Reduction with degenerate Gram matrix for one-loop integrals

A bstract An improved PV-reduction (Passarino-Veltman) method for one-loop integrals with auxiliary vector R has been proposed in [ 1 , 2 ]. It has also been shown that the new method is a self-completed method in [ 3 ]. Analytic reduction coefficients can be easily produced by recursion relations i...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2022; no. 8; pp. 110 - 46
Main Authors Feng, Bo, Hu, Chang, Li, Tingfei, Song, Yuekai
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 09.08.2022
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1127-2236
1029-8479
DOI10.1007/JHEP08(2022)110

Cover

Abstract A bstract An improved PV-reduction (Passarino-Veltman) method for one-loop integrals with auxiliary vector R has been proposed in [ 1 , 2 ]. It has also been shown that the new method is a self-completed method in [ 3 ]. Analytic reduction coefficients can be easily produced by recursion relations in this method, where the Gram determinant appears in denominators. The singularity caused by Gram determinant is a well-known fact and it is important to address these divergences in a given frame. In this paper, we propose a systematical algorithm to deal with this problem in our method. The key idea is that now the master integral of the highest topology will be decomposed into combinations of master integrals of lower topologies. By demanding the cancellation of divergence for obtained general reduction coefficients, we solve decomposition coefficients as a Taylor series of the Gram determinant. Moreover, the same idea can be applied to other kinds of divergences.
AbstractList Abstract An improved PV-reduction (Passarino-Veltman) method for one-loop integrals with auxiliary vector R has been proposed in [1, 2]. It has also been shown that the new method is a self-completed method in [3]. Analytic reduction coefficients can be easily produced by recursion relations in this method, where the Gram determinant appears in denominators. The singularity caused by Gram determinant is a well-known fact and it is important to address these divergences in a given frame. In this paper, we propose a systematical algorithm to deal with this problem in our method. The key idea is that now the master integral of the highest topology will be decomposed into combinations of master integrals of lower topologies. By demanding the cancellation of divergence for obtained general reduction coefficients, we solve decomposition coefficients as a Taylor series of the Gram determinant. Moreover, the same idea can be applied to other kinds of divergences.
An improved PV-reduction (Passarino-Veltman) method for one-loop integrals with auxiliary vector R has been proposed in [1, 2]. It has also been shown that the new method is a self-completed method in [3]. Analytic reduction coefficients can be easily produced by recursion relations in this method, where the Gram determinant appears in denominators. The singularity caused by Gram determinant is a well-known fact and it is important to address these divergences in a given frame. In this paper, we propose a systematical algorithm to deal with this problem in our method. The key idea is that now the master integral of the highest topology will be decomposed into combinations of master integrals of lower topologies. By demanding the cancellation of divergence for obtained general reduction coefficients, we solve decomposition coefficients as a Taylor series of the Gram determinant. Moreover, the same idea can be applied to other kinds of divergences.
An improved PV-reduction (Passarino-Veltman) method for one-loop integrals with auxiliary vector R has been proposed in [1, 2]. It has also been shown that the new method is a self-completed method in [3]. Analytic reduction coefficients can be easily produced by recursion relations in this method, where the Gram determinant appears in denominators. The singularity caused by Gram determinant is a well-known fact and it is important to address these divergences in a given frame. In this paper, we propose a systematical algorithm to deal with this problem in our method. The key idea is that now the master integral of the highest topology will be decomposed into combinations of master integrals of lower topologies. By demanding the cancellation of divergence for obtained general reduction coefficients, we solve decomposition coefficients as a Taylor series of the Gram determinant. Moreover, the same idea can be applied to other kinds of divergences.
A bstract An improved PV-reduction (Passarino-Veltman) method for one-loop integrals with auxiliary vector R has been proposed in [ 1 , 2 ]. It has also been shown that the new method is a self-completed method in [ 3 ]. Analytic reduction coefficients can be easily produced by recursion relations in this method, where the Gram determinant appears in denominators. The singularity caused by Gram determinant is a well-known fact and it is important to address these divergences in a given frame. In this paper, we propose a systematical algorithm to deal with this problem in our method. The key idea is that now the master integral of the highest topology will be decomposed into combinations of master integrals of lower topologies. By demanding the cancellation of divergence for obtained general reduction coefficients, we solve decomposition coefficients as a Taylor series of the Gram determinant. Moreover, the same idea can be applied to other kinds of divergences.
ArticleNumber 110
Author Li, Tingfei
Hu, Chang
Feng, Bo
Song, Yuekai
Author_xml – sequence: 1
  givenname: Bo
  surname: Feng
  fullname: Feng, Bo
  organization: Zhejiang Institute of Modern Physics, Zhejiang University, Beijing Computational Science Research Center, Center of Mathematical Science, Zhejiang University, Peng Huanwu Center for Fundamental Theory
– sequence: 2
  givenname: Chang
  surname: Hu
  fullname: Hu, Chang
  organization: Hangzhou Institute of Advanced Study, UCAS, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Tingfei
  surname: Li
  fullname: Li, Tingfei
  email: tfli@zju.edu.cn
  organization: Zhejiang Institute of Modern Physics, Zhejiang University
– sequence: 4
  givenname: Yuekai
  surname: Song
  fullname: Song, Yuekai
  organization: Zhejiang Institute of Modern Physics, Zhejiang University
BookMark eNp9kc9rFTEQx4NUsK2evS540cPaJJtsEvAipfYHBaXUc5hNZl_z2LdZs3m0_e_Nc4stlXqaSZjvZ2a-c0D2xjgiIe8Z_cwoVUcXZyc_qP7IKeefGKOvyD6j3NRaKLP3JH9DDuZ5TSmTzNB98uUK_dblEMfqNuSbyuMKR0yQsTpNsKk2kFO4q_qYqtKuHmKcqjBmXCUY5rfkdV8CvnuIh-Tnt5Pr47P68vvp-fHXy9oJpnLdSamQsb6DRvR9gxxkyyVqkL7VndDeQedM0_sWjOAGWumZk51n5Y2G8uaQnC9cH2FtpxQ2kO5thGD_fMS0spBycANaIyl41WulTCdahgaUKInQ1LmeN21h0YW1HSe4v4Vh-Atk1O6ctOsbnKi2OydtcbJIPiySKcVfW5yzXcdtGsvGlmtRTFWGs1J1tFS5FOc5Yf8Pd7nQU658pnAhw-4WOUEY_qN7WGEuHcYVpsd5XpL8BhAro3E
CitedBy_id crossref_primary_10_1140_epjc_s10052_025_13848_0
crossref_primary_10_1007_JHEP07_2023_051
crossref_primary_10_1103_PhysRevD_108_034027
crossref_primary_10_1088_1572_9494_aca253
crossref_primary_10_1007_JHEP02_2024_158
crossref_primary_10_1103_PhysRevD_110_016013
crossref_primary_10_1007_JHEP02_2023_178
crossref_primary_10_1007_JHEP11_2024_123
Cites_doi 10.1103/PhysRev.85.231
10.1103/PhysRevD.72.065012
10.1016/0550-3213(94)90179-1
10.1103/PhysRevD.104.116014
10.1007/BF02832919
10.1007/JHEP05(2013)104
10.1016/0550-3213(94)00488-Z
10.1088/1126-6708/2008/09/089
10.1103/PhysRevD.75.105006
10.1088/1126-6708/2008/02/095
10.1016/0550-3213(81)90199-1
10.1088/1126-6708/2007/07/085
10.1016/S0550-3213(97)00268-X
10.1016/0550-3213(79)90234-7
10.1016/0550-3213(94)90398-0
10.1016/j.nuclphysb.2006.11.012
10.1016/j.nuclphysb.2005.07.014
10.1016/0010-4655(88)90202-0
10.1016/S0550-3213(97)00703-7
10.1007/JHEP05(2022)065
10.1007/JHEP01(2011)135
10.1016/0370-2693(81)90288-4
10.1016/j.cpc.2019.106877
10.1007/BF01621031
10.1016/0370-2693(93)90400-C
10.1016/S0550-3213(99)00678-1
10.1088/1126-6708/2007/03/111
10.1016/0370-2693(84)90237-5
10.1088/1126-6708/2008/03/003
10.1016/S0550-3213(00)00040-7
10.1088/1126-6708/2008/02/002
10.1103/PhysRevD.78.025031
10.1016/S0550-3213(03)00184-6
10.1016/j.physletb.2006.12.022
10.1007/JHEP09(2021)081
10.1140/epjc/s2004-01723-7
10.1016/0550-3213(79)90605-9
10.1016/j.nuclphysb.2005.11.007
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.1007/JHEP08(2022)110
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Scholarly Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 46
ExternalDocumentID oai_doaj_org_article_950ad7f8779b461e9a74b46480ccf236
10.1007/jhep08(2022)110
10_1007_JHEP08_2022_110
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
ADTOC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
UNPAY
ID FETCH-LOGICAL-c417t-b557e11fba34ff3e2a5625e8a5d68b48dcabc93fd6a9429a65d1c5bd16a9e9023
IEDL.DBID DOA
ISSN 1029-8479
1126-6708
1127-2236
IngestDate Fri Oct 03 12:38:16 EDT 2025
Sun Oct 26 04:07:39 EDT 2025
Sat Oct 18 22:46:59 EDT 2025
Wed Oct 01 01:46:30 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Fri Feb 21 02:46:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Scattering Amplitudes
Renormalization and Regularization
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-b557e11fba34ff3e2a5625e8a5d68b48dcabc93fd6a9429a65d1c5bd16a9e9023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/950ad7f8779b461e9a74b46480ccf236
PQID 2848477921
PQPubID 2034718
PageCount 46
ParticipantIDs doaj_primary_oai_doaj_org_article_950ad7f8779b461e9a74b46480ccf236
unpaywall_primary_10_1007_jhep08_2022_110
proquest_journals_2848477921
crossref_primary_10_1007_JHEP08_2022_110
crossref_citationtrail_10_1007_JHEP08_2022_110
springer_journals_10_1007_JHEP08_2022_110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-09
PublicationDateYYYYMMDD 2022-08-09
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-09
  day: 09
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References FengBLiTLiXAnalytic tadpole coefficients of one-loop integralsJHEP2021090812021JHEP...09..081F432723510.1007/JHEP09(2021)081[arXiv:2107.03744] [INSPIRE]
W.L. van Neerven and J.A.M. Vermaseren, Large loop integrals, Phys. Lett. B137 (1984) 241 [INSPIRE].
J. Fleischer, F. Jegerlehner and O.V. Tarasov, Algebraic reduction of one loop Feynman graph amplitudes, Nucl. Phys. B566 (2000) 423 [hep-ph/9907327] [INSPIRE].
T. Binoth, J.P. Guillet and G. Heinrich, Reduction formalism for dimensionally regulated one loop N point integrals, Nucl. Phys. B572 (2000) 361 [hep-ph/9911342] [INSPIRE].
R. Britto and B. Feng, Unitarity cuts with massive propagators and algebraic expressions for coefficients, Phys. Rev. D75 (2007) 105006 [hep-ph/0612089] [INSPIRE].
R.G. Stuart, Algebraic Reduction of One Loop Feynman Diagrams to Scalar Integrals, Comput. Phys. Commun.48 (1988) 367 [INSPIRE].
K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B192 (1981) 159 [INSPIRE].
J.M. Campbell, E.W.N. Glover and D.J. Miller, One loop tensor integrals in dimensional regularization, Nucl. Phys. B498 (1997) 397 [hep-ph/9612413] [INSPIRE].
B. Feng and T. Li, PV-Reduction of Sunset Topology with Auxiliary Vector, arXiv:2203.16881 [INSPIRE].
B. Feng, J. Gong and T. Li, Universal Treatment of Reduction for One-Loop Integrals in Projective Space, arXiv:2204.03190 [INSPIRE].
EllisRKZanderighiGScalar one-loop integrals for QCDJHEP2008020022008JHEP...02..002E10.1088/1126-6708/2008/02/002[arXiv:0712.1851] [INSPIRE]
BrittoRMirabellaESingle Cut IntegrationJHEP2011011352011JHEP...01..135B279224310.1007/JHEP01(2011)135[arXiv:1011.2344] [INSPIRE]
C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and Reduction to master integrals in d dimensions for one-loop amplitudes, JHEP03 (2007) 111 [hep-ph/0612277] [INSPIRE].
L.M. Brown and R.P. Feynman, Radiative corrections to Compton scattering, Phys. Rev.85 (1952) 231 [INSPIRE].
BrittoRFengBYangGPolynomial Structures in One-Loop AmplitudesJHEP2008090892008JHEP...09..089B244770110.1088/1126-6708/2008/09/089[arXiv:0803.3147] [INSPIRE]
A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B734 (2006) 62 [hep-ph/0509141] [INSPIRE].
EllisRKGieleWTKunsztZA Numerical Unitarity Formalism for Evaluating One-Loop AmplitudesJHEP2008030032008JHEP...03..003E239111710.1088/1126-6708/2008/03/003[arXiv:0708.2398] [INSPIRE]
G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B153 (1979) 365 [INSPIRE].
A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B658 (2003) 175 [hep-ph/0212259] [INSPIRE].
G. Duplancic and B. Nizic, Reduction method for dimensionally regulated one loop N point Feynman integrals, Eur. Phys. J. C35 (2004) 105 [hep-ph/0303184] [INSPIRE].
BrittoRCachazoFFengBGeneralized unitarity and one-loop amplitudes in N = 4 super-Yang-MillsNucl. Phys. B20057252752005NuPhB.725..275B216429310.1016/j.nuclphysb.2005.07.014[hep-th/0412103] [INSPIRE]
C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B645 (2007) 213 [hep-ph/0609191] [INSPIRE].
G.J. van Oldenborgh and J.A.M. Vermaseren, New Algorithms for One Loop Integrals, Z. Phys. C46 (1990) 425 [INSPIRE].
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE].
BrittoRFengBIntegral coefficients for one-loop amplitudesJHEP2008020952008JHEP...02..095B238595010.1088/1126-6708/2008/02/095[arXiv:0711.4284] [INSPIRE]
G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B763 (2007) 147 [hep-ph/0609007] [INSPIRE].
C. Hu, T. Li and X. Li, One-loop Feynman integral reduction by differential operators, Phys. Rev. D104 (2021) 116014 [arXiv:2108.00772] [INSPIRE].
D.B. Melrose, Reduction of Feynman diagrams, Nuovo Cim.40 (1965) 181 [INSPIRE].
G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e−Annihilation Into μ+μ−in the Weinberg Model, Nucl. Phys. B160 (1979) 151 [INSPIRE].
Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B412 (1994) 751 [hep-ph/9306240] [INSPIRE].
OssolaGPapadopoulosCGPittauRNumerical evaluation of six-photon amplitudesJHEP2007070852007JHEP...07..085O10.1088/1126-6708/2007/07/085[arXiv:0704.1271] [INSPIRE]
DennerATechniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200Fortsch. Phys.1993413071993ForPh..41..307D[arXiv:0709.1075] [INSPIRE]
FengBLiTWangHZhangYReduction of general one-loop integrals using auxiliary vectorJHEP2022050652022JHEP...05..065F443022910.1007/JHEP05(2022)065[arXiv:2203.14449] [INSPIRE]
Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett. B302 (1993) 299 [Erratum ibid.318 (1993) 649] [hep-ph/9212308] [INSPIRE].
R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev. D72 (2005) 065012 [hep-ph/0503132] [INSPIRE].
A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, Comput. Phys. Commun.247 (2020) 106877 [arXiv:1901.07808] [INSPIRE].
FengBWangHAnalytic structure of one-loop coefficientsJHEP2013051042013JHEP...05..104F308055710.1007/JHEP05(2013)104[arXiv:1301.7510] [INSPIRE]
F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B100 (1981) 65 [INSPIRE].
R. Britto, B. Feng and P. Mastrolia, Closed-Form Decomposition of One-Loop Massive Amplitudes, Phys. Rev. D78 (2008) 025031 [arXiv:0803.1989] [INSPIRE].
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE].
Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e+e−to four partons, Nucl. Phys. B513 (1998) 3 [hep-ph/9708239] [INSPIRE].
18913_CR13
18913_CR14
R Britto (18913_CR35) 2008; 02
18913_CR36
18913_CR15
18913_CR16
R Britto (18913_CR37) 2008; 09
18913_CR31
18913_CR10
18913_CR11
18913_CR33
18913_CR12
18913_CR34
18913_CR8
18913_CR9
18913_CR6
RK Ellis (18913_CR18) 2008; 02
18913_CR7
18913_CR30
18913_CR4
B Feng (18913_CR3) 2022; 05
18913_CR5
18913_CR2
RK Ellis (18913_CR25) 2008; 03
R Britto (18913_CR32) 2011; 01
B Feng (18913_CR1) 2021; 09
18913_CR28
18913_CR29
18913_CR26
18913_CR20
18913_CR42
18913_CR21
18913_CR22
18913_CR23
18913_CR41
G Ossola (18913_CR24) 2007; 07
R Britto (18913_CR27) 2005; 725
B Feng (18913_CR38) 2013; 05
18913_CR17
18913_CR39
A Denner (18913_CR40) 1993; 41
18913_CR19
References_xml – reference: G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B153 (1979) 365 [INSPIRE].
– reference: C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and Reduction to master integrals in d dimensions for one-loop amplitudes, JHEP03 (2007) 111 [hep-ph/0612277] [INSPIRE].
– reference: G. Duplancic and B. Nizic, Reduction method for dimensionally regulated one loop N point Feynman integrals, Eur. Phys. J. C35 (2004) 105 [hep-ph/0303184] [INSPIRE].
– reference: BrittoRCachazoFFengBGeneralized unitarity and one-loop amplitudes in N = 4 super-Yang-MillsNucl. Phys. B20057252752005NuPhB.725..275B216429310.1016/j.nuclphysb.2005.07.014[hep-th/0412103] [INSPIRE]
– reference: B. Feng and T. Li, PV-Reduction of Sunset Topology with Auxiliary Vector, arXiv:2203.16881 [INSPIRE].
– reference: C. Hu, T. Li and X. Li, One-loop Feynman integral reduction by differential operators, Phys. Rev. D104 (2021) 116014 [arXiv:2108.00772] [INSPIRE].
– reference: L.M. Brown and R.P. Feynman, Radiative corrections to Compton scattering, Phys. Rev.85 (1952) 231 [INSPIRE].
– reference: J. Fleischer, F. Jegerlehner and O.V. Tarasov, Algebraic reduction of one loop Feynman graph amplitudes, Nucl. Phys. B566 (2000) 423 [hep-ph/9907327] [INSPIRE].
– reference: R. Britto and B. Feng, Unitarity cuts with massive propagators and algebraic expressions for coefficients, Phys. Rev. D75 (2007) 105006 [hep-ph/0612089] [INSPIRE].
– reference: J.M. Campbell, E.W.N. Glover and D.J. Miller, One loop tensor integrals in dimensional regularization, Nucl. Phys. B498 (1997) 397 [hep-ph/9612413] [INSPIRE].
– reference: G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e−Annihilation Into μ+μ−in the Weinberg Model, Nucl. Phys. B160 (1979) 151 [INSPIRE].
– reference: BrittoRFengBIntegral coefficients for one-loop amplitudesJHEP2008020952008JHEP...02..095B238595010.1088/1126-6708/2008/02/095[arXiv:0711.4284] [INSPIRE]
– reference: R. Britto, B. Feng and P. Mastrolia, Closed-Form Decomposition of One-Loop Massive Amplitudes, Phys. Rev. D78 (2008) 025031 [arXiv:0803.1989] [INSPIRE].
– reference: D.B. Melrose, Reduction of Feynman diagrams, Nuovo Cim.40 (1965) 181 [INSPIRE].
– reference: R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev. D72 (2005) 065012 [hep-ph/0503132] [INSPIRE].
– reference: A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, Comput. Phys. Commun.247 (2020) 106877 [arXiv:1901.07808] [INSPIRE].
– reference: G.J. van Oldenborgh and J.A.M. Vermaseren, New Algorithms for One Loop Integrals, Z. Phys. C46 (1990) 425 [INSPIRE].
– reference: OssolaGPapadopoulosCGPittauRNumerical evaluation of six-photon amplitudesJHEP2007070852007JHEP...07..085O10.1088/1126-6708/2007/07/085[arXiv:0704.1271] [INSPIRE]
– reference: C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B645 (2007) 213 [hep-ph/0609191] [INSPIRE].
– reference: T. Binoth, J.P. Guillet and G. Heinrich, Reduction formalism for dimensionally regulated one loop N point integrals, Nucl. Phys. B572 (2000) 361 [hep-ph/9911342] [INSPIRE].
– reference: W.L. van Neerven and J.A.M. Vermaseren, Large loop integrals, Phys. Lett. B137 (1984) 241 [INSPIRE].
– reference: G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B763 (2007) 147 [hep-ph/0609007] [INSPIRE].
– reference: K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B192 (1981) 159 [INSPIRE].
– reference: A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B658 (2003) 175 [hep-ph/0212259] [INSPIRE].
– reference: B. Feng, J. Gong and T. Li, Universal Treatment of Reduction for One-Loop Integrals in Projective Space, arXiv:2204.03190 [INSPIRE].
– reference: DennerATechniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200Fortsch. Phys.1993413071993ForPh..41..307D[arXiv:0709.1075] [INSPIRE]
– reference: Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B412 (1994) 751 [hep-ph/9306240] [INSPIRE].
– reference: Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE].
– reference: Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e+e−to four partons, Nucl. Phys. B513 (1998) 3 [hep-ph/9708239] [INSPIRE].
– reference: BrittoRMirabellaESingle Cut IntegrationJHEP2011011352011JHEP...01..135B279224310.1007/JHEP01(2011)135[arXiv:1011.2344] [INSPIRE]
– reference: BrittoRFengBYangGPolynomial Structures in One-Loop AmplitudesJHEP2008090892008JHEP...09..089B244770110.1088/1126-6708/2008/09/089[arXiv:0803.3147] [INSPIRE]
– reference: Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett. B302 (1993) 299 [Erratum ibid.318 (1993) 649] [hep-ph/9212308] [INSPIRE].
– reference: FengBLiTLiXAnalytic tadpole coefficients of one-loop integralsJHEP2021090812021JHEP...09..081F432723510.1007/JHEP09(2021)081[arXiv:2107.03744] [INSPIRE]
– reference: A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B734 (2006) 62 [hep-ph/0509141] [INSPIRE].
– reference: EllisRKZanderighiGScalar one-loop integrals for QCDJHEP2008020022008JHEP...02..002E10.1088/1126-6708/2008/02/002[arXiv:0712.1851] [INSPIRE]
– reference: EllisRKGieleWTKunsztZA Numerical Unitarity Formalism for Evaluating One-Loop AmplitudesJHEP2008030032008JHEP...03..003E239111710.1088/1126-6708/2008/03/003[arXiv:0708.2398] [INSPIRE]
– reference: FengBLiTWangHZhangYReduction of general one-loop integrals using auxiliary vectorJHEP2022050652022JHEP...05..065F443022910.1007/JHEP05(2022)065[arXiv:2203.14449] [INSPIRE]
– reference: FengBWangHAnalytic structure of one-loop coefficientsJHEP2013051042013JHEP...05..104F308055710.1007/JHEP05(2013)104[arXiv:1301.7510] [INSPIRE]
– reference: Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE].
– reference: R.G. Stuart, Algebraic Reduction of One Loop Feynman Diagrams to Scalar Integrals, Comput. Phys. Commun.48 (1988) 367 [INSPIRE].
– reference: F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B100 (1981) 65 [INSPIRE].
– ident: 18913_CR4
  doi: 10.1103/PhysRev.85.231
– ident: 18913_CR28
  doi: 10.1103/PhysRevD.72.065012
– ident: 18913_CR26
  doi: 10.1016/0550-3213(94)90179-1
– ident: 18913_CR2
  doi: 10.1103/PhysRevD.104.116014
– ident: 18913_CR5
  doi: 10.1007/BF02832919
– volume: 05
  start-page: 104
  year: 2013
  ident: 18913_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP05(2013)104
– volume: 41
  start-page: 307
  year: 1993
  ident: 18913_CR40
  publication-title: Fortsch. Phys.
– ident: 18913_CR41
– ident: 18913_CR20
  doi: 10.1016/0550-3213(94)00488-Z
– volume: 09
  start-page: 089
  year: 2008
  ident: 18913_CR37
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/09/089
– ident: 18913_CR34
  doi: 10.1103/PhysRevD.75.105006
– volume: 02
  start-page: 095
  year: 2008
  ident: 18913_CR35
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/02/095
– ident: 18913_CR21
  doi: 10.1016/0550-3213(81)90199-1
– volume: 07
  start-page: 085
  year: 2007
  ident: 18913_CR24
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/07/085
– ident: 18913_CR29
  doi: 10.1016/S0550-3213(97)00268-X
– ident: 18913_CR6
  doi: 10.1016/0550-3213(79)90234-7
– ident: 18913_CR12
  doi: 10.1016/0550-3213(94)90398-0
– ident: 18913_CR19
  doi: 10.1016/j.nuclphysb.2006.11.012
– ident: 18913_CR39
– volume: 725
  start-page: 275
  year: 2005
  ident: 18913_CR27
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2005.07.014
– ident: 18913_CR9
  doi: 10.1016/0010-4655(88)90202-0
– ident: 18913_CR30
  doi: 10.1016/S0550-3213(97)00703-7
– volume: 05
  start-page: 065
  year: 2022
  ident: 18913_CR3
  publication-title: JHEP
  doi: 10.1007/JHEP05(2022)065
– volume: 01
  start-page: 135
  year: 2011
  ident: 18913_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP01(2011)135
– ident: 18913_CR22
  doi: 10.1016/0370-2693(81)90288-4
– ident: 18913_CR23
  doi: 10.1016/j.nuclphysb.2006.11.012
– ident: 18913_CR42
  doi: 10.1016/j.cpc.2019.106877
– ident: 18913_CR10
  doi: 10.1007/BF01621031
– ident: 18913_CR11
  doi: 10.1016/0370-2693(93)90400-C
– ident: 18913_CR13
  doi: 10.1016/S0550-3213(99)00678-1
– ident: 18913_CR31
  doi: 10.1088/1126-6708/2007/03/111
– ident: 18913_CR8
  doi: 10.1016/0370-2693(84)90237-5
– volume: 03
  start-page: 003
  year: 2008
  ident: 18913_CR25
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/03/003
– ident: 18913_CR14
  doi: 10.1016/S0550-3213(00)00040-7
– volume: 02
  start-page: 002
  year: 2008
  ident: 18913_CR18
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/02/002
– ident: 18913_CR36
  doi: 10.1103/PhysRevD.78.025031
– ident: 18913_CR15
  doi: 10.1016/S0550-3213(03)00184-6
– ident: 18913_CR33
  doi: 10.1016/j.physletb.2006.12.022
– volume: 09
  start-page: 081
  year: 2021
  ident: 18913_CR1
  publication-title: JHEP
  doi: 10.1007/JHEP09(2021)081
– ident: 18913_CR16
  doi: 10.1140/epjc/s2004-01723-7
– ident: 18913_CR7
  doi: 10.1016/0550-3213(79)90605-9
– ident: 18913_CR17
  doi: 10.1016/j.nuclphysb.2005.11.007
SSID ssj0015190
Score 2.493593
Snippet A bstract An improved PV-reduction (Passarino-Veltman) method for one-loop integrals with auxiliary vector R has been proposed in [ 1 , 2 ]. It has also been...
An improved PV-reduction (Passarino-Veltman) method for one-loop integrals with auxiliary vector R has been proposed in [1, 2]. It has also been shown that the...
An improved PV-reduction (Passarino-Veltman) method for one-loop integrals with auxiliary vector R has been proposed in [1, 2]. It has also been shown that the...
Abstract An improved PV-reduction (Passarino-Veltman) method for one-loop integrals with auxiliary vector R has been proposed in [1, 2]. It has also been shown...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110
SubjectTerms Algebra
Algorithms
Classical and Quantum Gravitation
Coefficients
Decomposition
Divergence
Elementary Particles
High energy physics
Integrals
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Reduction
Regular Article - Theoretical Physics
Relativity Theory
Renormalization and Regularization
Scattering Amplitudes
Singularity (mathematics)
String Theory
Taylor series
Topology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTgh4QHyKwkB-4GF9MLMT27ElEGKoo5pENU1M2lvkz00oa0LbCfjvsdMkK0LjLYkvsnV3vjvb598BvKVWulzxHEvPBWZWaqwJsbjghTeKccPaheLXuZidseNzfr4D8_4uTEqr7G1ia6hdbdMe-UE0o9GQFiqjH5sfOFWNSqerfQkN3ZVWcB9aiLE7sJslZKwR7B5O5yenw7lCjFdID_BDioPj2fSEyP0sOrIJTZdot3xTC-H_V9w5HJU-gHvXi0b__qmrassbHT2Ch10YiT5t5P4YdvziCdxt0znt6im8P02IrInnKG20IucvWnjptUdflvoKXSVg_l8oBqyoXnhc1XWDOuCIavUMzo6m3z7PcFcnAVtGizU2PDKW0mB0zkLIfabTqsZLzZ2QhklntbEqD05oFd2PFtxRy42j8d2r6LSfw2gRe3sBKARbGE6NSyV5hFLGBR-Io8zZwnqRjeFdz6HSdiDiqZZFVfbwxxuWlomlcXVBxrA__NBs8DNuJz1MLB_IEvB1-6FeXpTdPCoVJ9oVQUZNMExQr3TB4gOTxNqQ5WIMe73Aym42rsob3RnDpBfiTfOt45kMUv5n7N8vfbNF-_L_3b6C-4myTRxUezBaL6_96xjMrM2bTkP_APzm8M0
  priority: 102
  providerName: ProQuest
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EEfUgPnF9kYMH91Bp2jzBi4q6CIqIgreSpyLdB7sr6r836barIh68pWnShJmmM9OZ-QbgABthc0nzRDjKEmKESlSamoRT7rQkVJPKULy-YZ0HcvVIH2cAN7kwVbR745KsvtRNsttV5_w2FYfBWM_aOCZVzQXlI4vVGs5igkPtOAh9aYPg83vSD-FTYfT_UCynvtAlWHjtDdTHmyrLb-LmYgWWaz0RnUwYuwozrrcG81W8phmtw_FdhFyNREXxTyqywfiP-NFjhy6Hqou6EXn_HQWNFPV7Lin7_QGqkSHK0QY8XJzfn3WSuhBCYgjm40TTQDmMvVY58T53mYpmixOKWiY0EdYobWTuLVMyyBfFqMWGaovDtZNBKm_CbC-stgXIe8M1xdrGmjtMSm2986nFxBpuHMtacNRQqDA1SngsVlEWDb7xhKRFJGkwH9IWHE4nDCYAGX8PPY0knw6LyNZVR3_4VNQHpZA0VZZ7wbnUhGEnFSehQURqjM9y1oLdhmFFfdxGRZCxQcpymeEWtBsmft3-cz_tKZd_7f3l2Q2-jd3-x3N3YDE2qzBBuQuz4-Gr2wuqy1jvVy_rJ0Yh5ZE
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgKwQceCMWCsqBQ_fgbZz4EUtcCmpZVaKqECvBKfKzCNJstJsVj1_POIlDC-oBcXPiSWJ7xpmZzOQbhF4SU9hcshwXjnFMTaGwSlODBRNOS8o07RzFdyd8saTHH1nMJtzEbPcYkuz_aQgoTXW731gfo_r7x4vD07TYA8c9m4H-mkPfdbTDGZjjE7SzPDk9-NRFOTOJ4e0ruwIrGcdcdBXqoC0wqEUeoX7gjl8-u-bCHS9pqQ7M_5IFOgZNb6Ob27pRP76pqrqgl47uIh1n1KejfJ1vWz03P_8Ae_yvKd9DdwarNTnoxew-uubqB-hGlz1qNg_Rq_cBADawOAnfdRPrzjo069Ylb9fqPDkPdQC-J2AfJ6va4Wq1apIBp6LaPELLo8MPbxZ4KMuADSWixZoBHwnxWuXU-9xlKjhRrlDM8kLTwhqljcy95UqCtlOcWWKYtgSOnQQb4TGa1PC0Jyjx3gjNiLahAhCXUlvvfGoJtUYYx7Mpmkc2lGbALA-lM6oyoi33y1KGZQFnJp2ivfGCpofruJr0deDrSBZwtrsTq_VZOWzbUrJUWeELIaSmnDipBIUGLVJjPEjQFO1GqSiHzb8pQeOD1AmZkSmaRcb-7r5yPLNRlP4aey-eI-3Tf6B9hm6FZpe0KHfRpF1v3XMwpFr9YtgqvwBbJBJ2
  priority: 102
  providerName: Unpaywall
Title Reduction with degenerate Gram matrix for one-loop integrals
URI https://link.springer.com/article/10.1007/JHEP08(2022)110
https://www.proquest.com/docview/2848477921
https://link.springer.com/content/pdf/10.1007/JHEP08(2022)110.pdf
https://doaj.org/article/950ad7f8779b461e9a74b46480ccf236
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: AMVHM
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: 8FG
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C6C
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7ahNL0UPqkblOzhx7ig5pdaZ_QS2LsmECNCTWkJ7HPlKLYJnZI---7q4frUkIvvSxaaSQN30jMjHb0DcAHYqUrFCsy6RnPqJU60xjbTDDhjaLM0DpR_Dzlkzk9v2SXO62-Uk1YQw_cAHesGNZOBCmEMpQTr7SgcYNKbG3Ii5psG0vVJVPt-kGMS3BH5IPF8flkNMPyKCb6-YCkn2V3fFBN1f9HfLldEn0Cj28XK_3zTlfVjtcZP4OnbbiITho1n8MDv3gBj-qyTbt-CZ8uEvNqwhalD6rI-auaRnrj0dmNvkbXiYD_B4qBKVoufFYtlyvUEkRU61cwH4--DCdZ2w8hs5SITWZYBJCQYHRBQyh8rlP24qVmjktDpbPaWFUEx7WKbkZz5ohlxpE49yo659ewt4h3ewMoBCsMI8al1jtcKeOCD9gR6qywnuc9-NghVNqWLDz1rKjKjua4gbRMkMYsAvfgaHvCquHJuF_0NEG-FUsE1_WOaPayNXv5L7P34LAzWNm-desyutrobIXKSQ8GnRF_H75Xn8HWyn_p_v2bX-3Ivv0fur-Dg3S9uoxQHcLe5ubWv4-hzcb04aEcn_Vh_3Q0nV3E2TCnaeTDfv18x3Gex3F_Pp2dfP0FLE349g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrVDhgHiKhQI-gNQ9hMaJ7dgSFaKwZftaVVUr9Zb6WYTSTdjdqvTP8duws0m6CJVbb3nYsjUzHs_48X0A77DmJhU0jbilLCKay0jGsY4ymlklCFWkThQPRmx4QnZP6ekS_G7vwoRjla1PrB21KXVYI9_wbtQ70kwk-FP1MwqsUWF3taXQkA21gtmsIcaaix179vrKp3DTzZ2vXt_vk2R7cPxlGDUsA5EmOJtFivpuYeyUTIlzqU1kyAksl9Qwrgg3WiotUmeYFN55S0YN1lQZ7N-tqIEP_BSwQlIifPK3sjUYHR51-xg-PopbQKE429gdDg5jvp74ibOPw6Xdhbmwpgz4K87ttmYfwOrluJLXV7IoFma_7UfwsAlb0ee5nT2GJTt-Avfq46N6-hQ-HgUE2KBjFBZ2kbHnNZz1zKJvE3mBLgIRwC_kA2RUjm1UlGWFGqCKYvoMTu5EYs9heexbewHIOZ0pipUJFEBMCGWcdbHBxOhMW5b04EMroVw3oOWBO6PIW7jluUjzIFKfzcQ9WO8qVHO8jtuLbgWRd8UC0Hb9oZyc5824zQWNpckc95anCMNWyIz4B8JjrV2Ssh6stQrLm9E_zW9stQf9Vok3v2_tT7_T8j99__HdVgtlX_6_2bewOjw-2M_3d0Z7r-B-qFUfWhRrsDybXNrXPpCaqTeNtSI4u-sB8geBIi8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFD4hGBUfjNewgtoHTdiHcduZdjpNNEaFZQElxEjC29grhAw74-4S4K_562xnZ4Y1Bt94m0ubNufWc9rT7wC8IToziWBJlFmWRlRnMpIY64gzbpWgTNE6UPy2n44O6e4RO1qC3-1dmJBW2drE2lCbUoc98oE3o96QchGTgWvSIg42hx-rX1GoIBVOWttyGnMR2bNXFz58m37Y2fS8fhvHw60fX0ZRU2Eg0pTwWaSYnxIhTsmEOpfYWIZ4wGaSmTRTNDNaKi0SZ1IpvOGWKTNEM2WIf7eiBj3w5v8ODyju4Zb6cLs7wfCeEW6hhDAf7I62DnC2Efsls0_Cdd2FVbAuFvCXh9sdyj6A--fjSl5dyKJYWPeGj-Bh47CiT3MJewxLdvwE7taJo3r6FN5_D9ivgbsobOkiY49rIOuZRdsTeYbOQgmAS-RdY1SObVSUZYUaiIpi-gwOb4Vez2F57EdbBeSc5ooRZULxn1QIZZx12BBqNNc2jXvwrqVQrhu48lA1o8hboOU5SfNAUh_H4B5sdB2qOVLHzU0_B5J3zQLEdv2hnBznjcbmgmFpuMu8zCmaEiskp_6BZlhrFydpD9ZbhuWN3k_zayntQb9l4vXvG-fT77j8z9xPT2y10PbF_4d9Dfe8WuRfd_b31mAldKqzFcU6LM8m5_al96Bm6lUtqgh-3rZu_AE1biy6
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgKwQceCMWCsqBQ_fgbZz4EUtcCmpZVaKqECvBKfKzCNJstJsVj1_POIlDC-oBcXPiSWJ7xpmZzOQbhF4SU9hcshwXjnFMTaGwSlODBRNOS8o07RzFdyd8saTHH1nMJtzEbPcYkuz_aQgoTXW731gfo_r7x4vD07TYA8c9m4H-mkPfdbTDGZjjE7SzPDk9-NRFOTOJ4e0ruwIrGcdcdBXqoC0wqEUeoX7gjl8-u-bCHS9pqQ7M_5IFOgZNb6Ob27pRP76pqrqgl47uIh1n1KejfJ1vWz03P_8Ae_yvKd9DdwarNTnoxew-uubqB-hGlz1qNg_Rq_cBADawOAnfdRPrzjo069Ylb9fqPDkPdQC-J2AfJ6va4Wq1apIBp6LaPELLo8MPbxZ4KMuADSWixZoBHwnxWuXU-9xlKjhRrlDM8kLTwhqljcy95UqCtlOcWWKYtgSOnQQb4TGa1PC0Jyjx3gjNiLahAhCXUlvvfGoJtUYYx7Mpmkc2lGbALA-lM6oyoi33y1KGZQFnJp2ivfGCpofruJr0deDrSBZwtrsTq_VZOWzbUrJUWeELIaSmnDipBIUGLVJjPEjQFO1GqSiHzb8pQeOD1AmZkSmaRcb-7r5yPLNRlP4aey-eI-3Tf6B9hm6FZpe0KHfRpF1v3XMwpFr9YtgqvwBbJBJ2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+with+degenerate+Gram+matrix+for+one-loop+integrals&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Bo+Feng&rft.au=Chang+Hu&rft.au=Tingfei+Li&rft.au=Yuekai+Song&rft.date=2022-08-09&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2022&rft.issue=8&rft.spage=1&rft.epage=46&rft_id=info:doi/10.1007%2FJHEP08%282022%29110&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_950ad7f8779b461e9a74b46480ccf236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon