Cross-Subject and Cross-Modal Transfer for Generalized Abnormal Gait Pattern Recognition
For abnormal gait recognition, pattern-specific features indicating abnormalities are interleaved with the subject-specific differences representing biometric traits. Deep representations are, therefore, prone to overfitting, and the models derived cannot generalize well to new subjects. Furthermore...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 2; pp. 546 - 560 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2020.3009448 |
Cover
Abstract | For abnormal gait recognition, pattern-specific features indicating abnormalities are interleaved with the subject-specific differences representing biometric traits. Deep representations are, therefore, prone to overfitting, and the models derived cannot generalize well to new subjects. Furthermore, there is limited availability of abnormal gait data obtained from precise Motion Capture (Mocap) systems because of regulatory issues and slow adaptation of new technologies in health care. On the other hand, data captured from markerless vision sensors or wearable sensors can be obtained in home environments, but noises from such devices may prevent the effective extraction of relevant features. To address these challenges, we propose a cascade of deep architectures that can encode cross-modal and cross-subject transfer for abnormal gait recognition. Cross-modal transfer maps noisy data obtained from RGBD and wearable sensors to accurate 4-D representations of the lower limb and joints obtained from the Mocap system. Subsequently, cross-subject transfer allows disentangling subject-specific from abnormal pattern-specific gait features based on a multiencoder autoencoder architecture. To validate the proposed methodology, we obtained multimodal gait data based on a multicamera motion capture system along with synchronized recordings of electromyography (EMG) data and 4-D skeleton data extracted from a single RGBD camera. Classification accuracy was improved significantly in both Mocap and noisy modalities. |
---|---|
AbstractList | For abnormal gait recognition, pattern-specific features indicating abnormalities are interleaved with the subject-specific differences representing biometric traits. Deep representations are, therefore, prone to overfitting, and the models derived cannot generalize well to new subjects. Furthermore, there is limited availability of abnormal gait data obtained from precise Motion Capture (Mocap) systems because of regulatory issues and slow adaptation of new technologies in health care. On the other hand, data captured from markerless vision sensors or wearable sensors can be obtained in home environments, but noises from such devices may prevent the effective extraction of relevant features. To address these challenges, we propose a cascade of deep architectures that can encode cross-modal and cross-subject transfer for abnormal gait recognition. Cross-modal transfer maps noisy data obtained from RGBD and wearable sensors to accurate 4-D representations of the lower limb and joints obtained from the Mocap system. Subsequently, cross-subject transfer allows disentangling subject-specific from abnormal pattern-specific gait features based on a multiencoder autoencoder architecture. To validate the proposed methodology, we obtained multimodal gait data based on a multicamera motion capture system along with synchronized recordings of electromyography (EMG) data and 4-D skeleton data extracted from a single RGBD camera. Classification accuracy was improved significantly in both Mocap and noisy modalities. For abnormal gait recognition, pattern-specific features indicating abnormalities are interleaved with the subject-specific differences representing biometric traits. Deep representations are, therefore, prone to overfitting, and the models derived cannot generalize well to new subjects. Furthermore, there is limited availability of abnormal gait data obtained from precise Motion Capture (Mocap) systems because of regulatory issues and slow adaptation of new technologies in health care. On the other hand, data captured from markerless vision sensors or wearable sensors can be obtained in home environments, but noises from such devices may prevent the effective extraction of relevant features. To address these challenges, we propose a cascade of deep architectures that can encode cross-modal and cross-subject transfer for abnormal gait recognition. Cross-modal transfer maps noisy data obtained from RGBD and wearable sensors to accurate 4-D representations of the lower limb and joints obtained from the Mocap system. Subsequently, cross-subject transfer allows disentangling subject-specific from abnormal pattern-specific gait features based on a multiencoder autoencoder architecture. To validate the proposed methodology, we obtained multimodal gait data based on a multicamera motion capture system along with synchronized recordings of electromyography (EMG) data and 4-D skeleton data extracted from a single RGBD camera. Classification accuracy was improved significantly in both Mocap and noisy modalities.For abnormal gait recognition, pattern-specific features indicating abnormalities are interleaved with the subject-specific differences representing biometric traits. Deep representations are, therefore, prone to overfitting, and the models derived cannot generalize well to new subjects. Furthermore, there is limited availability of abnormal gait data obtained from precise Motion Capture (Mocap) systems because of regulatory issues and slow adaptation of new technologies in health care. On the other hand, data captured from markerless vision sensors or wearable sensors can be obtained in home environments, but noises from such devices may prevent the effective extraction of relevant features. To address these challenges, we propose a cascade of deep architectures that can encode cross-modal and cross-subject transfer for abnormal gait recognition. Cross-modal transfer maps noisy data obtained from RGBD and wearable sensors to accurate 4-D representations of the lower limb and joints obtained from the Mocap system. Subsequently, cross-subject transfer allows disentangling subject-specific from abnormal pattern-specific gait features based on a multiencoder autoencoder architecture. To validate the proposed methodology, we obtained multimodal gait data based on a multicamera motion capture system along with synchronized recordings of electromyography (EMG) data and 4-D skeleton data extracted from a single RGBD camera. Classification accuracy was improved significantly in both Mocap and noisy modalities. |
Author | Guo, Yao Deligianni, Fani Yang, Guang-Zhong Lo, Benny Gu, Xiao |
Author_xml | – sequence: 1 givenname: Xiao orcidid: 0000-0002-3015-5818 surname: Gu fullname: Gu, Xiao email: xiao.gu17@imperial.ac.uk organization: Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London, U.K – sequence: 2 givenname: Yao orcidid: 0000-0001-8041-1245 surname: Guo fullname: Guo, Yao email: yao.guo@imperial.ac.uk organization: Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London, U.K – sequence: 3 givenname: Fani orcidid: 0000-0003-1306-5017 surname: Deligianni fullname: Deligianni, Fani email: fani.deligianni@glasgow.ac.uk organization: School of Computing Science, University of Glasgow, Glasgow, U.K – sequence: 4 givenname: Benny orcidid: 0000-0002-5080-108X surname: Lo fullname: Lo, Benny email: benny.lo@imperial.ac.uk organization: Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London, U.K – sequence: 5 givenname: Guang-Zhong surname: Yang fullname: Yang, Guang-Zhong email: gzy@sjtu.edu.cn organization: Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32726285$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9P3DAQxa2KqlDKFygSitRLL9n6T2InR7QqC9KWVmUrcYsmzhh5lbXBdg7tp8fbXfbAAV_G8vzejPXeR3LkvENCPjM6Y4y231a3t8u7GaeczgSlbVU178gJZ5KXXDTN0eGu7o_JWYxrmo-ktazaD-RYcMUlb-oTcj8PPsbyburXqFMBbih2Lz_8AGOxCuCiwVAYH4oFOgww2n84FJe982GTiQXYVPyClDC44jdq_-Bsst59Iu8NjBHP9vWU_Ln6vppfl8ufi5v55bLUFVOp1EYoPqAAqBqojeoNZ4MxWkpURgyDgUqyujWCC6l62jPsgZpa1xxyV2hxSr7u5j4G_zRhTN3GRo3jCA79FDte8ZbWqpE8o19eoWs_BZd_l6lGVXkDY5m62FNTv8Ghewx2A-Fv9-JZBvgO0FujApoDwmi3zab7n023zabbZ5NFzSuRtgm2RqUAdnxber6TWkQ87GpZnRMW4hlM9ZwN |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_3390_bioengineering10091101 crossref_primary_10_1016_j_bspc_2024_106771 crossref_primary_10_3390_s22135005 crossref_primary_10_1109_LSENS_2024_3389675 crossref_primary_10_1109_ACCESS_2024_3404456 crossref_primary_10_1109_TIM_2023_3265105 crossref_primary_10_1109_TNNLS_2021_3105595 crossref_primary_10_1109_TNSRE_2024_3429637 crossref_primary_10_1016_j_neucom_2021_12_004 crossref_primary_10_1109_JSEN_2024_3519564 crossref_primary_10_1109_TNNLS_2023_3331050 crossref_primary_10_1007_s11042_023_17195_8 crossref_primary_10_1109_TNNLS_2022_3154723 crossref_primary_10_1016_j_csbj_2025_02_001 crossref_primary_10_1111_exsy_13274 crossref_primary_10_3390_app12030986 crossref_primary_10_1016_j_medntd_2024_100341 crossref_primary_10_1109_TSMC_2024_3369071 crossref_primary_10_3389_fnagi_2022_916971 crossref_primary_10_1109_JBHI_2023_3337072 crossref_primary_10_1109_JBHI_2021_3107532 crossref_primary_10_3390_brainsci11081049 crossref_primary_10_1109_JSEN_2025_3526646 crossref_primary_10_1109_TNNLS_2022_3160159 crossref_primary_10_1109_TMRB_2022_3141313 crossref_primary_10_1109_TIM_2024_3412196 crossref_primary_10_1016_j_cmpb_2022_107016 crossref_primary_10_1109_JBHI_2021_3080502 crossref_primary_10_1109_RBME_2023_3296938 crossref_primary_10_1109_JBHI_2022_3198640 crossref_primary_10_1186_s12984_024_01526_3 crossref_primary_10_1109_TIFS_2024_3382606 crossref_primary_10_1016_j_inffus_2021_12_003 crossref_primary_10_1016_j_jsr_2023_08_008 crossref_primary_10_1016_j_artmed_2022_102314 crossref_primary_10_1016_j_eswa_2023_121224 crossref_primary_10_1109_JBHI_2024_3383598 crossref_primary_10_1093_jcde_qwab054 |
Cites_doi | 10.1109/TCYB.2019.2934986 10.1109/CVPR.2017.451 10.1109/IJCNN.2019.8852347 10.1109/JSEN.2018.2839732 10.1038/s41598-019-38748-8 10.1109/ICCV.2015.494 10.1109/CVPR.2018.00566 10.1109/LRA.2019.2928775 10.1038/s41551-018-0305-z 10.1109/JBHI.2019.2938111 10.1007/s10462-016-9514-6 10.1109/MRA.2018.2852795 10.1016/j.inffus.2017.09.008 10.1016/j.gaitpost.2017.04.001 10.1016/j.humov.2019.102558 10.1109/ACCESS.2019.2916887 10.1016/j.bspc.2017.10.002 10.1016/j.cviu.2016.09.002 10.3390/s16010115 10.1109/BSN.2018.8329654 10.1109/TCYB.2017.2682280 10.1109/ICPR.2016.7899654 10.1109/CVPR.2017.143 10.1109/JBHI.2016.2608720 10.1109/FG.2015.7284881 10.1016/j.jbiomech.2010.01.027 10.1007/978-1-4471-6374-9 10.1109/JBHI.2018.2860780 10.1109/ICCV.2017.609 10.1109/TNNLS.2018.2851077 10.1109/TPAMI.2018.2798607 10.1109/CVPRW.2017.207 10.1007/s10586-018-1830-y 10.1109/I2MTC.2018.8409880 10.1186/s12891-016-1013-z 10.1109/MSP.2014.2347059 10.1145/1037957.1037963 10.3390/app9235245 10.1109/JBHI.2016.2636456 10.1109/JBHI.2019.2923209 10.1109/CVPR.2018.00901 10.1109/CVPR.2017.327 10.1109/CVPR.2019.00224 10.1016/S0966-6362(01)00100-X 10.1109/ICCV.2019.00153 10.1109/BIOCAS.2019.8919154 10.24963/ijcai.2017/263 10.1109/JBHI.2016.2636665 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2020.3009448 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 560 |
ExternalDocumentID | 32726285 10_1109_TNNLS_2020_3009448 9152163 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Newton Fund Institutional Links grantid: 330760239 funderid: 10.13039/100010897 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c417t-cf372de3aa48a5f7bf21dffc66e7f3ddfa46159f32367b0b1eba0f5c52a3dd3c3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Sat Sep 27 22:03:38 EDT 2025 Sun Jun 29 15:23:16 EDT 2025 Thu Jan 02 22:56:09 EST 2025 Tue Jul 01 00:27:34 EDT 2025 Thu Apr 24 22:49:15 EDT 2025 Wed Aug 27 05:47:13 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-cf372de3aa48a5f7bf21dffc66e7f3ddfa46159f32367b0b1eba0f5c52a3dd3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3015-5818 0000-0003-1306-5017 0000-0002-5080-108X 0000-0001-8041-1245 |
PMID | 32726285 |
PQID | 2487436711 |
PQPubID | 85436 |
PageCount | 15 |
ParticipantIDs | ieee_primary_9152163 crossref_citationtrail_10_1109_TNNLS_2020_3009448 proquest_miscellaneous_2429057862 pubmed_primary_32726285 crossref_primary_10_1109_TNNLS_2020_3009448 proquest_journals_2487436711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref55 ref11 ref54 ref10 ref17 ref18 aberman (ref39) 2019 liu (ref31) 2016 taylor (ref33) 2011; 12 ref50 li (ref35) 2017 ref46 ref45 ref48 bouchacourt (ref40) 2018 ref47 ref42 yan (ref38) 2018 ref41 ref43 dou (ref51) 2019 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref34 ref37 ref36 ordóñez (ref29) 2016; 16 ma (ref19) 2019 ref2 ref1 horst (ref23) 2019; 9 zou (ref27) 2018 muandet (ref53) 2013 ref24 ref26 ref25 ref20 pascanu (ref32) 2013 ref22 ref21 ref28 kidzi?ski (ref30) 2019; 14 sarafianos (ref16) 2016; 152 ref60 ref61 mor (ref44) 2018 |
References_xml | – ident: ref46 doi: 10.1109/TCYB.2019.2934986 – volume: 14 year: 2019 ident: ref30 article-title: Automatic real-time gait event detection in children using deep neural networks publication-title: PLoS ONE – ident: ref60 doi: 10.1109/CVPR.2017.451 – volume: 12 start-page: 1025 year: 2011 ident: ref33 article-title: Two distributed-state models for generating high-dimensional time series publication-title: J Mach Learn Res – ident: ref49 doi: 10.1109/IJCNN.2019.8852347 – ident: ref20 doi: 10.1109/JSEN.2018.2839732 – year: 2019 ident: ref19 article-title: M3D-GAN: Multi-modal multi-domain translation with universal attention publication-title: arXiv 1907 04378 – volume: 9 year: 2019 ident: ref23 article-title: Explaining the unique nature of individual gait patterns with deep learning publication-title: Sci Rep doi: 10.1038/s41598-019-38748-8 – ident: ref34 doi: 10.1109/ICCV.2015.494 – ident: ref54 doi: 10.1109/CVPR.2018.00566 – ident: ref5 doi: 10.1109/LRA.2019.2928775 – start-page: 1310 year: 2013 ident: ref32 article-title: On the difficulty of training recurrent neural networks publication-title: Proc Int Conf Mach Learn – ident: ref2 doi: 10.1038/s41551-018-0305-z – ident: ref7 doi: 10.1109/JBHI.2019.2938111 – ident: ref22 doi: 10.1007/s10462-016-9514-6 – ident: ref17 doi: 10.1109/MRA.2018.2852795 – start-page: 10 year: 2013 ident: ref53 article-title: Domain generalization via invariant feature representation publication-title: Proc Int Conf Mach Learn – ident: ref3 doi: 10.1016/j.inffus.2017.09.008 – ident: ref8 doi: 10.1016/j.gaitpost.2017.04.001 – ident: ref58 doi: 10.1016/j.humov.2019.102558 – year: 2019 ident: ref39 article-title: Learning character-agnostic motion for motion retargeting in 2D publication-title: arXiv 1905 01680 – ident: ref41 doi: 10.1109/ACCESS.2019.2916887 – year: 2017 ident: ref35 article-title: Auto-conditioned recurrent networks for extended complex human motion synthesis publication-title: arXiv 1707 05363 – ident: ref14 doi: 10.1016/j.bspc.2017.10.002 – volume: 152 start-page: 1 year: 2016 ident: ref16 article-title: 3D human pose estimation: A review of the literature and analysis of covariates publication-title: Comput Vis Image Understand doi: 10.1016/j.cviu.2016.09.002 – volume: 16 start-page: 115 year: 2016 ident: ref29 article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition publication-title: SENSORS doi: 10.3390/s16010115 – ident: ref4 doi: 10.1109/BSN.2018.8329654 – start-page: 1058 year: 2016 ident: ref31 article-title: Deep rehabilitation gait learning for modeling knee joints of lower-limb exoskeleton publication-title: Proc IEEE Int Conf Robot Biomimetics (RoBio) – ident: ref48 doi: 10.1109/TCYB.2017.2682280 – start-page: 265 year: 2018 ident: ref38 article-title: MT-VAE: Learning motion transformations to generate multimodal human dynamics publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref28 doi: 10.1109/ICPR.2016.7899654 – ident: ref18 doi: 10.1109/CVPR.2017.143 – year: 2018 ident: ref44 article-title: A universal music translation network publication-title: arXiv 1805 07848 – year: 2018 ident: ref27 article-title: Deep learning-based gait recognition using smartphones in the wild publication-title: arXiv 1811 00338 – ident: ref9 doi: 10.1109/JBHI.2016.2608720 – ident: ref21 doi: 10.1109/FG.2015.7284881 – ident: ref15 doi: 10.1016/j.jbiomech.2010.01.027 – ident: ref10 doi: 10.1007/978-1-4471-6374-9 – ident: ref13 doi: 10.1109/JBHI.2018.2860780 – start-page: 6447 year: 2019 ident: ref51 article-title: Domain generalization via model-agnostic learning of semantic features publication-title: Proc Adv Neural Inf Process Syst – ident: ref55 doi: 10.1109/ICCV.2017.609 – ident: ref45 doi: 10.1109/TNNLS.2018.2851077 – ident: ref42 doi: 10.1109/TPAMI.2018.2798607 – ident: ref25 doi: 10.1109/CVPRW.2017.207 – start-page: 1 year: 2018 ident: ref40 article-title: Multi-level variational autoencoder: Learning disentangled representations from grouped observations publication-title: Proc 32nd AAAI Conf Artif Intell – ident: ref11 doi: 10.1007/s10586-018-1830-y – ident: ref6 doi: 10.1109/I2MTC.2018.8409880 – ident: ref12 doi: 10.1186/s12891-016-1013-z – ident: ref52 doi: 10.1109/MSP.2014.2347059 – ident: ref36 doi: 10.1145/1037957.1037963 – ident: ref59 doi: 10.3390/app9235245 – ident: ref24 doi: 10.1109/JBHI.2016.2636456 – ident: ref26 doi: 10.1109/JBHI.2019.2923209 – ident: ref37 doi: 10.1109/CVPR.2018.00901 – ident: ref43 doi: 10.1109/CVPR.2017.327 – ident: ref57 doi: 10.1109/CVPR.2019.00224 – ident: ref61 doi: 10.1016/S0966-6362(01)00100-X – ident: ref56 doi: 10.1109/ICCV.2019.00153 – ident: ref50 doi: 10.1109/BIOCAS.2019.8919154 – ident: ref47 doi: 10.24963/ijcai.2017/263 – ident: ref1 doi: 10.1109/JBHI.2016.2636665 |
SSID | ssj0000605649 |
Score | 2.5572991 |
Snippet | For abnormal gait recognition, pattern-specific features indicating abnormalities are interleaved with the subject-specific differences representing biometric... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 546 |
SubjectTerms | Abnormalities Algorithms Biomechanical Phenomena Biometry Body sensor network Computer Systems Data mining Deep Learning Electromyography Feature extraction Feature recognition Gait gait analysis Gait Disorders, Neurologic - diagnosis Gait recognition Health care Home Environment Humans Imaging, Three-Dimensional Joints - diagnostic imaging Kinematics Lower Extremity - diagnostic imaging model generalization Motion capture multimodal representation Neural Networks, Computer New technology Noise measurement Pattern recognition Pattern Recognition, Automated - methods Representations Reproducibility of Results Sensors Skeleton Wearable Electronic Devices Wearable technology |
Title | Cross-Subject and Cross-Modal Transfer for Generalized Abnormal Gait Pattern Recognition |
URI | https://ieeexplore.ieee.org/document/9152163 https://www.ncbi.nlm.nih.gov/pubmed/32726285 https://www.proquest.com/docview/2487436711 https://www.proquest.com/docview/2429057862 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy6lBdqGAnIlbq2XxHYSckQIiqruqiog7S3yU0KgBEH2wq_vjPOQitqKW5TYiZ0Ze77xvACOXAia7Edc6VJzZTLJUSgoHlTmURfz6Ums3jBfFJc36vsyX67B1ykWxnsfnc_8jC6jLd-1dkVHZccVCZtCrsM6slkfqzWdp6SIy4uIdrGJ4EKWyzFGJq2OrxeLH1eoDQpUUsmZTlGdPilKQRGEf4ikWGPl33Azip2LLZiPA-69Te5mq87M7POLXI6vndFbeDPgT3baM8w7WPPNNmyNtR3YsNR3YHlGY-W4r9BBDdONY_2deeuwfxRxATsg5mVD6urbZ-_YqWkIBd-zb_q2Yz9j9s6G_RrdlNpmF24uzq_PLvlQhYFblZUdt0GWwnmptTrReShNEBlS2BaFL4N0LmiFqKgKknLBmdRk3ug05DYXGp9KK9_DRtM2_iO5UVW5c9oaF1Ajt6Eio6nDTcBp3HisSCAbCVHbIUU5Vcq4r6OqklZ1pGNNdKwHOibwZerz0Cfo-G_rHSLC1HL4_wnsj_SuhzX8VAvU5RTOKcsS-Dw9xtVHJhXd-HZFbUSFiBfVwgQ-9HwyvXtkr72_f_MTbAryj4ke4Puw0T2u_AECnM4cRs7-Dcl59Fw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBcojUMBI3MDbxHaSzbGqKAvsrhBspb1FfkoVVVKV7KW_nhnnIYEAcYsSO7EzY883nhfAGxeCJvsRV7rUXJlMchQKigeVedTFfDqP1RtW62Jxrj5t8-0evJtiYbz30fnMz-gy2vJda3d0VHZckbAp5C24naNWMe-jtaYTlRSReRHxLjYSXMhyO0bJpNXxZr1efkN9UKCaSu50iir1SVEKiiH8RSjFKit_B5xR8JwdwGoccu9v8n2268zM3vyWzfF_53Qf7g0IlJ30LPMA9nzzEA7G6g5sWOyHsD2lsXLcWeiohunGsf7OqnXYPwq5gB0Q9bIhefXFjXfsxDSEgy_ZB33RsS8xf2fDvo6OSm3zCM7P3m9OF3yow8CtysqO2yBL4bzUWs11HkoTRIY0tkXhyyCdC1ohLqqCpGxwJjWZNzoNuc2FxqfSysew37SNf0qOVFXunLbGBdTJbajIbOpwG3Aatx4rEshGQtR2SFJOtTIu66ispFUd6VgTHeuBjgm8nfpc9Sk6_tn6kIgwtRz-fwJHI73rYRX_qAVqcwrnlGUJvJ4e4_ojo4pufLujNqJCzIuKYQJPej6Z3j2y17M_f_MV3FlsVst6-XH9-TncFeQtE_3Bj2C_u975Fwh3OvMycvlPy5H3rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Subject+and+Cross-Modal+Transfer+for+Generalized+Abnormal+Gait+Pattern+Recognition&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Gu%2C+Xiao&rft.au=Guo%2C+Yao&rft.au=Deligianni%2C+Fani&rft.au=Lo%2C+Benny&rft.date=2021-02-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=2&rft.spage=546&rft.epage=560&rft_id=info:doi/10.1109%2FTNNLS.2020.3009448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2020_3009448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |