A general algorithm to build real-radiation antenna functions for higher-order calculations
A bstract The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in α s (NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair o...
        Saved in:
      
    
          | Published in | The journal of high energy physics Vol. 2023; no. 6; pp. 65 - 56 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        13.06.2023
     Springer Nature B.V SpringerOpen  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1029-8479 1126-6708 1127-2236 1029-8479  | 
| DOI | 10.1007/JHEP06(2023)065 | 
Cover
| Abstract | A
bstract
The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in
α
s
(NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair of hard radiator partons directly from a specified list of unresolved limits. We use the algorithm to explicitly build all single- and double-real QCD antenna functions and compare them to the previous antenna functions, which were extracted from matrix elements. The improved antenna functions should be more easily applicable to NNLO subtraction terms. Finally, we match the integration of the antenna functions over the final-final unresolved phase space to the previous incarnation, serving as an independent check on our results. | 
    
|---|---|
| AbstractList | A
bstract
The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in
α
s
(NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair of hard radiator partons directly from a specified list of unresolved limits. We use the algorithm to explicitly build all single- and double-real QCD antenna functions and compare them to the previous antenna functions, which were extracted from matrix elements. The improved antenna functions should be more easily applicable to NNLO subtraction terms. Finally, we match the integration of the antenna functions over the final-final unresolved phase space to the previous incarnation, serving as an independent check on our results. Abstract The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in α s (NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair of hard radiator partons directly from a specified list of unresolved limits. We use the algorithm to explicitly build all single- and double-real QCD antenna functions and compare them to the previous antenna functions, which were extracted from matrix elements. The improved antenna functions should be more easily applicable to NNLO subtraction terms. Finally, we match the integration of the antenna functions over the final-final unresolved phase space to the previous incarnation, serving as an independent check on our results. The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in αs (NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair of hard radiator partons directly from a specified list of unresolved limits. We use the algorithm to explicitly build all single- and double-real QCD antenna functions and compare them to the previous antenna functions, which were extracted from matrix elements. The improved antenna functions should be more easily applicable to NNLO subtraction terms. Finally, we match the integration of the antenna functions over the final-final unresolved phase space to the previous incarnation, serving as an independent check on our results. The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading order in α s (NNLO). We propose an algorithm for building antenna functions for any number of real emissions from an identified pair of hard radiator partons directly from a specified list of unresolved limits. We use the algorithm to explicitly build all single- and double-real QCD antenna functions and compare them to the previous antenna functions, which were extracted from matrix elements. The improved antenna functions should be more easily applicable to NNLO subtraction terms. Finally, we match the integration of the antenna functions over the final-final unresolved phase space to the previous incarnation, serving as an independent check on our results.  | 
    
| ArticleNumber | 65 | 
    
| Author | Braun-White, Oscar Glover, Nigel Preuss, Christian T  | 
    
| Author_xml | – sequence: 1 givenname: Oscar orcidid: 0000-0001-5417-598X surname: Braun-White fullname: Braun-White, Oscar email: oscar.r.braun-white@durham.ac.uk organization: Institute for Particle Physics Phenomenology, Department of Physics, Durham University – sequence: 2 givenname: Nigel orcidid: 0000-0002-0173-4175 surname: Glover fullname: Glover, Nigel organization: Institute for Particle Physics Phenomenology, Department of Physics, Durham University – sequence: 3 givenname: Christian T orcidid: 0000-0003-1254-0250 surname: Preuss fullname: Preuss, Christian T organization: Institute for Theoretical Physics, ETH  | 
    
| BookMark | eNp1kc1v1DAQxS1UJNrCmaslLnBIO3YcJz5WVaFFleAAJw7WxB9Zr1x7cRKh_vdkN1VbFXGyNXrvp3lvTshRyskR8p7BGQNoz79eX30H-ZEDrz-BbF6RYwZcVZ1o1dGz_xtyMo5bANYwBcfk1wUdXHIFI8U45BKmzR2dMu3nEC0tDmNV0AacQk4U0-RSQurnZPaDkfpc6CYMG1eqXKwr1GA0czzIx7fktcc4uncP7yn5-fnqx-V1dfvty83lxW1lBGunytq-N1yBEsYJJhy4Gk3nWyml8rxn4JdMTe87YEZ1XnhosEHBHYKADk19Sm5Wrs241bsS7rDc64xBHwa5DBrLFEx0milf1x6sbFGIVnQdtzUT3AovW265Wliwsua0w_s_GOMjkIHeF623G7cDqfdF66XoxfJhtexK_j27cdLbPJe0JNa841Ip2bRyUTWrypQ8jsV5bcJ06GkqGOIjfT3jc_r5C9_Lff51PEQYF2UaXHna53-Wvws7rpo | 
    
| CitedBy_id | crossref_primary_10_1007_JHEP03_2024_114 crossref_primary_10_1007_JHEP12_2023_198 crossref_primary_10_1007_JHEP07_2024_161 crossref_primary_10_1007_JHEP06_2023_185 crossref_primary_10_1007_JHEP12_2024_225 crossref_primary_10_1007_JHEP08_2024_073 crossref_primary_10_1007_JHEP11_2023_179 crossref_primary_10_1007_JHEP12_2023_171  | 
    
| Cites_doi | 10.1007/JHEP01(2018)145 10.1103/PhysRevD.78.014026 10.1140/epjc/s10052-015-3417-6 10.1016/j.cpc.2012.12.028 10.1016/j.nuclphysbps.2010.08.039 10.21468/SciPostPhys.7.3.034 10.1007/JHEP01(2020)118 10.1007/JHEP04(2020)112 10.22323/1.151.0061 10.1007/JHEP10(2017)093 10.1103/PhysRevD.96.074017 10.1103/PhysRevD.94.074019 10.1016/j.physletb.2017.05.011 10.1103/PhysRevD.104.L111503 10.1007/JHEP02(2011)098 10.1007/JHEP12(2022)066 10.1007/JHEP05(2016)058 10.1007/JHEP10(2012)047 10.1007/JHEP11(2012)074 10.1088/1126-6708/2007/11/070 10.1103/PhysRevD.85.034025 10.1140/epjc/s10052-020-8011-x 10.1016/S0550-3213(99)00778-6 10.1007/JHEP06(2010)043 10.1007/JHEP08(2018)006 10.1088/1126-6708/2004/11/040 10.1103/PhysRevD.98.114016 10.1103/PhysRevD.107.L011506 10.1103/PhysRevLett.127.072001 10.1088/1126-6708/2009/07/041 10.1103/PhysRev.133.B1549 10.1007/JHEP05(2018)209 10.1016/j.physletb.2005.02.039 10.1103/PhysRevLett.98.222002 10.1007/JHEP02(2019)096 10.1007/JHEP08(2011)012 10.1016/S0550-3213(99)00657-4 10.1007/JHEP12(2018)107 10.1063/1.1724268 10.1016/0550-3213(96)00110-1 10.1016/j.nuclphysb.2004.01.023 10.1088/1126-6708/2007/12/094 10.1007/JHEP02(2015)106 10.1007/JHEP01(2023)168 10.1088/1126-6708/2005/09/056 10.21468/SciPostPhysCodeb.8 10.1007/JHEP07(2014)079 10.1016/j.physletb.2010.08.036 10.1088/1126-6708/2002/06/029 10.1007/JHEP09(2022)059 10.1016/0010-4655(92)90068-A 10.1007/JHEP10(2013)161 10.1103/PhysRevLett.117.072001 10.1007/JHEP06(2010)096 10.1088/1126-6708/2007/04/016 10.1007/JHEP10(2020)093 10.1103/PhysRevD.98.074013 10.1007/JHEP05(2018)028 10.1016/S0370-2693(98)01513-5 10.1007/JHEP04(2013)066 10.1016/j.physletb.2022.137614 10.5506/APhysPolB.44.2179 10.1103/PhysRevD.105.114012 10.1016/j.physletb.2005.03.003 10.1088/1126-6708/2007/11/058 10.1103/PhysRevD.84.054003 10.1103/PhysRevD.99.034004 10.1016/j.physletb.2023.137876 10.1103/PhysRevLett.115.082002 10.1140/epjc/s10052-017-4774-0 10.1103/PhysRevLett.114.212001 10.1007/JHEP07(2020)032 10.1103/PhysRevD.67.116003 10.1140/epjc/s10052-016-4429-6 10.1007/JHEP08(2020)017 10.1016/S0550-3213(98)00295-8 10.1016/S0550-3213(96)00589-5 10.1016/0550-3213(77)90384-4 10.1007/JHEP09(2015)058 10.1007/JHEP06(2011)032 10.1007/JHEP01(2023)040 10.1007/JHEP02(2020)189 10.1007/JHEP10(2013)127 10.1103/PhysRevLett.99.132002 10.1007/JHEP04(2012)076 10.1140/epjc/s10052-013-2310-4 10.1140/epjc/s10052-021-08996-y 10.1007/JHEP10(2022)099 10.1007/JHEP01(2010)118 10.1007/JHEP04(2011)063 10.1016/0550-3213(88)90441-5 10.1007/JHEP12(2011)049 10.1007/JHEP11(2020)143  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY DOA  | 
    
| DOI | 10.1007/JHEP06(2023)065 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link OA Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1029-8479 | 
    
| EndPage | 56 | 
    
| ExternalDocumentID | oai_doaj_org_article_19f33f0d67a4474882d3142d4f672d29 oai:durham-repository.worktribe.com:1171577 10_1007_JHEP06_2023_065  | 
    
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT PQGLB PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC ADTOC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB ARNYC BAPOH BBWZM BGNMA CAG CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 UNPAY  | 
    
| ID | FETCH-LOGICAL-c417t-ddbbc29094ce414e0e3ac8f76669f2b10f2025bf801c98f4f05a5a42ea0408ac3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1029-8479 1126-6708 1127-2236  | 
    
| IngestDate | Fri Oct 03 12:45:21 EDT 2025 Sun Oct 26 03:59:31 EDT 2025 Sat Oct 18 22:43:47 EDT 2025 Wed Oct 01 01:46:55 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Fri Feb 21 02:41:51 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | Parton Shower Higher-Order Perturbative Calculations  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c417t-ddbbc29094ce414e0e3ac8f76669f2b10f2025bf801c98f4f05a5a42ea0408ac3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0173-4175 0000-0003-1254-0250 0000-0001-5417-598X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://durham-repository.worktribe.com/output/1171577 | 
    
| PQID | 2826996576 | 
    
| PQPubID | 2034718 | 
    
| PageCount | 56 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_19f33f0d67a4474882d3142d4f672d29 unpaywall_primary_10_1007_jhep06_2023_065 proquest_journals_2826996576 crossref_citationtrail_10_1007_JHEP06_2023_065 crossref_primary_10_1007_JHEP06_2023_065 springer_journals_10_1007_JHEP06_2023_065  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-06-13 | 
    
| PublicationDateYYYYMMDD | 2023-06-13 | 
    
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-13 day: 13  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | The journal of high energy physics | 
    
| PublicationTitleAbbrev | J. High Energ. Phys | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen  | 
    
| References | CampbellJMTowards NNLO+PS matching with sector showersPhys. Lett. B202383607646125[arXiv:2108.07133] [INSPIRE] G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections tott¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}production at the LHC: thegg→tt¯qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ gg\to t\overline{t}q\overline{q} $$\end{document}channel, JHEP11 (2012) 074 [arXiv:1207.6546] [INSPIRE]. A. Daleo, T. Gehrmann and D. Maitre, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [INSPIRE]. CieriLHiggs boson production at the LHC using the qTsubtraction formalism at N3LO QCDJHEP2019020962019JHEP...02..096C[arXiv:1807.11501] [INSPIRE] L. Lonnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun.71 (1992) 15 [INSPIRE]. Gehrmann-De RidderAGehrmannTGloverEWNHeinrichGNNLO corrections to event shapes in e+e−annihilationJHEP2007120942007JHEP...12..094G[arXiv:0711.4711] [INSPIRE] GehrmannTMonniPFAntenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurationsJHEP2011120492011JHEP...12..049G1306.81339[arXiv:1107.4037] [INSPIRE] CurrieJN3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born methodJHEP2018052092018JHEP...05..209C[arXiv:1803.09973] [INSPIRE] DreyerFAKarlbergAVector-Boson Fusion Higgs Pair Production at N3LOPhys. Rev. D2018982018PhRvD..98k4016D[arXiv:1811.07906] [INSPIRE] GieleWTKosowerDASkandsPZHigher-Order Corrections to Timelike JetsPhys. Rev. D2011842011PhRvD..84e4003G[arXiv:1102.2126] [INSPIRE] L. Magnea et al., Local analytic sector subtraction at NNLO, JHEP12 (2018) 107 [Erratum ibid.06 (2019) 013] [arXiv:1806.09570] [INSPIRE]. DreyerFAKarlbergAVector-Boson Fusion Higgs Production at Three Loops in QCDPhys. Rev. Lett.20161172016PhRvL.117g2001D[arXiv:1606.00840] [INSPIRE] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B612 (2005) 49 [hep-ph/0502110] [INSPIRE]. J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.184 (2013) 1453 [arXiv:1203.6543] [INSPIRE]. JadachSKusinaAPłaczekWSkrzypekMNLO corrections in the initial-state parton shower Monte CarloActa Phys. Polon. B20134421792013AcPPB..44.2179J[arXiv:1310.6090] [INSPIRE] ChenL-BLiHTShaoH-SWangJHiggs boson pair production via gluon fusion at N3LO in QCDPhys. Lett. B2020803[arXiv:1909.06808] [INSPIRE] PiresJGloverEWNDouble real radiation corrections to gluon scattering at NNLONucl. Phys. B Proc. Suppl.2010205-2061762010NuPhS.205..176P[arXiv:1006.1849] [INSPIRE] FrixioneSNasonPOleariCMatching NLO QCD computations with Parton Shower simulations: the POWHEG methodJHEP2007110702007JHEP...11..070F[arXiv:0709.2092] [INSPIRE] S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B570 (2000) 287 [hep-ph/9908523] [INSPIRE]. J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE]. AbelofGGehrmann-De RidderAAntenna subtraction for the production of heavy particles at hadron collidersJHEP2011040632011JHEP...04..063A[arXiv:1102.2443] [INSPIRE] BaberuxkiNPreussCTReicheltDSchumannSResummed predictions for jet-resolution scales in multijet production in e+e−annihilationJHEP2020041122020JHEP...04..112B[arXiv:1912.09396] [INSPIRE] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [INSPIRE]. G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections to top-antitop production at the LHC, PoSLL2012 (2012) 061 [INSPIRE]. HöcheSPrestelSTriple collinear emissions in parton showersPhys. Rev. D2017962017PhRvD..96g4017H[arXiv:1705.00742] [INSPIRE] GieleWTKosowerDASkandsPZA simple shower and matching algorithmPhys. Rev. D2008782008PhRvD..78a4026G[arXiv:0707.3652] [INSPIRE] P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE]. G. Gustafson and U. Pettersson, Dipole Formulation of QCD Cascades, Nucl. Phys. B306 (1988) 746 [INSPIRE]. ChenXAutomation of antenna subtraction in colour space: gluonic processesJHEP2022100992022JHEP...10..099C[arXiv:2203.13531] [INSPIRE] W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna function forS→QQ¯qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q}q\overline{q} $$\end{document}at NNLO QCD, JHEP06 (2011) 032 [arXiv:1105.0530] [INSPIRE]. SjödahlMColorFull — a C++ library for calculations in SU(Nc) color spaceEur. Phys. J. C2015752362015EPJC...75..236S[arXiv:1412.3967] [INSPIRE] Braun-WhiteOGloverNDecomposition of triple collinear splitting functionsJHEP2022090592022JHEP...09..059B07647423[arXiv:2204.10755] [INSPIRE] Nigel GloverEWPiresJAntenna subtraction for gluon scattering at NNLOJHEP2010060961288.81147[arXiv:1003.2824] [INSPIRE] DulatFHöcheSPrestelSLeading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole ShowersPhys. Rev. D2018982018PhRvD..98g4013D[arXiv:1805.03757] [INSPIRE] A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in massless QCD, Nucl. Phys. B682 (2004) 265 [hep-ph/0311276] [INSPIRE]. HöcheSKraussFPrestelSImplementing NLO DGLAP evolution in Parton ShowersJHEP2017100932017JHEP...10..093H[arXiv:1705.00982] [INSPIRE] BellmJHerwig 7.2 release noteEur. Phys. J. C2020804522020EPJC...80..452B[arXiv:1912.06509] [INSPIRE] DuhrCDulatFMistlbergerBCharged current Drell-Yan production at N3LOJHEP2020111432020JHEP...11..143D[arXiv:2007.13313] [INSPIRE] M. Löschner, S. Plätzer and E.S. Dore, Multi-Emission Kernels for Parton Branching Algorithms, arXiv:2112.14454 [INSPIRE]. HerzogFGeometric IR subtraction for final state real radiationJHEP2018080062018JHEP...08..006H3867258[arXiv:1804.07949] [INSPIRE] AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A1290.81155[arXiv:1002.2581] [INSPIRE] BrooksHPreussCTSkandsPSector Showers for Hadron CollisionsJHEP2020070322020JHEP...07..032B[arXiv:2003.00702] [INSPIRE] Del DucaVTree-level splitting amplitudes for a quark into four collinear partonsJHEP2020021892020JHEP...02..189D4089092[arXiv:1912.06425] [INSPIRE] DulatFMistlbergerBPelloniADifferential Higgs production at N3LO beyond thresholdJHEP2018011452018JHEP...01..145D[arXiv:1710.03016] [INSPIRE] Del DucaVDuhrCHaindlRLiuZTree-level soft emission of a quark pair in association with a gluonJHEP2023010402023JHEP...01..040D07675228[arXiv:2206.01584] [INSPIRE] LiHTSkandsPA framework for second-order parton showersPhys. Lett. B2017771592017PhLB..771...59L1372.81147[arXiv:1611.00013] [INSPIRE] GerwickEHoecheSMarzaniSSchumannSSoft evolution of multi-jet final statesJHEP2015021062015JHEP...02..106G33213471388.81105[arXiv:1411.7325] [INSPIRE] JakubčíkPMarcoliMStagnittoGThe parton-level structure of e+e−to 2 jets at N3LOJHEP2023011682023JHEP...01..168J[arXiv:2211.08446] [INSPIRE] AnastasiouCHiggs Boson Gluon-Fusion Production in QCD at Three LoopsPhys. Rev. Lett.20151142015PhRvL.114u2001A[arXiv:1503.06056] [INSPIRE] CamardaSCieriLFerreraGDrell-Yan lepton-pair production: qT resummation at N3LL accuracy and fiducial cross sections at N3LOPhys. Rev. D2021104L1115032021PhRvD.104k1503C[arXiv:2103.04974] [INSPIRE] AnastasiouCHigh precision determination of the gluon fusion Higgs boson cross-section at the LHCJHEP2016050582016JHEP...05..058A[arXiv:1602.00695] [INSPIRE] CzakonMA novel subtraction scheme for double-real radiation at NNLOPhys. Lett. B20106932592010PhLB..693..259C[arXiv:1005.0274] [INSPIRE] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett.99 (2007) 132002 [arXiv:0707.1285] [INSPIRE]. O. Dekkers and W. Bernreuther, The real-virtual antenna functions forS→QQ¯X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q}X $$\end{document}at NNLO QCD, Phys. Lett. B738 (2014) 325 [arXiv:1409.3124] [INSPIRE]. MistlbergerBHiggs boson production at hadron colliders at N3LO in QCDJHEP2018050282018JHEP...05..028M[arXiv:1802.00833] [INSPIRE] C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, arXiv:2203.11601 [https://doi.org/10.21468/SciPostPhysCodeb.8] [INSPIRE]. W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna functions forS→QQ¯gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q} gg $$\end{document}at NNLO QCD, JHEP10 (2013) 161 [arXiv:1309.6887] [INSPIRE]. M. Cacciari et al., Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE]. J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B527 (1998) 264 [hep-ph/9710255] [INSPIRE]. DuhrCDulatFMistlbergerBDrell-Yan Cross Section to Third Order in the L Hartgring (21061_CR28) 2013; 10 21061_CR34 F Dulat (21061_CR47) 2019; 99 C Anastasiou (21061_CR36) 2016; 05 FA Dreyer (21061_CR43) 2018; 98 FA Dreyer (21061_CR38) 2016; 117 JM Campbell (21061_CR25) 2023; 836 C Duhr (21061_CR40) 2020; 08 F Herzog (21061_CR23) 2018; 08 J Gaunt (21061_CR18) 2015; 09 21061_CR22 S Catani (21061_CR86) 2020; 01 WT Giele (21061_CR78) 2008; 78 X Chen (21061_CR52) 2022; 128 L-B Chen (21061_CR41) 2020; 803 C Duhr (21061_CR45) 2020; 125 21061_CR63 21061_CR61 V Del Duca (21061_CR88) 2020; 02 T Neumann (21061_CR53) 2023; 107 21061_CR59 21061_CR58 A Gehrmann-De Ridder (21061_CR60) 2007; 11 HT Li (21061_CR29) 2017; 771 21061_CR102 21061_CR101 WJ Torres Bobadilla (21061_CR24) 2021; 81 21061_CR103 X Chen (21061_CR50) 2022; 128 E Gerwick (21061_CR93) 2015; 02 T Gehrmann (21061_CR66) 2011; 12 X Chen (21061_CR55) 2023; 840 S Jadach (21061_CR27) 2013; 44 S Alioli (21061_CR9) 2010; 06 X Chen (21061_CR97) 2022; 10 J Alwall (21061_CR10) 2014; 07 J Bellm (21061_CR11) 2020; 80 N Baberuxki (21061_CR94) 2020; 04 WT Giele (21061_CR79) 2011; 84 S Höche (21061_CR30) 2017; 10 H Brooks (21061_CR81) 2020; 07 J Pires (21061_CR104) 2010; 205-206 F Dulat (21061_CR32) 2018; 98 21061_CR1 A Gehrmann-De Ridder (21061_CR68) 2009; 07 C Duhr (21061_CR39) 2020; 125 A Gehrmann-De Ridder (21061_CR62) 2007; 12 R Boughezal (21061_CR65) 2011; 02 21061_CR84 A Gehrmann-De Ridder (21061_CR67) 2012; 10 21061_CR85 21061_CR82 L Cieri (21061_CR48) 2019; 02 21061_CR83 21061_CR77 C Anastasiou (21061_CR35) 2015; 114 21061_CR6 21061_CR75 21061_CR7 21061_CR76 V Del Duca (21061_CR90) 2023; 01 EW Nigel Glover (21061_CR95) 2010; 06 21061_CR4 X Chen (21061_CR49) 2021; 127 21061_CR5 21061_CR2 21061_CR3 M Sjödahl (21061_CR91) 2013; 73 J Baglio (21061_CR56) 2022; 12 O Braun-White (21061_CR100) 2022; 09 G Abelof (21061_CR71) 2011; 04 21061_CR70 21061_CR73 21061_CR74 21061_CR72 S Jadach (21061_CR26) 2011; 08 21061_CR69 N Fischer (21061_CR80) 2016; 76 M Czakon (21061_CR16) 2010; 693 S Frixione (21061_CR8) 2007; 11 V Del Duca (21061_CR20) 2016; 94 G Billis (21061_CR51) 2021; 127 P Jakubčík (21061_CR57) 2023; 01 R Boughezal (21061_CR17) 2012; 85 B Mistlberger (21061_CR37) 2018; 05 F Caola (21061_CR21) 2017; 77 L Gellersen (21061_CR33) 2022; 105 S Camarda (21061_CR54) 2021; 104 A Daleo (21061_CR64) 2010; 01 21061_CR99 21061_CR12 21061_CR98 21061_CR15 21061_CR13 21061_CR14 V Del Duca (21061_CR89) 2020; 10 21061_CR19 J Currie (21061_CR42) 2018; 05 M Sjödahl (21061_CR92) 2015; 75 S Höche (21061_CR31) 2017; 96 C Duhr (21061_CR44) 2020; 11 21061_CR87 J Currie (21061_CR96) 2013; 04 F Dulat (21061_CR46) 2018; 01  | 
    
| References_xml | – reference: SjödahlMColorFull — a C++ library for calculations in SU(Nc) color spaceEur. Phys. J. C2015752362015EPJC...75..236S[arXiv:1412.3967] [INSPIRE] – reference: GauntJStahlhofenMTackmannFJWalshJRN-jettiness Subtractions for NNLO QCD CalculationsJHEP201509058[arXiv:1505.04794] [INSPIRE] – reference: J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.184 (2013) 1453 [arXiv:1203.6543] [INSPIRE]. – reference: DulatFHöcheSPrestelSLeading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole ShowersPhys. Rev. D2018982018PhRvD..98g4013D[arXiv:1805.03757] [INSPIRE] – reference: Braun-WhiteOGloverNDecomposition of triple collinear splitting functionsJHEP2022090592022JHEP...09..059B07647423[arXiv:2204.10755] [INSPIRE] – reference: S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B467 (1996) 399 [hep-ph/9512328] [INSPIRE]. – reference: MistlbergerBHiggs boson production at hadron colliders at N3LO in QCDJHEP2018050282018JHEP...05..028M[arXiv:1802.00833] [INSPIRE] – reference: S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B570 (2000) 287 [hep-ph/9908523] [INSPIRE]. – reference: LiHTSkandsPA framework for second-order parton showersPhys. Lett. B2017771592017PhLB..771...59L1372.81147[arXiv:1611.00013] [INSPIRE] – reference: AnastasiouCHiggs Boson Gluon-Fusion Production in QCD at Three LoopsPhys. Rev. Lett.20151142015PhRvL.114u2001A[arXiv:1503.06056] [INSPIRE] – reference: V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B568 (2000) 211 [hep-ph/9909464] [INSPIRE]. – reference: DuhrCDulatFMistlbergerBCharged current Drell-Yan production at N3LOJHEP2020111432020JHEP...11..143D[arXiv:2007.13313] [INSPIRE] – reference: CurrieJN3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born methodJHEP2018052092018JHEP...05..209C[arXiv:1803.09973] [INSPIRE] – reference: DuhrCDulatFMistlbergerBDrell-Yan Cross Section to Third Order in the Strong Coupling ConstantPhys. Rev. Lett.20201252020PhRvL.125q2001D[arXiv:2001.07717] [INSPIRE] – reference: Gehrmann-De RidderAGehrmannTRitzmannMAntenna subtraction at NNLO with hadronic initial states: double real initial-initial configurationsJHEP2012100472012JHEP...10..047G1294.81270[arXiv:1207.5779] [INSPIRE] – reference: GieleWTKosowerDASkandsPZHigher-Order Corrections to Timelike JetsPhys. Rev. D2011842011PhRvD..84e4003G[arXiv:1102.2126] [INSPIRE] – reference: M. Cacciari et al., Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE]. – reference: Gehrmann-De RidderARitzmannMNLO Antenna Subtraction with Massive FermionsJHEP2009070412009JHEP...07..041G[arXiv:0904.3297] [INSPIRE] – reference: DuhrCDulatFMistlbergerBHiggs Boson Production in Bottom-Quark Fusion to Third Order in the Strong CouplingPhys. Rev. Lett.20201252020PhRvL.125e1804D4131294[arXiv:1904.09990] [INSPIRE] – reference: FischerNPrestelSRitzmannMSkandsPVincia for Hadron CollidersEur. Phys. J. C2016765892016EPJC...76..589F[arXiv:1605.06142] [INSPIRE] – reference: Del DucaVDuhrCHaindlRLiuZTree-level soft emission of a quark pair in association with a gluonJHEP2023010402023JHEP...01..040D07675228[arXiv:2206.01584] [INSPIRE] – reference: CaolaFMelnikovKRöntschRNested soft-collinear subtractions in NNLO QCD computationsEur. Phys. J. C2017772482017EPJC...77..248C[arXiv:1702.01352] [INSPIRE] – reference: BrooksHPreussCTSkandsPSector Showers for Hadron CollisionsJHEP2020070322020JHEP...07..032B[arXiv:2003.00702] [INSPIRE] – reference: BoughezalRGehrmann-De RidderARitzmannMAntenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavoursJHEP2011020982011JHEP...02..098B1294.81270[arXiv:1011.6631] [INSPIRE] – reference: GellersenLHöcheSPrestelSDisentangling soft and collinear effects in QCD parton showersPhys. Rev. D20221052022PhRvD.105k4012G[arXiv:2110.05964] [INSPIRE] – reference: G. Gustafson and U. Pettersson, Dipole Formulation of QCD Cascades, Nucl. Phys. B306 (1988) 746 [INSPIRE]. – reference: AbelofGGehrmann-De RidderAAntenna subtraction for the production of heavy particles at hadron collidersJHEP2011040632011JHEP...04..063A[arXiv:1102.2443] [INSPIRE] – reference: AlwallJThe automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulationsJHEP2014070792014JHEP...07..079A[arXiv:1405.0301] [INSPIRE] – reference: G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections tott¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}production at the LHC: the all-fermion processes, JHEP04 (2012) 076 [arXiv:1112.4736] [INSPIRE]. – reference: W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna functions forS→QQ¯gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q} gg $$\end{document}at NNLO QCD, JHEP10 (2013) 161 [arXiv:1309.6887] [INSPIRE]. – reference: T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys.3 (1962) 650 [INSPIRE]. – reference: W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna function forS→QQ¯qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q}q\overline{q} $$\end{document}at NNLO QCD, JHEP06 (2011) 032 [arXiv:1105.0530] [INSPIRE]. – reference: BaberuxkiNPreussCTReicheltDSchumannSResummed predictions for jet-resolution scales in multijet production in e+e−annihilationJHEP2020041122020JHEP...04..112B[arXiv:1912.09396] [INSPIRE] – reference: BoughezalRMelnikovKPetrielloFA subtraction scheme for NNLO computationsPhys. Rev. D2012852012PhRvD..85c4025B[arXiv:1111.7041] [INSPIRE] – reference: S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [hep-ph/9605323] [INSPIRE]. – reference: DreyerFAKarlbergAVector-Boson Fusion Higgs Production at Three Loops in QCDPhys. Rev. Lett.20161172016PhRvL.117g2001D[arXiv:1606.00840] [INSPIRE] – reference: Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys.7 (2019) 034 [arXiv:1905.09127] [INSPIRE]. – reference: Del DucaVJet production in the CoLoRFulNNLO method: event shapes in electron-positron collisionsPhys. Rev. D2016942016PhRvD..94g4019D[arXiv:1606.03453] [INSPIRE] – reference: CieriLHiggs boson production at the LHC using the qTsubtraction formalism at N3LO QCDJHEP2019020962019JHEP...02..096C[arXiv:1807.11501] [INSPIRE] – reference: A. Daleo, T. Gehrmann and D. Maitre, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [INSPIRE]. – reference: J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE]. – reference: S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B446 (1999) 143 [hep-ph/9810389] [INSPIRE]. – reference: BaglioJDuhrCMistlbergerBSzafronRInclusive production cross sections at N3LOJHEP2022120662022JHEP...12..066B[arXiv:2209.06138] [INSPIRE] – reference: Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+e−Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP46 (1977) 641 [INSPIRE]. – reference: J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B527 (1998) 264 [hep-ph/9710255] [INSPIRE]. – reference: C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, arXiv:2203.11601 [https://doi.org/10.21468/SciPostPhysCodeb.8] [INSPIRE]. – reference: GehrmannTMonniPFAntenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurationsJHEP2011120492011JHEP...12..049G1306.81339[arXiv:1107.4037] [INSPIRE] – reference: O. Dekkers and W. Bernreuther, The real-virtual antenna functions forS→QQ¯X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\to Q\overline{Q}X $$\end{document}at NNLO QCD, Phys. Lett. B738 (2014) 325 [arXiv:1409.3124] [INSPIRE]. – reference: J.M. Campbell et al., Event Generators for High-Energy Physics Experiments, in the proceedings of the Snowmass 2021, Seattle U.S.A., July 17–26 (2022) [arXiv:2203.11110] [INSPIRE]. – reference: DaleoAGehrmann-De RidderAGehrmannTLuisoniGAntenna subtraction at NNLO with hadronic initial states: initial-final configurationsJHEP2010011182010JHEP...01..118D1269.81194[arXiv:0912.0374] [INSPIRE] – reference: T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev.133 (1964) B1549 [INSPIRE]. – reference: BillisGHiggs pT Spectrum and Total Cross Section with Fiducial Cuts at Third Resummed and Fixed Order in QCDPhys. Rev. Lett.20211272021PhRvL.127g2001B[arXiv:2102.08039] [INSPIRE] – reference: SjödahlMColorMath — A package for color summed calculations in SU(Nc)Eur. Phys. J. C20137323102013EPJC...73.2310S[arXiv:1211.2099] [INSPIRE] – reference: PiresJGloverEWNDouble real radiation corrections to gluon scattering at NNLONucl. Phys. B Proc. Suppl.2010205-2061762010NuPhS.205..176P[arXiv:1006.1849] [INSPIRE] – reference: DulatFMistlbergerBPelloniADifferential Higgs production at N3LO beyond thresholdJHEP2018011452018JHEP...01..145D[arXiv:1710.03016] [INSPIRE] – reference: Gehrmann-De RidderAGehrmannTGloverEWNHeinrichGNNLO corrections to event shapes in e+e−annihilationJHEP2007120942007JHEP...12..094G[arXiv:0711.4711] [INSPIRE] – reference: A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE]. – reference: AnastasiouCHigh precision determination of the gluon fusion Higgs boson cross-section at the LHCJHEP2016050582016JHEP...05..058A[arXiv:1602.00695] [INSPIRE] – reference: CzakonMA novel subtraction scheme for double-real radiation at NNLOPhys. Lett. B20106932592010PhLB..693..259C[arXiv:1005.0274] [INSPIRE] – reference: Del DucaVTree-level splitting amplitudes for a quark into four collinear partonsJHEP2020021892020JHEP...02..189D4089092[arXiv:1912.06425] [INSPIRE] – reference: HöcheSPrestelSTriple collinear emissions in parton showersPhys. Rev. D2017962017PhRvD..96g4017H[arXiv:1705.00742] [INSPIRE] – reference: Torres BobadillaWJMay the four be with you: Novel IR-subtraction methods to tackle NNLO calculationsEur. Phys. J. C2021812502021EPJC...81..250T[arXiv:2012.02567] [INSPIRE] – reference: ChenXDilepton Rapidity Distribution in Drell-Yan Production to Third Order in QCDPhys. Rev. Lett.20221282022PhRvL.128e2001C[arXiv:2107.09085] [INSPIRE] – reference: AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A1290.81155[arXiv:1002.2581] [INSPIRE] – reference: NeumannTCampbellJFiducial Drell-Yan production at the LHC improved by transverse-momentum resummation at N4LLp+N3LOPhys. Rev. D2023107L0115062023PhRvD.107a1506N[arXiv:2207.07056] [INSPIRE] – reference: HöcheSKraussFPrestelSImplementing NLO DGLAP evolution in Parton ShowersJHEP2017100932017JHEP...10..093H[arXiv:1705.00982] [INSPIRE] – reference: CataniSColferaiDTorriniATriple (and quadruple) soft-gluon radiation in QCD hard scatteringJHEP2020011182020JHEP...01..118C4088201[arXiv:1908.01616] [INSPIRE] – reference: GerwickEHoecheSMarzaniSSchumannSSoft evolution of multi-jet final statesJHEP2015021062015JHEP...02..106G33213471388.81105[arXiv:1411.7325] [INSPIRE] – reference: S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [INSPIRE]. – reference: P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE]. – reference: ChenXThird-Order Fiducial Predictions for Drell-Yan Production at the LHCPhys. Rev. Lett.20221282022PhRvL.128y2001C[arXiv:2203.01565] [INSPIRE] – reference: BellmJHerwig 7.2 release noteEur. Phys. J. C2020804522020EPJC...80..452B[arXiv:1912.06509] [INSPIRE] – reference: Del DucaVTree-level splitting amplitudes for a gluon into four collinear partonsJHEP2020100932020JHEP...10..093D4204012[arXiv:2007.05345] [INSPIRE] – reference: A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B612 (2005) 49 [hep-ph/0502110] [INSPIRE]. – reference: G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections tott¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}production at the LHC: thegg→tt¯qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ gg\to t\overline{t}q\overline{q} $$\end{document}channel, JHEP11 (2012) 074 [arXiv:1207.6546] [INSPIRE]. – reference: JakubčíkPMarcoliMStagnittoGThe parton-level structure of e+e−to 2 jets at N3LOJHEP2023011682023JHEP...01..168J[arXiv:2211.08446] [INSPIRE] – reference: M. Löschner, S. Plätzer and E.S. Dore, Multi-Emission Kernels for Parton Branching Algorithms, arXiv:2112.14454 [INSPIRE]. – reference: S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE]. – reference: CamardaSCieriLFerreraGDrell-Yan lepton-pair production: qT resummation at N3LL accuracy and fiducial cross sections at N3LOPhys. Rev. D2021104L1115032021PhRvD.104k1503C[arXiv:2103.04974] [INSPIRE] – reference: G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections to top-antitop production at the LHC, PoSLL2012 (2012) 061 [INSPIRE]. – reference: L. Magnea et al., Local analytic sector subtraction at NNLO, JHEP12 (2018) 107 [Erratum ibid.06 (2019) 013] [arXiv:1806.09570] [INSPIRE]. – reference: G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B126 (1977) 298 [INSPIRE]. – reference: ChenL-BLiHTShaoH-SWangJHiggs boson pair production via gluon fusion at N3LO in QCDPhys. Lett. B2020803[arXiv:1909.06808] [INSPIRE] – reference: A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B612 (2005) 36 [hep-ph/0501291] [INSPIRE]. – reference: D.A. Kosower, Multiple singular emission in gauge theories, Phys. Rev. D67 (2003) 116003 [hep-ph/0212097] [INSPIRE]. – reference: Nigel GloverEWPiresJAntenna subtraction for gluon scattering at NNLOJHEP2010060961288.81147[arXiv:1003.2824] [INSPIRE] – reference: HerzogFGeometric IR subtraction for final state real radiationJHEP2018080062018JHEP...08..006H3867258[arXiv:1804.07949] [INSPIRE] – reference: GieleWTKosowerDASkandsPZA simple shower and matching algorithmPhys. Rev. D2008782008PhRvD..78a4026G[arXiv:0707.3652] [INSPIRE] – reference: DuhrCDulatFHirschiVMistlbergerBHiggs production in bottom quark fusion: matching the 4- and 5-flavour schemes to third order in the strong couplingJHEP2020080172020JHEP...08..017D[arXiv:2004.04752] [INSPIRE] – reference: CurrieJGloverEWNWellsSInfrared Structure at NNLO Using Antenna SubtractionJHEP2013040662013JHEP...04..066C[arXiv:1301.4693] [INSPIRE] – reference: Gehrmann-De RidderAGehrmannTGloverEWNHeinrichGInfrared structure of e+e−→ 3 jets at NNLOJHEP2007110582007JHEP...11..058G[arXiv:0710.0346] [INSPIRE] – reference: HartgringLLaenenESkandsPAntenna Showers with One-Loop Matrix ElementsJHEP2013101272013JHEP...10..127H[arXiv:1303.4974] [INSPIRE] – reference: CampbellJMTowards NNLO+PS matching with sector showersPhys. Lett. B202383607646125[arXiv:2108.07133] [INSPIRE] – reference: ChenXAutomation of antenna subtraction in colour space: gluonic processesJHEP2022100992022JHEP...10..099C[arXiv:2203.13531] [INSPIRE] – reference: L. Lonnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun.71 (1992) 15 [INSPIRE]. – reference: DulatFMistlbergerBPelloniAPrecision predictions at N3LO for the Higgs boson rapidity distribution at the LHCPhys. Rev. D2019992019PhRvD..99c4004D[arXiv:1810.09462] [INSPIRE] – reference: JadachSKusinaASkrzypekMSlawinskaMTwo real parton contributions to non-singlet kernels for exclusive QCD DGLAP evolutionJHEP2011080122011JHEP...08..012J1298.81392[arXiv:1102.5083] [INSPIRE] – reference: A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett.99 (2007) 132002 [arXiv:0707.1285] [INSPIRE]. – reference: ChenXTransverse mass distribution and charge asymmetry in W boson production to third order in QCDPhys. Lett. B2023840[arXiv:2205.11426] [INSPIRE] – reference: DreyerFAKarlbergAVector-Boson Fusion Higgs Pair Production at N3LOPhys. Rev. D2018982018PhRvD..98k4016D[arXiv:1811.07906] [INSPIRE] – reference: ChenXFully Differential Higgs Boson Production to Third Order in QCDPhys. Rev. Lett.20211272021PhRvL.127g2002C[arXiv:2102.07607] [INSPIRE] – reference: FrixioneSNasonPOleariCMatching NLO QCD computations with Parton Shower simulations: the POWHEG methodJHEP2007110702007JHEP...11..070F[arXiv:0709.2092] [INSPIRE] – reference: A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in massless QCD, Nucl. Phys. B682 (2004) 265 [hep-ph/0311276] [INSPIRE]. – reference: JadachSKusinaAPłaczekWSkrzypekMNLO corrections in the initial-state parton shower Monte CarloActa Phys. Polon. B20134421792013AcPPB..44.2179J[arXiv:1310.6090] [INSPIRE] – volume: 01 start-page: 145 year: 2018 ident: 21061_CR46 publication-title: JHEP doi: 10.1007/JHEP01(2018)145 – volume: 78 year: 2008 ident: 21061_CR78 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.014026 – volume: 75 start-page: 236 year: 2015 ident: 21061_CR92 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3417-6 – ident: 21061_CR101 – ident: 21061_CR102 doi: 10.1016/j.cpc.2012.12.028 – volume: 205-206 start-page: 176 year: 2010 ident: 21061_CR104 publication-title: Nucl. Phys. B Proc. Suppl. doi: 10.1016/j.nuclphysbps.2010.08.039 – volume: 127 year: 2021 ident: 21061_CR49 publication-title: Phys. Rev. Lett. – ident: 21061_CR12 doi: 10.21468/SciPostPhys.7.3.034 – volume: 01 start-page: 118 year: 2020 ident: 21061_CR86 publication-title: JHEP doi: 10.1007/JHEP01(2020)118 – volume: 04 start-page: 112 year: 2020 ident: 21061_CR94 publication-title: JHEP doi: 10.1007/JHEP04(2020)112 – ident: 21061_CR72 doi: 10.22323/1.151.0061 – volume: 10 start-page: 093 year: 2017 ident: 21061_CR30 publication-title: JHEP doi: 10.1007/JHEP10(2017)093 – volume: 96 year: 2017 ident: 21061_CR31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.074017 – volume: 94 year: 2016 ident: 21061_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.074019 – ident: 21061_CR99 – volume: 771 start-page: 59 year: 2017 ident: 21061_CR29 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.05.011 – volume: 104 start-page: L111503 year: 2021 ident: 21061_CR54 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.L111503 – volume: 02 start-page: 098 year: 2011 ident: 21061_CR65 publication-title: JHEP doi: 10.1007/JHEP02(2011)098 – volume: 12 start-page: 066 year: 2022 ident: 21061_CR56 publication-title: JHEP doi: 10.1007/JHEP12(2022)066 – volume: 05 start-page: 058 year: 2016 ident: 21061_CR36 publication-title: JHEP doi: 10.1007/JHEP05(2016)058 – volume: 10 start-page: 047 year: 2012 ident: 21061_CR67 publication-title: JHEP doi: 10.1007/JHEP10(2012)047 – ident: 21061_CR73 doi: 10.1007/JHEP11(2012)074 – volume: 11 start-page: 070 year: 2007 ident: 21061_CR8 publication-title: JHEP doi: 10.1088/1126-6708/2007/11/070 – volume: 85 year: 2012 ident: 21061_CR17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.034025 – volume: 80 start-page: 452 year: 2020 ident: 21061_CR11 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8011-x – ident: 21061_CR84 doi: 10.1016/S0550-3213(99)00778-6 – volume: 128 year: 2022 ident: 21061_CR52 publication-title: Phys. Rev. Lett. – volume: 06 start-page: 043 year: 2010 ident: 21061_CR9 publication-title: JHEP doi: 10.1007/JHEP06(2010)043 – volume: 08 start-page: 006 year: 2018 ident: 21061_CR23 publication-title: JHEP doi: 10.1007/JHEP08(2018)006 – ident: 21061_CR7 doi: 10.1088/1126-6708/2004/11/040 – volume: 98 year: 2018 ident: 21061_CR43 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.114016 – volume: 107 start-page: L011506 year: 2023 ident: 21061_CR53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.L011506 – volume: 127 year: 2021 ident: 21061_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.072001 – volume: 07 start-page: 041 year: 2009 ident: 21061_CR68 publication-title: JHEP doi: 10.1088/1126-6708/2009/07/041 – ident: 21061_CR3 doi: 10.1103/PhysRev.133.B1549 – volume: 05 start-page: 209 year: 2018 ident: 21061_CR42 publication-title: JHEP doi: 10.1007/JHEP05(2018)209 – ident: 21061_CR59 doi: 10.1016/j.physletb.2005.02.039 – ident: 21061_CR15 doi: 10.1103/PhysRevLett.98.222002 – volume: 02 start-page: 096 year: 2019 ident: 21061_CR48 publication-title: JHEP doi: 10.1007/JHEP02(2019)096 – volume: 08 start-page: 012 year: 2011 ident: 21061_CR26 publication-title: JHEP doi: 10.1007/JHEP08(2011)012 – ident: 21061_CR87 doi: 10.1016/S0550-3213(99)00657-4 – ident: 21061_CR22 doi: 10.1007/JHEP12(2018)107 – ident: 21061_CR2 doi: 10.1063/1.1724268 – ident: 21061_CR5 doi: 10.1016/0550-3213(96)00110-1 – ident: 21061_CR103 doi: 10.1016/j.nuclphysb.2004.01.023 – volume: 12 start-page: 094 year: 2007 ident: 21061_CR62 publication-title: JHEP doi: 10.1088/1126-6708/2007/12/094 – volume: 02 start-page: 106 year: 2015 ident: 21061_CR93 publication-title: JHEP doi: 10.1007/JHEP02(2015)106 – volume: 01 start-page: 168 year: 2023 ident: 21061_CR57 publication-title: JHEP doi: 10.1007/JHEP01(2023)168 – ident: 21061_CR75 – ident: 21061_CR1 doi: 10.1088/1126-6708/2005/09/056 – ident: 21061_CR13 doi: 10.21468/SciPostPhysCodeb.8 – volume: 07 start-page: 079 year: 2014 ident: 21061_CR10 publication-title: JHEP doi: 10.1007/JHEP07(2014)079 – volume: 693 start-page: 259 year: 2010 ident: 21061_CR16 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.08.036 – ident: 21061_CR6 doi: 10.1088/1126-6708/2002/06/029 – volume: 09 start-page: 059 year: 2022 ident: 21061_CR100 publication-title: JHEP doi: 10.1007/JHEP09(2022)059 – ident: 21061_CR77 doi: 10.1016/0010-4655(92)90068-A – ident: 21061_CR74 doi: 10.1007/JHEP10(2013)161 – ident: 21061_CR14 – volume: 117 year: 2016 ident: 21061_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.072001 – volume: 06 start-page: 096 year: 2010 ident: 21061_CR95 publication-title: JHEP doi: 10.1007/JHEP06(2010)096 – ident: 21061_CR63 doi: 10.1088/1126-6708/2007/04/016 – volume: 10 start-page: 093 year: 2020 ident: 21061_CR89 publication-title: JHEP doi: 10.1007/JHEP10(2020)093 – volume: 98 year: 2018 ident: 21061_CR32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.074013 – volume: 05 start-page: 028 year: 2018 ident: 21061_CR37 publication-title: JHEP doi: 10.1007/JHEP05(2018)028 – volume: 125 year: 2020 ident: 21061_CR39 publication-title: Phys. Rev. Lett. – ident: 21061_CR83 doi: 10.1016/S0370-2693(98)01513-5 – volume: 04 start-page: 066 year: 2013 ident: 21061_CR96 publication-title: JHEP doi: 10.1007/JHEP04(2013)066 – volume: 836 year: 2023 ident: 21061_CR25 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137614 – volume: 44 start-page: 2179 year: 2013 ident: 21061_CR27 publication-title: Acta Phys. Polon. B doi: 10.5506/APhysPolB.44.2179 – volume: 105 year: 2022 ident: 21061_CR33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.114012 – ident: 21061_CR58 doi: 10.1016/j.physletb.2005.03.003 – volume: 11 start-page: 058 year: 2007 ident: 21061_CR60 publication-title: JHEP doi: 10.1088/1126-6708/2007/11/058 – volume: 84 year: 2011 ident: 21061_CR79 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.054003 – volume: 99 year: 2019 ident: 21061_CR47 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.034004 – volume: 840 year: 2023 ident: 21061_CR55 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2023.137876 – ident: 21061_CR19 doi: 10.1103/PhysRevLett.115.082002 – volume: 803 year: 2020 ident: 21061_CR41 publication-title: Phys. Lett. B – volume: 125 year: 2020 ident: 21061_CR45 publication-title: Phys. Rev. Lett. – volume: 77 start-page: 248 year: 2017 ident: 21061_CR21 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4774-0 – volume: 114 year: 2015 ident: 21061_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.212001 – volume: 07 start-page: 032 year: 2020 ident: 21061_CR81 publication-title: JHEP doi: 10.1007/JHEP07(2020)032 – ident: 21061_CR85 doi: 10.1103/PhysRevD.67.116003 – volume: 76 start-page: 589 year: 2016 ident: 21061_CR80 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4429-6 – volume: 08 start-page: 017 year: 2020 ident: 21061_CR40 publication-title: JHEP doi: 10.1007/JHEP08(2020)017 – ident: 21061_CR82 doi: 10.1016/S0550-3213(98)00295-8 – ident: 21061_CR4 doi: 10.1016/S0550-3213(96)00589-5 – ident: 21061_CR98 doi: 10.1016/0550-3213(77)90384-4 – volume: 09 start-page: 058 year: 2015 ident: 21061_CR18 publication-title: JHEP doi: 10.1007/JHEP09(2015)058 – volume: 128 year: 2022 ident: 21061_CR50 publication-title: Phys. Rev. Lett. – ident: 21061_CR70 doi: 10.1007/JHEP06(2011)032 – volume: 01 start-page: 040 year: 2023 ident: 21061_CR90 publication-title: JHEP doi: 10.1007/JHEP01(2023)040 – volume: 02 start-page: 189 year: 2020 ident: 21061_CR88 publication-title: JHEP doi: 10.1007/JHEP02(2020)189 – volume: 10 start-page: 127 year: 2013 ident: 21061_CR28 publication-title: JHEP doi: 10.1007/JHEP10(2013)127 – ident: 21061_CR61 doi: 10.1103/PhysRevLett.99.132002 – ident: 21061_CR69 doi: 10.1007/JHEP04(2012)076 – volume: 73 start-page: 2310 year: 2013 ident: 21061_CR91 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-013-2310-4 – volume: 81 start-page: 250 year: 2021 ident: 21061_CR24 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-08996-y – volume: 10 start-page: 099 year: 2022 ident: 21061_CR97 publication-title: JHEP doi: 10.1007/JHEP10(2022)099 – volume: 01 start-page: 118 year: 2010 ident: 21061_CR64 publication-title: JHEP doi: 10.1007/JHEP01(2010)118 – volume: 04 start-page: 063 year: 2011 ident: 21061_CR71 publication-title: JHEP doi: 10.1007/JHEP04(2011)063 – ident: 21061_CR76 doi: 10.1016/0550-3213(88)90441-5 – volume: 12 start-page: 049 year: 2011 ident: 21061_CR66 publication-title: JHEP doi: 10.1007/JHEP12(2011)049 – volume: 11 start-page: 143 year: 2020 ident: 21061_CR44 publication-title: JHEP doi: 10.1007/JHEP11(2020)143 – ident: 21061_CR34  | 
    
| SSID | ssj0015190 | 
    
| Score | 2.5260174 | 
    
| Snippet | A
bstract
The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at... The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at next-to-next-to-leading... Abstract The antenna subtraction method has been successfully applied to a wide range of processes relevant for the Large Hadron Collider at...  | 
    
| SourceID | doaj unpaywall proquest crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 65 | 
    
| SubjectTerms | Algorithms Antennas Automation Classical and Quantum Gravitation Elementary Particles High energy physics Higher-Order Perturbative Calculations Integrals Large Hadron Collider Parton Shower Partons Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Quarks Radiation Radiators Regular Article - Theoretical Physics Relativity Theory String Theory Subtraction  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EEPUgPrFaZQ8e2kPsZnfzOlZRSkHxoCB4CPu0SEyLrYj_3tlNUitSvHhNdsPkm1nmGzL5BqEzoKAqAZ4cGEVFwJnVgTQGYplRkzrBOe09fXMbDx748DF6XBj15XrCKnngCrhemFnGLNFxIjhPINyoZiGnmts4oZr6X_dImjXFVP39AHgJaYR8SNIbDq7uSNxxo8K7xOWRhRzkpfp_8Mv5J9FNtP5eTsTnhyiKhaxzvY22arqI-5WZO2jFlLtozbdtqukeeurj50o3GovieQyF_ugVz8ZYumHXGPhgEbw58QGHPnYYlqXALpX5aMNAWPHIN3oEXoITg8NUPc9ruo8erq_uLwdBPS4hUDxMZoHWUiqaQb2mDA-5IYYJldoECpTMUhkSC-8fSQs5SWWp5ZZEIhKcGgEHORWKHaDVclyaQ4SVYkxbJYWlAkAPYTNkuowKxkIpItJC5w2Auaq1xN1IiyJvVJArxHOHeA6It1BnvmFSyWgsX3rhPDJf5vSv_QWIiryOivyvqGihduPPvD6U0xyqyxjKO6iwWqjb-Pj79lJ7uvMg-GX7y8hMFtYe_Yftx2jDPc_1o4WsjVZnb-_mBJjPTJ76IP8CJJD7-A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-6lLHtYeyTZeuGHvbQPGi1JdmOH8ZoR0ooLJSxQmEPRtZHQvGcNHEp--93p9huxuhe7ROW706631nn3wF8RAhqMsTJ3BmhuZLe8tI59GUp3JgI52yw9LdZOr1QZ5fJ5R7Mun9hqKyy2xPDRm2Xhr6RH2FqkCI2R3j8ZXXNqWsUna52LTR021rBfg4UYw9gXxAz1gD2Tyaz8-_9uQLilagj-Imyo7Pp5DxKD6mF-Cii-LITmwKF_1-4sz8qfQKPbuqV_n2rq2onGp0-g6ctjGTHW7s_hz1Xv4CHoZzTbF7Cz2M23_JJM13N8TWaxS_WLFlJTbAZ4sSKr4mUgKzCSLd1rRmFuOCFDIEsW4QCEB6oORka0rR9vjav4OJ08uPrlLdtFLhRcdZwa8vSiBzzOONUrFzkpDZjn2HikntRxpHH909Kj7HK5GOvfJToRCvhNC7wsTbyNQzqZe3eADNGSutNqb3QCrEIDsYImAstZVzqJBrCp06BhWk5xqnVRVV07MhbjRek8QI1PoTDfsBqS69xv-gJWaQXI17scGG5nhftMivi3EvpI5tmWuEEMX2wMlbCKp9mwop8CAedPYt2sW6KO9cawqiz8d3te-cz6p3gn7lfLdxqR_bt_x_7Dh6TJFWgxfIABs36xr1HrNOUH1oH_gOFDvtv priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58IOpBfGK1yh482EM02d0kzbGKUgTFg4LgIezTIjEtbUX8985uk_jCg7eQ7IbNzCzfN8zmG4AjpKAqRZ4cGEVFwJnVgTQGY5lR03WCc9p7-vom6d_zq4f4oRJJcv_C_Kjfn171L27D5Ng1-e4gWs7DIiJU4quyyXlTLkAaEta6Pb8nfYMcr8z_jU42FdBVWH4tR-L9TRTFF5C5XIe1ih2S3sydGzBnyk1Y8qc01WQLHnvkaSYTTUTxNMS8fvBCpkMiXW9rgvSvCMZOa8AZmziTlaUgDrl8cBHkp2Tgz3UEXnGToH9U1b5rsg33lxd35_2g6o4QKB6l00BrKRXNMD1ThkfchIYJ1bUp5iOZpTIKLX5_LC1CkMq6ltswFrHg1Ajct12h2A4slMPS7AJRijFtlRSWCo4UAycjsGVUMBZJEYctOKkNmKtKOtx1sCjyWvR4ZvHcWTxHi7fguJkwmqlm_D30zHmkGebkrv0NjIK82j15lFnGbKiTVHBcIGYFmkWcam6TlGqataBd-zOv9uAkx2QywWwOE6oWdGoffz7-cz2dJgh-rf15YEZfxu794737sOIu3SmziLVhYTp-NQfIZ6by0MfyBw967E4 priority: 102 providerName: Springer Nature  | 
    
| Title | A general algorithm to build real-radiation antenna functions for higher-order calculations | 
    
| URI | https://link.springer.com/article/10.1007/JHEP06(2023)065 https://www.proquest.com/docview/2826996576 https://durham-repository.worktribe.com/output/1171577 https://doaj.org/article/19f33f0d67a4474882d3142d4f672d29  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 2023 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: AMVHM dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: 8FG dateStart: 20121201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature Link OA Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C6C dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLa2Vgg48BtRGJUPHNaDu8R27ObYVS3VJKoKUTHEIXIcux10adUmQvDX8-wkZYB22MVyEkey8579vme_fA-hdwBBtQScTIyminBmM5IaA7rMqBk4wrnMS_rDTEwX_OIyujxCovkXJit3K3VN3Ib5_sodM_ddfJJL_lTtLW3KYlsWZ2Eow0jKY9QWEWDwFmovZvPhF3-0SWMCS27ss6pQQYT0aemgLgnYQtHw-wTy7NvKbANx6jKI9wJnXm6YJs_g_xfsPJyUPkT3y3yrfv5Q6_UNYzR5jD43w6hiUL73yyLt61__MDzefZxP0KMan-JhpVBP0ZHJn6F7Pk5U75-jr0O8rIiqsVovN7urYnWNiw1OXXZtDAB0TXaO7cCJGzuh5bnCznZ69caAkPHKR5YQz_mJQUN0nUBs_wItJuNPoymp8zMQzUNZkCxLU01jcBC14SE3gWFKD6wEjyi2NA0DC182Si0YQR0PLLdBpCLFqVGwcgyUZi9RK9_k5hXCWjOWWZ0qSxUHkAMvg2mNqWIsTFUUdFC_EU2ia_Jyl0NjnTS0yxfT8TwQiZNlArLsoNPDC9uKt-P2pudO1odmjnDb39jslkk9f5MwtozZIBNScegg-CUZCznNuBWSZjTuoJNGU5J6Fdgn4M4K8CfBpeugXqM9fx7f2p_eQb3-63ulsoe2r-_Q9g164Kouzi1kJ6hV7ErzFhBVkXbR8WDyvova5-PZ_CNcjSh3pRh1_R4FlAsKZTXJfgOUTiHF | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFD5ioIntYdpV68Y2P2wSfchIbDdpHhCCUVRuFZpAQtqD5_jSCoW0a4MQf26_jePUCZ0Qe-M1sRPrnBOf78T29wF8RQiqEsTJgVFUBpxZHWTGYCwzarqOcE5Xnj4exP0zfnDeOV-Cv_VZGLetsp4Tq4laj5X7R76BpUGM2Bzh8dbkT-BUo9zqai2hIb20gt6sKMb8wY5Dc3ONJdxsc38X_f2N0r3e6Y9-4FUGAsWjpAy0zjJFUyxzlOERN6FhUnVtgrg-tTSLQksRF2QWp3KVdi23YUd2JKdGYvx3pWL43CewwhlPsfhb2ekNTn426xiIj8KaUChMNg76vZMwXneS5e3Q5bOFXFhJBvyDc5ul2eewelVM5M21zPOF7Lf3El542Eq253H2CpZM8RqeVttH1ewN_Nomwzl_NZH5EM1Wji5JOSaZE90miEvzYOpIEFwUEOfLopDEpdQq6gkCZzKqNpwEFRUowcBRXlds9hbOHsWg72C5GBfmPRClGNNWZdJSyRH7YGfMuCmVjEWZ7IQt-F4bUCjPae6kNXJRszHPLS6cxQVavAXrTYfJnM7j4aY7ziNNM8fDXV0YT4fCf9YiSi1jNtRxIjkOEMsVzSJONbdxQjVNW7BW-1P4yWEm7kK5Be3ax3e3HxxPuwmCe2O_GJnJQtsP_3_tF1jtnx4fiaP9weFHeOZ6ud1vEVuD5XJ6ZT4hziqzzz6YCfx-7O_nFhkDONI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIig9IJ4iUGAPIDUHE3t3Y8eHChXakLZQ9UClSj2Y9T4SVcYJiauqf62_rjN-NQiVW6_2rr2a-XbnW-_4G4APSEF1hDzZs5orTwpnvNRaxLLgdkCCc6b09I_DcHQs90_6Jytw1fwLQ2mVzZpYLtRmqukbeQ-3BiFyc6THPVenRRztDD_P_nhUQYpOWptyGhVEDuzlBW7fFlt7O-jrj5wPd39-HXl1hQFPyyAqPGPSVPMYtzjaykBa3wqlBy5CTh87nga-48gJUofLuI4HTjq_r_pKcqsQ-wOlBT73HtyPSMWd_lIffmtPMJAZ-Y2UkB_19ke7R364ScXKuz5FsqUoWBYL-Ivhtoey67B2ns_U5YXKsqW4N3wCj2vCyrYrhD2FFZs_gwdl4qhePIfTbTaulKuZysZopGLymxVTllK5bYaMNPPmJH9A_mfkxTxXjIJpiXeGlJlNylQTrxQBZQgZXVcUW7yA4zsx50tYzae5fQVMayGM06lyXElkPdgZY23MlRBBqvp-Bz41Bkx0rWZORTWypNFhriyekMUTtHgHNtsOs0rI4_amX8gjbTNS4C4vTOfjpJ7QSRA7IZxvwkhJHCBuVIwIJDfShRE3PO7ARuPPpF4WFskNiDvQbXx8c_vW8XRbEPwz9rOJnS21ff3_176Hhzhrku97hwdv4BF1orS3QGzAajE_t2-RYBXpuxLJDH7d9dS5BoTyNmw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVgg48EYsFOQDh-7B2_gRe3NcUKtVJaoeWFHEIbIde7eQJqtsIgS_nnEeSwH10JuVjCU7M_Z8Y0--QegdQFCrACcTZ5kmgvuMGOfAljlzs0A4l7Wa_ngmF0txehFf7CE5_AuTNdVaX5FwYL69DNfM05CfFIo_dWdLZVNvmvqIUkVjpe6gfRkDBh-h_eXZ-fxLe7XJEgJbbtJWVWGSSNWWpYO2IuAL5cDvE6mjb2u3ieRhqCA-iYJ7ueaaWgb_v2Dn7qb0AbrXFBv984fO82vO6OQR-jxMo8tB-T5tajO1v_5heLz9PB-jhz0-xfPOoJ6gPVc8RXfbPFG7fYa-zvGqI6rGOl-V1WW9vsJ1iU2oro0BgOakCmwHQd04KK0oNA6-szVvDAgZr9vMEtJyfmKwENsXENs-R8uT408fFqSvz0CsoKomWWaMZQkEiNYJKlzkuLYzryAiSjwzNPLwZWPjwQnaZOaFj2Ida8Gchp1jpi1_gUZFWbiXCFvLeeat0Z5pASAHOoNrTZjmnBodR2M0HVST2p68PNTQyNOBdvl0cXweyTToMgVdjtHhrsOm4-24WfR90PVOLBButw_KapX26zeliefcR5lUWsAAIS7JOBUsE14qlrFkjA4GS0n7XWCbQjgrIZ6EkG6MJoP1_Hl943gmO_P6b-ydye5kX91C9jW6H5ohz43yAzSqq8a9AURVm7f98vkNE2EbwA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+algorithm+to+build+real-radiation+antenna+functions+for+higher-order+calculations&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Braun-White%2C+Oscar&rft.au=Glover%2C+Nigel&rft.au=Preuss%2C+Christian+T&rft.date=2023-06-13&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2023&rft.issue=6&rft_id=info:doi/10.1007%2FJHEP06%282023%29065&rft.externalDocID=10_1007_JHEP06_2023_065 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |