The use of computer vision technologies in aquaculture – A review

Computer vision technology is a sophisticated inspection technology that is in common use in various industries. However, it is not as widely used in aquaculture. Application of computer vision technologies in aquaculture, the scope of the present review, is very challenging. The inspected subjects...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 88; pp. 125 - 132
Main Author Zion, Boaz
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0168-1699
1872-7107
DOI10.1016/j.compag.2012.07.010

Cover

Abstract Computer vision technology is a sophisticated inspection technology that is in common use in various industries. However, it is not as widely used in aquaculture. Application of computer vision technologies in aquaculture, the scope of the present review, is very challenging. The inspected subjects are sensitive, easily stressed and free to move in an environment in which lighting, visibility and stability are generally not controllable, and the sensors must operate underwater or in a wet environment. The review describes the state of the art and the evolution of computer vision in aquaculture, at all stages of production, from hatcheries to harvest. The review is organized according to inspection tasks that are common to almost all production systems: counting, size measurement and mass estimation, gender detection and quality inspection, species and stock identification, and monitoring of welfare and behavior. The objective of the review is to highlight areas of research and development in the field of computer vision which have made some progress, but have not matured into a useful tool. There are many potential applications for this technology in aquaculture which could be useful for improving product quality or production efficiency. There have been quite a few initiatives in this direction, and a tight collaboration between engineers, fish physiologists and ethologists could contribute to the search for, and development of solutions for the benefit of aquaculture.
AbstractList ► The evolution of computer vision in the context of aquaculture is reviewed. ► The technology has to operate under extremely challenging conditions. ► Potential applications could be useful for improving production efficiency. Computer vision technology is a sophisticated inspection technology that is in common use in various industries. However, it is not as widely used in aquaculture. Application of computer vision technologies in aquaculture, the scope of the present review, is very challenging. The inspected subjects are sensitive, easily stressed and free to move in an environment in which lighting, visibility and stability are generally not controllable, and the sensors must operate underwater or in a wet environment. The review describes the state of the art and the evolution of computer vision in aquaculture, at all stages of production, from hatcheries to harvest. The review is organized according to inspection tasks that are common to almost all production systems: counting, size measurement and mass estimation, gender detection and quality inspection, species and stock identification, and monitoring of welfare and behavior. The objective of the review is to highlight areas of research and development in the field of computer vision which have made some progress, but have not matured into a useful tool. There are many potential applications for this technology in aquaculture which could be useful for improving product quality or production efficiency. There have been quite a few initiatives in this direction, and a tight collaboration between engineers, fish physiologists and ethologists could contribute to the search for, and development of solutions for the benefit of aquaculture.
Computer vision technology is a sophisticated inspection technology that is in common use in various industries. However, it is not as widely used in aquaculture. Application of computer vision technologies in aquaculture, the scope of the present review, is very challenging. The inspected subjects are sensitive, easily stressed and free to move in an environment in which lighting, visibility and stability are generally not controllable, and the sensors must operate underwater or in a wet environment. The review describes the state of the art and the evolution of computer vision in aquaculture, at all stages of production, from hatcheries to harvest. The review is organized according to inspection tasks that are common to almost all production systems: counting, size measurement and mass estimation, gender detection and quality inspection, species and stock identification, and monitoring of welfare and behavior. The objective of the review is to highlight areas of research and development in the field of computer vision which have made some progress, but have not matured into a useful tool. There are many potential applications for this technology in aquaculture which could be useful for improving product quality or production efficiency. There have been quite a few initiatives in this direction, and a tight collaboration between engineers, fish physiologists and ethologists could contribute to the search for, and development of solutions for the benefit of aquaculture.
Author Zion, Boaz
Author_xml – sequence: 1
  fullname: Zion, Boaz
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26403206$$DView record in Pascal Francis
BookMark eNqFkctu1DAUhi1UJKaFN0DCGyQ2CceXxAkLpGrETarEgnZtOc7x1KNMPLWdIna8A2_Ik-BRyoZFWVmWvv_XOd85J2dzmJGQlwxqBqx9u69tOBzNrubAeA2qBgZPyIZ1ileKgTojm4J1FWv7_hk5T2kP5d93akO217dIl4Q0OHoqWTJGeu-TDzPNaG_nMIWdx0T9TM3dYuwy5SUi_f3zF72kEe89fn9OnjozJXzx8F6Qm48frrefq6uvn75sL68qK5nK1TB0amB9PzghRuCKg-sb2ZjBmaFn0MvOjSg6Jxo5oOBqdK7hAh1T0I9ty8UFebP2HmO4WzBlffDJ4jSZGcOSNGuYlNAx3hX09QNqkjWTi2a2Pulj9AcTf2jeShAc2sK9WzkbQ0oRnbY-m1y2z9H4STPQJ8N6r1fD-mRYg9LFcAnLf8J_-_8Te7XGnAna7GKZ6-ZbASQASCY79SjBBZen_d6vBBbf5QZRJ-txtjj6iDbrMfjHh_gDqHarjQ
CODEN CEAGE6
CitedBy_id crossref_primary_10_3390_s22197131
crossref_primary_10_1016_j_biosystemseng_2020_03_006
crossref_primary_10_1111_1750_3841_12799
crossref_primary_10_1016_j_compag_2018_04_005
crossref_primary_10_1016_j_biosystemseng_2020_05_012
crossref_primary_10_1016_j_aquaculture_2021_737633
crossref_primary_10_1016_j_fochx_2024_101309
crossref_primary_10_2174_2210298101999200909111243
crossref_primary_10_1109_JSEN_2023_3307284
crossref_primary_10_1111_raq_12546
crossref_primary_10_1109_ACCESS_2019_2912612
crossref_primary_10_1111_raq_12388
crossref_primary_10_1080_10454438_2017_1406421
crossref_primary_10_1016_j_compag_2024_109255
crossref_primary_10_1111_raq_12143
crossref_primary_10_3390_pr11041261
crossref_primary_10_4236_wjet_2018_63B003
crossref_primary_10_1016_j_aquaeng_2015_05_001
crossref_primary_10_1016_j_ecoinf_2019_05_004
crossref_primary_10_1016_j_aquaeng_2015_09_002
crossref_primary_10_1016_j_aqrep_2020_100487
crossref_primary_10_1016_j_atech_2022_100061
crossref_primary_10_1051_bioconf_202414202016
crossref_primary_10_1016_j_biosystemseng_2016_02_013
crossref_primary_10_3390_fishes9020046
crossref_primary_10_7120_09627286_28_2_191
crossref_primary_10_1002_aff2_66
crossref_primary_10_1016_j_aquaeng_2019_102000
crossref_primary_10_1016_j_compag_2016_10_009
crossref_primary_10_1016_j_compag_2016_04_014
crossref_primary_10_1016_j_atech_2023_100289
crossref_primary_10_1016_j_aquaculture_2021_737468
crossref_primary_10_1111_jfb_15274
crossref_primary_10_1007_s00542_019_04570_5
crossref_primary_10_1093_icesjms_fsz149
crossref_primary_10_1016_j_compag_2017_02_013
crossref_primary_10_1016_j_compag_2018_08_007
crossref_primary_10_1016_j_biosystemseng_2023_09_013
crossref_primary_10_1155_2019_7630926
crossref_primary_10_1007_s10499_022_00904_9
crossref_primary_10_1016_j_compag_2024_108676
crossref_primary_10_1109_ACCESS_2022_3230909
crossref_primary_10_1016_j_aquaeng_2014_11_003
crossref_primary_10_1016_j_compag_2020_105844
crossref_primary_10_1111_faf_12666
crossref_primary_10_3389_fgene_2018_00693
crossref_primary_10_1016_j_compag_2017_12_023
crossref_primary_10_1038_s41598_025_90118_9
crossref_primary_10_1016_j_aquaeng_2022_102276
crossref_primary_10_1038_s41598_022_19932_9
crossref_primary_10_1007_s11831_020_09486_2
crossref_primary_10_1016_j_aquaeng_2017_01_003
crossref_primary_10_1007_s10499_024_01428_0
crossref_primary_10_1002_aff2_70051
crossref_primary_10_1016_j_compag_2015_11_015
crossref_primary_10_1016_j_eswa_2022_118403
crossref_primary_10_1016_j_aquaculture_2023_740356
crossref_primary_10_1038_s41598_018_32089_8
crossref_primary_10_1038_s41598_017_06538_9
crossref_primary_10_1093_icesjms_fsx151
crossref_primary_10_3233_AIS_180498
crossref_primary_10_1016_j_compag_2019_105015
crossref_primary_10_1016_j_aquaculture_2020_735508
crossref_primary_10_3390_agriengineering6020070
crossref_primary_10_1016_j_compag_2021_106601
crossref_primary_10_1007_s00343_015_4080_3
crossref_primary_10_15302_J_FASE_2016111
crossref_primary_10_1016_j_aiia_2025_01_012
crossref_primary_10_1007_s10489_024_06224_0
crossref_primary_10_1016_j_aquaeng_2025_102527
crossref_primary_10_32604_iasc_2022_021973
crossref_primary_10_3390_jmse12081343
crossref_primary_10_1007_s10499_019_00443_w
crossref_primary_10_1016_j_aquaeng_2022_102304
crossref_primary_10_3390_biom9120778
crossref_primary_10_1016_j_aquaeng_2020_102115
crossref_primary_10_3389_fmars_2024_1370786
crossref_primary_10_3390_ani12192592
crossref_primary_10_1016_j_aquaculture_2020_736291
crossref_primary_10_1049_ipr2_12636
crossref_primary_10_1155_2018_3528296
crossref_primary_10_1007_s10499_024_01550_z
crossref_primary_10_1016_j_applanim_2014_11_014
crossref_primary_10_1016_j_mlwa_2024_100562
crossref_primary_10_1016_j_compag_2022_106985
crossref_primary_10_1063_5_0112588
crossref_primary_10_1016_j_aaf_2023_08_010
crossref_primary_10_1016_j_aquaeng_2021_102175
crossref_primary_10_1016_j_aquaeng_2013_08_004
crossref_primary_10_1016_j_aquaeng_2021_102179
crossref_primary_10_1016_j_aquaeng_2023_102338
crossref_primary_10_1016_j_aquaeng_2021_102215
crossref_primary_10_1016_j_ifset_2013_10_013
crossref_primary_10_3390_jmse12101823
crossref_primary_10_35633_inmateh_72_59
crossref_primary_10_1016_j_compag_2020_105419
crossref_primary_10_1111_raq_12464
crossref_primary_10_1016_j_compag_2024_109850
crossref_primary_10_1016_j_marpolbul_2017_03_004
crossref_primary_10_1109_ACCESS_2024_3365585
crossref_primary_10_1016_j_atech_2021_100020
crossref_primary_10_3390_s20185294
crossref_primary_10_1016_j_compag_2019_105119
crossref_primary_10_1049_ipr2_12924
crossref_primary_10_1016_j_compag_2020_105411
crossref_primary_10_1016_j_eswa_2023_121197
crossref_primary_10_3390_jmse12050842
crossref_primary_10_1111_raq_12919
crossref_primary_10_1016_j_optlastec_2019_04_038
crossref_primary_10_1016_j_jfoodeng_2018_04_012
crossref_primary_10_1038_srep31810
crossref_primary_10_1007_s11276_023_03592_2
crossref_primary_10_1080_23308249_2021_1980767
crossref_primary_10_1016_j_infrared_2017_11_002
crossref_primary_10_3390_s16050618
crossref_primary_10_3390_w16243595
crossref_primary_10_1016_j_ecoinf_2021_101240
crossref_primary_10_1111_are_14907
crossref_primary_10_1016_j_compag_2014_05_013
crossref_primary_10_1109_TCSVT_2018_2872575
crossref_primary_10_3390_fishes7060335
crossref_primary_10_1016_j_biosystemseng_2024_06_009
crossref_primary_10_1016_j_eswa_2025_126820
crossref_primary_10_1016_j_inpa_2020_01_004
crossref_primary_10_1016_j_aquaeng_2023_102350
crossref_primary_10_1016_j_aquaculture_2021_736724
crossref_primary_10_1016_j_aquaeng_2019_01_005
crossref_primary_10_1038_s41598_024_71763_y
crossref_primary_10_1016_j_eswa_2024_124804
crossref_primary_10_1021_acsfoodscitech_1c00193
crossref_primary_10_1007_s11356_023_27922_1
crossref_primary_10_1111_raq_12601
crossref_primary_10_1016_j_aquaeng_2014_10_003
crossref_primary_10_1016_j_aquaeng_2015_10_003
crossref_primary_10_1109_TIM_2024_3476612
crossref_primary_10_3233_JIFS_169691
crossref_primary_10_1088_1742_6596_1856_1_012035
crossref_primary_10_1111_are_15828
crossref_primary_10_1007_s10462_024_10960_7
crossref_primary_10_1016_j_compag_2015_12_014
crossref_primary_10_1016_j_compag_2020_105439
crossref_primary_10_3390_electronics12153338
crossref_primary_10_1007_s10462_021_10102_3
crossref_primary_10_1016_j_applanim_2022_105778
crossref_primary_10_1016_j_compag_2013_11_009
crossref_primary_10_1002_tee_23821
crossref_primary_10_1016_j_aquaeng_2023_102360
crossref_primary_10_1016_j_aquaculture_2022_738634
crossref_primary_10_1016_j_compag_2018_02_006
crossref_primary_10_3934_mbe_2024076
crossref_primary_10_1016_j_measurement_2018_05_035
crossref_primary_10_1039_C5AY03005F
crossref_primary_10_1111_raq_12218
crossref_primary_10_3390_jmse11051084
crossref_primary_10_1016_j_compag_2025_110079
crossref_primary_10_1016_j_biosystemseng_2023_05_010
crossref_primary_10_1007_s10044_014_0426_2
crossref_primary_10_3390_rs14164106
crossref_primary_10_3390_fishes9030103
Cites_doi 10.1109/TIT.1962.1057692
10.2331/suisan.63.178
10.1111/j.1439-0426.2011.01704.x
10.1894/0038-4909(2004)049<0197:MFUTIC>2.0.CO;2
10.1016/j.tifs.2011.03.006
10.1111/j.1439-0426.2011.01715.x
10.1016/S0144-8609(03)00049-9
10.1016/j.aquaeng.2006.09.002
10.1007/BF01215802
10.1016/j.aquaculture.2009.02.013
10.1080/088395101317018573
10.1006/cviu.2000.0847
10.1577/1548-8454(2002)064<0079:AOSCDI>2.0.CO;2
10.1016/j.aquaeng.2011.05.002
10.1016/S0144-8609(96)01009-6
10.1016/j.applanim.2004.02.003
10.1016/S0144-8609(02)00085-7
10.1016/0168-1699(93)90009-P
10.1016/0144-8609(94)00006-M
10.1016/S0165-7836(99)00070-3
10.1016/j.aquaeng.2006.02.003
10.1016/S0144-8609(99)00037-0
10.1016/0957-4158(94)90052-3
10.1016/j.compag.2006.12.007
10.3923/jfas.2010.494.502
10.1016/0144-8609(94)P4433-C
10.1016/S0168-1699(99)00030-7
10.1016/j.aquaeng.2007.03.002
10.1016/S0044-8486(98)00251-8
10.1061/(ASCE)CP.1943-5487.0000092
10.1016/S0168-1699(00)00181-2
10.1109/IROS.2000.893195
10.1016/0044-8486(96)83535-6
10.1051/alr/2011133
10.1023/A:1008939104413
10.1016/j.aquaeng.2009.06.001
10.1111/j.1750-3841.2010.01522.x
10.1017/S0263574702004733
10.1111/j.1750-3841.2010.01813.x
10.1016/j.fishres.2006.04.009
10.1016/S0044-8486(96)01384-1
10.1016/j.aquaeng.2008.01.002
10.2307/1540
10.1016/j.aquaeng.2004.09.009
10.1080/10498850.2010.508869
10.1016/1054-3139(95)80023-9
10.1117/1.1329338
10.3390/s91108438
10.1038/114895a0
10.1016/0044-8486(95)00003-K
10.1016/j.aquaeng.2006.02.004
10.1016/j.seares.2005.06.002
10.1111/j.1095-8649.1996.tb00042.x
10.1577/1548-8640(1988)050<0113:TNAAPO>2.3.CO;2
10.1111/j.1095-8649.1987.tb05748.x
10.1111/j.1095-8649.2001.tb02313.x
10.1016/S0165-7836(00)00254-X
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.compag.2012.07.010
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
EndPage 132
ExternalDocumentID 26403206
10_1016_j_compag_2012_07_010
US201400041487
US201400023248
S0168169912001950
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
AAYWO
AAYXX
ACIEU
ACMHX
ACVFH
ADCNI
ADSLC
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
IQODW
7S9
ACLOT
L.6
~HD
ID FETCH-LOGICAL-c417t-bb87b199bf33d02720f9545abfab910948fde38f354be327dff523ef1709d6623
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Sat Sep 27 23:57:45 EDT 2025
Mon Jul 21 09:18:02 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Tue Jul 01 05:14:12 EDT 2025
Thu Apr 03 09:43:21 EDT 2025
Wed Dec 27 19:06:38 EST 2023
Fri Feb 23 02:29:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Computer vision
Biomass
Gender
Welfare
Species
Aquaculture
Technology
Sex
Well being
Review
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-bb87b199bf33d02720f9545abfab910948fde38f354be327dff523ef1709d6623
Notes http://dx.doi.org/10.1016/j.compag.2012.07.010
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1514408128
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_1514408128
pascalfrancis_primary_26403206
crossref_citationtrail_10_1016_j_compag_2012_07_010
crossref_primary_10_1016_j_compag_2012_07_010
fao_agris_US201400041487
fao_agris_US201400023248
elsevier_sciencedirect_doi_10_1016_j_compag_2012_07_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Oppedal, Juell, Taranger, Hansen (b0200) 2001; 58
Tidd, Wilder (b0270) 2001; 10
Lines, Tillett, Ross, Chan, Hockaday, McFarlane (b0160) 2001; 31
Wohlfarth, Rothbard (b0310) 1991; 43
Spencer (b0235) 1898
Bookstein, F.L., 1990. Introduction to methods for landmark data, In: Rohlf, F.J., Bookstein, F.L. (Eds.), Michigan Morphometrics Workshop. University of Michigan, Museum of Zoology, Michigan, USA, pp. 215–226.
Costa, Scardi, Vitalini, Cataudella (b0075) 2009; 291
Xu, Liu, Cui, Miao (b0315) 2006; 35
Pinkiewicz, Purser, Williams (b0210) 2011; 45
Odone, Trucco, Verri (b0195) 2001; 15
Gumus, Balaban (b0110) 2010; 19
Israeli-Weinstein, Kimmel (b0130) 1998; 165
Huxley (b0125) 1924; 114
Strachan, Kell (b0260) 1995; 52
Cadieux, S., Lalonde, F., Michaud, F., 2000. Intelligent system for automated fish sorting and counting. International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ, Takamatsu, Japan, pp. 1279–1284.
Yada, Chen (b0320) 1997; 63
Foster, Petrell, Ito, Ward (b0090) 1995; 14
Love (b0165) 1981
Ruff, Marchant, Frost (b0225) 1995; 14
Winans (b0300) 1985
Martinez-de Dios, Serna, Ellero (b0170) 2003; 21
Nieto-Navarro, Zetina-Rejon, Arreguin-Sanchez, Arcos-Huitron, Pena-Messina (b0190) 2010; 5
Hu (b0115) 1962; 8
Hufschmied, Fankhauser, Pugovkin (b0120) 2011; 27
Le Cren (b0155) 1951; 20
Tayama, Shimadate, Kubuta, Nomura (b0265) 1982; 57
Israeli, Kimmel (b0135) 1996; 15
Di Marco, Donadelli, Longobardi, Corsalini, Bertotto, Finoia, Marino (b0080) 2011; 27
Storbeck, Daan (b0245) 2001; 51
Beddow, Ross, Marchant (b0035) 1996; 146
Tillett, McFarlane, Lines (b0275) 2000; 79
Newbury, Culverhouse, Pilgrim (b0185) 1995; 133
Zion, Doitch, Ostrovsky, Alchanatis, Segev, Barki, Karplus (b0335) 2006
Zion, Alchanatis, Ostrovsky, Barki, Karplus (b0330) 2008; 38
Conte (b0065) 2004; 86
Zion, Alchanatis, Ostrovsky, Bark, Karplus (b0325) 2007; 56
Mathiassen, Misimi, Bondo, Veliyulin, Ostvik (b0175) 2011; 22
Fulton (b0100) 1904
Aguzzi, Costa, Fujiwara, Iwase, Ramirez-Llorda, Menesatti (b0005) 2009; 9
Castignolles, Cattoen, Larinier (b0060) 1994
White, Svellingen, Strachan (b0295) 2006; 80
Wagner, Schmidt, Rudek (b0285) 1987; 34
Cardin (b0055) 2000; 10
Balaban, Sengor, Soriano, Ruiz (b0025) 2010; 75
Savage, Petrell, Neufeld (b0230) 1994; 36
Karplus, Gottdiener, Zion (b0150) 2003; 27
Zion, Shklyar, Karplus (b0350) 2000; 22
Strachan (b0255) 1994; 4
Strachan (b0250) 1993; 8
Joyce, Rawson (b0140) 1988; 50
Alver, Tennoy, Alfredsen, Oie (b0010) 2007; 36
Duarte, Reig, Oca (b0085) 2009; 41
Zion, Shklyar, Karplus (b0345) 1999; 23
Cardin, Friedland (b0050) 1999; 43
Zion, Ostrovsky, Karplus, Lidor, Barki (b0340) 2012
Beddow, Ross (b0030) 1996; 49
Wallat, Luzuriaga, Balaban, Chapman (b0290) 2002; 64
Merz, Merz (b0180) 2004; 49
Karplus, Alchanatis, Zion (b0145) 2005; 32
Balaban, Chombeau, Cirban, Gumus (b0020) 2010; 75
Parsonage, Petrell (b0205) 2003; 29
Witthames, Walker (b0305) 1987; 30
Poxton, Goldsworthy (b0215) 1987
Friedland, Ama-Abasi, Manning, Clarke, Kligys, Chambers (b0095) 2005; 54
Gomelski, Chersas, Hulata, Ben-Dom (b0105) 1995; 137
Stien, Brafland, Austevollb, Oppedala, Kristiansen (b0240) 2007; 37
Rodriguez, Bermudez, Rabunal, Puertas, Dorado, Pena, Balairon (b0220) 2011; 25
Costa, Loy, Cataudella, Davis, Scardi (b0070) 2006; 35
Arnarson, Pau (b0015) 1994; 7
Torisawa, Kadota, Komeyama, Suzuki, Takagi (b0280) 2011; 24
Castignolles (10.1016/j.compag.2012.07.010_b0060) 1994
Tillett (10.1016/j.compag.2012.07.010_b0275) 2000; 79
Gumus (10.1016/j.compag.2012.07.010_b0110) 2010; 19
Hu (10.1016/j.compag.2012.07.010_b0115) 1962; 8
Rodriguez (10.1016/j.compag.2012.07.010_b0220) 2011; 25
Pinkiewicz (10.1016/j.compag.2012.07.010_b0210) 2011; 45
10.1016/j.compag.2012.07.010_b0040
Gomelski (10.1016/j.compag.2012.07.010_b0105) 1995; 137
Stien (10.1016/j.compag.2012.07.010_b0240) 2007; 37
Zion (10.1016/j.compag.2012.07.010_b0345) 1999; 23
Zion (10.1016/j.compag.2012.07.010_b0340) 2012
Karplus (10.1016/j.compag.2012.07.010_b0150) 2003; 27
Storbeck (10.1016/j.compag.2012.07.010_b0245) 2001; 51
Wohlfarth (10.1016/j.compag.2012.07.010_b0310) 1991; 43
Oppedal (10.1016/j.compag.2012.07.010_b0200) 2001; 58
Beddow (10.1016/j.compag.2012.07.010_b0030) 1996; 49
Spencer (10.1016/j.compag.2012.07.010_b0235) 1898
Aguzzi (10.1016/j.compag.2012.07.010_b0005) 2009; 9
Xu (10.1016/j.compag.2012.07.010_b0315) 2006; 35
Nieto-Navarro (10.1016/j.compag.2012.07.010_b0190) 2010; 5
Conte (10.1016/j.compag.2012.07.010_b0065) 2004; 86
Le Cren (10.1016/j.compag.2012.07.010_b0155) 1951; 20
Winans (10.1016/j.compag.2012.07.010_b0300) 1985
Foster (10.1016/j.compag.2012.07.010_b0090) 1995; 14
Savage (10.1016/j.compag.2012.07.010_b0230) 1994; 36
10.1016/j.compag.2012.07.010_b0045
Hufschmied (10.1016/j.compag.2012.07.010_b0120) 2011; 27
Karplus (10.1016/j.compag.2012.07.010_b0145) 2005; 32
Mathiassen (10.1016/j.compag.2012.07.010_b0175) 2011; 22
Zion (10.1016/j.compag.2012.07.010_b0350) 2000; 22
Friedland (10.1016/j.compag.2012.07.010_b0095) 2005; 54
Zion (10.1016/j.compag.2012.07.010_b0330) 2008; 38
Israeli (10.1016/j.compag.2012.07.010_b0135) 1996; 15
Parsonage (10.1016/j.compag.2012.07.010_b0205) 2003; 29
Newbury (10.1016/j.compag.2012.07.010_b0185) 1995; 133
Israeli-Weinstein (10.1016/j.compag.2012.07.010_b0130) 1998; 165
Costa (10.1016/j.compag.2012.07.010_b0070) 2006; 35
Balaban (10.1016/j.compag.2012.07.010_b0025) 2010; 75
Di Marco (10.1016/j.compag.2012.07.010_b0080) 2011; 27
Wallat (10.1016/j.compag.2012.07.010_b0290) 2002; 64
Alver (10.1016/j.compag.2012.07.010_b0010) 2007; 36
Arnarson (10.1016/j.compag.2012.07.010_b0015) 1994; 7
Love (10.1016/j.compag.2012.07.010_b0165) 1981
Witthames (10.1016/j.compag.2012.07.010_b0305) 1987; 30
Cardin (10.1016/j.compag.2012.07.010_b0055) 2000; 10
Merz (10.1016/j.compag.2012.07.010_b0180) 2004; 49
Yada (10.1016/j.compag.2012.07.010_b0320) 1997; 63
Joyce (10.1016/j.compag.2012.07.010_b0140) 1988; 50
Cardin (10.1016/j.compag.2012.07.010_b0050) 1999; 43
Fulton (10.1016/j.compag.2012.07.010_b0100) 1904
Zion (10.1016/j.compag.2012.07.010_b0325) 2007; 56
Costa (10.1016/j.compag.2012.07.010_b0075) 2009; 291
Strachan (10.1016/j.compag.2012.07.010_b0255) 1994; 4
Strachan (10.1016/j.compag.2012.07.010_b0260) 1995; 52
Duarte (10.1016/j.compag.2012.07.010_b0085) 2009; 41
Odone (10.1016/j.compag.2012.07.010_b0195) 2001; 15
Lines (10.1016/j.compag.2012.07.010_b0160) 2001; 31
Martinez-de Dios (10.1016/j.compag.2012.07.010_b0170) 2003; 21
Tidd (10.1016/j.compag.2012.07.010_b0270) 2001; 10
Wagner (10.1016/j.compag.2012.07.010_b0285) 1987; 34
Beddow (10.1016/j.compag.2012.07.010_b0035) 1996; 146
Huxley (10.1016/j.compag.2012.07.010_b0125) 1924; 114
White (10.1016/j.compag.2012.07.010_b0295) 2006; 80
Zion (10.1016/j.compag.2012.07.010_b0335) 2006
Strachan (10.1016/j.compag.2012.07.010_b0250) 1993; 8
Tayama (10.1016/j.compag.2012.07.010_b0265) 1982; 57
Poxton (10.1016/j.compag.2012.07.010_b0215) 1987
Ruff (10.1016/j.compag.2012.07.010_b0225) 1995; 14
Balaban (10.1016/j.compag.2012.07.010_b0020) 2010; 75
Torisawa (10.1016/j.compag.2012.07.010_b0280) 2011; 24
References_xml – year: 1898
  ident: b0235
  article-title: The Principles of Biology
– volume: 36
  start-page: 115
  year: 2007
  end-page: 121
  ident: b0010
  article-title: Automatic measurement of rotifer Brachionus plicatilis densities in first feeding tanks
  publication-title: Aquacult. Eng.
– volume: 27
  start-page: 637
  year: 2011
  end-page: 642
  ident: b0080
  article-title: Sex and reproductive stage identification of sturgeon hybrids (
  publication-title: J. Appl. Ichthyol.
– volume: 9
  start-page: 8438
  year: 2009
  end-page: 8455
  ident: b0005
  article-title: A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna
  publication-title: Sensors
– volume: 8
  start-page: 93
  year: 1993
  end-page: 104
  ident: b0250
  article-title: Length measurement of fish by computer vision
  publication-title: Comput. Elect. Agric.
– volume: 5
  start-page: 494
  year: 2010
  end-page: 502
  ident: b0190
  article-title: Length–weight relationship of demersal fish from the eastern coast of the mouth of the gulf of California
  publication-title: J. Fish. Aqua. Sci.
– reference: Bookstein, F.L., 1990. Introduction to methods for landmark data, In: Rohlf, F.J., Bookstein, F.L. (Eds.), Michigan Morphometrics Workshop. University of Michigan, Museum of Zoology, Michigan, USA, pp. 215–226.
– volume: 24
  start-page: 107
  year: 2011
  end-page: 112
  ident: b0280
  article-title: A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna,
  publication-title: Aquat. Living Resour.
– volume: 63
  start-page: 178
  year: 1997
  end-page: 183
  ident: b0320
  article-title: Weighing type counting system for seedling fry
  publication-title: Nippon Suisan Gakkaishi
– year: 2012
  ident: b0340
  article-title: Ornamental Fish Mass Estimation by Image Processing
– volume: 49
  start-page: 469
  year: 1996
  end-page: 482
  ident: b0030
  article-title: Predicting biomass of Atlantic salmon from morphometric lateral measurements
  publication-title: J. Fish Biol.
– volume: 114
  start-page: 895
  year: 1924
  end-page: 896
  ident: b0125
  article-title: Constant differential growth-ratios and their significance
  publication-title: Nature
– volume: 14
  start-page: 251
  year: 1995
  end-page: 269
  ident: b0090
  article-title: Detection and counting of uneaten food pellets in a sea cage using image-analysis
  publication-title: Aquacult. Eng.
– volume: 21
  start-page: 233
  year: 2003
  end-page: 243
  ident: b0170
  article-title: Computer vision and robotics techniques in fish farms
  publication-title: Robotica
– volume: 10
  start-page: 283
  year: 2001
  end-page: 288
  ident: b0270
  article-title: Fish detection and classification system
  publication-title: J. Electron. Imag.
– volume: 4
  start-page: 773
  year: 1994
  end-page: 783
  ident: b0255
  article-title: Sea trials of a computer vision based fish species sorting and size grading machine
  publication-title: Mechantronics
– volume: 23
  start-page: 175
  year: 1999
  end-page: 187
  ident: b0345
  article-title: Sorting fish by computer vision
  publication-title: Comput. Elect. Agric.
– volume: 146
  start-page: 189
  year: 1996
  end-page: 203
  ident: b0035
  article-title: Predicting salmon biomass remotely using a digital stereo-imaging technique
  publication-title: Aquaculture
– start-page: 200
  year: 1994
  end-page: 209
  ident: b0060
  article-title: Identification and counting of live fish by image analysis
  publication-title: Image and Video Processing II
– volume: 27
  start-page: 177
  year: 2003
  end-page: 190
  ident: b0150
  article-title: Guidance of single guppies (
  publication-title: Aquacult. Eng.
– volume: 58
  start-page: 1570
  year: 2001
  end-page: 1584
  ident: b0200
  article-title: Artificial light and season affects vertical distribution and swimming behaviour of post-smolt Atlantic salmon in sea cages
  publication-title: J. Fish Biol.
– volume: 34
  start-page: 20
  year: 1987
  end-page: 23
  ident: b0285
  article-title: Distinction between species of sea fish
  publication-title: Lebensmittelindustrie
– year: 1904
  ident: b0100
  article-title: The Rate of Growth of Fishes
– volume: 25
  start-page: 291
  year: 2011
  end-page: 301
  ident: b0220
  article-title: Optical fish trajectory measurement in fishways through computer vision and artificial neural networks
  publication-title: J. Comput. Civ. Eng.
– volume: 15
  start-page: 423
  year: 1996
  end-page: 440
  ident: b0135
  article-title: Monitoring the behavior of hypoxia-stressed Carassius auratus using computer vision
  publication-title: Aquacult. Eng.
– reference: Cadieux, S., Lalonde, F., Michaud, F., 2000. Intelligent system for automated fish sorting and counting. International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ, Takamatsu, Japan, pp. 1279–1284.
– volume: 35
  start-page: 218
  year: 2006
  end-page: 227
  ident: b0070
  article-title: Extracting fish size using dual underwater cameras
  publication-title: Aquacult. Eng.
– volume: 57
  start-page: 1146
  year: 1982
  end-page: 1150
  ident: b0265
  article-title: Application for optical sensor to fish sorting
  publication-title: Reito (Tokyo) Refrigeration
– volume: 52
  start-page: 145
  year: 1995
  end-page: 149
  ident: b0260
  article-title: A potential method for the differentiation between haddock fish stocks by computer vision using canonical discriminant analysis
  publication-title: ICES J. Mar. Sci.
– volume: 75
  start-page: E157
  year: 2010
  end-page: E162
  ident: b0025
  article-title: Using image analysis to predict the weight of alaskan salmon of different species
  publication-title: J. Food Sci.
– volume: 15
  start-page: 735
  year: 2001
  end-page: 745
  ident: b0195
  article-title: A trainable system for grading fish from images
  publication-title: App. Art. Int.
– volume: 79
  start-page: 123
  year: 2000
  end-page: 141
  ident: b0275
  article-title: Estimating dimensions of free-swimming fish using 3D point distribution models
  publication-title: Comput. Vis. Image Underst.
– volume: 27
  start-page: 622
  year: 2011
  end-page: 626
  ident: b0120
  article-title: Automatic stress-free sorting of sturgeons inside culture tanks using image processing
  publication-title: J. Appl. Ichthyol.
– volume: 45
  start-page: 20
  year: 2011
  end-page: 27
  ident: b0210
  article-title: A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: a case study using cage-held Atlantic salmon
  publication-title: Aquacult. Eng.
– volume: 64
  start-page: 79
  year: 2002
  end-page: 84
  ident: b0290
  article-title: Analysis of skin color development in live goldfish using a color machine vision system
  publication-title: N. Am. J. Aquacult.
– volume: 19
  start-page: 227
  year: 2010
  end-page: 237
  ident: b0110
  article-title: Prediction of the weight of aquacultured rainbow trout (
  publication-title: J. Aquat. Food Prod. Technol.
– start-page: 163
  year: 1987
  end-page: 170
  ident: b0215
  article-title: The remote estimation of weight and growth in turbot using image analysis
  publication-title: Automation and Data Processing in Aquaculture
– volume: 54
  start-page: 307
  year: 2005
  end-page: 316
  ident: b0095
  article-title: Automated egg counting and sizing from scanned images: rapid sample processing and large data volumes for fecundity estimates
  publication-title: J. Sea Res.
– volume: 10
  start-page: 91
  year: 2000
  end-page: 112
  ident: b0055
  article-title: Advances in morphometric identification of fishery stocks
  publication-title: Rev. Fish Biol. Fish.
– volume: 137
  start-page: 102
  year: 1995
  ident: b0105
  article-title: Color variability in normal and gynogenetic progenies of ornamental (Koi) common carp (
  publication-title: Aquaculture
– volume: 50
  start-page: 113
  year: 1988
  end-page: 115
  ident: b0140
  article-title: Accuracy and precision of counting eyed eggs with an electronic fish counter
  publication-title: Prog. Fish-Cult.
– volume: 56
  start-page: 34
  year: 2007
  end-page: 45
  ident: b0325
  article-title: Real-time underwater sorting of edible fish species
  publication-title: Comput. Elect. Agric.
– volume: 291
  start-page: 161
  year: 2009
  end-page: 167
  ident: b0075
  article-title: A dual camera system for counting and sizing Northern Bluefin Tuna (
  publication-title: Aquaculture
– volume: 8
  start-page: 179
  year: 1962
  end-page: 187
  ident: b0115
  article-title: Visual pattern recognition by moment invariants
  publication-title: IRE Trans. Inf. Theory
– volume: 20
  start-page: 201
  year: 1951
  end-page: 219
  ident: b0155
  article-title: The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (
  publication-title: J. Anim. Ecol.
– volume: 37
  start-page: 115
  year: 2007
  end-page: 124
  ident: b0240
  article-title: A video analysis procedure for assessing vertical fish distribution in aquaculture tanks
  publication-title: Aquacult. Eng.
– volume: 32
  start-page: 509
  year: 2005
  end-page: 520
  ident: b0145
  article-title: Guidance of groups of guppies (
  publication-title: Aquacult. Eng.
– volume: 80
  start-page: 203
  year: 2006
  end-page: 210
  ident: b0295
  article-title: Automated measurement of species and length of fish by computer vision
  publication-title: Fish. Res.
– start-page: 449
  year: 1981
  end-page: 470
  ident: b0165
  article-title: Stress and behaviour in the culture environment
  publication-title: Realism in Aquaculture: Achievements, Constraints, Perspectives
– volume: 36
  start-page: 175
  year: 1994
  end-page: 183
  ident: b0230
  article-title: Underwater fish-video images – image quality and edge-detection techniques
  publication-title: Can. Agric. Eng.
– volume: 30
  start-page: 225
  year: 1987
  end-page: 235
  ident: b0305
  article-title: An automated-method for counting and sizing fish eggs
  publication-title: J. Fish Biol.
– year: 2006
  ident: b0335
  article-title: Ornamental Fish Fry Counting by Image Processing
– volume: 22
  start-page: 165
  year: 2000
  end-page: 179
  ident: b0350
  article-title: In-vivo fish sorting by computer vision
  publication-title: Aquacult. Eng.
– volume: 49
  start-page: 197
  year: 2004
  end-page: 202
  ident: b0180
  article-title: Morphological features used to identify chinook salmon sex during fish passage
  publication-title: Southwest. Nat.
– volume: 14
  start-page: 155
  year: 1995
  end-page: 173
  ident: b0225
  article-title: Fish sizing and monitoring using a stereo image-analysis system applied to fish farming
  publication-title: Aquacult. Eng.
– start-page: 135
  year: 1985
  end-page: 146
  ident: b0300
  article-title: Using morphometric and meristic characters for identifying stock of fish
  publication-title: Stock Identification Workshop
– volume: 43
  start-page: 62
  year: 1991
  end-page: 68
  ident: b0310
  article-title: Preliminary investigation on color inheritance in Japanese ornamental carp (
  publication-title: Isr. J. Aquacult./Bamidgeh
– volume: 22
  start-page: 257
  year: 2011
  end-page: 275
  ident: b0175
  article-title: Trends in application of imaging technologies to inspection of fish and fish products
  publication-title: Trends Food Sci. Technol.
– volume: 86
  start-page: 205
  year: 2004
  end-page: 223
  ident: b0065
  article-title: Stress and the welfare of cultured fish
  publication-title: Appl. Anim. Behav. Sci.
– volume: 133
  start-page: 45
  year: 1995
  end-page: 55
  ident: b0185
  article-title: Automatic fish population counting by artificial neural network
  publication-title: Aquaculture
– volume: 7
  start-page: 59
  year: 1994
  end-page: 68
  ident: b0015
  article-title: PDH-HM: morphological and syntactic shape classification algorithm. Real-time application to fish species classification
  publication-title: Mach. Vis. Appl.
– volume: 35
  start-page: 207
  year: 2006
  end-page: 217
  ident: b0315
  article-title: Behavioral responses of tilapia (
  publication-title: Aquacult. Eng.
– volume: 31
  start-page: 151
  year: 2001
  end-page: 168
  ident: b0160
  article-title: An automatic image-based system for estimating the mass of free-swimming fish
  publication-title: Comput. Elect. Agric.
– volume: 43
  start-page: 129
  year: 1999
  end-page: 139
  ident: b0050
  article-title: The utility of image processing techniques for morphometric analysis and stock identification
  publication-title: Fish. Res.
– volume: 38
  year: 2008
  ident: b0330
  article-title: Classification of guppies’ (
  publication-title: Aquacult. Eng.
– volume: 41
  start-page: 22
  year: 2009
  end-page: 27
  ident: b0085
  article-title: Measurement of sole activity by digital image analysis
  publication-title: Aquacult. Eng.
– volume: 165
  start-page: 81
  year: 1998
  end-page: 93
  ident: b0130
  article-title: Behavioral response of carp (
  publication-title: Aquaculture
– volume: 51
  start-page: 11
  year: 2001
  end-page: 15
  ident: b0245
  article-title: Fish species recognition using computer vision and a neural network
  publication-title: Fish. Res.
– volume: 75
  start-page: E552
  year: 2010
  end-page: E556
  ident: b0020
  article-title: Prediction of the weight of alaskan pollock using image analysis
  publication-title: J. Food Sci.
– volume: 29
  start-page: 109
  year: 2003
  end-page: 123
  ident: b0205
  article-title: Accuracy of a machine-vision pellet detection system
  publication-title: Aquacult. Eng.
– volume: 36
  start-page: 175
  year: 1994
  ident: 10.1016/j.compag.2012.07.010_b0230
  article-title: Underwater fish-video images – image quality and edge-detection techniques
  publication-title: Can. Agric. Eng.
– year: 1904
  ident: 10.1016/j.compag.2012.07.010_b0100
– start-page: 200
  year: 1994
  ident: 10.1016/j.compag.2012.07.010_b0060
  article-title: Identification and counting of live fish by image analysis
– volume: 8
  start-page: 179
  year: 1962
  ident: 10.1016/j.compag.2012.07.010_b0115
  article-title: Visual pattern recognition by moment invariants
  publication-title: IRE Trans. Inf. Theory
  doi: 10.1109/TIT.1962.1057692
– volume: 63
  start-page: 178
  year: 1997
  ident: 10.1016/j.compag.2012.07.010_b0320
  article-title: Weighing type counting system for seedling fry
  publication-title: Nippon Suisan Gakkaishi
  doi: 10.2331/suisan.63.178
– volume: 27
  start-page: 622
  year: 2011
  ident: 10.1016/j.compag.2012.07.010_b0120
  article-title: Automatic stress-free sorting of sturgeons inside culture tanks using image processing
  publication-title: J. Appl. Ichthyol.
  doi: 10.1111/j.1439-0426.2011.01704.x
– volume: 49
  start-page: 197
  year: 2004
  ident: 10.1016/j.compag.2012.07.010_b0180
  article-title: Morphological features used to identify chinook salmon sex during fish passage
  publication-title: Southwest. Nat.
  doi: 10.1894/0038-4909(2004)049<0197:MFUTIC>2.0.CO;2
– volume: 22
  start-page: 257
  year: 2011
  ident: 10.1016/j.compag.2012.07.010_b0175
  article-title: Trends in application of imaging technologies to inspection of fish and fish products
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2011.03.006
– volume: 27
  start-page: 637
  year: 2011
  ident: 10.1016/j.compag.2012.07.010_b0080
  article-title: Sex and reproductive stage identification of sturgeon hybrids (acipenser naccariiaAaAcipenser baerii) using different tools: ultrasounds, histology and sex steroids
  publication-title: J. Appl. Ichthyol.
  doi: 10.1111/j.1439-0426.2011.01715.x
– volume: 29
  start-page: 109
  year: 2003
  ident: 10.1016/j.compag.2012.07.010_b0205
  article-title: Accuracy of a machine-vision pellet detection system
  publication-title: Aquacult. Eng.
  doi: 10.1016/S0144-8609(03)00049-9
– volume: 36
  start-page: 115
  year: 2007
  ident: 10.1016/j.compag.2012.07.010_b0010
  article-title: Automatic measurement of rotifer Brachionus plicatilis densities in first feeding tanks
  publication-title: Aquacult. Eng.
  doi: 10.1016/j.aquaeng.2006.09.002
– volume: 7
  start-page: 59
  year: 1994
  ident: 10.1016/j.compag.2012.07.010_b0015
  article-title: PDH-HM: morphological and syntactic shape classification algorithm. Real-time application to fish species classification
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/BF01215802
– volume: 291
  start-page: 161
  year: 2009
  ident: 10.1016/j.compag.2012.07.010_b0075
  article-title: A dual camera system for counting and sizing Northern Bluefin Tuna (Thunnus thynnus; Linnaeus, 1758) stock, during transfer to aquaculture cages, with a semi automatic Artificial Neural Network tool
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2009.02.013
– volume: 15
  start-page: 735
  year: 2001
  ident: 10.1016/j.compag.2012.07.010_b0195
  article-title: A trainable system for grading fish from images
  publication-title: App. Art. Int.
  doi: 10.1080/088395101317018573
– volume: 79
  start-page: 123
  year: 2000
  ident: 10.1016/j.compag.2012.07.010_b0275
  article-title: Estimating dimensions of free-swimming fish using 3D point distribution models
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.2000.0847
– volume: 64
  start-page: 79
  year: 2002
  ident: 10.1016/j.compag.2012.07.010_b0290
  article-title: Analysis of skin color development in live goldfish using a color machine vision system
  publication-title: N. Am. J. Aquacult.
  doi: 10.1577/1548-8454(2002)064<0079:AOSCDI>2.0.CO;2
– volume: 43
  start-page: 62
  year: 1991
  ident: 10.1016/j.compag.2012.07.010_b0310
  article-title: Preliminary investigation on color inheritance in Japanese ornamental carp (Nishihiki goi)
  publication-title: Isr. J. Aquacult./Bamidgeh
– volume: 45
  start-page: 20
  year: 2011
  ident: 10.1016/j.compag.2012.07.010_b0210
  article-title: A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: a case study using cage-held Atlantic salmon
  publication-title: Aquacult. Eng.
  doi: 10.1016/j.aquaeng.2011.05.002
– volume: 15
  start-page: 423
  year: 1996
  ident: 10.1016/j.compag.2012.07.010_b0135
  article-title: Monitoring the behavior of hypoxia-stressed Carassius auratus using computer vision
  publication-title: Aquacult. Eng.
  doi: 10.1016/S0144-8609(96)01009-6
– volume: 86
  start-page: 205
  year: 2004
  ident: 10.1016/j.compag.2012.07.010_b0065
  article-title: Stress and the welfare of cultured fish
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2004.02.003
– volume: 27
  start-page: 177
  year: 2003
  ident: 10.1016/j.compag.2012.07.010_b0150
  article-title: Guidance of single guppies (Poecilia reticulata) to allow sorting by computer vision
  publication-title: Aquacult. Eng.
  doi: 10.1016/S0144-8609(02)00085-7
– volume: 8
  start-page: 93
  year: 1993
  ident: 10.1016/j.compag.2012.07.010_b0250
  article-title: Length measurement of fish by computer vision
  publication-title: Comput. Elect. Agric.
  doi: 10.1016/0168-1699(93)90009-P
– volume: 14
  start-page: 251
  year: 1995
  ident: 10.1016/j.compag.2012.07.010_b0090
  article-title: Detection and counting of uneaten food pellets in a sea cage using image-analysis
  publication-title: Aquacult. Eng.
  doi: 10.1016/0144-8609(94)00006-M
– volume: 43
  start-page: 129
  year: 1999
  ident: 10.1016/j.compag.2012.07.010_b0050
  article-title: The utility of image processing techniques for morphometric analysis and stock identification
  publication-title: Fish. Res.
  doi: 10.1016/S0165-7836(99)00070-3
– volume: 35
  start-page: 218
  year: 2006
  ident: 10.1016/j.compag.2012.07.010_b0070
  article-title: Extracting fish size using dual underwater cameras
  publication-title: Aquacult. Eng.
  doi: 10.1016/j.aquaeng.2006.02.003
– volume: 22
  start-page: 165
  year: 2000
  ident: 10.1016/j.compag.2012.07.010_b0350
  article-title: In-vivo fish sorting by computer vision
  publication-title: Aquacult. Eng.
  doi: 10.1016/S0144-8609(99)00037-0
– year: 2012
  ident: 10.1016/j.compag.2012.07.010_b0340
– volume: 4
  start-page: 773
  year: 1994
  ident: 10.1016/j.compag.2012.07.010_b0255
  article-title: Sea trials of a computer vision based fish species sorting and size grading machine
  publication-title: Mechantronics
  doi: 10.1016/0957-4158(94)90052-3
– ident: 10.1016/j.compag.2012.07.010_b0040
– volume: 57
  start-page: 1146
  year: 1982
  ident: 10.1016/j.compag.2012.07.010_b0265
  article-title: Application for optical sensor to fish sorting
  publication-title: Reito (Tokyo) Refrigeration
– volume: 56
  start-page: 34
  year: 2007
  ident: 10.1016/j.compag.2012.07.010_b0325
  article-title: Real-time underwater sorting of edible fish species
  publication-title: Comput. Elect. Agric.
  doi: 10.1016/j.compag.2006.12.007
– volume: 5
  start-page: 494
  year: 2010
  ident: 10.1016/j.compag.2012.07.010_b0190
  article-title: Length–weight relationship of demersal fish from the eastern coast of the mouth of the gulf of California
  publication-title: J. Fish. Aqua. Sci.
  doi: 10.3923/jfas.2010.494.502
– volume: 14
  start-page: 155
  year: 1995
  ident: 10.1016/j.compag.2012.07.010_b0225
  article-title: Fish sizing and monitoring using a stereo image-analysis system applied to fish farming
  publication-title: Aquacult. Eng.
  doi: 10.1016/0144-8609(94)P4433-C
– volume: 23
  start-page: 175
  year: 1999
  ident: 10.1016/j.compag.2012.07.010_b0345
  article-title: Sorting fish by computer vision
  publication-title: Comput. Elect. Agric.
  doi: 10.1016/S0168-1699(99)00030-7
– year: 2006
  ident: 10.1016/j.compag.2012.07.010_b0335
– volume: 37
  start-page: 115
  year: 2007
  ident: 10.1016/j.compag.2012.07.010_b0240
  article-title: A video analysis procedure for assessing vertical fish distribution in aquaculture tanks
  publication-title: Aquacult. Eng.
  doi: 10.1016/j.aquaeng.2007.03.002
– start-page: 135
  year: 1985
  ident: 10.1016/j.compag.2012.07.010_b0300
  article-title: Using morphometric and meristic characters for identifying stock of fish
– volume: 165
  start-page: 81
  year: 1998
  ident: 10.1016/j.compag.2012.07.010_b0130
  article-title: Behavioral response of carp (Cyprinus carpio) to ammonia stress
  publication-title: Aquaculture
  doi: 10.1016/S0044-8486(98)00251-8
– year: 1898
  ident: 10.1016/j.compag.2012.07.010_b0235
– volume: 25
  start-page: 291
  year: 2011
  ident: 10.1016/j.compag.2012.07.010_b0220
  article-title: Optical fish trajectory measurement in fishways through computer vision and artificial neural networks
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000092
– volume: 31
  start-page: 151
  year: 2001
  ident: 10.1016/j.compag.2012.07.010_b0160
  article-title: An automatic image-based system for estimating the mass of free-swimming fish
  publication-title: Comput. Elect. Agric.
  doi: 10.1016/S0168-1699(00)00181-2
– ident: 10.1016/j.compag.2012.07.010_b0045
  doi: 10.1109/IROS.2000.893195
– volume: 137
  start-page: 102
  year: 1995
  ident: 10.1016/j.compag.2012.07.010_b0105
  article-title: Color variability in normal and gynogenetic progenies of ornamental (Koi) common carp (Cyprinus carpio L.)
  publication-title: Aquaculture
  doi: 10.1016/0044-8486(96)83535-6
– start-page: 163
  year: 1987
  ident: 10.1016/j.compag.2012.07.010_b0215
  article-title: The remote estimation of weight and growth in turbot using image analysis
– volume: 24
  start-page: 107
  year: 2011
  ident: 10.1016/j.compag.2012.07.010_b0280
  article-title: A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna, Thunnus orientalis, cultured in a net cage
  publication-title: Aquat. Living Resour.
  doi: 10.1051/alr/2011133
– volume: 10
  start-page: 91
  year: 2000
  ident: 10.1016/j.compag.2012.07.010_b0055
  article-title: Advances in morphometric identification of fishery stocks
  publication-title: Rev. Fish Biol. Fish.
  doi: 10.1023/A:1008939104413
– volume: 41
  start-page: 22
  year: 2009
  ident: 10.1016/j.compag.2012.07.010_b0085
  article-title: Measurement of sole activity by digital image analysis
  publication-title: Aquacult. Eng.
  doi: 10.1016/j.aquaeng.2009.06.001
– volume: 34
  start-page: 20
  year: 1987
  ident: 10.1016/j.compag.2012.07.010_b0285
  article-title: Distinction between species of sea fish
  publication-title: Lebensmittelindustrie
– volume: 75
  start-page: E157
  year: 2010
  ident: 10.1016/j.compag.2012.07.010_b0025
  article-title: Using image analysis to predict the weight of alaskan salmon of different species
  publication-title: J. Food Sci.
  doi: 10.1111/j.1750-3841.2010.01522.x
– volume: 21
  start-page: 233
  year: 2003
  ident: 10.1016/j.compag.2012.07.010_b0170
  article-title: Computer vision and robotics techniques in fish farms
  publication-title: Robotica
  doi: 10.1017/S0263574702004733
– volume: 75
  start-page: E552
  year: 2010
  ident: 10.1016/j.compag.2012.07.010_b0020
  article-title: Prediction of the weight of alaskan pollock using image analysis
  publication-title: J. Food Sci.
  doi: 10.1111/j.1750-3841.2010.01813.x
– volume: 80
  start-page: 203
  year: 2006
  ident: 10.1016/j.compag.2012.07.010_b0295
  article-title: Automated measurement of species and length of fish by computer vision
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2006.04.009
– volume: 146
  start-page: 189
  year: 1996
  ident: 10.1016/j.compag.2012.07.010_b0035
  article-title: Predicting salmon biomass remotely using a digital stereo-imaging technique
  publication-title: Aquaculture
  doi: 10.1016/S0044-8486(96)01384-1
– volume: 38
  year: 2008
  ident: 10.1016/j.compag.2012.07.010_b0330
  article-title: Classification of guppies’ (Poecilia reticulata) gender by computer vision
  publication-title: Aquacult. Eng.
  doi: 10.1016/j.aquaeng.2008.01.002
– volume: 20
  start-page: 201
  year: 1951
  ident: 10.1016/j.compag.2012.07.010_b0155
  article-title: The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis)
  publication-title: J. Anim. Ecol.
  doi: 10.2307/1540
– volume: 32
  start-page: 509
  year: 2005
  ident: 10.1016/j.compag.2012.07.010_b0145
  article-title: Guidance of groups of guppies (Poecilia reticulata) to allow sorting by computer vision
  publication-title: Aquacult. Eng.
  doi: 10.1016/j.aquaeng.2004.09.009
– volume: 19
  start-page: 227
  year: 2010
  ident: 10.1016/j.compag.2012.07.010_b0110
  article-title: Prediction of the weight of aquacultured rainbow trout (oncorhynchus mykiss) by image analysis
  publication-title: J. Aquat. Food Prod. Technol.
  doi: 10.1080/10498850.2010.508869
– volume: 52
  start-page: 145
  year: 1995
  ident: 10.1016/j.compag.2012.07.010_b0260
  article-title: A potential method for the differentiation between haddock fish stocks by computer vision using canonical discriminant analysis
  publication-title: ICES J. Mar. Sci.
  doi: 10.1016/1054-3139(95)80023-9
– volume: 10
  start-page: 283
  year: 2001
  ident: 10.1016/j.compag.2012.07.010_b0270
  article-title: Fish detection and classification system
  publication-title: J. Electron. Imag.
  doi: 10.1117/1.1329338
– volume: 9
  start-page: 8438
  year: 2009
  ident: 10.1016/j.compag.2012.07.010_b0005
  article-title: A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna
  publication-title: Sensors
  doi: 10.3390/s91108438
– volume: 114
  start-page: 895
  year: 1924
  ident: 10.1016/j.compag.2012.07.010_b0125
  article-title: Constant differential growth-ratios and their significance
  publication-title: Nature
  doi: 10.1038/114895a0
– start-page: 449
  year: 1981
  ident: 10.1016/j.compag.2012.07.010_b0165
  article-title: Stress and behaviour in the culture environment
– volume: 133
  start-page: 45
  year: 1995
  ident: 10.1016/j.compag.2012.07.010_b0185
  article-title: Automatic fish population counting by artificial neural network
  publication-title: Aquaculture
  doi: 10.1016/0044-8486(95)00003-K
– volume: 35
  start-page: 207
  year: 2006
  ident: 10.1016/j.compag.2012.07.010_b0315
  article-title: Behavioral responses of tilapia (Oreochromis niloticus) to acute fluctuations in dissolved oxygen levels as monitored by computer vision
  publication-title: Aquacult. Eng.
  doi: 10.1016/j.aquaeng.2006.02.004
– volume: 54
  start-page: 307
  year: 2005
  ident: 10.1016/j.compag.2012.07.010_b0095
  article-title: Automated egg counting and sizing from scanned images: rapid sample processing and large data volumes for fecundity estimates
  publication-title: J. Sea Res.
  doi: 10.1016/j.seares.2005.06.002
– volume: 49
  start-page: 469
  year: 1996
  ident: 10.1016/j.compag.2012.07.010_b0030
  article-title: Predicting biomass of Atlantic salmon from morphometric lateral measurements
  publication-title: J. Fish Biol.
  doi: 10.1111/j.1095-8649.1996.tb00042.x
– volume: 50
  start-page: 113
  year: 1988
  ident: 10.1016/j.compag.2012.07.010_b0140
  article-title: Accuracy and precision of counting eyed eggs with an electronic fish counter
  publication-title: Prog. Fish-Cult.
  doi: 10.1577/1548-8640(1988)050<0113:TNAAPO>2.3.CO;2
– volume: 30
  start-page: 225
  year: 1987
  ident: 10.1016/j.compag.2012.07.010_b0305
  article-title: An automated-method for counting and sizing fish eggs
  publication-title: J. Fish Biol.
  doi: 10.1111/j.1095-8649.1987.tb05748.x
– volume: 58
  start-page: 1570
  year: 2001
  ident: 10.1016/j.compag.2012.07.010_b0200
  article-title: Artificial light and season affects vertical distribution and swimming behaviour of post-smolt Atlantic salmon in sea cages
  publication-title: J. Fish Biol.
  doi: 10.1111/j.1095-8649.2001.tb02313.x
– volume: 51
  start-page: 11
  year: 2001
  ident: 10.1016/j.compag.2012.07.010_b0245
  article-title: Fish species recognition using computer vision and a neural network
  publication-title: Fish. Res.
  doi: 10.1016/S0165-7836(00)00254-X
SSID ssj0016987
Score 2.455909
SecondaryResourceType review_article
Snippet ► The evolution of computer vision in the context of aquaculture is reviewed. ► The technology has to operate under extremely challenging conditions. ►...
Computer vision technology is a sophisticated inspection technology that is in common use in various industries. However, it is not as widely used in...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125
SubjectTerms Agronomy. Soil science and plant productions
application technology
Aquaculture
Biological and medical sciences
Biomass
Computer vision
engineers
evolution
fish
Fundamental and applied biological sciences. Psychology
Gender
harvesting
hatcheries
industry
lighting
monitoring
physiologists
product quality
research and development
Species
Welfare
wet environmental conditions
Title The use of computer vision technologies in aquaculture – A review
URI https://dx.doi.org/10.1016/j.compag.2012.07.010
https://www.proquest.com/docview/1514408128
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AKRWK
  dateStart: 19851001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED667mV7KOu60bRd0KCvXhxZkazHEFbSjvWlC_RNSLZUMoaTNcnr6H_oP-wv6Z0lB8oKhT7alkDcne--s--7Azjl2hO01xlCWZkJLtAPKuUzJxwXzupceiI4_7yU05m4uB5d78Ck48JQWWXy_dGnt9463RkkaQ6W8_ngCsFKOZSIb3jLeqO8nbp_oU1_-7ct88AFZaRMS8yWcHVHn2trvNo67xsq8OJtC0_i0T4fnt4Eu6C6SbtC0YU48-I_993GpLMPsJfAJBvH8-7Djm8-wvvxzW1qqOEPYIJ2wDYrzxaBVWmCA4uEcrbuPqtjtszmDbN_NzZtZA9392zMIrHlE8zOvv-aTLM0OCGrxFCtM-dK5YZau1AUdU5_WoNGpGRdsA7hgRZlqH1RhmIknC-4qkPAfNSHocp1LREQfYbdZtH4Q2CFr7UIVmIIE9THp_RlGDmeV5Ws6kLXPSg6eZkqdRWn4RZ_TFc-9ttEKRuSssmVQSn3INvuWsauGi-sV50qzBPrMOj4X9h5iJozFiW_MrMrTgkl4RQuyucfCcwPVQ_6TzS9PSTCR5o4L3vwtVO9wfeRfrLYxi82K4MIioZ4Y9g_evWhj-EdXcWawRPYXd9u_BfEPmvXb427D2_H5z-ml4_D6f9G
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BThsxEB1Bcig9VG0pSoCmrsR1lY3XsdfHKCoKTcgFInGz7F0bBaENJcm9_9A_5EsYr72REEhIva53JGvGO_NmPW8G4IxK66G9TBDK8oRRhn5QCJsYZigzWqbceoLz5ZxPFuz3zfBmD8YNF8aXVUbfH3x67a3jk37UZv9huexfIVjJBxzxDa1Zb5i3t9kQfXIL2qOL6WS-u0zgMg-saY4JEwo0DLq6zKsu9b71NV607uLpqbRvR6h9p1e-dFKvUXsujL145cHrsHT-GT5FPElGYctfYM9WX-Hj6PYx9tSwhzDGo0C2a0tWjhRxiAMJnHKyaf6sY8JMlhXRf7Y6CpKnv__IiARuyzdYnP-6Hk-SODshKdhAbBJjcmEGUhqXZWXqL1udRLCkjdMGEYJkuSttlrtsyIzNqCidw5TUuoFIZckREx1Bq1pVtgMks6VkTnOMYsy38slt7oaGpkXBizKTZReyRl-qiI3F_XyLe9VUkN2poGXltaxSoVDLXUh2Ug-hscY774vGFOrFAVHo-9-R7KDllEbNr9Xiivqc0kMVyvK3lximiKILvReW3m0SEaQfOs-78LMxvcJP0t-z6MqutmuFIMrP8cbIf_zfm_4BHybXlzM1u5hPT-DAr4QSwlNobR639jtCoY3pxaP-DHTKAgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=use+of+computer+vision+technologies+in+aquaculture+%E2%80%93+A+review&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Zion%2C+Boaz&rft.date=2012-10-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=88&rft.spage=125&rft.epage=132&rft_id=info:doi/10.1016%2Fj.compag.2012.07.010&rft.externalDocID=US201400023248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon