A general algorithm to build real-radiation antenna functions for higher-order calculations

A bstract The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in α s (NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair o...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2023; no. 6; pp. 65 - 56
Main Authors Braun-White, Oscar, Glover, Nigel, Preuss, Christian T
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 13.06.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1127-2236
1029-8479
DOI10.1007/JHEP06(2023)065

Cover

Abstract A bstract The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in α s (NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair of hard radiator partons directly from a specified list of unresolved limits. We use the algorithm to explicitly build all single- and double-real QCD antenna functions and compare them to the previous antenna functions, which were extracted from matrix elements. The improved antenna functions should be more easily applicable to NNLO subtraction terms. Finally, we match the integration of the antenna functions over the final-final unresolved phase space to the previous incarnation, serving as an independent check on our results.
AbstractList A bstract The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in α s (NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair of hard radiator partons directly from a specified list of unresolved limits. We use the algorithm to explicitly build all single- and double-real QCD antenna functions and compare them to the previous antenna functions, which were extracted from matrix elements. The improved antenna functions should be more easily applicable to NNLO subtraction terms. Finally, we match the integration of the antenna functions over the final-final unresolved phase space to the previous incarnation, serving as an independent check on our results.
Abstract The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in α s (NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair of hard radiator partons directly from a specified list of unresolved limits. We use the algorithm to explicitly build all single- and double-real QCD antenna functions and compare them to the previous antenna functions, which were extracted from matrix elements. The improved antenna functions should be more easily applicable to NNLO subtraction terms. Finally, we match the integration of the antenna functions over the final-final unresolved phase space to the previous incarnation, serving as an independent check on our results.
The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in αs (NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair of hard radiator partons directly from a specified list of unresolved limits. We use the algorithm to explicitly build all single- and double-real QCD antenna functions and compare them to the previous antenna functions, which were extracted from matrix elements. The improved antenna functions should be more easily applicable to NNLO subtraction terms. Finally, we match the integration of the antenna functions over the final-final unresolved phase space to the previous incarnation, serving as an independent check on our results.
The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in α s (NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair of hard radiator partons directly from a specified list of unresolved limits. We use the algorithm to explicitly build all single- and double-real QCD antenna functions and compare them to the previous antenna functions, which were extracted from matrix elements. The improved antenna functions should be more easily applicable to NNLO subtraction terms. Finally, we match the integration of the antenna functions over the final-final unresolved phase space to the previous incarnation, serving as an independent check on our results.
ArticleNumber 65
Author Braun-White, Oscar
Glover, Nigel
Preuss, Christian T
Author_xml – sequence: 1
  givenname: Oscar
  orcidid: 0000-0001-5417-598X
  surname: Braun-White
  fullname: Braun-White, Oscar
  email: oscar.r.braun-white@durham.ac.uk
  organization: Institute for Particle Physics Phenomenology, Department of Physics, Durham University
– sequence: 2
  givenname: Nigel
  orcidid: 0000-0002-0173-4175
  surname: Glover
  fullname: Glover, Nigel
  organization: Institute for Particle Physics Phenomenology, Department of Physics, Durham University
– sequence: 3
  givenname: Christian T
  orcidid: 0000-0003-1254-0250
  surname: Preuss
  fullname: Preuss, Christian T
  organization: Institute for Theoretical Physics, ETH
BookMark eNp1kc1v1DAQxS1UJNrCmaslLnBIO3YcJz5WVaFFleAAJw7WxB9Zr1x7cRKh_vdkN1VbFXGyNXrvp3lvTshRyskR8p7BGQNoz79eX30H-ZEDrz-BbF6RYwZcVZ1o1dGz_xtyMo5bANYwBcfk1wUdXHIFI8U45BKmzR2dMu3nEC0tDmNV0AacQk4U0-RSQurnZPaDkfpc6CYMG1eqXKwr1GA0czzIx7fktcc4uncP7yn5-fnqx-V1dfvty83lxW1lBGunytq-N1yBEsYJJhy4Gk3nWyml8rxn4JdMTe87YEZ1XnhosEHBHYKADk19Sm5Wrs241bsS7rDc64xBHwa5DBrLFEx0milf1x6sbFGIVnQdtzUT3AovW265Wliwsua0w_s_GOMjkIHeF623G7cDqfdF66XoxfJhtexK_j27cdLbPJe0JNa841Ip2bRyUTWrypQ8jsV5bcJ06GkqGOIjfT3jc_r5C9_Lff51PEQYF2UaXHna53-Wvws7rpo
CitedBy_id crossref_primary_10_1007_JHEP03_2024_114
crossref_primary_10_1007_JHEP12_2023_198
crossref_primary_10_1007_JHEP07_2024_161
crossref_primary_10_1007_JHEP06_2023_185
crossref_primary_10_1007_JHEP12_2024_225
crossref_primary_10_1007_JHEP08_2024_073
crossref_primary_10_1007_JHEP11_2023_179
crossref_primary_10_1007_JHEP12_2023_171
Cites_doi 10.1007/JHEP01(2018)145
10.1103/PhysRevD.78.014026
10.1140/epjc/s10052-015-3417-6
10.1016/j.cpc.2012.12.028
10.1016/j.nuclphysbps.2010.08.039
10.21468/SciPostPhys.7.3.034
10.1007/JHEP01(2020)118
10.1007/JHEP04(2020)112
10.22323/1.151.0061
10.1007/JHEP10(2017)093
10.1103/PhysRevD.96.074017
10.1103/PhysRevD.94.074019
10.1016/j.physletb.2017.05.011
10.1103/PhysRevD.104.L111503
10.1007/JHEP02(2011)098
10.1007/JHEP12(2022)066
10.1007/JHEP05(2016)058
10.1007/JHEP10(2012)047
10.1007/JHEP11(2012)074
10.1088/1126-6708/2007/11/070
10.1103/PhysRevD.85.034025
10.1140/epjc/s10052-020-8011-x
10.1016/S0550-3213(99)00778-6
10.1007/JHEP06(2010)043
10.1007/JHEP08(2018)006
10.1088/1126-6708/2004/11/040
10.1103/PhysRevD.98.114016
10.1103/PhysRevD.107.L011506
10.1103/PhysRevLett.127.072001
10.1088/1126-6708/2009/07/041
10.1103/PhysRev.133.B1549
10.1007/JHEP05(2018)209
10.1016/j.physletb.2005.02.039
10.1103/PhysRevLett.98.222002
10.1007/JHEP02(2019)096
10.1007/JHEP08(2011)012
10.1016/S0550-3213(99)00657-4
10.1007/JHEP12(2018)107
10.1063/1.1724268
10.1016/0550-3213(96)00110-1
10.1016/j.nuclphysb.2004.01.023
10.1088/1126-6708/2007/12/094
10.1007/JHEP02(2015)106
10.1007/JHEP01(2023)168
10.1088/1126-6708/2005/09/056
10.21468/SciPostPhysCodeb.8
10.1007/JHEP07(2014)079
10.1016/j.physletb.2010.08.036
10.1088/1126-6708/2002/06/029
10.1007/JHEP09(2022)059
10.1016/0010-4655(92)90068-A
10.1007/JHEP10(2013)161
10.1103/PhysRevLett.117.072001
10.1007/JHEP06(2010)096
10.1088/1126-6708/2007/04/016
10.1007/JHEP10(2020)093
10.1103/PhysRevD.98.074013
10.1007/JHEP05(2018)028
10.1016/S0370-2693(98)01513-5
10.1007/JHEP04(2013)066
10.1016/j.physletb.2022.137614
10.5506/APhysPolB.44.2179
10.1103/PhysRevD.105.114012
10.1016/j.physletb.2005.03.003
10.1088/1126-6708/2007/11/058
10.1103/PhysRevD.84.054003
10.1103/PhysRevD.99.034004
10.1016/j.physletb.2023.137876
10.1103/PhysRevLett.115.082002
10.1140/epjc/s10052-017-4774-0
10.1103/PhysRevLett.114.212001
10.1007/JHEP07(2020)032
10.1103/PhysRevD.67.116003
10.1140/epjc/s10052-016-4429-6
10.1007/JHEP08(2020)017
10.1016/S0550-3213(98)00295-8
10.1016/S0550-3213(96)00589-5
10.1016/0550-3213(77)90384-4
10.1007/JHEP09(2015)058
10.1007/JHEP06(2011)032
10.1007/JHEP01(2023)040
10.1007/JHEP02(2020)189
10.1007/JHEP10(2013)127
10.1103/PhysRevLett.99.132002
10.1007/JHEP04(2012)076
10.1140/epjc/s10052-013-2310-4
10.1140/epjc/s10052-021-08996-y
10.1007/JHEP10(2022)099
10.1007/JHEP01(2010)118
10.1007/JHEP04(2011)063
10.1016/0550-3213(88)90441-5
10.1007/JHEP12(2011)049
10.1007/JHEP11(2020)143
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.1007/JHEP06(2023)065
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 56
ExternalDocumentID oai_doaj_org_article_19f33f0d67a4474882d3142d4f672d29
oai:durham-repository.worktribe.com:1171577
10_1007_JHEP06_2023_065
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
ADTOC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
UNPAY
ID FETCH-LOGICAL-c417t-ddbbc29094ce414e0e3ac8f76669f2b10f2025bf801c98f4f05a5a42ea0408ac3
IEDL.DBID UNPAY
ISSN 1029-8479
1126-6708
1127-2236
IngestDate Fri Oct 03 12:45:21 EDT 2025
Sun Oct 26 03:59:31 EDT 2025
Sat Oct 18 22:43:47 EDT 2025
Wed Oct 01 01:46:55 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
Fri Feb 21 02:41:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Parton Shower
Higher-Order Perturbative Calculations
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-ddbbc29094ce414e0e3ac8f76669f2b10f2025bf801c98f4f05a5a42ea0408ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0173-4175
0000-0003-1254-0250
0000-0001-5417-598X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://durham-repository.worktribe.com/output/1171577
PQID 2826996576
PQPubID 2034718
PageCount 56
ParticipantIDs doaj_primary_oai_doaj_org_article_19f33f0d67a4474882d3142d4f672d29
unpaywall_primary_10_1007_jhep06_2023_065
proquest_journals_2826996576
crossref_citationtrail_10_1007_JHEP06_2023_065
crossref_primary_10_1007_JHEP06_2023_065
springer_journals_10_1007_JHEP06_2023_065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-13
PublicationDateYYYYMMDD 2023-06-13
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-13
  day: 13
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References CampbellJMTowards NNLO+PS matching with sector showersPhys. Lett. B202383607646125[arXiv:2108.07133] [INSPIRE]
G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections tott¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}production at the LHC: thegg→tt¯qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ gg\to t\overline{t}q\overline{q} $$\end{document}channel, JHEP11 (2012) 074 [arXiv:1207.6546] [INSPIRE].
A. Daleo, T. Gehrmann and D. Maitre, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [INSPIRE].
CieriLHiggs boson production at the LHC using the qTsubtraction formalism at N3LO QCDJHEP2019020962019JHEP...02..096C[arXiv:1807.11501] [INSPIRE]
L. Lonnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun.71 (1992) 15 [INSPIRE].
Gehrmann-De RidderAGehrmannTGloverEWNHeinrichGNNLO corrections to event shapes in e+e−annihilationJHEP2007120942007JHEP...12..094G[arXiv:0711.4711] [INSPIRE]
GehrmannTMonniPFAntenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurationsJHEP2011120492011JHEP...12..049G1306.81339[arXiv:1107.4037] [INSPIRE]
CurrieJN3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born methodJHEP2018052092018JHEP...05..209C[arXiv:1803.09973] [INSPIRE]
DreyerFAKarlbergAVector-Boson Fusion Higgs Pair Production at N3LOPhys. Rev. D2018982018PhRvD..98k4016D[arXiv:1811.07906] [INSPIRE]
GieleWTKosowerDASkandsPZHigher-Order Corrections to Timelike JetsPhys. Rev. D2011842011PhRvD..84e4003G[arXiv:1102.2126] [INSPIRE]
L. Magnea et al., Local analytic sector subtraction at NNLO, JHEP12 (2018) 107 [Erratum ibid.06 (2019) 013] [arXiv:1806.09570] [INSPIRE].
DreyerFAKarlbergAVector-Boson Fusion Higgs Production at Three Loops in QCDPhys. Rev. Lett.20161172016PhRvL.117g2001D[arXiv:1606.00840] [INSPIRE]
A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B612 (2005) 49 [hep-ph/0502110] [INSPIRE].
J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
JadachSKusinaAPłaczekWSkrzypekMNLO corrections in the initial-state parton shower Monte CarloActa Phys. Polon. B20134421792013AcPPB..44.2179J[arXiv:1310.6090] [INSPIRE]
ChenL-BLiHTShaoH-SWangJHiggs boson pair production via gluon fusion at N3LO in QCDPhys. Lett. B2020803[arXiv:1909.06808] [INSPIRE]
PiresJGloverEWNDouble real radiation corrections to gluon scattering at NNLONucl. Phys. B Proc. Suppl.2010205-2061762010NuPhS.205..176P[arXiv:1006.1849] [INSPIRE]
FrixioneSNasonPOleariCMatching NLO QCD computations with Parton Shower simulations: the POWHEG methodJHEP2007110702007JHEP...11..070F[arXiv:0709.2092] [INSPIRE]
S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B570 (2000) 287 [hep-ph/9908523] [INSPIRE].
J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
AbelofGGehrmann-De RidderAAntenna subtraction for the production of heavy particles at hadron collidersJHEP2011040632011JHEP...04..063A[arXiv:1102.2443] [INSPIRE]
BaberuxkiNPreussCTReicheltDSchumannSResummed predictions for jet-resolution scales in multijet production in e+e−annihilationJHEP2020041122020JHEP...04..112B[arXiv:1912.09396] [INSPIRE]
S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [INSPIRE].
G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections to top-antitop production at the LHC, PoSLL2012 (2012) 061 [INSPIRE].
HöcheSPrestelSTriple collinear emissions in parton showersPhys. Rev. D2017962017PhRvD..96g4017H[arXiv:1705.00742] [INSPIRE]
GieleWTKosowerDASkandsPZA simple shower and matching algorithmPhys. Rev. D2008782008PhRvD..78a4026G[arXiv:0707.3652] [INSPIRE]
P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
G. Gustafson and U. Pettersson, Dipole Formulation of QCD Cascades, Nucl. Phys. B306 (1988) 746 [INSPIRE].
ChenXAutomation of antenna subtraction in colour space: gluonic processesJHEP2022100992022JHEP...10..099C[arXiv:2203.13531] [INSPIRE]
W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna function forS→QQ¯qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q}q\overline{q} $$\end{document}at NNLO QCD, JHEP06 (2011) 032 [arXiv:1105.0530] [INSPIRE].
SjödahlMColorFull — a C++ library for calculations in SU(Nc) color spaceEur. Phys. J. C2015752362015EPJC...75..236S[arXiv:1412.3967] [INSPIRE]
Braun-WhiteOGloverNDecomposition of triple collinear splitting functionsJHEP2022090592022JHEP...09..059B07647423[arXiv:2204.10755] [INSPIRE]
Nigel GloverEWPiresJAntenna subtraction for gluon scattering at NNLOJHEP2010060961288.81147[arXiv:1003.2824] [INSPIRE]
DulatFHöcheSPrestelSLeading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole ShowersPhys. Rev. D2018982018PhRvD..98g4013D[arXiv:1805.03757] [INSPIRE]
A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in massless QCD, Nucl. Phys. B682 (2004) 265 [hep-ph/0311276] [INSPIRE].
HöcheSKraussFPrestelSImplementing NLO DGLAP evolution in Parton ShowersJHEP2017100932017JHEP...10..093H[arXiv:1705.00982] [INSPIRE]
BellmJHerwig 7.2 release noteEur. Phys. J. C2020804522020EPJC...80..452B[arXiv:1912.06509] [INSPIRE]
DuhrCDulatFMistlbergerBCharged current Drell-Yan production at N3LOJHEP2020111432020JHEP...11..143D[arXiv:2007.13313] [INSPIRE]
M. Löschner, S. Plätzer and E.S. Dore, Multi-Emission Kernels for Parton Branching Algorithms, arXiv:2112.14454 [INSPIRE].
HerzogFGeometric IR subtraction for final state real radiationJHEP2018080062018JHEP...08..006H3867258[arXiv:1804.07949] [INSPIRE]
AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A1290.81155[arXiv:1002.2581] [INSPIRE]
BrooksHPreussCTSkandsPSector Showers for Hadron CollisionsJHEP2020070322020JHEP...07..032B[arXiv:2003.00702] [INSPIRE]
Del DucaVTree-level splitting amplitudes for a quark into four collinear partonsJHEP2020021892020JHEP...02..189D4089092[arXiv:1912.06425] [INSPIRE]
DulatFMistlbergerBPelloniADifferential Higgs production at N3LO beyond thresholdJHEP2018011452018JHEP...01..145D[arXiv:1710.03016] [INSPIRE]
Del DucaVDuhrCHaindlRLiuZTree-level soft emission of a quark pair in association with a gluonJHEP2023010402023JHEP...01..040D07675228[arXiv:2206.01584] [INSPIRE]
LiHTSkandsPA framework for second-order parton showersPhys. Lett. B2017771592017PhLB..771...59L1372.81147[arXiv:1611.00013] [INSPIRE]
GerwickEHoecheSMarzaniSSchumannSSoft evolution of multi-jet final statesJHEP2015021062015JHEP...02..106G33213471388.81105[arXiv:1411.7325] [INSPIRE]
JakubčíkPMarcoliMStagnittoGThe parton-level structure of e+e−to 2 jets at N3LOJHEP2023011682023JHEP...01..168J[arXiv:2211.08446] [INSPIRE]
AnastasiouCHiggs Boson Gluon-Fusion Production in QCD at Three LoopsPhys. Rev. Lett.20151142015PhRvL.114u2001A[arXiv:1503.06056] [INSPIRE]
CamardaSCieriLFerreraGDrell-Yan lepton-pair production: qT resummation at N3LL accuracy and fiducial cross sections at N3LOPhys. Rev. D2021104L1115032021PhRvD.104k1503C[arXiv:2103.04974] [INSPIRE]
AnastasiouCHigh precision determination of the gluon fusion Higgs boson cross-section at the LHCJHEP2016050582016JHEP...05..058A[arXiv:1602.00695] [INSPIRE]
CzakonMA novel subtraction scheme for double-real radiation at NNLOPhys. Lett. B20106932592010PhLB..693..259C[arXiv:1005.0274] [INSPIRE]
A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett.99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].
O. Dekkers and W. Bernreuther, The real-virtual antenna functions forS→QQ¯X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q}X $$\end{document}at NNLO QCD, Phys. Lett. B738 (2014) 325 [arXiv:1409.3124] [INSPIRE].
MistlbergerBHiggs boson production at hadron colliders at N3LO in QCDJHEP2018050282018JHEP...05..028M[arXiv:1802.00833] [INSPIRE]
C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, arXiv:2203.11601 [https://doi.org/10.21468/SciPostPhysCodeb.8] [INSPIRE].
W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna functions forS→QQ¯gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q} gg $$\end{document}at NNLO QCD, JHEP10 (2013) 161 [arXiv:1309.6887] [INSPIRE].
M. Cacciari et al., Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].
J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B527 (1998) 264 [hep-ph/9710255] [INSPIRE].
DuhrCDulatFMistlbergerBDrell-Yan Cross Section to Third Order in the
L Hartgring (21061_CR28) 2013; 10
21061_CR34
F Dulat (21061_CR47) 2019; 99
C Anastasiou (21061_CR36) 2016; 05
FA Dreyer (21061_CR43) 2018; 98
FA Dreyer (21061_CR38) 2016; 117
JM Campbell (21061_CR25) 2023; 836
C Duhr (21061_CR40) 2020; 08
F Herzog (21061_CR23) 2018; 08
J Gaunt (21061_CR18) 2015; 09
21061_CR22
S Catani (21061_CR86) 2020; 01
WT Giele (21061_CR78) 2008; 78
X Chen (21061_CR52) 2022; 128
L-B Chen (21061_CR41) 2020; 803
C Duhr (21061_CR45) 2020; 125
21061_CR63
21061_CR61
V Del Duca (21061_CR88) 2020; 02
T Neumann (21061_CR53) 2023; 107
21061_CR59
21061_CR58
A Gehrmann-De Ridder (21061_CR60) 2007; 11
HT Li (21061_CR29) 2017; 771
21061_CR102
21061_CR101
WJ Torres Bobadilla (21061_CR24) 2021; 81
21061_CR103
X Chen (21061_CR50) 2022; 128
E Gerwick (21061_CR93) 2015; 02
T Gehrmann (21061_CR66) 2011; 12
X Chen (21061_CR55) 2023; 840
S Jadach (21061_CR27) 2013; 44
S Alioli (21061_CR9) 2010; 06
X Chen (21061_CR97) 2022; 10
J Alwall (21061_CR10) 2014; 07
J Bellm (21061_CR11) 2020; 80
N Baberuxki (21061_CR94) 2020; 04
WT Giele (21061_CR79) 2011; 84
S Höche (21061_CR30) 2017; 10
H Brooks (21061_CR81) 2020; 07
J Pires (21061_CR104) 2010; 205-206
F Dulat (21061_CR32) 2018; 98
21061_CR1
A Gehrmann-De Ridder (21061_CR68) 2009; 07
C Duhr (21061_CR39) 2020; 125
A Gehrmann-De Ridder (21061_CR62) 2007; 12
R Boughezal (21061_CR65) 2011; 02
21061_CR84
A Gehrmann-De Ridder (21061_CR67) 2012; 10
21061_CR85
21061_CR82
L Cieri (21061_CR48) 2019; 02
21061_CR83
21061_CR77
C Anastasiou (21061_CR35) 2015; 114
21061_CR6
21061_CR75
21061_CR7
21061_CR76
V Del Duca (21061_CR90) 2023; 01
EW Nigel Glover (21061_CR95) 2010; 06
21061_CR4
X Chen (21061_CR49) 2021; 127
21061_CR5
21061_CR2
21061_CR3
M Sjödahl (21061_CR91) 2013; 73
J Baglio (21061_CR56) 2022; 12
O Braun-White (21061_CR100) 2022; 09
G Abelof (21061_CR71) 2011; 04
21061_CR70
21061_CR73
21061_CR74
21061_CR72
S Jadach (21061_CR26) 2011; 08
21061_CR69
N Fischer (21061_CR80) 2016; 76
M Czakon (21061_CR16) 2010; 693
S Frixione (21061_CR8) 2007; 11
V Del Duca (21061_CR20) 2016; 94
G Billis (21061_CR51) 2021; 127
P Jakubčík (21061_CR57) 2023; 01
R Boughezal (21061_CR17) 2012; 85
B Mistlberger (21061_CR37) 2018; 05
F Caola (21061_CR21) 2017; 77
L Gellersen (21061_CR33) 2022; 105
S Camarda (21061_CR54) 2021; 104
A Daleo (21061_CR64) 2010; 01
21061_CR99
21061_CR12
21061_CR98
21061_CR15
21061_CR13
21061_CR14
V Del Duca (21061_CR89) 2020; 10
21061_CR19
J Currie (21061_CR42) 2018; 05
M Sjödahl (21061_CR92) 2015; 75
S Höche (21061_CR31) 2017; 96
C Duhr (21061_CR44) 2020; 11
21061_CR87
J Currie (21061_CR96) 2013; 04
F Dulat (21061_CR46) 2018; 01
References_xml – reference: SjödahlMColorFull — a C++ library for calculations in SU(Nc) color spaceEur. Phys. J. C2015752362015EPJC...75..236S[arXiv:1412.3967] [INSPIRE]
– reference: GauntJStahlhofenMTackmannFJWalshJRN-jettiness Subtractions for NNLO QCD CalculationsJHEP201509058[arXiv:1505.04794] [INSPIRE]
– reference: J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
– reference: DulatFHöcheSPrestelSLeading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole ShowersPhys. Rev. D2018982018PhRvD..98g4013D[arXiv:1805.03757] [INSPIRE]
– reference: Braun-WhiteOGloverNDecomposition of triple collinear splitting functionsJHEP2022090592022JHEP...09..059B07647423[arXiv:2204.10755] [INSPIRE]
– reference: S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B467 (1996) 399 [hep-ph/9512328] [INSPIRE].
– reference: MistlbergerBHiggs boson production at hadron colliders at N3LO in QCDJHEP2018050282018JHEP...05..028M[arXiv:1802.00833] [INSPIRE]
– reference: S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B570 (2000) 287 [hep-ph/9908523] [INSPIRE].
– reference: LiHTSkandsPA framework for second-order parton showersPhys. Lett. B2017771592017PhLB..771...59L1372.81147[arXiv:1611.00013] [INSPIRE]
– reference: AnastasiouCHiggs Boson Gluon-Fusion Production in QCD at Three LoopsPhys. Rev. Lett.20151142015PhRvL.114u2001A[arXiv:1503.06056] [INSPIRE]
– reference: V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B568 (2000) 211 [hep-ph/9909464] [INSPIRE].
– reference: DuhrCDulatFMistlbergerBCharged current Drell-Yan production at N3LOJHEP2020111432020JHEP...11..143D[arXiv:2007.13313] [INSPIRE]
– reference: CurrieJN3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born methodJHEP2018052092018JHEP...05..209C[arXiv:1803.09973] [INSPIRE]
– reference: DuhrCDulatFMistlbergerBDrell-Yan Cross Section to Third Order in the Strong Coupling ConstantPhys. Rev. Lett.20201252020PhRvL.125q2001D[arXiv:2001.07717] [INSPIRE]
– reference: Gehrmann-De RidderAGehrmannTRitzmannMAntenna subtraction at NNLO with hadronic initial states: double real initial-initial configurationsJHEP2012100472012JHEP...10..047G1294.81270[arXiv:1207.5779] [INSPIRE]
– reference: GieleWTKosowerDASkandsPZHigher-Order Corrections to Timelike JetsPhys. Rev. D2011842011PhRvD..84e4003G[arXiv:1102.2126] [INSPIRE]
– reference: M. Cacciari et al., Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].
– reference: Gehrmann-De RidderARitzmannMNLO Antenna Subtraction with Massive FermionsJHEP2009070412009JHEP...07..041G[arXiv:0904.3297] [INSPIRE]
– reference: DuhrCDulatFMistlbergerBHiggs Boson Production in Bottom-Quark Fusion to Third Order in the Strong CouplingPhys. Rev. Lett.20201252020PhRvL.125e1804D4131294[arXiv:1904.09990] [INSPIRE]
– reference: FischerNPrestelSRitzmannMSkandsPVincia for Hadron CollidersEur. Phys. J. C2016765892016EPJC...76..589F[arXiv:1605.06142] [INSPIRE]
– reference: Del DucaVDuhrCHaindlRLiuZTree-level soft emission of a quark pair in association with a gluonJHEP2023010402023JHEP...01..040D07675228[arXiv:2206.01584] [INSPIRE]
– reference: CaolaFMelnikovKRöntschRNested soft-collinear subtractions in NNLO QCD computationsEur. Phys. J. C2017772482017EPJC...77..248C[arXiv:1702.01352] [INSPIRE]
– reference: BrooksHPreussCTSkandsPSector Showers for Hadron CollisionsJHEP2020070322020JHEP...07..032B[arXiv:2003.00702] [INSPIRE]
– reference: BoughezalRGehrmann-De RidderARitzmannMAntenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavoursJHEP2011020982011JHEP...02..098B1294.81270[arXiv:1011.6631] [INSPIRE]
– reference: GellersenLHöcheSPrestelSDisentangling soft and collinear effects in QCD parton showersPhys. Rev. D20221052022PhRvD.105k4012G[arXiv:2110.05964] [INSPIRE]
– reference: G. Gustafson and U. Pettersson, Dipole Formulation of QCD Cascades, Nucl. Phys. B306 (1988) 746 [INSPIRE].
– reference: AbelofGGehrmann-De RidderAAntenna subtraction for the production of heavy particles at hadron collidersJHEP2011040632011JHEP...04..063A[arXiv:1102.2443] [INSPIRE]
– reference: AlwallJThe automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulationsJHEP2014070792014JHEP...07..079A[arXiv:1405.0301] [INSPIRE]
– reference: G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections tott¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}production at the LHC: the all-fermion processes, JHEP04 (2012) 076 [arXiv:1112.4736] [INSPIRE].
– reference: W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna functions forS→QQ¯gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q} gg $$\end{document}at NNLO QCD, JHEP10 (2013) 161 [arXiv:1309.6887] [INSPIRE].
– reference: T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys.3 (1962) 650 [INSPIRE].
– reference: W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna function forS→QQ¯qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q}q\overline{q} $$\end{document}at NNLO QCD, JHEP06 (2011) 032 [arXiv:1105.0530] [INSPIRE].
– reference: BaberuxkiNPreussCTReicheltDSchumannSResummed predictions for jet-resolution scales in multijet production in e+e−annihilationJHEP2020041122020JHEP...04..112B[arXiv:1912.09396] [INSPIRE]
– reference: BoughezalRMelnikovKPetrielloFA subtraction scheme for NNLO computationsPhys. Rev. D2012852012PhRvD..85c4025B[arXiv:1111.7041] [INSPIRE]
– reference: S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [hep-ph/9605323] [INSPIRE].
– reference: DreyerFAKarlbergAVector-Boson Fusion Higgs Production at Three Loops in QCDPhys. Rev. Lett.20161172016PhRvL.117g2001D[arXiv:1606.00840] [INSPIRE]
– reference: Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys.7 (2019) 034 [arXiv:1905.09127] [INSPIRE].
– reference: Del DucaVJet production in the CoLoRFulNNLO method: event shapes in electron-positron collisionsPhys. Rev. D2016942016PhRvD..94g4019D[arXiv:1606.03453] [INSPIRE]
– reference: CieriLHiggs boson production at the LHC using the qTsubtraction formalism at N3LO QCDJHEP2019020962019JHEP...02..096C[arXiv:1807.11501] [INSPIRE]
– reference: A. Daleo, T. Gehrmann and D. Maitre, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [INSPIRE].
– reference: J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
– reference: S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B446 (1999) 143 [hep-ph/9810389] [INSPIRE].
– reference: BaglioJDuhrCMistlbergerBSzafronRInclusive production cross sections at N3LOJHEP2022120662022JHEP...12..066B[arXiv:2209.06138] [INSPIRE]
– reference: Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+e−Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP46 (1977) 641 [INSPIRE].
– reference: J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B527 (1998) 264 [hep-ph/9710255] [INSPIRE].
– reference: C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, arXiv:2203.11601 [https://doi.org/10.21468/SciPostPhysCodeb.8] [INSPIRE].
– reference: GehrmannTMonniPFAntenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurationsJHEP2011120492011JHEP...12..049G1306.81339[arXiv:1107.4037] [INSPIRE]
– reference: O. Dekkers and W. Bernreuther, The real-virtual antenna functions forS→QQ¯X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q}X $$\end{document}at NNLO QCD, Phys. Lett. B738 (2014) 325 [arXiv:1409.3124] [INSPIRE].
– reference: J.M. Campbell et al., Event Generators for High-Energy Physics Experiments, in the proceedings of the Snowmass 2021, Seattle U.S.A., July 17–26 (2022) [arXiv:2203.11110] [INSPIRE].
– reference: DaleoAGehrmann-De RidderAGehrmannTLuisoniGAntenna subtraction at NNLO with hadronic initial states: initial-final configurationsJHEP2010011182010JHEP...01..118D1269.81194[arXiv:0912.0374] [INSPIRE]
– reference: T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev.133 (1964) B1549 [INSPIRE].
– reference: BillisGHiggs pT Spectrum and Total Cross Section with Fiducial Cuts at Third Resummed and Fixed Order in QCDPhys. Rev. Lett.20211272021PhRvL.127g2001B[arXiv:2102.08039] [INSPIRE]
– reference: SjödahlMColorMath — A package for color summed calculations in SU(Nc)Eur. Phys. J. C20137323102013EPJC...73.2310S[arXiv:1211.2099] [INSPIRE]
– reference: PiresJGloverEWNDouble real radiation corrections to gluon scattering at NNLONucl. Phys. B Proc. Suppl.2010205-2061762010NuPhS.205..176P[arXiv:1006.1849] [INSPIRE]
– reference: DulatFMistlbergerBPelloniADifferential Higgs production at N3LO beyond thresholdJHEP2018011452018JHEP...01..145D[arXiv:1710.03016] [INSPIRE]
– reference: Gehrmann-De RidderAGehrmannTGloverEWNHeinrichGNNLO corrections to event shapes in e+e−annihilationJHEP2007120942007JHEP...12..094G[arXiv:0711.4711] [INSPIRE]
– reference: A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE].
– reference: AnastasiouCHigh precision determination of the gluon fusion Higgs boson cross-section at the LHCJHEP2016050582016JHEP...05..058A[arXiv:1602.00695] [INSPIRE]
– reference: CzakonMA novel subtraction scheme for double-real radiation at NNLOPhys. Lett. B20106932592010PhLB..693..259C[arXiv:1005.0274] [INSPIRE]
– reference: Del DucaVTree-level splitting amplitudes for a quark into four collinear partonsJHEP2020021892020JHEP...02..189D4089092[arXiv:1912.06425] [INSPIRE]
– reference: HöcheSPrestelSTriple collinear emissions in parton showersPhys. Rev. D2017962017PhRvD..96g4017H[arXiv:1705.00742] [INSPIRE]
– reference: Torres BobadillaWJMay the four be with you: Novel IR-subtraction methods to tackle NNLO calculationsEur. Phys. J. C2021812502021EPJC...81..250T[arXiv:2012.02567] [INSPIRE]
– reference: ChenXDilepton Rapidity Distribution in Drell-Yan Production to Third Order in QCDPhys. Rev. Lett.20221282022PhRvL.128e2001C[arXiv:2107.09085] [INSPIRE]
– reference: AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A1290.81155[arXiv:1002.2581] [INSPIRE]
– reference: NeumannTCampbellJFiducial Drell-Yan production at the LHC improved by transverse-momentum resummation at N4LLp+N3LOPhys. Rev. D2023107L0115062023PhRvD.107a1506N[arXiv:2207.07056] [INSPIRE]
– reference: HöcheSKraussFPrestelSImplementing NLO DGLAP evolution in Parton ShowersJHEP2017100932017JHEP...10..093H[arXiv:1705.00982] [INSPIRE]
– reference: CataniSColferaiDTorriniATriple (and quadruple) soft-gluon radiation in QCD hard scatteringJHEP2020011182020JHEP...01..118C4088201[arXiv:1908.01616] [INSPIRE]
– reference: GerwickEHoecheSMarzaniSSchumannSSoft evolution of multi-jet final statesJHEP2015021062015JHEP...02..106G33213471388.81105[arXiv:1411.7325] [INSPIRE]
– reference: S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [INSPIRE].
– reference: P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
– reference: ChenXThird-Order Fiducial Predictions for Drell-Yan Production at the LHCPhys. Rev. Lett.20221282022PhRvL.128y2001C[arXiv:2203.01565] [INSPIRE]
– reference: BellmJHerwig 7.2 release noteEur. Phys. J. C2020804522020EPJC...80..452B[arXiv:1912.06509] [INSPIRE]
– reference: Del DucaVTree-level splitting amplitudes for a gluon into four collinear partonsJHEP2020100932020JHEP...10..093D4204012[arXiv:2007.05345] [INSPIRE]
– reference: A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B612 (2005) 49 [hep-ph/0502110] [INSPIRE].
– reference: G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections tott¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}production at the LHC: thegg→tt¯qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ gg\to t\overline{t}q\overline{q} $$\end{document}channel, JHEP11 (2012) 074 [arXiv:1207.6546] [INSPIRE].
– reference: JakubčíkPMarcoliMStagnittoGThe parton-level structure of e+e−to 2 jets at N3LOJHEP2023011682023JHEP...01..168J[arXiv:2211.08446] [INSPIRE]
– reference: M. Löschner, S. Plätzer and E.S. Dore, Multi-Emission Kernels for Parton Branching Algorithms, arXiv:2112.14454 [INSPIRE].
– reference: S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
– reference: CamardaSCieriLFerreraGDrell-Yan lepton-pair production: qT resummation at N3LL accuracy and fiducial cross sections at N3LOPhys. Rev. D2021104L1115032021PhRvD.104k1503C[arXiv:2103.04974] [INSPIRE]
– reference: G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections to top-antitop production at the LHC, PoSLL2012 (2012) 061 [INSPIRE].
– reference: L. Magnea et al., Local analytic sector subtraction at NNLO, JHEP12 (2018) 107 [Erratum ibid.06 (2019) 013] [arXiv:1806.09570] [INSPIRE].
– reference: G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B126 (1977) 298 [INSPIRE].
– reference: ChenL-BLiHTShaoH-SWangJHiggs boson pair production via gluon fusion at N3LO in QCDPhys. Lett. B2020803[arXiv:1909.06808] [INSPIRE]
– reference: A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B612 (2005) 36 [hep-ph/0501291] [INSPIRE].
– reference: D.A. Kosower, Multiple singular emission in gauge theories, Phys. Rev. D67 (2003) 116003 [hep-ph/0212097] [INSPIRE].
– reference: Nigel GloverEWPiresJAntenna subtraction for gluon scattering at NNLOJHEP2010060961288.81147[arXiv:1003.2824] [INSPIRE]
– reference: HerzogFGeometric IR subtraction for final state real radiationJHEP2018080062018JHEP...08..006H3867258[arXiv:1804.07949] [INSPIRE]
– reference: GieleWTKosowerDASkandsPZA simple shower and matching algorithmPhys. Rev. D2008782008PhRvD..78a4026G[arXiv:0707.3652] [INSPIRE]
– reference: DuhrCDulatFHirschiVMistlbergerBHiggs production in bottom quark fusion: matching the 4- and 5-flavour schemes to third order in the strong couplingJHEP2020080172020JHEP...08..017D[arXiv:2004.04752] [INSPIRE]
– reference: CurrieJGloverEWNWellsSInfrared Structure at NNLO Using Antenna SubtractionJHEP2013040662013JHEP...04..066C[arXiv:1301.4693] [INSPIRE]
– reference: Gehrmann-De RidderAGehrmannTGloverEWNHeinrichGInfrared structure of e+e−→ 3 jets at NNLOJHEP2007110582007JHEP...11..058G[arXiv:0710.0346] [INSPIRE]
– reference: HartgringLLaenenESkandsPAntenna Showers with One-Loop Matrix ElementsJHEP2013101272013JHEP...10..127H[arXiv:1303.4974] [INSPIRE]
– reference: CampbellJMTowards NNLO+PS matching with sector showersPhys. Lett. B202383607646125[arXiv:2108.07133] [INSPIRE]
– reference: ChenXAutomation of antenna subtraction in colour space: gluonic processesJHEP2022100992022JHEP...10..099C[arXiv:2203.13531] [INSPIRE]
– reference: L. Lonnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun.71 (1992) 15 [INSPIRE].
– reference: DulatFMistlbergerBPelloniAPrecision predictions at N3LO for the Higgs boson rapidity distribution at the LHCPhys. Rev. D2019992019PhRvD..99c4004D[arXiv:1810.09462] [INSPIRE]
– reference: JadachSKusinaASkrzypekMSlawinskaMTwo real parton contributions to non-singlet kernels for exclusive QCD DGLAP evolutionJHEP2011080122011JHEP...08..012J1298.81392[arXiv:1102.5083] [INSPIRE]
– reference: A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett.99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].
– reference: ChenXTransverse mass distribution and charge asymmetry in W boson production to third order in QCDPhys. Lett. B2023840[arXiv:2205.11426] [INSPIRE]
– reference: DreyerFAKarlbergAVector-Boson Fusion Higgs Pair Production at N3LOPhys. Rev. D2018982018PhRvD..98k4016D[arXiv:1811.07906] [INSPIRE]
– reference: ChenXFully Differential Higgs Boson Production to Third Order in QCDPhys. Rev. Lett.20211272021PhRvL.127g2002C[arXiv:2102.07607] [INSPIRE]
– reference: FrixioneSNasonPOleariCMatching NLO QCD computations with Parton Shower simulations: the POWHEG methodJHEP2007110702007JHEP...11..070F[arXiv:0709.2092] [INSPIRE]
– reference: A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in massless QCD, Nucl. Phys. B682 (2004) 265 [hep-ph/0311276] [INSPIRE].
– reference: JadachSKusinaAPłaczekWSkrzypekMNLO corrections in the initial-state parton shower Monte CarloActa Phys. Polon. B20134421792013AcPPB..44.2179J[arXiv:1310.6090] [INSPIRE]
– volume: 01
  start-page: 145
  year: 2018
  ident: 21061_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP01(2018)145
– volume: 78
  year: 2008
  ident: 21061_CR78
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.014026
– volume: 75
  start-page: 236
  year: 2015
  ident: 21061_CR92
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3417-6
– ident: 21061_CR101
– ident: 21061_CR102
  doi: 10.1016/j.cpc.2012.12.028
– volume: 205-206
  start-page: 176
  year: 2010
  ident: 21061_CR104
  publication-title: Nucl. Phys. B Proc. Suppl.
  doi: 10.1016/j.nuclphysbps.2010.08.039
– volume: 127
  year: 2021
  ident: 21061_CR49
  publication-title: Phys. Rev. Lett.
– ident: 21061_CR12
  doi: 10.21468/SciPostPhys.7.3.034
– volume: 01
  start-page: 118
  year: 2020
  ident: 21061_CR86
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)118
– volume: 04
  start-page: 112
  year: 2020
  ident: 21061_CR94
  publication-title: JHEP
  doi: 10.1007/JHEP04(2020)112
– ident: 21061_CR72
  doi: 10.22323/1.151.0061
– volume: 10
  start-page: 093
  year: 2017
  ident: 21061_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)093
– volume: 96
  year: 2017
  ident: 21061_CR31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.074017
– volume: 94
  year: 2016
  ident: 21061_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.074019
– ident: 21061_CR99
– volume: 771
  start-page: 59
  year: 2017
  ident: 21061_CR29
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.05.011
– volume: 104
  start-page: L111503
  year: 2021
  ident: 21061_CR54
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.L111503
– volume: 02
  start-page: 098
  year: 2011
  ident: 21061_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP02(2011)098
– volume: 12
  start-page: 066
  year: 2022
  ident: 21061_CR56
  publication-title: JHEP
  doi: 10.1007/JHEP12(2022)066
– volume: 05
  start-page: 058
  year: 2016
  ident: 21061_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)058
– volume: 10
  start-page: 047
  year: 2012
  ident: 21061_CR67
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)047
– ident: 21061_CR73
  doi: 10.1007/JHEP11(2012)074
– volume: 11
  start-page: 070
  year: 2007
  ident: 21061_CR8
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/11/070
– volume: 85
  year: 2012
  ident: 21061_CR17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.034025
– volume: 80
  start-page: 452
  year: 2020
  ident: 21061_CR11
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8011-x
– ident: 21061_CR84
  doi: 10.1016/S0550-3213(99)00778-6
– volume: 128
  year: 2022
  ident: 21061_CR52
  publication-title: Phys. Rev. Lett.
– volume: 06
  start-page: 043
  year: 2010
  ident: 21061_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP06(2010)043
– volume: 08
  start-page: 006
  year: 2018
  ident: 21061_CR23
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)006
– ident: 21061_CR7
  doi: 10.1088/1126-6708/2004/11/040
– volume: 98
  year: 2018
  ident: 21061_CR43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.114016
– volume: 107
  start-page: L011506
  year: 2023
  ident: 21061_CR53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.L011506
– volume: 127
  year: 2021
  ident: 21061_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.072001
– volume: 07
  start-page: 041
  year: 2009
  ident: 21061_CR68
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/07/041
– ident: 21061_CR3
  doi: 10.1103/PhysRev.133.B1549
– volume: 05
  start-page: 209
  year: 2018
  ident: 21061_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)209
– ident: 21061_CR59
  doi: 10.1016/j.physletb.2005.02.039
– ident: 21061_CR15
  doi: 10.1103/PhysRevLett.98.222002
– volume: 02
  start-page: 096
  year: 2019
  ident: 21061_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)096
– volume: 08
  start-page: 012
  year: 2011
  ident: 21061_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP08(2011)012
– ident: 21061_CR87
  doi: 10.1016/S0550-3213(99)00657-4
– ident: 21061_CR22
  doi: 10.1007/JHEP12(2018)107
– ident: 21061_CR2
  doi: 10.1063/1.1724268
– ident: 21061_CR5
  doi: 10.1016/0550-3213(96)00110-1
– ident: 21061_CR103
  doi: 10.1016/j.nuclphysb.2004.01.023
– volume: 12
  start-page: 094
  year: 2007
  ident: 21061_CR62
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/12/094
– volume: 02
  start-page: 106
  year: 2015
  ident: 21061_CR93
  publication-title: JHEP
  doi: 10.1007/JHEP02(2015)106
– volume: 01
  start-page: 168
  year: 2023
  ident: 21061_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP01(2023)168
– ident: 21061_CR75
– ident: 21061_CR1
  doi: 10.1088/1126-6708/2005/09/056
– ident: 21061_CR13
  doi: 10.21468/SciPostPhysCodeb.8
– volume: 07
  start-page: 079
  year: 2014
  ident: 21061_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)079
– volume: 693
  start-page: 259
  year: 2010
  ident: 21061_CR16
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.08.036
– ident: 21061_CR6
  doi: 10.1088/1126-6708/2002/06/029
– volume: 09
  start-page: 059
  year: 2022
  ident: 21061_CR100
  publication-title: JHEP
  doi: 10.1007/JHEP09(2022)059
– ident: 21061_CR77
  doi: 10.1016/0010-4655(92)90068-A
– ident: 21061_CR74
  doi: 10.1007/JHEP10(2013)161
– ident: 21061_CR14
– volume: 117
  year: 2016
  ident: 21061_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.072001
– volume: 06
  start-page: 096
  year: 2010
  ident: 21061_CR95
  publication-title: JHEP
  doi: 10.1007/JHEP06(2010)096
– ident: 21061_CR63
  doi: 10.1088/1126-6708/2007/04/016
– volume: 10
  start-page: 093
  year: 2020
  ident: 21061_CR89
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)093
– volume: 98
  year: 2018
  ident: 21061_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.074013
– volume: 05
  start-page: 028
  year: 2018
  ident: 21061_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)028
– volume: 125
  year: 2020
  ident: 21061_CR39
  publication-title: Phys. Rev. Lett.
– ident: 21061_CR83
  doi: 10.1016/S0370-2693(98)01513-5
– volume: 04
  start-page: 066
  year: 2013
  ident: 21061_CR96
  publication-title: JHEP
  doi: 10.1007/JHEP04(2013)066
– volume: 836
  year: 2023
  ident: 21061_CR25
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137614
– volume: 44
  start-page: 2179
  year: 2013
  ident: 21061_CR27
  publication-title: Acta Phys. Polon. B
  doi: 10.5506/APhysPolB.44.2179
– volume: 105
  year: 2022
  ident: 21061_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.114012
– ident: 21061_CR58
  doi: 10.1016/j.physletb.2005.03.003
– volume: 11
  start-page: 058
  year: 2007
  ident: 21061_CR60
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/11/058
– volume: 84
  year: 2011
  ident: 21061_CR79
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.054003
– volume: 99
  year: 2019
  ident: 21061_CR47
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.034004
– volume: 840
  year: 2023
  ident: 21061_CR55
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2023.137876
– ident: 21061_CR19
  doi: 10.1103/PhysRevLett.115.082002
– volume: 803
  year: 2020
  ident: 21061_CR41
  publication-title: Phys. Lett. B
– volume: 125
  year: 2020
  ident: 21061_CR45
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 248
  year: 2017
  ident: 21061_CR21
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-4774-0
– volume: 114
  year: 2015
  ident: 21061_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.212001
– volume: 07
  start-page: 032
  year: 2020
  ident: 21061_CR81
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)032
– ident: 21061_CR85
  doi: 10.1103/PhysRevD.67.116003
– volume: 76
  start-page: 589
  year: 2016
  ident: 21061_CR80
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-016-4429-6
– volume: 08
  start-page: 017
  year: 2020
  ident: 21061_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP08(2020)017
– ident: 21061_CR82
  doi: 10.1016/S0550-3213(98)00295-8
– ident: 21061_CR4
  doi: 10.1016/S0550-3213(96)00589-5
– ident: 21061_CR98
  doi: 10.1016/0550-3213(77)90384-4
– volume: 09
  start-page: 058
  year: 2015
  ident: 21061_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)058
– volume: 128
  year: 2022
  ident: 21061_CR50
  publication-title: Phys. Rev. Lett.
– ident: 21061_CR70
  doi: 10.1007/JHEP06(2011)032
– volume: 01
  start-page: 040
  year: 2023
  ident: 21061_CR90
  publication-title: JHEP
  doi: 10.1007/JHEP01(2023)040
– volume: 02
  start-page: 189
  year: 2020
  ident: 21061_CR88
  publication-title: JHEP
  doi: 10.1007/JHEP02(2020)189
– volume: 10
  start-page: 127
  year: 2013
  ident: 21061_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)127
– ident: 21061_CR61
  doi: 10.1103/PhysRevLett.99.132002
– ident: 21061_CR69
  doi: 10.1007/JHEP04(2012)076
– volume: 73
  start-page: 2310
  year: 2013
  ident: 21061_CR91
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2310-4
– volume: 81
  start-page: 250
  year: 2021
  ident: 21061_CR24
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-08996-y
– volume: 10
  start-page: 099
  year: 2022
  ident: 21061_CR97
  publication-title: JHEP
  doi: 10.1007/JHEP10(2022)099
– volume: 01
  start-page: 118
  year: 2010
  ident: 21061_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP01(2010)118
– volume: 04
  start-page: 063
  year: 2011
  ident: 21061_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP04(2011)063
– ident: 21061_CR76
  doi: 10.1016/0550-3213(88)90441-5
– volume: 12
  start-page: 049
  year: 2011
  ident: 21061_CR66
  publication-title: JHEP
  doi: 10.1007/JHEP12(2011)049
– volume: 11
  start-page: 143
  year: 2020
  ident: 21061_CR44
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)143
– ident: 21061_CR34
SSID ssj0015190
Score 2.5260174
Snippet A bstract The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at...
The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading...
Abstract The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms Algorithms
Antennas
Automation
Classical and Quantum Gravitation
Elementary Particles
High energy physics
Higher-Order Perturbative Calculations
Integrals
Large Hadron Collider
Parton Shower
Partons
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Radiation
Radiators
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Subtraction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EEPUgPrFaZQ8e2kPsZnfzOlZRSkHxoCB4CPu0SEyLrYj_3tlNUitSvHhNdsPkm1nmGzL5BqEzoKAqAZ4cGEVFwJnVgTQGYplRkzrBOe09fXMbDx748DF6XBj15XrCKnngCrhemFnGLNFxIjhPINyoZiGnmts4oZr6X_dImjXFVP39AHgJaYR8SNIbDq7uSNxxo8K7xOWRhRzkpfp_8Mv5J9FNtP5eTsTnhyiKhaxzvY22arqI-5WZO2jFlLtozbdtqukeeurj50o3GovieQyF_ugVz8ZYumHXGPhgEbw58QGHPnYYlqXALpX5aMNAWPHIN3oEXoITg8NUPc9ruo8erq_uLwdBPS4hUDxMZoHWUiqaQb2mDA-5IYYJldoECpTMUhkSC-8fSQs5SWWp5ZZEIhKcGgEHORWKHaDVclyaQ4SVYkxbJYWlAkAPYTNkuowKxkIpItJC5w2Auaq1xN1IiyJvVJArxHOHeA6It1BnvmFSyWgsX3rhPDJf5vSv_QWIiryOivyvqGihduPPvD6U0xyqyxjKO6iwWqjb-Pj79lJ7uvMg-GX7y8hMFtYe_Yftx2jDPc_1o4WsjVZnb-_mBJjPTJ76IP8CJJD7-A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-6lLHtYeyTZeuGHvbQPGi1JdmOH8ZoR0ooLJSxQmEPRtZHQvGcNHEp--93p9huxuhe7ROW706631nn3wF8RAhqMsTJ3BmhuZLe8tI59GUp3JgI52yw9LdZOr1QZ5fJ5R7Mun9hqKyy2xPDRm2Xhr6RH2FqkCI2R3j8ZXXNqWsUna52LTR021rBfg4UYw9gXxAz1gD2Tyaz8-_9uQLilagj-Imyo7Pp5DxKD6mF-Cii-LITmwKF_1-4sz8qfQKPbuqV_n2rq2onGp0-g6ctjGTHW7s_hz1Xv4CHoZzTbF7Cz2M23_JJM13N8TWaxS_WLFlJTbAZ4sSKr4mUgKzCSLd1rRmFuOCFDIEsW4QCEB6oORka0rR9vjav4OJ08uPrlLdtFLhRcdZwa8vSiBzzOONUrFzkpDZjn2HikntRxpHH909Kj7HK5GOvfJToRCvhNC7wsTbyNQzqZe3eADNGSutNqb3QCrEIDsYImAstZVzqJBrCp06BhWk5xqnVRVV07MhbjRek8QI1PoTDfsBqS69xv-gJWaQXI17scGG5nhftMivi3EvpI5tmWuEEMX2wMlbCKp9mwop8CAedPYt2sW6KO9cawqiz8d3te-cz6p3gn7lfLdxqR_bt_x_7Dh6TJFWgxfIABs36xr1HrNOUH1oH_gOFDvtv
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58IOpBfGK1yh482EM02d0kzbGKUgTFg4LgIezTIjEtbUX8985uk_jCg7eQ7IbNzCzfN8zmG4AjpKAqRZ4cGEVFwJnVgTQGY5lR03WCc9p7-vom6d_zq4f4oRJJcv_C_Kjfn171L27D5Ng1-e4gWs7DIiJU4quyyXlTLkAaEta6Pb8nfYMcr8z_jU42FdBVWH4tR-L9TRTFF5C5XIe1ih2S3sydGzBnyk1Y8qc01WQLHnvkaSYTTUTxNMS8fvBCpkMiXW9rgvSvCMZOa8AZmziTlaUgDrl8cBHkp2Tgz3UEXnGToH9U1b5rsg33lxd35_2g6o4QKB6l00BrKRXNMD1ThkfchIYJ1bUp5iOZpTIKLX5_LC1CkMq6ltswFrHg1Ajct12h2A4slMPS7AJRijFtlRSWCo4UAycjsGVUMBZJEYctOKkNmKtKOtx1sCjyWvR4ZvHcWTxHi7fguJkwmqlm_D30zHmkGebkrv0NjIK82j15lFnGbKiTVHBcIGYFmkWcam6TlGqataBd-zOv9uAkx2QywWwOE6oWdGoffz7-cz2dJgh-rf15YEZfxu794737sOIu3SmziLVhYTp-NQfIZ6by0MfyBw967E4
  priority: 102
  providerName: Springer Nature
Title A general algorithm to build real-radiation antenna functions for higher-order calculations
URI https://link.springer.com/article/10.1007/JHEP06(2023)065
https://www.proquest.com/docview/2826996576
https://durham-repository.worktribe.com/output/1171577
https://doaj.org/article/19f33f0d67a4474882d3142d4f672d29
UnpaywallVersion submittedVersion
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: AMVHM
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: 8FG
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Link OA Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C6C
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLa2Vgg48BtRGJUPHNaDu8R27ObYVS3VJKoKUTHEIXIcux10adUmQvDX8-wkZYB22MVyEkey8579vme_fA-hdwBBtQScTIyminBmM5IaA7rMqBk4wrnMS_rDTEwX_OIyujxCovkXJit3K3VN3Ib5_sodM_ddfJJL_lTtLW3KYlsWZ2Eow0jKY9QWEWDwFmovZvPhF3-0SWMCS27ss6pQQYT0aemgLgnYQtHw-wTy7NvKbANx6jKI9wJnXm6YJs_g_xfsPJyUPkT3y3yrfv5Q6_UNYzR5jD43w6hiUL73yyLt61__MDzefZxP0KMan-JhpVBP0ZHJn6F7Pk5U75-jr0O8rIiqsVovN7urYnWNiw1OXXZtDAB0TXaO7cCJGzuh5bnCznZ69caAkPHKR5YQz_mJQUN0nUBs_wItJuNPoymp8zMQzUNZkCxLU01jcBC14SE3gWFKD6wEjyi2NA0DC182Si0YQR0PLLdBpCLFqVGwcgyUZi9RK9_k5hXCWjOWWZ0qSxUHkAMvg2mNqWIsTFUUdFC_EU2ia_Jyl0NjnTS0yxfT8TwQiZNlArLsoNPDC9uKt-P2pudO1odmjnDb39jslkk9f5MwtozZIBNScegg-CUZCznNuBWSZjTuoJNGU5J6Fdgn4M4K8CfBpeugXqM9fx7f2p_eQb3-63ulsoe2r-_Q9g164Kouzi1kJ6hV7ErzFhBVkXbR8WDyvova5-PZ_CNcjSh3pRh1_R4FlAsKZTXJfgOUTiHF
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFD5ioIntYdpV68Y2P2wSfchIbDdpHhCCUVRuFZpAQtqD5_jSCoW0a4MQf26_jePUCZ0Qe-M1sRPrnBOf78T29wF8RQiqEsTJgVFUBpxZHWTGYCwzarqOcE5Xnj4exP0zfnDeOV-Cv_VZGLetsp4Tq4laj5X7R76BpUGM2Bzh8dbkT-BUo9zqai2hIb20gt6sKMb8wY5Dc3ONJdxsc38X_f2N0r3e6Y9-4FUGAsWjpAy0zjJFUyxzlOERN6FhUnVtgrg-tTSLQksRF2QWp3KVdi23YUd2JKdGYvx3pWL43CewwhlPsfhb2ekNTn426xiIj8KaUChMNg76vZMwXneS5e3Q5bOFXFhJBvyDc5ul2eewelVM5M21zPOF7Lf3El542Eq253H2CpZM8RqeVttH1ewN_Nomwzl_NZH5EM1Wji5JOSaZE90miEvzYOpIEFwUEOfLopDEpdQq6gkCZzKqNpwEFRUowcBRXlds9hbOHsWg72C5GBfmPRClGNNWZdJSyRH7YGfMuCmVjEWZ7IQt-F4bUCjPae6kNXJRszHPLS6cxQVavAXrTYfJnM7j4aY7ziNNM8fDXV0YT4fCf9YiSi1jNtRxIjkOEMsVzSJONbdxQjVNW7BW-1P4yWEm7kK5Be3ax3e3HxxPuwmCe2O_GJnJQtsP_3_tF1jtnx4fiaP9weFHeOZ6ud1vEVuD5XJ6ZT4hziqzzz6YCfx-7O_nFhkDONI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIig9IJ4iUGAPIDUHE3t3Y8eHChXakLZQ9UClSj2Y9T4SVcYJiauqf62_rjN-NQiVW6_2rr2a-XbnW-_4G4APSEF1hDzZs5orTwpnvNRaxLLgdkCCc6b09I_DcHQs90_6Jytw1fwLQ2mVzZpYLtRmqukbeQ-3BiFyc6THPVenRRztDD_P_nhUQYpOWptyGhVEDuzlBW7fFlt7O-jrj5wPd39-HXl1hQFPyyAqPGPSVPMYtzjaykBa3wqlBy5CTh87nga-48gJUofLuI4HTjq_r_pKcqsQ-wOlBT73HtyPSMWd_lIffmtPMJAZ-Y2UkB_19ke7R364ScXKuz5FsqUoWBYL-Ivhtoey67B2ns_U5YXKsqW4N3wCj2vCyrYrhD2FFZs_gwdl4qhePIfTbTaulKuZysZopGLymxVTllK5bYaMNPPmJH9A_mfkxTxXjIJpiXeGlJlNylQTrxQBZQgZXVcUW7yA4zsx50tYzae5fQVMayGM06lyXElkPdgZY23MlRBBqvp-Bz41Bkx0rWZORTWypNFhriyekMUTtHgHNtsOs0rI4_amX8gjbTNS4C4vTOfjpJ7QSRA7IZxvwkhJHCBuVIwIJDfShRE3PO7ARuPPpF4WFskNiDvQbXx8c_vW8XRbEPwz9rOJnS21ff3_176Hhzhrku97hwdv4BF1orS3QGzAajE_t2-RYBXpuxLJDH7d9dS5BoTyNmw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVgg48EYsFOQDh-7B2_gRe3NcUKtVJaoeWFHEIbIde7eQJqtsIgS_nnEeSwH10JuVjCU7M_Z8Y0--QegdQFCrACcTZ5kmgvuMGOfAljlzs0A4l7Wa_ngmF0txehFf7CE5_AuTNdVaX5FwYL69DNfM05CfFIo_dWdLZVNvmvqIUkVjpe6gfRkDBh-h_eXZ-fxLe7XJEgJbbtJWVWGSSNWWpYO2IuAL5cDvE6mjb2u3ieRhqCA-iYJ7ueaaWgb_v2Dn7qb0AbrXFBv984fO82vO6OQR-jxMo8tB-T5tajO1v_5heLz9PB-jhz0-xfPOoJ6gPVc8RXfbPFG7fYa-zvGqI6rGOl-V1WW9vsJ1iU2oro0BgOakCmwHQd04KK0oNA6-szVvDAgZr9vMEtJyfmKwENsXENs-R8uT408fFqSvz0CsoKomWWaMZQkEiNYJKlzkuLYzryAiSjwzNPLwZWPjwQnaZOaFj2Ida8Gchp1jpi1_gUZFWbiXCFvLeeat0Z5pASAHOoNrTZjmnBodR2M0HVST2p68PNTQyNOBdvl0cXweyTToMgVdjtHhrsOm4-24WfR90PVOLBButw_KapX26zeliefcR5lUWsAAIS7JOBUsE14qlrFkjA4GS0n7XWCbQjgrIZ6EkG6MJoP1_Hl943gmO_P6b-ydye5kX91C9jW6H5ohz43yAzSqq8a9AURVm7f98vkNE2EbwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+algorithm+to+build+real-radiation+antenna+functions+for+higher-order+calculations&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Braun-White%2C+Oscar&rft.au=Glover%2C+Nigel&rft.au=Preuss%2C+Christian+T&rft.date=2023-06-13&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2023&rft.issue=6&rft_id=info:doi/10.1007%2FJHEP06%282023%29065&rft.externalDocID=10_1007_JHEP06_2023_065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon