bib37
  article-title: Aspects of theory-ladenness in data-intensive science
  publication-title: Philos. Sci.
  doi: 10.1086/683328
– year: 2020
  ident: 10.1016/j.envsoft.2020.104754_bib33
  article-title: “Model evaluation: an adequacy-for-purpose view
  publication-title: Philos. Sci.
  doi: 10.1086/708691
– volume: 566
  start-page: 195
  issue: February
  year: 2019
  ident: 10.1016/j.envsoft.2020.104754_bib39
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 7
  start-page: 983
  year: 2006
  ident: 10.1016/j.envsoft.2020.104754_bib28
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: 10.1016/j.envsoft.2020.104754_bib45
– volume: 83
  start-page: 1110
  issue: 5
  year: 2016
  ident: 10.1016/j.envsoft.2020.104754_bib41
  article-title: Expert judgment for climate change adaptation
  publication-title: Philos. Sci.
  doi: 10.1086/687942
– volume: 110
  start-page: 3
  issue: December
  year: 2018
  ident: 10.1016/j.envsoft.2020.104754_bib11
  article-title: Which method to use? An assessment of data mining methods in environmental data science
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2018.09.021
– volume: 331
  start-page: 700
  issue: 6018
  year: 2011
  ident: 10.1016/j.envsoft.2020.104754_bib32
  article-title: Climate data challenges in the 21st century
  publication-title: Science
  doi: 10.1126/science.1197869
– volume: vol. 33
  start-page: 10
  year: 2016
  ident: 10.1016/j.envsoft.2020.104754_bib8
  article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning
– volume: 79
  start-page: 1225
  issue: 6
  year: 2014
  ident: 10.1016/j.envsoft.2020.104754_bib6
  article-title: Types of uncertainty
  publication-title: Erkenntnis
  doi: 10.1007/s10670-013-9518-4
– volume: 521
  start-page: 452
  issue: May
  year: 2015
  ident: 10.1016/j.envsoft.2020.104754_bib9
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
  doi: 10.1038/nature14541
– volume: 373
  start-page: 20140453
  year: 2015
  ident: 10.1016/j.envsoft.2020.104754_bib36
  article-title: False precision, surprise and improved uncertainty assessment
  publication-title: Phil. Trans. Math. Phys. Eng. Sci.
– volume: 8
  start-page: e454
  issue: 3
  year: 2017
  ident: 10.1016/j.envsoft.2020.104754_bib2
  article-title: Building confidence in climate model projections: an analysis of inferences from fit
  publication-title: Wiley Interdisciplinary Reviews: Climate Change
– volume: 114
  start-page: 2848
  issue: 11
  year: 2017
  ident: 10.1016/j.envsoft.2020.104754_bib19
  article-title: Selenium deficiency risk predicted to increase under future climate change
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1611576114
– volume: 4
  start-page: 39
  issue: 1
  year: 2013
  ident: 10.1016/j.envsoft.2020.104754_bib43
  article-title: Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks: the value and demands of robust decision frameworks
  publication-title: Wiley Interdisciplinary Reviews: Climate Change
– volume: vol. 10
  start-page: 39
  year: 2016
  ident: 10.1016/j.envsoft.2020.104754_bib7
  article-title: “Analysing practical argumentation.” in the argumentative Turn in policy analysis
– volume: 26
  start-page: 289
  issue: 3
  year: 2011
  ident: 10.1016/j.envsoft.2020.104754_bib21
  article-title: A method for the analysis of assumptions in model-based environmental assessments
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2009.06.009
– volume: 60
  start-page: 99
  issue: October
  year: 2014
  ident: 10.1016/j.envsoft.2020.104754_bib14
  article-title: Fit for purpose? Building and evaluating a fast, integrated model for exploring water policy pathways
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2014.05.020
– volume: 111
  start-page: 7176
  issue: 20
  year: 2014
  ident: 10.1016/j.envsoft.2020.104754_bib29
  article-title: Use (and abuse) of expert elicitation in support of decision making for public policy
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1319946111
– volume: 83
  start-page: 233
  issue: 1
  year: 2009
  ident: 10.1016/j.envsoft.2020.104754_bib35
  article-title: Confirmation and adequacy-for-purpose in climate modelling
  publication-title: Aristotelian Society Supplementary
  doi: 10.1111/j.1467-8349.2009.00180.x
– ident: 10.1016/j.envsoft.2020.104754_bib22
– volume: vol. 10
  year: 2016
  ident: 10.1016/j.envsoft.2020.104754_bib16
– volume: 118
  start-page: 83
  issue: August
  year: 2019
  ident: 10.1016/j.envsoft.2020.104754_bib15
  article-title: A framework for characterising and evaluating the effectiveness of environmental modelling
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2019.04.008
– volume: 52
  start-page: 110
  issue: October
  year: 2015
  ident: 10.1016/j.envsoft.2020.104754_bib18
  article-title: Decision strategies for policy decisions under uncertainties: the case of mitigation measures addressing methane emissions from ruminants
  publication-title: Environ. Sci. Pol.
  doi: 10.1016/j.envsci.2015.05.011
– year: 2016
  ident: 10.1016/j.envsoft.2020.104754_bib4
  article-title: Logik und Argumentationstheorie
– volume: 86
  start-page: 1609
  issue: 11
  year: 2005
  ident: 10.1016/j.envsoft.2020.104754_bib17
  article-title: The gap between simulation and understanding in climate modeling
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-86-11-1609
– year: 2019
  ident: 10.1016/j.envsoft.2020.104754_bib30
  article-title: Big data and prediction: four case studies
  publication-title: Studies in History and Philosophy of Science
– volume: 9
  start-page: 196
  year: 2019
  ident: 10.1016/j.envsoft.2020.104754_bib23
  article-title: Applying big data beyond small problems in climate research
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-019-0404-1
– start-page: 381
  year: 2018
  ident: 10.1016/j.envsoft.2020.104754_bib44
  article-title: Communicating uncertainty to policymakers: the ineliminable role of values
– volume: 116
  start-page: 40
  issue: June
  year: 2019
  ident: 10.1016/j.envsoft.2020.104754_bib1
  article-title: Effective modeling for integrated water resource management: a guide to contextual practices by phases and steps and future opportunities
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2019.02.013
– ident: 10.1016/j.envsoft.2020.104754_bib40
– volume: 41
  start-page: 263
  issue: 3
  year: 2010
  ident: 10.1016/j.envsoft.2020.104754_bib34
  article-title: Predicting weather and climate: uncertainty, ensembles and probability
  publication-title: Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys.
  doi: 10.1016/j.shpsb.2010.07.006
SSID ssj0001524
Score 2.361391
Snippet Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104754
SubjectTerms Argument analysis
case studies
computer software
Data-driven models
Decision making
Environment models
Environmental modeling
Environmental science
Learning algorithms
Machine learning
Predictions
Uncertainty
Title Argument-based assessment of predictive uncertainty of data-driven environmental models
URI https://dx.doi.org/10.1016/j.envsoft.2020.104754
https://www.proquest.com/docview/2468689793
https://www.proquest.com/docview/2574337278
https://www.sciencedirect.com/science/article/am/pii/S1364815220300463?via%3Dihub
UnpaywallVersion publishedVersion
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1873-6726
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1873-6726
  databaseCode: .~1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1873-6726
  databaseCode: ACRLP
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1873-6726
  databaseCode: AIKHN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1873-6726
  databaseCode: AKRWK
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NmxDwwEdhouxDQeLVTdI4jv1YTZ06EHuBib1ZtuOgTVVa9QPUF_527hKn7R7QEI9x7izL5_uwfPc7gI8yzV2RZZwRNhnjjltm00SyvOJpWQpXmZSqkb9ci8kN_3Sb3x7ARVcLQ2mVwfa3Nr2x1mEkDrsZz-_u4q9pJghpZDhMCDVKEOInoX_hmR783qV5IEHb2FZwRtS7Kp74fuDrn0u0dnhNHDavnUXO_-af9uLPp-t6bja_zHS654ouX8GLEENGo3aZr-HA1z142fVniIK69uDJuIGk3vTg-R7sYA-Ox7vqNpwn0C_fwPfR4seaRhk5tzIyW9jOaFZF8wU96pB5jNAZtqkEqw39oTRTVi7IcEb-wdxNo53lW7i5HH-7mLDQeYE5nhYr5gmITzmhTO4IAC63vEgqxV3qK1Rx6ysnjCAEUbztOOs8L7y00jnljfdFlR3DYT2r_TuInHIWyawsXMYr5ZWVIjFSlgI5s0T1gXf7rV2AJafuGFPd5Z_d6yAmTWLSrZj6MNiyzVtcjscYZCdM_eCAafQdj7GedsLXQcOXesiFFFKheevDh-1v1E16cDG1n62RJsf4LMMIUfYh3h6af1vv-_9f7wk8o6826eYUDleLtT_D0GllzxvdOIej0dXnyfUfpKYacQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5BEWJ7GKOA1g22IO3VJGkcx36sUFEZ0BdA482yHQeBqrTqj0397-drnFAeJhCvts-yfL7vzvL5O4CfPE5NliSUIDcZoYZqouOIk7SgcZ4zU6gYfyNfD9ngjv66T-834Kz-C4NplR77K0xfobVvCf1uhpPHx_AmThgyjXS7EbJGsWQTtmjqMLkFW72Ly8GwAWQ3pqptyyhBgeePPOHTqS3_zBzguZtid_XgmaX0fy5qLQTdWZQTtfyrRqM1b3T-GT75MDLoVSvdgw1btmG3LtEQeIttw3Z_xUq9bMPHNebBNhz2nz-4uXn8-Nk-_O5NHxbYStC_5YFqmDuDcRFMpviugwgZOH9YZRPMl9iDmaYknyJ2BvbF3KtaO7MDuDvv354NiC--QAyNszmxyMUnDBMqNcgBl2qaRYWgJraFs3JtC8MUQxJRd-Ex2liaWa65McIqa7MiOYRWOS7tFwiMMNoN0zwzCS2EFZqzSHGeMyeZRKIDtN5vaTwzORbIGMk6Be1JejVJVJOs1NSB00ZsUlFzvCbAa2XKF2dMOvfxmuhRrXzpjXwmu5RxxoVDuA6cNN3OPPHNRZV2vHBjUheiJS5I5B0Im0PztvV-ff96f8DO4Pb6Sl5dDC-_wQfsqXJwjqA1ny7ssYuk5vq7t5R_KI8dHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Argument-based+assessment+of+predictive+uncertainty+of+data-driven+environmental+models&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Kn%C3%BCsel%2C+Benedikt&rft.au=Baumberger%2C+Christoph&rft.au=Zumwald%2C+Marius&rft.au=Bresch%2C+David+N.&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=1364-8152&rft.eissn=1873-6726&rft.volume=134&rft_id=info:doi/10.1016%2Fj.envsoft.2020.104754&rft.externalDocID=S1364815220300463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon