Argument-based assessment of predictive uncertainty of data-driven environmental models
Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing framew...
Saved in:
Published in | Environmental modelling & software : with environment data news Vol. 134; p. 104754 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.12.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1364-8152 1873-6726 1873-6726 |
DOI | 10.1016/j.envsoft.2020.104754 |
Cover
Abstract | Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing frameworks for characterizing uncertainties are not appropriate for data-driven models because of their focus on distinct locations of uncertainty. We propose a framework for uncertainty assessment that uses argument analysis to assess the justification of the assumption that the model is fit for the predictive purpose at hand. Its flexibility makes the framework applicable to data-driven models. The framework is illustrated using a case study from environmental science. We show that data-driven models can be subject to substantial second-order uncertainty, i.e., uncertainty in the assessment of the predictive uncertainty, because they are often applied to ill-understood problems. We close by discussing the implications of the predictive uncertainties of data-driven models for decision-making.
•Discusses the predictive uncertainty of data-driven environmental models.•Shows that existing frameworks are not informative for this task.•Introduces a new framework based on argument analysis.•Illustrates how to apply the framework to a case study from environmental science. |
---|---|
AbstractList | Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing frameworks for characterizing uncertainties are not appropriate for data-driven models because of their focus on distinct locations of uncertainty. We propose a framework for uncertainty assessment that uses argument analysis to assess the justification of the assumption that the model is fit for the predictive purpose at hand. Its flexibility makes the framework applicable to data-driven models. The framework is illustrated using a case study from environmental science. We show that data-driven models can be subject to substantial second-order uncertainty, i.e., uncertainty in the assessment of the predictive uncertainty, because they are often applied to ill-understood problems. We close by discussing the implications of the predictive uncertainties of data-driven models for decision-making. Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing frameworks for characterizing uncertainties are not appropriate for data-driven models because of their focus on distinct locations of uncertainty. We propose a framework for uncertainty assessment that uses argument analysis to assess the justification of the assumption that the model is fit for the predictive purpose at hand. Its flexibility makes the framework applicable to data-driven models. The framework is illustrated using a case study from environmental science. We show that data-driven models can be subject to substantial second-order uncertainty, i.e., uncertainty in the assessment of the predictive uncertainty, because they are often applied to ill-understood problems. We close by discussing the implications of the predictive uncertainties of data-driven models for decision-making. •Discusses the predictive uncertainty of data-driven environmental models.•Shows that existing frameworks are not informative for this task.•Introduces a new framework based on argument analysis.•Illustrates how to apply the framework to a case study from environmental science. |
ArticleNumber | 104754 |
Author | Bresch, David N. Zumwald, Marius Knutti, Reto Knüsel, Benedikt Baumberger, Christoph |
Author_xml | – sequence: 1 givenname: Benedikt surname: Knüsel fullname: Knüsel, Benedikt email: benedikt.knuesel@alumni.ethz.ch organization: Institute for Environmental Decisions, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland – sequence: 2 givenname: Christoph surname: Baumberger fullname: Baumberger, Christoph organization: Institute for Environmental Decisions, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland – sequence: 3 givenname: Marius surname: Zumwald fullname: Zumwald, Marius organization: Institute for Environmental Decisions, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland – sequence: 4 givenname: David N. surname: Bresch fullname: Bresch, David N. organization: Institute for Environmental Decisions, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland – sequence: 5 givenname: Reto surname: Knutti fullname: Knutti, Reto organization: Institute for Atmospheric and Climate Science, ETH Zürich, Universitätsstrasse 16, 8092, Zurich, Switzerland |
BookMark | eNqNkU1LxDAQhoOsoLv6E4SCFy9dkzZNUjzIsvgFghfFY0jTqWTpJmuSruy_N6WevOhphpn3mUnemaOZdRYQuiB4STBh15sl2H1wXVwWuBhrlFf0CJ0Swcuc8YLNUl4ymgtSFSdoHsIGY5xyeoreV_5j2IKNeaMCtJkKAUIYC5nrsp2H1uho9pANVoOPyth4GDutiipvferYLG033tkRUn22dS304Qwdd6oPcP4TF-jt_u51_Zg_vzw8rVfPuaaExxwwFazWrFaVJjWhVUM57mqqCXQVFw10milGRcF5VepGA-UgGqF1DQqAd-UCsWnuYHfq8KX6Xu682Sp_kATL0R65kT_2yNEeOdmTwKsJ3Hn3OUCIcmuChr5XFtwQZFFxWpa84CJJL39JN27wNn1LFpQJJmpel0lVTSrtXQgeun8_5OYXp01U0TgbvTL9n_TtRCfPYW_Ay6ANpFu1xoOOsnXmjwnfxSC1DQ |
CitedBy_id | crossref_primary_10_1016_j_eiar_2022_106924 crossref_primary_10_1016_j_jclepro_2021_129451 crossref_primary_10_1080_13241583_2023_2211357 crossref_primary_10_1007_s10584_021_03061_9 crossref_primary_10_1038_s43247_023_00998_w crossref_primary_10_1155_2020_8823674 crossref_primary_10_1002_wcc_654 crossref_primary_10_3390_s24113661 crossref_primary_10_5194_gmd_15_7177_2022 crossref_primary_10_1038_s41467_024_53200_w |
Cites_doi | 10.1016/j.envsoft.2007.02.004 10.1016/j.envsoft.2017.02.019 10.1038/nclimate2959 10.1002/2017WR020609 10.1504/IJTPM.2010.036918 10.1111/j.1467-8349.2009.00179.x 10.1076/iaij.4.1.5.16466 10.1016/j.envsoft.2018.04.005 10.1016/j.envsoft.2015.04.004 10.1086/683328 10.1086/708691 10.1038/s41586-019-0912-1 10.1086/687942 10.1016/j.envsoft.2018.09.021 10.1126/science.1197869 10.1007/s10670-013-9518-4 10.1038/nature14541 10.1073/pnas.1611576114 10.1016/j.envsoft.2009.06.009 10.1016/j.envsoft.2014.05.020 10.1073/pnas.1319946111 10.1111/j.1467-8349.2009.00180.x 10.1016/j.envsoft.2019.04.008 10.1016/j.envsci.2015.05.011 10.1175/BAMS-86-11-1609 10.1038/s41558-019-0404-1 10.1016/j.envsoft.2019.02.013 10.1016/j.shpsb.2010.07.006 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright Elsevier Science Ltd. Dec 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright Elsevier Science Ltd. Dec 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7QH 7SC 7ST 7UA 8FD C1K FR3 JQ2 KR7 L7M L~C L~D SOI 7S9 L.6 ADTOC UNPAY |
DOI | 10.1016/j.envsoft.2020.104754 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aqualine Computer and Information Systems Abstracts Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Aqualine Environment Abstracts Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Computer Science Environmental Sciences |
EISSN | 1873-6726 |
ExternalDocumentID | 10.1016/j.envsoft.2020.104754 10_1016_j_envsoft_2020_104754 S1364815220300463 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSJ SSV SSZ T5K UHS ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QH 7SC 7ST 7UA 8FD AGCQF C1K FR3 JQ2 KR7 L7M L~C L~D SOI 7S9 L.6 ADTOC UNPAY |
ID | FETCH-LOGICAL-c417t-e04869c69a5c19145b470f94c1ef578befc6a64827753cbce47e8b8cc9eaee7f3 |
IEDL.DBID | .~1 |
ISSN | 1364-8152 1873-6726 |
IngestDate | Wed Aug 20 00:06:27 EDT 2025 Sat Sep 27 19:56:17 EDT 2025 Wed Aug 13 11:35:44 EDT 2025 Thu Apr 24 23:00:26 EDT 2025 Wed Oct 01 01:52:55 EDT 2025 Fri Feb 23 02:48:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Decision-making Data-driven models Uncertainty Argument analysis Predictions |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-e04869c69a5c19145b470f94c1ef578befc6a64827753cbce47e8b8cc9eaee7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1364815220300463 |
PQID | 2468689793 |
PQPubID | 2047471 |
ParticipantIDs | unpaywall_primary_10_1016_j_envsoft_2020_104754 proquest_miscellaneous_2574337278 proquest_journals_2468689793 crossref_primary_10_1016_j_envsoft_2020_104754 crossref_citationtrail_10_1016_j_envsoft_2020_104754 elsevier_sciencedirect_doi_10_1016_j_envsoft_2020_104754 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Environmental modelling & software : with environment data news |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Betz (bib4) 2016 Blundell, Cornebise, Kavukcuoglu, Wierstra (bib5) 2015; vol. 32 Hamilton, Fu, Guillaume, Badham, Elsawah, Gober, Randall (bib15) 2019; 118 Knüsel, Zumwald, Baumberger, Hirsch Hadorn, Fischer, Bresch, Knutti (bib23) 2019; 9 Parker (bib35) 2009; 83 Kwakkel, Walker, Vincent (bib25) 2010; 10 Overpeck, Meehl, Bony, Easterling (bib32) 2011; 331 Kloprogge, Jeroen, van der, Petersen (bib21) 2011; 26 Bradley, Drechsler (bib6) 2014; 79 Kendall, Gal (bib20) 2017; vol. 11 Betz (bib3) 2016; vol. 10 Gal, Ghahramani (bib8) 2016; vol. 33 Haasnoot, van Deursen, Guillaume, Kwakkel, van Beek, Middelkoop (bib14) 2014; 60 Gibert, Izquierdo, Sànchez-Marrè, Hamilton, Rodríguez-Roda, Holmes (bib11) 2018; 110 Parker (bib33) 2020 Knutti (bib24) 2018; vol. 59 Oppenheimer, Little, Cooke (bib31) 2016; 6 Northcott (bib30) 2019 Winsberg (bib44) 2018 Jones, Boris, Peter, Gottschalk, Poffet, McGrath, Seneviratne, Smith, Lenny, Winkel (bib19) 2017; 114 Lahtinen, Guillaume, Hämäläinen (bib26) 2017; 92 Brun, Gregor Betz (bib7) 2016; vol. 10 Morgan (bib29) 2014; 111 Parker (bib34) 2010; 41 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bib39) 2019; 566 Baumberger, Knutti, Hirsch Hadorn (bib2) 2017; 8 Meinshausen (bib28) 2006; 7 Badham, Elsawah, Joseph, Guillaume, Hamilton, Hunt, Jakeman, Pierce (bib1) 2019; 116 Knüsel, Benedikt, and Christoph Baumberger. under review. “Understanding climate phenomena with data-driven models.”. Hirsch, Gertrude, Brun, Riccarda Soliva, Stenke, Peter (bib18) 2015; 52 Refsgaard, Jeroen, van der (bib38) 2007; 22 Held (bib17) 2005; 86 Parker, Risbey (bib36) 2015; 373 (bib16) 2016; vol. 10 Walker, Harremoës, Rotmans, van der Sluijs, van Asselt, Janssen, Krayer von Krauss (bib42) 2003; 4 Weaver, Lempert, Casey, John A, David, Sarewitz (bib43) 2013; 4 Guillaume, Kummu, Räsänen, Jakeman (bib12) 2015; 70 Guillaume, Casey, Elsawah, Jakeman, Kummu (bib13) 2017; 53 Ghahramani (bib9) 2015; 521 Gibert, Horsburgh, Athanasiadis, Holmes (bib10) 2018; 106 Pietsch (bib37) 2015; 82 Winsberg (bib45) 2018 Roussos, Bradley, Roman (bib40) 2020 Thompson, Roman, Casey (bib41) 2016; 83 Lloyd (bib27) 2009; 83 Kloprogge (10.1016/j.envsoft.2020.104754_bib21) 2011; 26 Hirsch (10.1016/j.envsoft.2020.104754_bib18) 2015; 52 Winsberg (10.1016/j.envsoft.2020.104754_bib45) 2018 Brun (10.1016/j.envsoft.2020.104754_bib7) 2016; vol. 10 Knutti (10.1016/j.envsoft.2020.104754_bib24) 2018; vol. 59 Blundell (10.1016/j.envsoft.2020.104754_bib5) 2015; vol. 32 Meinshausen (10.1016/j.envsoft.2020.104754_bib28) 2006; 7 Badham (10.1016/j.envsoft.2020.104754_bib1) 2019; 116 Knüsel (10.1016/j.envsoft.2020.104754_bib23) 2019; 9 Baumberger (10.1016/j.envsoft.2020.104754_bib2) 2017; 8 10.1016/j.envsoft.2020.104754_bib22 Kendall (10.1016/j.envsoft.2020.104754_bib20) 2017; vol. 11 Guillaume (10.1016/j.envsoft.2020.104754_bib12) 2015; 70 Bradley (10.1016/j.envsoft.2020.104754_bib6) 2014; 79 Held (10.1016/j.envsoft.2020.104754_bib17) 2005; 86 Kwakkel (10.1016/j.envsoft.2020.104754_bib25) 2010; 10 Roussos (10.1016/j.envsoft.2020.104754_bib40) Pietsch (10.1016/j.envsoft.2020.104754_bib37) 2015; 82 Parker (10.1016/j.envsoft.2020.104754_bib35) 2009; 83 Guillaume (10.1016/j.envsoft.2020.104754_bib13) 2017; 53 Reichstein (10.1016/j.envsoft.2020.104754_bib39) 2019; 566 Thompson (10.1016/j.envsoft.2020.104754_bib41) 2016; 83 Hamilton (10.1016/j.envsoft.2020.104754_bib15) 2019; 118 Parker (10.1016/j.envsoft.2020.104754_bib34) 2010; 41 Haasnoot (10.1016/j.envsoft.2020.104754_bib14) 2014; 60 Refsgaard (10.1016/j.envsoft.2020.104754_bib38) 2007; 22 (10.1016/j.envsoft.2020.104754_bib16) 2016; vol. 10 Betz (10.1016/j.envsoft.2020.104754_bib3) 2016; vol. 10 Winsberg (10.1016/j.envsoft.2020.104754_bib44) 2018 Gibert (10.1016/j.envsoft.2020.104754_bib11) 2018; 110 Oppenheimer (10.1016/j.envsoft.2020.104754_bib31) 2016; 6 Walker (10.1016/j.envsoft.2020.104754_bib42) 2003; 4 Gal (10.1016/j.envsoft.2020.104754_bib8) 2016; vol. 33 Parker (10.1016/j.envsoft.2020.104754_bib33) 2020 Weaver (10.1016/j.envsoft.2020.104754_bib43) 2013; 4 Morgan (10.1016/j.envsoft.2020.104754_bib29) 2014; 111 Jones (10.1016/j.envsoft.2020.104754_bib19) 2017; 114 Ghahramani (10.1016/j.envsoft.2020.104754_bib9) 2015; 521 Parker (10.1016/j.envsoft.2020.104754_bib36) 2015; 373 Northcott (10.1016/j.envsoft.2020.104754_bib30) 2019 Lloyd (10.1016/j.envsoft.2020.104754_bib27) 2009; 83 Overpeck (10.1016/j.envsoft.2020.104754_bib32) 2011; 331 Betz (10.1016/j.envsoft.2020.104754_bib4) 2016 Gibert (10.1016/j.envsoft.2020.104754_bib10) 2018; 106 Lahtinen (10.1016/j.envsoft.2020.104754_bib26) 2017; 92 |
References_xml | – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: bib39 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature – volume: 114 start-page: 2848 year: 2017 end-page: 2853 ident: bib19 article-title: Selenium deficiency risk predicted to increase under future climate change publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – start-page: 381 year: 2018 end-page: 412 ident: bib44 article-title: Communicating uncertainty to policymakers: the ineliminable role of values publication-title: , Edited by Elisabeth A. Lloyd and Eric Winsberg – volume: vol. 33 start-page: 10 year: 2016 ident: bib8 article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning publication-title: Proceedings of the 33rd International Conference on Machine Learning – volume: 331 start-page: 700 year: 2011 end-page: 702 ident: bib32 article-title: Climate data challenges in the 21st century publication-title: Science – volume: 41 start-page: 263 year: 2010 end-page: 272 ident: bib34 article-title: Predicting weather and climate: uncertainty, ensembles and probability publication-title: Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. – volume: 53 start-page: 6744 year: 2017 end-page: 6762 ident: bib13 article-title: Toward best practice framing of uncertainty in scientific publications: a review of water resources research abstracts publication-title: Water Resour. Res. – volume: 373 start-page: 20140453 year: 2015 ident: bib36 article-title: False precision, surprise and improved uncertainty assessment publication-title: Phil. Trans. Math. Phys. Eng. Sci. – volume: 22 start-page: 1543 year: 2007 end-page: 1556 ident: bib38 article-title: Anker lajer højberg, and peter A. Vanrolleghem. “Uncertainty in the environmental modelling process – a framework and guidance publication-title: Environ. Model. Software – year: 2020 ident: bib33 article-title: “Model evaluation: an adequacy-for-purpose view publication-title: Philos. Sci. – volume: vol. 11 year: 2017 ident: bib20 article-title: What uncertainties do we need in bayesian deep learning for computer vision? publication-title: Proceedings of the 31st Conference on Neural Information Processing Systems – volume: 116 start-page: 40 year: 2019 end-page: 56 ident: bib1 article-title: Effective modeling for integrated water resource management: a guide to contextual practices by phases and steps and future opportunities publication-title: Environ. Model. Software – volume: 70 start-page: 97 year: 2015 end-page: 112 ident: bib12 article-title: Prediction under uncertainty as a boundary problem: a general formulation using iterative closed question modelling publication-title: Environ. Model. Software – volume: 118 start-page: 83 year: 2019 end-page: 98 ident: bib15 article-title: A framework for characterising and evaluating the effectiveness of environmental modelling publication-title: Environ. Model. Software – volume: 79 start-page: 1225 year: 2014 end-page: 1248 ident: bib6 article-title: Types of uncertainty publication-title: Erkenntnis – volume: vol. 59 start-page: 325 year: 2018 ident: bib24 article-title: Climate model confirmation: from philosophy to predicting climate in the real world publication-title: , Edited by Elisabeth A. Lloyd and Eric Winsberg – year: 2018 ident: bib45 article-title: Philosophy and Climate Science – volume: 83 start-page: 213 year: 2009 end-page: 232 ident: bib27 article-title: “I—elisabeth A. Lloyd: varieties of support and confirmation of climate models publication-title: Aristotelian Society Supplementary – volume: vol. 10 start-page: 39 year: 2016 end-page: 77 ident: bib7 article-title: “Analysing practical argumentation.” in publication-title: Sven Ove Hansson and Gertrude Hirsch Hadorn – volume: vol. 32 year: 2015 ident: bib5 article-title: Weight uncertainty in neural networks publication-title: Proceedings of the 32nd International Conference on Machine Learning – year: 2019 ident: bib30 article-title: Big data and prediction: four case studies publication-title: Studies in History and Philosophy of Science – volume: 111 start-page: 7176 year: 2014 end-page: 7184 ident: bib29 article-title: Use (and abuse) of expert elicitation in support of decision making for public policy publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 6 start-page: 445 year: 2016 end-page: 451 ident: bib31 article-title: Expert judgement and uncertainty quantification for climate change publication-title: Nat. Clim. Change – volume: 60 start-page: 99 year: 2014 end-page: 120 ident: bib14 article-title: Fit for purpose? Building and evaluating a fast, integrated model for exploring water policy pathways publication-title: Environ. Model. Software – volume: 9 start-page: 196 year: 2019 end-page: 202 ident: bib23 article-title: Applying big data beyond small problems in climate research publication-title: Nat. Clim. Change – volume: 10 start-page: 299 year: 2010 ident: bib25 article-title: Classifying and communicating uncertainties in model-based policy analysis publication-title: Int. J. Technol. Pol. Manag. – volume: 83 start-page: 1110 year: 2016 end-page: 1121 ident: bib41 article-title: Expert judgment for climate change adaptation publication-title: Philos. Sci. – volume: 110 start-page: 3 year: 2018 end-page: 27 ident: bib11 article-title: Which method to use? An assessment of data mining methods in environmental data science publication-title: Environ. Model. Software – volume: 7 start-page: 983 year: 2006 end-page: 999 ident: bib28 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 8 start-page: e454 year: 2017 ident: bib2 article-title: Building confidence in climate model projections: an analysis of inferences from fit publication-title: Wiley Interdisciplinary Reviews: Climate Change – volume: 86 start-page: 1609 year: 2005 end-page: 1614 ident: bib17 article-title: The gap between simulation and understanding in climate modeling publication-title: Bull. Am. Meteorol. Soc. – volume: 92 start-page: 74 year: 2017 end-page: 81 ident: bib26 article-title: Why pay attention to paths in the practice of environmental modelling? publication-title: Environ. Model. Software – year: 2020 ident: bib40 article-title: Forthcoming. “Making confident decisions with model ensembles.” – volume: 4 start-page: 39 year: 2013 end-page: 60 ident: bib43 article-title: Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks: the value and demands of robust decision frameworks publication-title: Wiley Interdisciplinary Reviews: Climate Change – year: 2016 ident: bib4 article-title: Logik und Argumentationstheorie publication-title: Neues Handbuch des Philosophie-Unterrichts, edited by Jonas Pfister and Peter Zimmermann, 1. Auflage. UTB Philosophie, Ethik, Didaktik 4514. Bern – reference: Knüsel, Benedikt, and Christoph Baumberger. under review. “Understanding climate phenomena with data-driven models.”. – volume: 26 start-page: 289 year: 2011 end-page: 301 ident: bib21 article-title: A method for the analysis of assumptions in model-based environmental assessments publication-title: Environ. Model. Software – volume: 83 start-page: 233 year: 2009 end-page: 249 ident: bib35 article-title: Confirmation and adequacy-for-purpose in climate modelling publication-title: Aristotelian Society Supplementary – volume: vol. 10 year: 2016 ident: bib16 publication-title: The Argumentative Turn in Policy Analysis – volume: 52 start-page: 110 year: 2015 end-page: 119 ident: bib18 article-title: Decision strategies for policy decisions under uncertainties: the case of mitigation measures addressing methane emissions from ruminants publication-title: Environ. Sci. Pol. – volume: 521 start-page: 452 year: 2015 end-page: 459 ident: bib9 article-title: Probabilistic machine learning and artificial intelligence publication-title: Nature – volume: 106 start-page: 4 year: 2018 end-page: 12 ident: bib10 article-title: Environmental data science publication-title: Environ. Model. Software – volume: vol. 10 start-page: 135 year: 2016 end-page: 169 ident: bib3 article-title: “Accounting for possibilities in decision making.” in publication-title: Sven Ove Hansson and Gertrude Hirsch Hadorn – volume: 82 start-page: 905 year: 2015 end-page: 916 ident: bib37 article-title: Aspects of theory-ladenness in data-intensive science publication-title: Philos. Sci. – volume: 4 start-page: 5 year: 2003 end-page: 17 ident: bib42 article-title: Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support publication-title: Integrated Assess. – volume: 22 start-page: 1543 issue: 11 year: 2007 ident: 10.1016/j.envsoft.2020.104754_bib38 article-title: Anker lajer højberg, and peter A. Vanrolleghem. “Uncertainty in the environmental modelling process – a framework and guidance publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2007.02.004 – volume: vol. 32 year: 2015 ident: 10.1016/j.envsoft.2020.104754_bib5 article-title: Weight uncertainty in neural networks – volume: vol. 59 start-page: 325 year: 2018 ident: 10.1016/j.envsoft.2020.104754_bib24 article-title: Climate model confirmation: from philosophy to predicting climate in the real world – volume: 92 start-page: 74 issue: June year: 2017 ident: 10.1016/j.envsoft.2020.104754_bib26 article-title: Why pay attention to paths in the practice of environmental modelling? publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2017.02.019 – volume: vol. 10 start-page: 135 year: 2016 ident: 10.1016/j.envsoft.2020.104754_bib3 article-title: “Accounting for possibilities in decision making.” in the argumentative Turn in policy analysis – volume: 6 start-page: 445 issue: 5 year: 2016 ident: 10.1016/j.envsoft.2020.104754_bib31 article-title: Expert judgement and uncertainty quantification for climate change publication-title: Nat. Clim. Change doi: 10.1038/nclimate2959 – volume: 53 start-page: 6744 issue: 8 year: 2017 ident: 10.1016/j.envsoft.2020.104754_bib13 article-title: Toward best practice framing of uncertainty in scientific publications: a review of water resources research abstracts publication-title: Water Resour. Res. doi: 10.1002/2017WR020609 – volume: 10 start-page: 299 issue: 4 year: 2010 ident: 10.1016/j.envsoft.2020.104754_bib25 article-title: Classifying and communicating uncertainties in model-based policy analysis publication-title: Int. J. Technol. Pol. Manag. doi: 10.1504/IJTPM.2010.036918 – volume: vol. 11 year: 2017 ident: 10.1016/j.envsoft.2020.104754_bib20 article-title: What uncertainties do we need in bayesian deep learning for computer vision? – volume: 83 start-page: 213 issue: 1 year: 2009 ident: 10.1016/j.envsoft.2020.104754_bib27 article-title: “I—elisabeth A. Lloyd: varieties of support and confirmation of climate models publication-title: Aristotelian Society Supplementary doi: 10.1111/j.1467-8349.2009.00179.x – volume: 4 start-page: 5 issue: 1 year: 2003 ident: 10.1016/j.envsoft.2020.104754_bib42 article-title: Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support publication-title: Integrated Assess. doi: 10.1076/iaij.4.1.5.16466 – volume: 106 start-page: 4 issue: August year: 2018 ident: 10.1016/j.envsoft.2020.104754_bib10 article-title: Environmental data science publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2018.04.005 – volume: 70 start-page: 97 issue: August year: 2015 ident: 10.1016/j.envsoft.2020.104754_bib12 article-title: Prediction under uncertainty as a boundary problem: a general formulation using iterative closed question modelling publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2015.04.004 – volume: 82 start-page: 905 issue: 5 year: 2015 ident: 10.1016/j.envsoft.2020.104754_bib37 article-title: Aspects of theory-ladenness in data-intensive science publication-title: Philos. Sci. doi: 10.1086/683328 – year: 2020 ident: 10.1016/j.envsoft.2020.104754_bib33 article-title: “Model evaluation: an adequacy-for-purpose view publication-title: Philos. Sci. doi: 10.1086/708691 – volume: 566 start-page: 195 issue: February year: 2019 ident: 10.1016/j.envsoft.2020.104754_bib39 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 7 start-page: 983 year: 2006 ident: 10.1016/j.envsoft.2020.104754_bib28 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – year: 2018 ident: 10.1016/j.envsoft.2020.104754_bib45 – volume: 83 start-page: 1110 issue: 5 year: 2016 ident: 10.1016/j.envsoft.2020.104754_bib41 article-title: Expert judgment for climate change adaptation publication-title: Philos. Sci. doi: 10.1086/687942 – volume: 110 start-page: 3 issue: December year: 2018 ident: 10.1016/j.envsoft.2020.104754_bib11 article-title: Which method to use? An assessment of data mining methods in environmental data science publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2018.09.021 – volume: 331 start-page: 700 issue: 6018 year: 2011 ident: 10.1016/j.envsoft.2020.104754_bib32 article-title: Climate data challenges in the 21st century publication-title: Science doi: 10.1126/science.1197869 – volume: vol. 33 start-page: 10 year: 2016 ident: 10.1016/j.envsoft.2020.104754_bib8 article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning – volume: 79 start-page: 1225 issue: 6 year: 2014 ident: 10.1016/j.envsoft.2020.104754_bib6 article-title: Types of uncertainty publication-title: Erkenntnis doi: 10.1007/s10670-013-9518-4 – volume: 521 start-page: 452 issue: May year: 2015 ident: 10.1016/j.envsoft.2020.104754_bib9 article-title: Probabilistic machine learning and artificial intelligence publication-title: Nature doi: 10.1038/nature14541 – volume: 373 start-page: 20140453 year: 2015 ident: 10.1016/j.envsoft.2020.104754_bib36 article-title: False precision, surprise and improved uncertainty assessment publication-title: Phil. Trans. Math. Phys. Eng. Sci. – volume: 8 start-page: e454 issue: 3 year: 2017 ident: 10.1016/j.envsoft.2020.104754_bib2 article-title: Building confidence in climate model projections: an analysis of inferences from fit publication-title: Wiley Interdisciplinary Reviews: Climate Change – volume: 114 start-page: 2848 issue: 11 year: 2017 ident: 10.1016/j.envsoft.2020.104754_bib19 article-title: Selenium deficiency risk predicted to increase under future climate change publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1611576114 – volume: 4 start-page: 39 issue: 1 year: 2013 ident: 10.1016/j.envsoft.2020.104754_bib43 article-title: Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks: the value and demands of robust decision frameworks publication-title: Wiley Interdisciplinary Reviews: Climate Change – volume: vol. 10 start-page: 39 year: 2016 ident: 10.1016/j.envsoft.2020.104754_bib7 article-title: “Analysing practical argumentation.” in the argumentative Turn in policy analysis – volume: 26 start-page: 289 issue: 3 year: 2011 ident: 10.1016/j.envsoft.2020.104754_bib21 article-title: A method for the analysis of assumptions in model-based environmental assessments publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2009.06.009 – volume: 60 start-page: 99 issue: October year: 2014 ident: 10.1016/j.envsoft.2020.104754_bib14 article-title: Fit for purpose? Building and evaluating a fast, integrated model for exploring water policy pathways publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2014.05.020 – volume: 111 start-page: 7176 issue: 20 year: 2014 ident: 10.1016/j.envsoft.2020.104754_bib29 article-title: Use (and abuse) of expert elicitation in support of decision making for public policy publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1319946111 – volume: 83 start-page: 233 issue: 1 year: 2009 ident: 10.1016/j.envsoft.2020.104754_bib35 article-title: Confirmation and adequacy-for-purpose in climate modelling publication-title: Aristotelian Society Supplementary doi: 10.1111/j.1467-8349.2009.00180.x – ident: 10.1016/j.envsoft.2020.104754_bib22 – volume: vol. 10 year: 2016 ident: 10.1016/j.envsoft.2020.104754_bib16 – volume: 118 start-page: 83 issue: August year: 2019 ident: 10.1016/j.envsoft.2020.104754_bib15 article-title: A framework for characterising and evaluating the effectiveness of environmental modelling publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2019.04.008 – volume: 52 start-page: 110 issue: October year: 2015 ident: 10.1016/j.envsoft.2020.104754_bib18 article-title: Decision strategies for policy decisions under uncertainties: the case of mitigation measures addressing methane emissions from ruminants publication-title: Environ. Sci. Pol. doi: 10.1016/j.envsci.2015.05.011 – year: 2016 ident: 10.1016/j.envsoft.2020.104754_bib4 article-title: Logik und Argumentationstheorie – volume: 86 start-page: 1609 issue: 11 year: 2005 ident: 10.1016/j.envsoft.2020.104754_bib17 article-title: The gap between simulation and understanding in climate modeling publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-86-11-1609 – year: 2019 ident: 10.1016/j.envsoft.2020.104754_bib30 article-title: Big data and prediction: four case studies publication-title: Studies in History and Philosophy of Science – volume: 9 start-page: 196 year: 2019 ident: 10.1016/j.envsoft.2020.104754_bib23 article-title: Applying big data beyond small problems in climate research publication-title: Nat. Clim. Change doi: 10.1038/s41558-019-0404-1 – start-page: 381 year: 2018 ident: 10.1016/j.envsoft.2020.104754_bib44 article-title: Communicating uncertainty to policymakers: the ineliminable role of values – volume: 116 start-page: 40 issue: June year: 2019 ident: 10.1016/j.envsoft.2020.104754_bib1 article-title: Effective modeling for integrated water resource management: a guide to contextual practices by phases and steps and future opportunities publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2019.02.013 – ident: 10.1016/j.envsoft.2020.104754_bib40 – volume: 41 start-page: 263 issue: 3 year: 2010 ident: 10.1016/j.envsoft.2020.104754_bib34 article-title: Predicting weather and climate: uncertainty, ensembles and probability publication-title: Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. doi: 10.1016/j.shpsb.2010.07.006 |
SSID | ssj0001524 |
Score | 2.361391 |
Snippet | Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide... |
SourceID | unpaywall proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104754 |
SubjectTerms | Argument analysis case studies computer software Data-driven models Decision making Environment models Environmental modeling Environmental science Learning algorithms Machine learning Predictions Uncertainty |
Title | Argument-based assessment of predictive uncertainty of data-driven environmental models |
URI | https://dx.doi.org/10.1016/j.envsoft.2020.104754 https://www.proquest.com/docview/2468689793 https://www.proquest.com/docview/2574337278 https://www.sciencedirect.com/science/article/am/pii/S1364815220300463?via%3Dihub |
UnpaywallVersion | publishedVersion |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1873-6726 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1873-6726 databaseCode: .~1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1873-6726 databaseCode: ACRLP dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1873-6726 databaseCode: AIKHN dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1873-6726 databaseCode: AKRWK dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NmxDwwEdhouxDQeLVTdI4jv1YTZ06EHuBib1ZtuOgTVVa9QPUF_527hKn7R7QEI9x7izL5_uwfPc7gI8yzV2RZZwRNhnjjltm00SyvOJpWQpXmZSqkb9ci8kN_3Sb3x7ARVcLQ2mVwfa3Nr2x1mEkDrsZz-_u4q9pJghpZDhMCDVKEOInoX_hmR783qV5IEHb2FZwRtS7Kp74fuDrn0u0dnhNHDavnUXO_-af9uLPp-t6bja_zHS654ouX8GLEENGo3aZr-HA1z142fVniIK69uDJuIGk3vTg-R7sYA-Ox7vqNpwn0C_fwPfR4seaRhk5tzIyW9jOaFZF8wU96pB5jNAZtqkEqw39oTRTVi7IcEb-wdxNo53lW7i5HH-7mLDQeYE5nhYr5gmITzmhTO4IAC63vEgqxV3qK1Rx6ysnjCAEUbztOOs8L7y00jnljfdFlR3DYT2r_TuInHIWyawsXMYr5ZWVIjFSlgI5s0T1gXf7rV2AJafuGFPd5Z_d6yAmTWLSrZj6MNiyzVtcjscYZCdM_eCAafQdj7GedsLXQcOXesiFFFKheevDh-1v1E16cDG1n62RJsf4LMMIUfYh3h6af1vv-_9f7wk8o6826eYUDleLtT_D0GllzxvdOIej0dXnyfUfpKYacQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5BEWJ7GKOA1g22IO3VJGkcx36sUFEZ0BdA482yHQeBqrTqj0397-drnFAeJhCvts-yfL7vzvL5O4CfPE5NliSUIDcZoYZqouOIk7SgcZ4zU6gYfyNfD9ngjv66T-834Kz-C4NplR77K0xfobVvCf1uhpPHx_AmThgyjXS7EbJGsWQTtmjqMLkFW72Ly8GwAWQ3pqptyyhBgeePPOHTqS3_zBzguZtid_XgmaX0fy5qLQTdWZQTtfyrRqM1b3T-GT75MDLoVSvdgw1btmG3LtEQeIttw3Z_xUq9bMPHNebBNhz2nz-4uXn8-Nk-_O5NHxbYStC_5YFqmDuDcRFMpviugwgZOH9YZRPMl9iDmaYknyJ2BvbF3KtaO7MDuDvv354NiC--QAyNszmxyMUnDBMqNcgBl2qaRYWgJraFs3JtC8MUQxJRd-Ex2liaWa65McIqa7MiOYRWOS7tFwiMMNoN0zwzCS2EFZqzSHGeMyeZRKIDtN5vaTwzORbIGMk6Be1JejVJVJOs1NSB00ZsUlFzvCbAa2XKF2dMOvfxmuhRrXzpjXwmu5RxxoVDuA6cNN3OPPHNRZV2vHBjUheiJS5I5B0Im0PztvV-ff96f8DO4Pb6Sl5dDC-_wQfsqXJwjqA1ny7ssYuk5vq7t5R_KI8dHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Argument-based+assessment+of+predictive+uncertainty+of+data-driven+environmental+models&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Kn%C3%BCsel%2C+Benedikt&rft.au=Baumberger%2C+Christoph&rft.au=Zumwald%2C+Marius&rft.au=Bresch%2C+David+N.&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=1364-8152&rft.eissn=1873-6726&rft.volume=134&rft_id=info:doi/10.1016%2Fj.envsoft.2020.104754&rft.externalDocID=S1364815220300463 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon |