The use of computer vision technologies in aquaculture – A review
Computer vision technology is a sophisticated inspection technology that is in common use in various industries. However, it is not as widely used in aquaculture. Application of computer vision technologies in aquaculture, the scope of the present review, is very challenging. The inspected subjects...
Saved in:
Published in | Computers and electronics in agriculture Vol. 88; pp. 125 - 132 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0168-1699 1872-7107 |
DOI | 10.1016/j.compag.2012.07.010 |
Cover
Abstract | Computer vision technology is a sophisticated inspection technology that is in common use in various industries. However, it is not as widely used in aquaculture. Application of computer vision technologies in aquaculture, the scope of the present review, is very challenging. The inspected subjects are sensitive, easily stressed and free to move in an environment in which lighting, visibility and stability are generally not controllable, and the sensors must operate underwater or in a wet environment. The review describes the state of the art and the evolution of computer vision in aquaculture, at all stages of production, from hatcheries to harvest. The review is organized according to inspection tasks that are common to almost all production systems: counting, size measurement and mass estimation, gender detection and quality inspection, species and stock identification, and monitoring of welfare and behavior. The objective of the review is to highlight areas of research and development in the field of computer vision which have made some progress, but have not matured into a useful tool. There are many potential applications for this technology in aquaculture which could be useful for improving product quality or production efficiency. There have been quite a few initiatives in this direction, and a tight collaboration between engineers, fish physiologists and ethologists could contribute to the search for, and development of solutions for the benefit of aquaculture. |
---|---|
AbstractList | ► The evolution of computer vision in the context of aquaculture is reviewed. ► The technology has to operate under extremely challenging conditions. ► Potential applications could be useful for improving production efficiency.
Computer vision technology is a sophisticated inspection technology that is in common use in various industries. However, it is not as widely used in aquaculture. Application of computer vision technologies in aquaculture, the scope of the present review, is very challenging. The inspected subjects are sensitive, easily stressed and free to move in an environment in which lighting, visibility and stability are generally not controllable, and the sensors must operate underwater or in a wet environment. The review describes the state of the art and the evolution of computer vision in aquaculture, at all stages of production, from hatcheries to harvest. The review is organized according to inspection tasks that are common to almost all production systems: counting, size measurement and mass estimation, gender detection and quality inspection, species and stock identification, and monitoring of welfare and behavior. The objective of the review is to highlight areas of research and development in the field of computer vision which have made some progress, but have not matured into a useful tool. There are many potential applications for this technology in aquaculture which could be useful for improving product quality or production efficiency. There have been quite a few initiatives in this direction, and a tight collaboration between engineers, fish physiologists and ethologists could contribute to the search for, and development of solutions for the benefit of aquaculture. Computer vision technology is a sophisticated inspection technology that is in common use in various industries. However, it is not as widely used in aquaculture. Application of computer vision technologies in aquaculture, the scope of the present review, is very challenging. The inspected subjects are sensitive, easily stressed and free to move in an environment in which lighting, visibility and stability are generally not controllable, and the sensors must operate underwater or in a wet environment. The review describes the state of the art and the evolution of computer vision in aquaculture, at all stages of production, from hatcheries to harvest. The review is organized according to inspection tasks that are common to almost all production systems: counting, size measurement and mass estimation, gender detection and quality inspection, species and stock identification, and monitoring of welfare and behavior. The objective of the review is to highlight areas of research and development in the field of computer vision which have made some progress, but have not matured into a useful tool. There are many potential applications for this technology in aquaculture which could be useful for improving product quality or production efficiency. There have been quite a few initiatives in this direction, and a tight collaboration between engineers, fish physiologists and ethologists could contribute to the search for, and development of solutions for the benefit of aquaculture. |
Author | Zion, Boaz |
Author_xml | – sequence: 1 fullname: Zion, Boaz |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26403206$$DView record in Pascal Francis |
BookMark | eNqFkctu1DAUhi1UJKaFN0DCGyQ2CceXxAkLpGrETarEgnZtOc7x1KNMPLWdIna8A2_Ik-BRyoZFWVmWvv_XOd85J2dzmJGQlwxqBqx9u69tOBzNrubAeA2qBgZPyIZ1ileKgTojm4J1FWv7_hk5T2kP5d93akO217dIl4Q0OHoqWTJGeu-TDzPNaG_nMIWdx0T9TM3dYuwy5SUi_f3zF72kEe89fn9OnjozJXzx8F6Qm48frrefq6uvn75sL68qK5nK1TB0amB9PzghRuCKg-sb2ZjBmaFn0MvOjSg6Jxo5oOBqdK7hAh1T0I9ty8UFebP2HmO4WzBlffDJ4jSZGcOSNGuYlNAx3hX09QNqkjWTi2a2Pulj9AcTf2jeShAc2sK9WzkbQ0oRnbY-m1y2z9H4STPQJ8N6r1fD-mRYg9LFcAnLf8J_-_8Te7XGnAna7GKZ6-ZbASQASCY79SjBBZen_d6vBBbf5QZRJ-txtjj6iDbrMfjHh_gDqHarjQ |
CODEN | CEAGE6 |
CitedBy_id | crossref_primary_10_3390_s22197131 crossref_primary_10_1016_j_biosystemseng_2020_03_006 crossref_primary_10_1111_1750_3841_12799 crossref_primary_10_1016_j_compag_2018_04_005 crossref_primary_10_1016_j_biosystemseng_2020_05_012 crossref_primary_10_1016_j_aquaculture_2021_737633 crossref_primary_10_1016_j_fochx_2024_101309 crossref_primary_10_2174_2210298101999200909111243 crossref_primary_10_1109_JSEN_2023_3307284 crossref_primary_10_1111_raq_12546 crossref_primary_10_1109_ACCESS_2019_2912612 crossref_primary_10_1111_raq_12388 crossref_primary_10_1080_10454438_2017_1406421 crossref_primary_10_1016_j_compag_2024_109255 crossref_primary_10_1111_raq_12143 crossref_primary_10_3390_pr11041261 crossref_primary_10_4236_wjet_2018_63B003 crossref_primary_10_1016_j_aquaeng_2015_05_001 crossref_primary_10_1016_j_ecoinf_2019_05_004 crossref_primary_10_1016_j_aquaeng_2015_09_002 crossref_primary_10_1016_j_aqrep_2020_100487 crossref_primary_10_1016_j_atech_2022_100061 crossref_primary_10_1051_bioconf_202414202016 crossref_primary_10_1016_j_biosystemseng_2016_02_013 crossref_primary_10_3390_fishes9020046 crossref_primary_10_7120_09627286_28_2_191 crossref_primary_10_1002_aff2_66 crossref_primary_10_1016_j_aquaeng_2019_102000 crossref_primary_10_1016_j_compag_2016_10_009 crossref_primary_10_1016_j_compag_2016_04_014 crossref_primary_10_1016_j_atech_2023_100289 crossref_primary_10_1016_j_aquaculture_2021_737468 crossref_primary_10_1111_jfb_15274 crossref_primary_10_1007_s00542_019_04570_5 crossref_primary_10_1093_icesjms_fsz149 crossref_primary_10_1016_j_compag_2017_02_013 crossref_primary_10_1016_j_compag_2018_08_007 crossref_primary_10_1016_j_biosystemseng_2023_09_013 crossref_primary_10_1155_2019_7630926 crossref_primary_10_1007_s10499_022_00904_9 crossref_primary_10_1016_j_compag_2024_108676 crossref_primary_10_1109_ACCESS_2022_3230909 crossref_primary_10_1016_j_aquaeng_2014_11_003 crossref_primary_10_1016_j_compag_2020_105844 crossref_primary_10_1111_faf_12666 crossref_primary_10_3389_fgene_2018_00693 crossref_primary_10_1016_j_compag_2017_12_023 crossref_primary_10_1038_s41598_025_90118_9 crossref_primary_10_1016_j_aquaeng_2022_102276 crossref_primary_10_1038_s41598_022_19932_9 crossref_primary_10_1007_s11831_020_09486_2 crossref_primary_10_1016_j_aquaeng_2017_01_003 crossref_primary_10_1007_s10499_024_01428_0 crossref_primary_10_1002_aff2_70051 crossref_primary_10_1016_j_compag_2015_11_015 crossref_primary_10_1016_j_eswa_2022_118403 crossref_primary_10_1016_j_aquaculture_2023_740356 crossref_primary_10_1038_s41598_018_32089_8 crossref_primary_10_1038_s41598_017_06538_9 crossref_primary_10_1093_icesjms_fsx151 crossref_primary_10_3233_AIS_180498 crossref_primary_10_1016_j_compag_2019_105015 crossref_primary_10_1016_j_aquaculture_2020_735508 crossref_primary_10_3390_agriengineering6020070 crossref_primary_10_1016_j_compag_2021_106601 crossref_primary_10_1007_s00343_015_4080_3 crossref_primary_10_15302_J_FASE_2016111 crossref_primary_10_1016_j_aiia_2025_01_012 crossref_primary_10_1007_s10489_024_06224_0 crossref_primary_10_1016_j_aquaeng_2025_102527 crossref_primary_10_32604_iasc_2022_021973 crossref_primary_10_3390_jmse12081343 crossref_primary_10_1007_s10499_019_00443_w crossref_primary_10_1016_j_aquaeng_2022_102304 crossref_primary_10_3390_biom9120778 crossref_primary_10_1016_j_aquaeng_2020_102115 crossref_primary_10_3389_fmars_2024_1370786 crossref_primary_10_3390_ani12192592 crossref_primary_10_1016_j_aquaculture_2020_736291 crossref_primary_10_1049_ipr2_12636 crossref_primary_10_1155_2018_3528296 crossref_primary_10_1007_s10499_024_01550_z crossref_primary_10_1016_j_applanim_2014_11_014 crossref_primary_10_1016_j_mlwa_2024_100562 crossref_primary_10_1016_j_compag_2022_106985 crossref_primary_10_1063_5_0112588 crossref_primary_10_1016_j_aaf_2023_08_010 crossref_primary_10_1016_j_aquaeng_2021_102175 crossref_primary_10_1016_j_aquaeng_2013_08_004 crossref_primary_10_1016_j_aquaeng_2021_102179 crossref_primary_10_1016_j_aquaeng_2023_102338 crossref_primary_10_1016_j_aquaeng_2021_102215 crossref_primary_10_1016_j_ifset_2013_10_013 crossref_primary_10_3390_jmse12101823 crossref_primary_10_35633_inmateh_72_59 crossref_primary_10_1016_j_compag_2020_105419 crossref_primary_10_1111_raq_12464 crossref_primary_10_1016_j_compag_2024_109850 crossref_primary_10_1016_j_marpolbul_2017_03_004 crossref_primary_10_1109_ACCESS_2024_3365585 crossref_primary_10_1016_j_atech_2021_100020 crossref_primary_10_3390_s20185294 crossref_primary_10_1016_j_compag_2019_105119 crossref_primary_10_1049_ipr2_12924 crossref_primary_10_1016_j_compag_2020_105411 crossref_primary_10_1016_j_eswa_2023_121197 crossref_primary_10_3390_jmse12050842 crossref_primary_10_1111_raq_12919 crossref_primary_10_1016_j_optlastec_2019_04_038 crossref_primary_10_1016_j_jfoodeng_2018_04_012 crossref_primary_10_1038_srep31810 crossref_primary_10_1007_s11276_023_03592_2 crossref_primary_10_1080_23308249_2021_1980767 crossref_primary_10_1016_j_infrared_2017_11_002 crossref_primary_10_3390_s16050618 crossref_primary_10_3390_w16243595 crossref_primary_10_1016_j_ecoinf_2021_101240 crossref_primary_10_1111_are_14907 crossref_primary_10_1016_j_compag_2014_05_013 crossref_primary_10_1109_TCSVT_2018_2872575 crossref_primary_10_3390_fishes7060335 crossref_primary_10_1016_j_biosystemseng_2024_06_009 crossref_primary_10_1016_j_eswa_2025_126820 crossref_primary_10_1016_j_inpa_2020_01_004 crossref_primary_10_1016_j_aquaeng_2023_102350 crossref_primary_10_1016_j_aquaculture_2021_736724 crossref_primary_10_1016_j_aquaeng_2019_01_005 crossref_primary_10_1038_s41598_024_71763_y crossref_primary_10_1016_j_eswa_2024_124804 crossref_primary_10_1021_acsfoodscitech_1c00193 crossref_primary_10_1007_s11356_023_27922_1 crossref_primary_10_1111_raq_12601 crossref_primary_10_1016_j_aquaeng_2014_10_003 crossref_primary_10_1016_j_aquaeng_2015_10_003 crossref_primary_10_1109_TIM_2024_3476612 crossref_primary_10_3233_JIFS_169691 crossref_primary_10_1088_1742_6596_1856_1_012035 crossref_primary_10_1111_are_15828 crossref_primary_10_1007_s10462_024_10960_7 crossref_primary_10_1016_j_compag_2015_12_014 crossref_primary_10_1016_j_compag_2020_105439 crossref_primary_10_3390_electronics12153338 crossref_primary_10_1007_s10462_021_10102_3 crossref_primary_10_1016_j_applanim_2022_105778 crossref_primary_10_1016_j_compag_2013_11_009 crossref_primary_10_1002_tee_23821 crossref_primary_10_1016_j_aquaeng_2023_102360 crossref_primary_10_1016_j_aquaculture_2022_738634 crossref_primary_10_1016_j_compag_2018_02_006 crossref_primary_10_3934_mbe_2024076 crossref_primary_10_1016_j_measurement_2018_05_035 crossref_primary_10_1039_C5AY03005F crossref_primary_10_1111_raq_12218 crossref_primary_10_3390_jmse11051084 crossref_primary_10_1016_j_compag_2025_110079 crossref_primary_10_1016_j_biosystemseng_2023_05_010 crossref_primary_10_1007_s10044_014_0426_2 crossref_primary_10_3390_rs14164106 crossref_primary_10_3390_fishes9030103 |
Cites_doi | 10.1109/TIT.1962.1057692 10.2331/suisan.63.178 10.1111/j.1439-0426.2011.01704.x 10.1894/0038-4909(2004)049<0197:MFUTIC>2.0.CO;2 10.1016/j.tifs.2011.03.006 10.1111/j.1439-0426.2011.01715.x 10.1016/S0144-8609(03)00049-9 10.1016/j.aquaeng.2006.09.002 10.1007/BF01215802 10.1016/j.aquaculture.2009.02.013 10.1080/088395101317018573 10.1006/cviu.2000.0847 10.1577/1548-8454(2002)064<0079:AOSCDI>2.0.CO;2 10.1016/j.aquaeng.2011.05.002 10.1016/S0144-8609(96)01009-6 10.1016/j.applanim.2004.02.003 10.1016/S0144-8609(02)00085-7 10.1016/0168-1699(93)90009-P 10.1016/0144-8609(94)00006-M 10.1016/S0165-7836(99)00070-3 10.1016/j.aquaeng.2006.02.003 10.1016/S0144-8609(99)00037-0 10.1016/0957-4158(94)90052-3 10.1016/j.compag.2006.12.007 10.3923/jfas.2010.494.502 10.1016/0144-8609(94)P4433-C 10.1016/S0168-1699(99)00030-7 10.1016/j.aquaeng.2007.03.002 10.1016/S0044-8486(98)00251-8 10.1061/(ASCE)CP.1943-5487.0000092 10.1016/S0168-1699(00)00181-2 10.1109/IROS.2000.893195 10.1016/0044-8486(96)83535-6 10.1051/alr/2011133 10.1023/A:1008939104413 10.1016/j.aquaeng.2009.06.001 10.1111/j.1750-3841.2010.01522.x 10.1017/S0263574702004733 10.1111/j.1750-3841.2010.01813.x 10.1016/j.fishres.2006.04.009 10.1016/S0044-8486(96)01384-1 10.1016/j.aquaeng.2008.01.002 10.2307/1540 10.1016/j.aquaeng.2004.09.009 10.1080/10498850.2010.508869 10.1016/1054-3139(95)80023-9 10.1117/1.1329338 10.3390/s91108438 10.1038/114895a0 10.1016/0044-8486(95)00003-K 10.1016/j.aquaeng.2006.02.004 10.1016/j.seares.2005.06.002 10.1111/j.1095-8649.1996.tb00042.x 10.1577/1548-8640(1988)050<0113:TNAAPO>2.3.CO;2 10.1111/j.1095-8649.1987.tb05748.x 10.1111/j.1095-8649.2001.tb02313.x 10.1016/S0165-7836(00)00254-X |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.compag.2012.07.010 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
EndPage | 132 |
ExternalDocumentID | 26403206 10_1016_j_compag_2012_07_010 US201400041487 US201400023248 S0168169912001950 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI ABWVN ACRPL ADNMO AEIPS AFJKZ AKRWK ANKPU AAYWO AAYXX ACIEU ACMHX ACVFH ADCNI ADSLC AEUPX AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS IQODW 7S9 ACLOT L.6 ~HD |
ID | FETCH-LOGICAL-c417t-bb87b199bf33d02720f9545abfab910948fde38f354be327dff523ef1709d6623 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Sat Sep 27 23:57:45 EDT 2025 Mon Jul 21 09:18:02 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Tue Jul 01 05:14:12 EDT 2025 Thu Apr 03 09:43:21 EDT 2025 Wed Dec 27 19:06:38 EST 2023 Fri Feb 23 02:29:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Computer vision Biomass Gender Welfare Species Aquaculture Technology Sex Well being Review |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-bb87b199bf33d02720f9545abfab910948fde38f354be327dff523ef1709d6623 |
Notes | http://dx.doi.org/10.1016/j.compag.2012.07.010 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1514408128 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1514408128 pascalfrancis_primary_26403206 crossref_citationtrail_10_1016_j_compag_2012_07_010 crossref_primary_10_1016_j_compag_2012_07_010 fao_agris_US201400041487 fao_agris_US201400023248 elsevier_sciencedirect_doi_10_1016_j_compag_2012_07_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-01 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Oppedal, Juell, Taranger, Hansen (b0200) 2001; 58 Tidd, Wilder (b0270) 2001; 10 Lines, Tillett, Ross, Chan, Hockaday, McFarlane (b0160) 2001; 31 Wohlfarth, Rothbard (b0310) 1991; 43 Spencer (b0235) 1898 Bookstein, F.L., 1990. Introduction to methods for landmark data, In: Rohlf, F.J., Bookstein, F.L. (Eds.), Michigan Morphometrics Workshop. University of Michigan, Museum of Zoology, Michigan, USA, pp. 215–226. Costa, Scardi, Vitalini, Cataudella (b0075) 2009; 291 Xu, Liu, Cui, Miao (b0315) 2006; 35 Pinkiewicz, Purser, Williams (b0210) 2011; 45 Odone, Trucco, Verri (b0195) 2001; 15 Gumus, Balaban (b0110) 2010; 19 Israeli-Weinstein, Kimmel (b0130) 1998; 165 Huxley (b0125) 1924; 114 Strachan, Kell (b0260) 1995; 52 Cadieux, S., Lalonde, F., Michaud, F., 2000. Intelligent system for automated fish sorting and counting. International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ, Takamatsu, Japan, pp. 1279–1284. Yada, Chen (b0320) 1997; 63 Foster, Petrell, Ito, Ward (b0090) 1995; 14 Love (b0165) 1981 Ruff, Marchant, Frost (b0225) 1995; 14 Winans (b0300) 1985 Martinez-de Dios, Serna, Ellero (b0170) 2003; 21 Nieto-Navarro, Zetina-Rejon, Arreguin-Sanchez, Arcos-Huitron, Pena-Messina (b0190) 2010; 5 Hu (b0115) 1962; 8 Hufschmied, Fankhauser, Pugovkin (b0120) 2011; 27 Le Cren (b0155) 1951; 20 Tayama, Shimadate, Kubuta, Nomura (b0265) 1982; 57 Israeli, Kimmel (b0135) 1996; 15 Di Marco, Donadelli, Longobardi, Corsalini, Bertotto, Finoia, Marino (b0080) 2011; 27 Storbeck, Daan (b0245) 2001; 51 Beddow, Ross, Marchant (b0035) 1996; 146 Tillett, McFarlane, Lines (b0275) 2000; 79 Newbury, Culverhouse, Pilgrim (b0185) 1995; 133 Zion, Doitch, Ostrovsky, Alchanatis, Segev, Barki, Karplus (b0335) 2006 Zion, Alchanatis, Ostrovsky, Barki, Karplus (b0330) 2008; 38 Conte (b0065) 2004; 86 Zion, Alchanatis, Ostrovsky, Bark, Karplus (b0325) 2007; 56 Mathiassen, Misimi, Bondo, Veliyulin, Ostvik (b0175) 2011; 22 Fulton (b0100) 1904 Aguzzi, Costa, Fujiwara, Iwase, Ramirez-Llorda, Menesatti (b0005) 2009; 9 Castignolles, Cattoen, Larinier (b0060) 1994 White, Svellingen, Strachan (b0295) 2006; 80 Wagner, Schmidt, Rudek (b0285) 1987; 34 Cardin (b0055) 2000; 10 Balaban, Sengor, Soriano, Ruiz (b0025) 2010; 75 Savage, Petrell, Neufeld (b0230) 1994; 36 Karplus, Gottdiener, Zion (b0150) 2003; 27 Zion, Shklyar, Karplus (b0350) 2000; 22 Strachan (b0255) 1994; 4 Strachan (b0250) 1993; 8 Joyce, Rawson (b0140) 1988; 50 Alver, Tennoy, Alfredsen, Oie (b0010) 2007; 36 Duarte, Reig, Oca (b0085) 2009; 41 Zion, Shklyar, Karplus (b0345) 1999; 23 Cardin, Friedland (b0050) 1999; 43 Zion, Ostrovsky, Karplus, Lidor, Barki (b0340) 2012 Beddow, Ross (b0030) 1996; 49 Wallat, Luzuriaga, Balaban, Chapman (b0290) 2002; 64 Merz, Merz (b0180) 2004; 49 Karplus, Alchanatis, Zion (b0145) 2005; 32 Balaban, Chombeau, Cirban, Gumus (b0020) 2010; 75 Parsonage, Petrell (b0205) 2003; 29 Witthames, Walker (b0305) 1987; 30 Poxton, Goldsworthy (b0215) 1987 Friedland, Ama-Abasi, Manning, Clarke, Kligys, Chambers (b0095) 2005; 54 Gomelski, Chersas, Hulata, Ben-Dom (b0105) 1995; 137 Stien, Brafland, Austevollb, Oppedala, Kristiansen (b0240) 2007; 37 Rodriguez, Bermudez, Rabunal, Puertas, Dorado, Pena, Balairon (b0220) 2011; 25 Costa, Loy, Cataudella, Davis, Scardi (b0070) 2006; 35 Arnarson, Pau (b0015) 1994; 7 Torisawa, Kadota, Komeyama, Suzuki, Takagi (b0280) 2011; 24 Castignolles (10.1016/j.compag.2012.07.010_b0060) 1994 Tillett (10.1016/j.compag.2012.07.010_b0275) 2000; 79 Gumus (10.1016/j.compag.2012.07.010_b0110) 2010; 19 Hu (10.1016/j.compag.2012.07.010_b0115) 1962; 8 Rodriguez (10.1016/j.compag.2012.07.010_b0220) 2011; 25 Pinkiewicz (10.1016/j.compag.2012.07.010_b0210) 2011; 45 10.1016/j.compag.2012.07.010_b0040 Gomelski (10.1016/j.compag.2012.07.010_b0105) 1995; 137 Stien (10.1016/j.compag.2012.07.010_b0240) 2007; 37 Zion (10.1016/j.compag.2012.07.010_b0345) 1999; 23 Zion (10.1016/j.compag.2012.07.010_b0340) 2012 Karplus (10.1016/j.compag.2012.07.010_b0150) 2003; 27 Storbeck (10.1016/j.compag.2012.07.010_b0245) 2001; 51 Wohlfarth (10.1016/j.compag.2012.07.010_b0310) 1991; 43 Oppedal (10.1016/j.compag.2012.07.010_b0200) 2001; 58 Beddow (10.1016/j.compag.2012.07.010_b0030) 1996; 49 Spencer (10.1016/j.compag.2012.07.010_b0235) 1898 Aguzzi (10.1016/j.compag.2012.07.010_b0005) 2009; 9 Xu (10.1016/j.compag.2012.07.010_b0315) 2006; 35 Nieto-Navarro (10.1016/j.compag.2012.07.010_b0190) 2010; 5 Conte (10.1016/j.compag.2012.07.010_b0065) 2004; 86 Le Cren (10.1016/j.compag.2012.07.010_b0155) 1951; 20 Winans (10.1016/j.compag.2012.07.010_b0300) 1985 Foster (10.1016/j.compag.2012.07.010_b0090) 1995; 14 Savage (10.1016/j.compag.2012.07.010_b0230) 1994; 36 10.1016/j.compag.2012.07.010_b0045 Hufschmied (10.1016/j.compag.2012.07.010_b0120) 2011; 27 Karplus (10.1016/j.compag.2012.07.010_b0145) 2005; 32 Mathiassen (10.1016/j.compag.2012.07.010_b0175) 2011; 22 Zion (10.1016/j.compag.2012.07.010_b0350) 2000; 22 Friedland (10.1016/j.compag.2012.07.010_b0095) 2005; 54 Zion (10.1016/j.compag.2012.07.010_b0330) 2008; 38 Israeli (10.1016/j.compag.2012.07.010_b0135) 1996; 15 Parsonage (10.1016/j.compag.2012.07.010_b0205) 2003; 29 Newbury (10.1016/j.compag.2012.07.010_b0185) 1995; 133 Israeli-Weinstein (10.1016/j.compag.2012.07.010_b0130) 1998; 165 Costa (10.1016/j.compag.2012.07.010_b0070) 2006; 35 Balaban (10.1016/j.compag.2012.07.010_b0025) 2010; 75 Di Marco (10.1016/j.compag.2012.07.010_b0080) 2011; 27 Wallat (10.1016/j.compag.2012.07.010_b0290) 2002; 64 Alver (10.1016/j.compag.2012.07.010_b0010) 2007; 36 Arnarson (10.1016/j.compag.2012.07.010_b0015) 1994; 7 Love (10.1016/j.compag.2012.07.010_b0165) 1981 Witthames (10.1016/j.compag.2012.07.010_b0305) 1987; 30 Cardin (10.1016/j.compag.2012.07.010_b0055) 2000; 10 Merz (10.1016/j.compag.2012.07.010_b0180) 2004; 49 Yada (10.1016/j.compag.2012.07.010_b0320) 1997; 63 Joyce (10.1016/j.compag.2012.07.010_b0140) 1988; 50 Cardin (10.1016/j.compag.2012.07.010_b0050) 1999; 43 Fulton (10.1016/j.compag.2012.07.010_b0100) 1904 Zion (10.1016/j.compag.2012.07.010_b0325) 2007; 56 Costa (10.1016/j.compag.2012.07.010_b0075) 2009; 291 Strachan (10.1016/j.compag.2012.07.010_b0255) 1994; 4 Strachan (10.1016/j.compag.2012.07.010_b0260) 1995; 52 Duarte (10.1016/j.compag.2012.07.010_b0085) 2009; 41 Odone (10.1016/j.compag.2012.07.010_b0195) 2001; 15 Lines (10.1016/j.compag.2012.07.010_b0160) 2001; 31 Martinez-de Dios (10.1016/j.compag.2012.07.010_b0170) 2003; 21 Tidd (10.1016/j.compag.2012.07.010_b0270) 2001; 10 Wagner (10.1016/j.compag.2012.07.010_b0285) 1987; 34 Beddow (10.1016/j.compag.2012.07.010_b0035) 1996; 146 Huxley (10.1016/j.compag.2012.07.010_b0125) 1924; 114 White (10.1016/j.compag.2012.07.010_b0295) 2006; 80 Zion (10.1016/j.compag.2012.07.010_b0335) 2006 Strachan (10.1016/j.compag.2012.07.010_b0250) 1993; 8 Tayama (10.1016/j.compag.2012.07.010_b0265) 1982; 57 Poxton (10.1016/j.compag.2012.07.010_b0215) 1987 Ruff (10.1016/j.compag.2012.07.010_b0225) 1995; 14 Balaban (10.1016/j.compag.2012.07.010_b0020) 2010; 75 Torisawa (10.1016/j.compag.2012.07.010_b0280) 2011; 24 |
References_xml | – year: 1898 ident: b0235 article-title: The Principles of Biology – volume: 36 start-page: 115 year: 2007 end-page: 121 ident: b0010 article-title: Automatic measurement of rotifer Brachionus plicatilis densities in first feeding tanks publication-title: Aquacult. Eng. – volume: 27 start-page: 637 year: 2011 end-page: 642 ident: b0080 article-title: Sex and reproductive stage identification of sturgeon hybrids ( publication-title: J. Appl. Ichthyol. – volume: 9 start-page: 8438 year: 2009 end-page: 8455 ident: b0005 article-title: A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna publication-title: Sensors – volume: 8 start-page: 93 year: 1993 end-page: 104 ident: b0250 article-title: Length measurement of fish by computer vision publication-title: Comput. Elect. Agric. – volume: 5 start-page: 494 year: 2010 end-page: 502 ident: b0190 article-title: Length–weight relationship of demersal fish from the eastern coast of the mouth of the gulf of California publication-title: J. Fish. Aqua. Sci. – reference: Bookstein, F.L., 1990. Introduction to methods for landmark data, In: Rohlf, F.J., Bookstein, F.L. (Eds.), Michigan Morphometrics Workshop. University of Michigan, Museum of Zoology, Michigan, USA, pp. 215–226. – volume: 24 start-page: 107 year: 2011 end-page: 112 ident: b0280 article-title: A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna, publication-title: Aquat. Living Resour. – volume: 63 start-page: 178 year: 1997 end-page: 183 ident: b0320 article-title: Weighing type counting system for seedling fry publication-title: Nippon Suisan Gakkaishi – year: 2012 ident: b0340 article-title: Ornamental Fish Mass Estimation by Image Processing – volume: 49 start-page: 469 year: 1996 end-page: 482 ident: b0030 article-title: Predicting biomass of Atlantic salmon from morphometric lateral measurements publication-title: J. Fish Biol. – volume: 114 start-page: 895 year: 1924 end-page: 896 ident: b0125 article-title: Constant differential growth-ratios and their significance publication-title: Nature – volume: 14 start-page: 251 year: 1995 end-page: 269 ident: b0090 article-title: Detection and counting of uneaten food pellets in a sea cage using image-analysis publication-title: Aquacult. Eng. – volume: 21 start-page: 233 year: 2003 end-page: 243 ident: b0170 article-title: Computer vision and robotics techniques in fish farms publication-title: Robotica – volume: 10 start-page: 283 year: 2001 end-page: 288 ident: b0270 article-title: Fish detection and classification system publication-title: J. Electron. Imag. – volume: 4 start-page: 773 year: 1994 end-page: 783 ident: b0255 article-title: Sea trials of a computer vision based fish species sorting and size grading machine publication-title: Mechantronics – volume: 23 start-page: 175 year: 1999 end-page: 187 ident: b0345 article-title: Sorting fish by computer vision publication-title: Comput. Elect. Agric. – volume: 146 start-page: 189 year: 1996 end-page: 203 ident: b0035 article-title: Predicting salmon biomass remotely using a digital stereo-imaging technique publication-title: Aquaculture – start-page: 200 year: 1994 end-page: 209 ident: b0060 article-title: Identification and counting of live fish by image analysis publication-title: Image and Video Processing II – volume: 27 start-page: 177 year: 2003 end-page: 190 ident: b0150 article-title: Guidance of single guppies ( publication-title: Aquacult. Eng. – volume: 58 start-page: 1570 year: 2001 end-page: 1584 ident: b0200 article-title: Artificial light and season affects vertical distribution and swimming behaviour of post-smolt Atlantic salmon in sea cages publication-title: J. Fish Biol. – volume: 34 start-page: 20 year: 1987 end-page: 23 ident: b0285 article-title: Distinction between species of sea fish publication-title: Lebensmittelindustrie – year: 1904 ident: b0100 article-title: The Rate of Growth of Fishes – volume: 25 start-page: 291 year: 2011 end-page: 301 ident: b0220 article-title: Optical fish trajectory measurement in fishways through computer vision and artificial neural networks publication-title: J. Comput. Civ. Eng. – volume: 15 start-page: 423 year: 1996 end-page: 440 ident: b0135 article-title: Monitoring the behavior of hypoxia-stressed Carassius auratus using computer vision publication-title: Aquacult. Eng. – reference: Cadieux, S., Lalonde, F., Michaud, F., 2000. Intelligent system for automated fish sorting and counting. International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ, Takamatsu, Japan, pp. 1279–1284. – volume: 35 start-page: 218 year: 2006 end-page: 227 ident: b0070 article-title: Extracting fish size using dual underwater cameras publication-title: Aquacult. Eng. – volume: 57 start-page: 1146 year: 1982 end-page: 1150 ident: b0265 article-title: Application for optical sensor to fish sorting publication-title: Reito (Tokyo) Refrigeration – volume: 52 start-page: 145 year: 1995 end-page: 149 ident: b0260 article-title: A potential method for the differentiation between haddock fish stocks by computer vision using canonical discriminant analysis publication-title: ICES J. Mar. Sci. – volume: 75 start-page: E157 year: 2010 end-page: E162 ident: b0025 article-title: Using image analysis to predict the weight of alaskan salmon of different species publication-title: J. Food Sci. – volume: 15 start-page: 735 year: 2001 end-page: 745 ident: b0195 article-title: A trainable system for grading fish from images publication-title: App. Art. Int. – volume: 79 start-page: 123 year: 2000 end-page: 141 ident: b0275 article-title: Estimating dimensions of free-swimming fish using 3D point distribution models publication-title: Comput. Vis. Image Underst. – volume: 27 start-page: 622 year: 2011 end-page: 626 ident: b0120 article-title: Automatic stress-free sorting of sturgeons inside culture tanks using image processing publication-title: J. Appl. Ichthyol. – volume: 45 start-page: 20 year: 2011 end-page: 27 ident: b0210 article-title: A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: a case study using cage-held Atlantic salmon publication-title: Aquacult. Eng. – volume: 64 start-page: 79 year: 2002 end-page: 84 ident: b0290 article-title: Analysis of skin color development in live goldfish using a color machine vision system publication-title: N. Am. J. Aquacult. – volume: 19 start-page: 227 year: 2010 end-page: 237 ident: b0110 article-title: Prediction of the weight of aquacultured rainbow trout ( publication-title: J. Aquat. Food Prod. Technol. – start-page: 163 year: 1987 end-page: 170 ident: b0215 article-title: The remote estimation of weight and growth in turbot using image analysis publication-title: Automation and Data Processing in Aquaculture – volume: 54 start-page: 307 year: 2005 end-page: 316 ident: b0095 article-title: Automated egg counting and sizing from scanned images: rapid sample processing and large data volumes for fecundity estimates publication-title: J. Sea Res. – volume: 10 start-page: 91 year: 2000 end-page: 112 ident: b0055 article-title: Advances in morphometric identification of fishery stocks publication-title: Rev. Fish Biol. Fish. – volume: 137 start-page: 102 year: 1995 ident: b0105 article-title: Color variability in normal and gynogenetic progenies of ornamental (Koi) common carp ( publication-title: Aquaculture – volume: 50 start-page: 113 year: 1988 end-page: 115 ident: b0140 article-title: Accuracy and precision of counting eyed eggs with an electronic fish counter publication-title: Prog. Fish-Cult. – volume: 56 start-page: 34 year: 2007 end-page: 45 ident: b0325 article-title: Real-time underwater sorting of edible fish species publication-title: Comput. Elect. Agric. – volume: 291 start-page: 161 year: 2009 end-page: 167 ident: b0075 article-title: A dual camera system for counting and sizing Northern Bluefin Tuna ( publication-title: Aquaculture – volume: 8 start-page: 179 year: 1962 end-page: 187 ident: b0115 article-title: Visual pattern recognition by moment invariants publication-title: IRE Trans. Inf. Theory – volume: 20 start-page: 201 year: 1951 end-page: 219 ident: b0155 article-title: The length-weight relationship and seasonal cycle in gonad weight and condition in the perch ( publication-title: J. Anim. Ecol. – volume: 37 start-page: 115 year: 2007 end-page: 124 ident: b0240 article-title: A video analysis procedure for assessing vertical fish distribution in aquaculture tanks publication-title: Aquacult. Eng. – volume: 32 start-page: 509 year: 2005 end-page: 520 ident: b0145 article-title: Guidance of groups of guppies ( publication-title: Aquacult. Eng. – volume: 80 start-page: 203 year: 2006 end-page: 210 ident: b0295 article-title: Automated measurement of species and length of fish by computer vision publication-title: Fish. Res. – start-page: 449 year: 1981 end-page: 470 ident: b0165 article-title: Stress and behaviour in the culture environment publication-title: Realism in Aquaculture: Achievements, Constraints, Perspectives – volume: 36 start-page: 175 year: 1994 end-page: 183 ident: b0230 article-title: Underwater fish-video images – image quality and edge-detection techniques publication-title: Can. Agric. Eng. – volume: 30 start-page: 225 year: 1987 end-page: 235 ident: b0305 article-title: An automated-method for counting and sizing fish eggs publication-title: J. Fish Biol. – year: 2006 ident: b0335 article-title: Ornamental Fish Fry Counting by Image Processing – volume: 22 start-page: 165 year: 2000 end-page: 179 ident: b0350 article-title: In-vivo fish sorting by computer vision publication-title: Aquacult. Eng. – volume: 49 start-page: 197 year: 2004 end-page: 202 ident: b0180 article-title: Morphological features used to identify chinook salmon sex during fish passage publication-title: Southwest. Nat. – volume: 14 start-page: 155 year: 1995 end-page: 173 ident: b0225 article-title: Fish sizing and monitoring using a stereo image-analysis system applied to fish farming publication-title: Aquacult. Eng. – start-page: 135 year: 1985 end-page: 146 ident: b0300 article-title: Using morphometric and meristic characters for identifying stock of fish publication-title: Stock Identification Workshop – volume: 43 start-page: 62 year: 1991 end-page: 68 ident: b0310 article-title: Preliminary investigation on color inheritance in Japanese ornamental carp ( publication-title: Isr. J. Aquacult./Bamidgeh – volume: 22 start-page: 257 year: 2011 end-page: 275 ident: b0175 article-title: Trends in application of imaging technologies to inspection of fish and fish products publication-title: Trends Food Sci. Technol. – volume: 86 start-page: 205 year: 2004 end-page: 223 ident: b0065 article-title: Stress and the welfare of cultured fish publication-title: Appl. Anim. Behav. Sci. – volume: 133 start-page: 45 year: 1995 end-page: 55 ident: b0185 article-title: Automatic fish population counting by artificial neural network publication-title: Aquaculture – volume: 7 start-page: 59 year: 1994 end-page: 68 ident: b0015 article-title: PDH-HM: morphological and syntactic shape classification algorithm. Real-time application to fish species classification publication-title: Mach. Vis. Appl. – volume: 35 start-page: 207 year: 2006 end-page: 217 ident: b0315 article-title: Behavioral responses of tilapia ( publication-title: Aquacult. Eng. – volume: 31 start-page: 151 year: 2001 end-page: 168 ident: b0160 article-title: An automatic image-based system for estimating the mass of free-swimming fish publication-title: Comput. Elect. Agric. – volume: 43 start-page: 129 year: 1999 end-page: 139 ident: b0050 article-title: The utility of image processing techniques for morphometric analysis and stock identification publication-title: Fish. Res. – volume: 38 year: 2008 ident: b0330 article-title: Classification of guppies’ ( publication-title: Aquacult. Eng. – volume: 41 start-page: 22 year: 2009 end-page: 27 ident: b0085 article-title: Measurement of sole activity by digital image analysis publication-title: Aquacult. Eng. – volume: 165 start-page: 81 year: 1998 end-page: 93 ident: b0130 article-title: Behavioral response of carp ( publication-title: Aquaculture – volume: 51 start-page: 11 year: 2001 end-page: 15 ident: b0245 article-title: Fish species recognition using computer vision and a neural network publication-title: Fish. Res. – volume: 75 start-page: E552 year: 2010 end-page: E556 ident: b0020 article-title: Prediction of the weight of alaskan pollock using image analysis publication-title: J. Food Sci. – volume: 29 start-page: 109 year: 2003 end-page: 123 ident: b0205 article-title: Accuracy of a machine-vision pellet detection system publication-title: Aquacult. Eng. – volume: 36 start-page: 175 year: 1994 ident: 10.1016/j.compag.2012.07.010_b0230 article-title: Underwater fish-video images – image quality and edge-detection techniques publication-title: Can. Agric. Eng. – year: 1904 ident: 10.1016/j.compag.2012.07.010_b0100 – start-page: 200 year: 1994 ident: 10.1016/j.compag.2012.07.010_b0060 article-title: Identification and counting of live fish by image analysis – volume: 8 start-page: 179 year: 1962 ident: 10.1016/j.compag.2012.07.010_b0115 article-title: Visual pattern recognition by moment invariants publication-title: IRE Trans. Inf. Theory doi: 10.1109/TIT.1962.1057692 – volume: 63 start-page: 178 year: 1997 ident: 10.1016/j.compag.2012.07.010_b0320 article-title: Weighing type counting system for seedling fry publication-title: Nippon Suisan Gakkaishi doi: 10.2331/suisan.63.178 – volume: 27 start-page: 622 year: 2011 ident: 10.1016/j.compag.2012.07.010_b0120 article-title: Automatic stress-free sorting of sturgeons inside culture tanks using image processing publication-title: J. Appl. Ichthyol. doi: 10.1111/j.1439-0426.2011.01704.x – volume: 49 start-page: 197 year: 2004 ident: 10.1016/j.compag.2012.07.010_b0180 article-title: Morphological features used to identify chinook salmon sex during fish passage publication-title: Southwest. Nat. doi: 10.1894/0038-4909(2004)049<0197:MFUTIC>2.0.CO;2 – volume: 22 start-page: 257 year: 2011 ident: 10.1016/j.compag.2012.07.010_b0175 article-title: Trends in application of imaging technologies to inspection of fish and fish products publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2011.03.006 – volume: 27 start-page: 637 year: 2011 ident: 10.1016/j.compag.2012.07.010_b0080 article-title: Sex and reproductive stage identification of sturgeon hybrids (acipenser naccariiaAaAcipenser baerii) using different tools: ultrasounds, histology and sex steroids publication-title: J. Appl. Ichthyol. doi: 10.1111/j.1439-0426.2011.01715.x – volume: 29 start-page: 109 year: 2003 ident: 10.1016/j.compag.2012.07.010_b0205 article-title: Accuracy of a machine-vision pellet detection system publication-title: Aquacult. Eng. doi: 10.1016/S0144-8609(03)00049-9 – volume: 36 start-page: 115 year: 2007 ident: 10.1016/j.compag.2012.07.010_b0010 article-title: Automatic measurement of rotifer Brachionus plicatilis densities in first feeding tanks publication-title: Aquacult. Eng. doi: 10.1016/j.aquaeng.2006.09.002 – volume: 7 start-page: 59 year: 1994 ident: 10.1016/j.compag.2012.07.010_b0015 article-title: PDH-HM: morphological and syntactic shape classification algorithm. Real-time application to fish species classification publication-title: Mach. Vis. Appl. doi: 10.1007/BF01215802 – volume: 291 start-page: 161 year: 2009 ident: 10.1016/j.compag.2012.07.010_b0075 article-title: A dual camera system for counting and sizing Northern Bluefin Tuna (Thunnus thynnus; Linnaeus, 1758) stock, during transfer to aquaculture cages, with a semi automatic Artificial Neural Network tool publication-title: Aquaculture doi: 10.1016/j.aquaculture.2009.02.013 – volume: 15 start-page: 735 year: 2001 ident: 10.1016/j.compag.2012.07.010_b0195 article-title: A trainable system for grading fish from images publication-title: App. Art. Int. doi: 10.1080/088395101317018573 – volume: 79 start-page: 123 year: 2000 ident: 10.1016/j.compag.2012.07.010_b0275 article-title: Estimating dimensions of free-swimming fish using 3D point distribution models publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.2000.0847 – volume: 64 start-page: 79 year: 2002 ident: 10.1016/j.compag.2012.07.010_b0290 article-title: Analysis of skin color development in live goldfish using a color machine vision system publication-title: N. Am. J. Aquacult. doi: 10.1577/1548-8454(2002)064<0079:AOSCDI>2.0.CO;2 – volume: 43 start-page: 62 year: 1991 ident: 10.1016/j.compag.2012.07.010_b0310 article-title: Preliminary investigation on color inheritance in Japanese ornamental carp (Nishihiki goi) publication-title: Isr. J. Aquacult./Bamidgeh – volume: 45 start-page: 20 year: 2011 ident: 10.1016/j.compag.2012.07.010_b0210 article-title: A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: a case study using cage-held Atlantic salmon publication-title: Aquacult. Eng. doi: 10.1016/j.aquaeng.2011.05.002 – volume: 15 start-page: 423 year: 1996 ident: 10.1016/j.compag.2012.07.010_b0135 article-title: Monitoring the behavior of hypoxia-stressed Carassius auratus using computer vision publication-title: Aquacult. Eng. doi: 10.1016/S0144-8609(96)01009-6 – volume: 86 start-page: 205 year: 2004 ident: 10.1016/j.compag.2012.07.010_b0065 article-title: Stress and the welfare of cultured fish publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2004.02.003 – volume: 27 start-page: 177 year: 2003 ident: 10.1016/j.compag.2012.07.010_b0150 article-title: Guidance of single guppies (Poecilia reticulata) to allow sorting by computer vision publication-title: Aquacult. Eng. doi: 10.1016/S0144-8609(02)00085-7 – volume: 8 start-page: 93 year: 1993 ident: 10.1016/j.compag.2012.07.010_b0250 article-title: Length measurement of fish by computer vision publication-title: Comput. Elect. Agric. doi: 10.1016/0168-1699(93)90009-P – volume: 14 start-page: 251 year: 1995 ident: 10.1016/j.compag.2012.07.010_b0090 article-title: Detection and counting of uneaten food pellets in a sea cage using image-analysis publication-title: Aquacult. Eng. doi: 10.1016/0144-8609(94)00006-M – volume: 43 start-page: 129 year: 1999 ident: 10.1016/j.compag.2012.07.010_b0050 article-title: The utility of image processing techniques for morphometric analysis and stock identification publication-title: Fish. Res. doi: 10.1016/S0165-7836(99)00070-3 – volume: 35 start-page: 218 year: 2006 ident: 10.1016/j.compag.2012.07.010_b0070 article-title: Extracting fish size using dual underwater cameras publication-title: Aquacult. Eng. doi: 10.1016/j.aquaeng.2006.02.003 – volume: 22 start-page: 165 year: 2000 ident: 10.1016/j.compag.2012.07.010_b0350 article-title: In-vivo fish sorting by computer vision publication-title: Aquacult. Eng. doi: 10.1016/S0144-8609(99)00037-0 – year: 2012 ident: 10.1016/j.compag.2012.07.010_b0340 – volume: 4 start-page: 773 year: 1994 ident: 10.1016/j.compag.2012.07.010_b0255 article-title: Sea trials of a computer vision based fish species sorting and size grading machine publication-title: Mechantronics doi: 10.1016/0957-4158(94)90052-3 – ident: 10.1016/j.compag.2012.07.010_b0040 – volume: 57 start-page: 1146 year: 1982 ident: 10.1016/j.compag.2012.07.010_b0265 article-title: Application for optical sensor to fish sorting publication-title: Reito (Tokyo) Refrigeration – volume: 56 start-page: 34 year: 2007 ident: 10.1016/j.compag.2012.07.010_b0325 article-title: Real-time underwater sorting of edible fish species publication-title: Comput. Elect. Agric. doi: 10.1016/j.compag.2006.12.007 – volume: 5 start-page: 494 year: 2010 ident: 10.1016/j.compag.2012.07.010_b0190 article-title: Length–weight relationship of demersal fish from the eastern coast of the mouth of the gulf of California publication-title: J. Fish. Aqua. Sci. doi: 10.3923/jfas.2010.494.502 – volume: 14 start-page: 155 year: 1995 ident: 10.1016/j.compag.2012.07.010_b0225 article-title: Fish sizing and monitoring using a stereo image-analysis system applied to fish farming publication-title: Aquacult. Eng. doi: 10.1016/0144-8609(94)P4433-C – volume: 23 start-page: 175 year: 1999 ident: 10.1016/j.compag.2012.07.010_b0345 article-title: Sorting fish by computer vision publication-title: Comput. Elect. Agric. doi: 10.1016/S0168-1699(99)00030-7 – year: 2006 ident: 10.1016/j.compag.2012.07.010_b0335 – volume: 37 start-page: 115 year: 2007 ident: 10.1016/j.compag.2012.07.010_b0240 article-title: A video analysis procedure for assessing vertical fish distribution in aquaculture tanks publication-title: Aquacult. Eng. doi: 10.1016/j.aquaeng.2007.03.002 – start-page: 135 year: 1985 ident: 10.1016/j.compag.2012.07.010_b0300 article-title: Using morphometric and meristic characters for identifying stock of fish – volume: 165 start-page: 81 year: 1998 ident: 10.1016/j.compag.2012.07.010_b0130 article-title: Behavioral response of carp (Cyprinus carpio) to ammonia stress publication-title: Aquaculture doi: 10.1016/S0044-8486(98)00251-8 – year: 1898 ident: 10.1016/j.compag.2012.07.010_b0235 – volume: 25 start-page: 291 year: 2011 ident: 10.1016/j.compag.2012.07.010_b0220 article-title: Optical fish trajectory measurement in fishways through computer vision and artificial neural networks publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000092 – volume: 31 start-page: 151 year: 2001 ident: 10.1016/j.compag.2012.07.010_b0160 article-title: An automatic image-based system for estimating the mass of free-swimming fish publication-title: Comput. Elect. Agric. doi: 10.1016/S0168-1699(00)00181-2 – ident: 10.1016/j.compag.2012.07.010_b0045 doi: 10.1109/IROS.2000.893195 – volume: 137 start-page: 102 year: 1995 ident: 10.1016/j.compag.2012.07.010_b0105 article-title: Color variability in normal and gynogenetic progenies of ornamental (Koi) common carp (Cyprinus carpio L.) publication-title: Aquaculture doi: 10.1016/0044-8486(96)83535-6 – start-page: 163 year: 1987 ident: 10.1016/j.compag.2012.07.010_b0215 article-title: The remote estimation of weight and growth in turbot using image analysis – volume: 24 start-page: 107 year: 2011 ident: 10.1016/j.compag.2012.07.010_b0280 article-title: A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna, Thunnus orientalis, cultured in a net cage publication-title: Aquat. Living Resour. doi: 10.1051/alr/2011133 – volume: 10 start-page: 91 year: 2000 ident: 10.1016/j.compag.2012.07.010_b0055 article-title: Advances in morphometric identification of fishery stocks publication-title: Rev. Fish Biol. Fish. doi: 10.1023/A:1008939104413 – volume: 41 start-page: 22 year: 2009 ident: 10.1016/j.compag.2012.07.010_b0085 article-title: Measurement of sole activity by digital image analysis publication-title: Aquacult. Eng. doi: 10.1016/j.aquaeng.2009.06.001 – volume: 34 start-page: 20 year: 1987 ident: 10.1016/j.compag.2012.07.010_b0285 article-title: Distinction between species of sea fish publication-title: Lebensmittelindustrie – volume: 75 start-page: E157 year: 2010 ident: 10.1016/j.compag.2012.07.010_b0025 article-title: Using image analysis to predict the weight of alaskan salmon of different species publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2010.01522.x – volume: 21 start-page: 233 year: 2003 ident: 10.1016/j.compag.2012.07.010_b0170 article-title: Computer vision and robotics techniques in fish farms publication-title: Robotica doi: 10.1017/S0263574702004733 – volume: 75 start-page: E552 year: 2010 ident: 10.1016/j.compag.2012.07.010_b0020 article-title: Prediction of the weight of alaskan pollock using image analysis publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2010.01813.x – volume: 80 start-page: 203 year: 2006 ident: 10.1016/j.compag.2012.07.010_b0295 article-title: Automated measurement of species and length of fish by computer vision publication-title: Fish. Res. doi: 10.1016/j.fishres.2006.04.009 – volume: 146 start-page: 189 year: 1996 ident: 10.1016/j.compag.2012.07.010_b0035 article-title: Predicting salmon biomass remotely using a digital stereo-imaging technique publication-title: Aquaculture doi: 10.1016/S0044-8486(96)01384-1 – volume: 38 year: 2008 ident: 10.1016/j.compag.2012.07.010_b0330 article-title: Classification of guppies’ (Poecilia reticulata) gender by computer vision publication-title: Aquacult. Eng. doi: 10.1016/j.aquaeng.2008.01.002 – volume: 20 start-page: 201 year: 1951 ident: 10.1016/j.compag.2012.07.010_b0155 article-title: The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis) publication-title: J. Anim. Ecol. doi: 10.2307/1540 – volume: 32 start-page: 509 year: 2005 ident: 10.1016/j.compag.2012.07.010_b0145 article-title: Guidance of groups of guppies (Poecilia reticulata) to allow sorting by computer vision publication-title: Aquacult. Eng. doi: 10.1016/j.aquaeng.2004.09.009 – volume: 19 start-page: 227 year: 2010 ident: 10.1016/j.compag.2012.07.010_b0110 article-title: Prediction of the weight of aquacultured rainbow trout (oncorhynchus mykiss) by image analysis publication-title: J. Aquat. Food Prod. Technol. doi: 10.1080/10498850.2010.508869 – volume: 52 start-page: 145 year: 1995 ident: 10.1016/j.compag.2012.07.010_b0260 article-title: A potential method for the differentiation between haddock fish stocks by computer vision using canonical discriminant analysis publication-title: ICES J. Mar. Sci. doi: 10.1016/1054-3139(95)80023-9 – volume: 10 start-page: 283 year: 2001 ident: 10.1016/j.compag.2012.07.010_b0270 article-title: Fish detection and classification system publication-title: J. Electron. Imag. doi: 10.1117/1.1329338 – volume: 9 start-page: 8438 year: 2009 ident: 10.1016/j.compag.2012.07.010_b0005 article-title: A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna publication-title: Sensors doi: 10.3390/s91108438 – volume: 114 start-page: 895 year: 1924 ident: 10.1016/j.compag.2012.07.010_b0125 article-title: Constant differential growth-ratios and their significance publication-title: Nature doi: 10.1038/114895a0 – start-page: 449 year: 1981 ident: 10.1016/j.compag.2012.07.010_b0165 article-title: Stress and behaviour in the culture environment – volume: 133 start-page: 45 year: 1995 ident: 10.1016/j.compag.2012.07.010_b0185 article-title: Automatic fish population counting by artificial neural network publication-title: Aquaculture doi: 10.1016/0044-8486(95)00003-K – volume: 35 start-page: 207 year: 2006 ident: 10.1016/j.compag.2012.07.010_b0315 article-title: Behavioral responses of tilapia (Oreochromis niloticus) to acute fluctuations in dissolved oxygen levels as monitored by computer vision publication-title: Aquacult. Eng. doi: 10.1016/j.aquaeng.2006.02.004 – volume: 54 start-page: 307 year: 2005 ident: 10.1016/j.compag.2012.07.010_b0095 article-title: Automated egg counting and sizing from scanned images: rapid sample processing and large data volumes for fecundity estimates publication-title: J. Sea Res. doi: 10.1016/j.seares.2005.06.002 – volume: 49 start-page: 469 year: 1996 ident: 10.1016/j.compag.2012.07.010_b0030 article-title: Predicting biomass of Atlantic salmon from morphometric lateral measurements publication-title: J. Fish Biol. doi: 10.1111/j.1095-8649.1996.tb00042.x – volume: 50 start-page: 113 year: 1988 ident: 10.1016/j.compag.2012.07.010_b0140 article-title: Accuracy and precision of counting eyed eggs with an electronic fish counter publication-title: Prog. Fish-Cult. doi: 10.1577/1548-8640(1988)050<0113:TNAAPO>2.3.CO;2 – volume: 30 start-page: 225 year: 1987 ident: 10.1016/j.compag.2012.07.010_b0305 article-title: An automated-method for counting and sizing fish eggs publication-title: J. Fish Biol. doi: 10.1111/j.1095-8649.1987.tb05748.x – volume: 58 start-page: 1570 year: 2001 ident: 10.1016/j.compag.2012.07.010_b0200 article-title: Artificial light and season affects vertical distribution and swimming behaviour of post-smolt Atlantic salmon in sea cages publication-title: J. Fish Biol. doi: 10.1111/j.1095-8649.2001.tb02313.x – volume: 51 start-page: 11 year: 2001 ident: 10.1016/j.compag.2012.07.010_b0245 article-title: Fish species recognition using computer vision and a neural network publication-title: Fish. Res. doi: 10.1016/S0165-7836(00)00254-X |
SSID | ssj0016987 |
Score | 2.455909 |
SecondaryResourceType | review_article |
Snippet | ► The evolution of computer vision in the context of aquaculture is reviewed. ► The technology has to operate under extremely challenging conditions. ►... Computer vision technology is a sophisticated inspection technology that is in common use in various industries. However, it is not as widely used in... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125 |
SubjectTerms | Agronomy. Soil science and plant productions application technology Aquaculture Biological and medical sciences Biomass Computer vision engineers evolution fish Fundamental and applied biological sciences. Psychology Gender harvesting hatcheries industry lighting monitoring physiologists product quality research and development Species Welfare wet environmental conditions |
Title | The use of computer vision technologies in aquaculture – A review |
URI | https://dx.doi.org/10.1016/j.compag.2012.07.010 https://www.proquest.com/docview/1514408128 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AKRWK dateStart: 19851001 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED667mV7KOu60bRd0KCvXhxZkazHEFbSjvWlC_RNSLZUMoaTNcnr6H_oP-wv6Z0lB8oKhT7alkDcne--s--7Azjl2hO01xlCWZkJLtAPKuUzJxwXzupceiI4_7yU05m4uB5d78Ck48JQWWXy_dGnt9463RkkaQ6W8_ngCsFKOZSIb3jLeqO8nbp_oU1_-7ct88AFZaRMS8yWcHVHn2trvNo67xsq8OJtC0_i0T4fnt4Eu6C6SbtC0YU48-I_993GpLMPsJfAJBvH8-7Djm8-wvvxzW1qqOEPYIJ2wDYrzxaBVWmCA4uEcrbuPqtjtszmDbN_NzZtZA9392zMIrHlE8zOvv-aTLM0OCGrxFCtM-dK5YZau1AUdU5_WoNGpGRdsA7hgRZlqH1RhmIknC-4qkPAfNSHocp1LREQfYbdZtH4Q2CFr7UIVmIIE9THp_RlGDmeV5Ws6kLXPSg6eZkqdRWn4RZ_TFc-9ttEKRuSssmVQSn3INvuWsauGi-sV50qzBPrMOj4X9h5iJozFiW_MrMrTgkl4RQuyucfCcwPVQ_6TzS9PSTCR5o4L3vwtVO9wfeRfrLYxi82K4MIioZ4Y9g_evWhj-EdXcWawRPYXd9u_BfEPmvXb427D2_H5z-ml4_D6f9G |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BThsxEB1Bcig9VG0pSoCmrsR1lY3XsdfHKCoKTcgFInGz7F0bBaENJcm9_9A_5EsYr72REEhIva53JGvGO_NmPW8G4IxK66G9TBDK8oRRhn5QCJsYZigzWqbceoLz5ZxPFuz3zfBmD8YNF8aXVUbfH3x67a3jk37UZv9huexfIVjJBxzxDa1Zb5i3t9kQfXIL2qOL6WS-u0zgMg-saY4JEwo0DLq6zKsu9b71NV607uLpqbRvR6h9p1e-dFKvUXsujL145cHrsHT-GT5FPElGYctfYM9WX-Hj6PYx9tSwhzDGo0C2a0tWjhRxiAMJnHKyaf6sY8JMlhXRf7Y6CpKnv__IiARuyzdYnP-6Hk-SODshKdhAbBJjcmEGUhqXZWXqL1udRLCkjdMGEYJkuSttlrtsyIzNqCidw5TUuoFIZckREx1Bq1pVtgMks6VkTnOMYsy38slt7oaGpkXBizKTZReyRl-qiI3F_XyLe9VUkN2poGXltaxSoVDLXUh2Ug-hscY774vGFOrFAVHo-9-R7KDllEbNr9Xiivqc0kMVyvK3lximiKILvReW3m0SEaQfOs-78LMxvcJP0t-z6MqutmuFIMrP8cbIf_zfm_4BHybXlzM1u5hPT-DAr4QSwlNobR639jtCoY3pxaP-DHTKAgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=use+of+computer+vision+technologies+in+aquaculture+%E2%80%93+A+review&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Zion%2C+Boaz&rft.date=2012-10-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=88&rft.spage=125&rft.epage=132&rft_id=info:doi/10.1016%2Fj.compag.2012.07.010&rft.externalDocID=US201400023248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |