Efficient Online Learning Algorithms Based on LSTM Neural Networks
We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the unde...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 8; pp. 3772 - 3783 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2017.2741598 |
Cover
| Abstract | We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets. |
|---|---|
| AbstractList | We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets. We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets. |
| Author | Kozat, Suleyman Serdar Ergen, Tolga |
| Author_xml | – sequence: 1 givenname: Tolga orcidid: 0000-0003-4806-0224 surname: Ergen fullname: Ergen, Tolga email: ergen@ee.bilkent.edu.tr organization: Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey – sequence: 2 givenname: Suleyman Serdar surname: Kozat fullname: Kozat, Suleyman Serdar email: kozat@ee.bilkent.edu.tr organization: Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28920911$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1PHDEQhq0IFAjhDyRStFKaNHfx2F5_lIAgIC1HwUVKZ_l8s8Rkzyb2rqL8e0zuoKDIFDMunmc08vuO7MUUkZAPQOcA1HxdLhbd7ZxRUHOmBLRGvyGHDCSbMa713stb_Tggx6Xc01qStlKYt-SAacOoATgkp-d9H3zAODY3cQgRmw5djiHeNSfDXcph_LkpzakruG5SbLrb5XWzwCm7oY7xT8q_ynuy37uh4PFuHpHvF-fLs8tZd_Pt6uykm3kBapwpbI1bs5UwsJbSCN574RVDzil4bkTrAKWUYHqvxMp4RRX4qnDtFFe-50fky3bvQ06_Jyyj3YTicRhcxDQVC0ZQ0IZLWtHPr9D7NOVYr7OMKqFbxgWv1KcdNa02uLYPOWxc_muff6cCegv4nErJ2FsfRjeGFMfswmCB2qcs7L8s7FMWdpdFVdkr9Xn7f6WPWykg4ougKZestkdI_ZGc |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2021_118017 crossref_primary_10_1109_TNNLS_2021_3086029 crossref_primary_10_1109_JIOT_2020_3047539 crossref_primary_10_1016_j_ijhydene_2018_10_042 crossref_primary_10_1016_j_ress_2022_108818 crossref_primary_10_1016_j_epsr_2024_111055 crossref_primary_10_1109_MITS_2021_3049383 crossref_primary_10_1109_TII_2021_3086763 crossref_primary_10_1109_ACCESS_2018_2836950 crossref_primary_10_1063_5_0084468 crossref_primary_10_1016_j_knosys_2019_105124 crossref_primary_10_3390_math10071197 crossref_primary_10_1109_TVT_2022_3205439 crossref_primary_10_1109_TNNLS_2020_2978613 crossref_primary_10_1109_TNNLS_2021_3051019 crossref_primary_10_1109_TSP_2021_3071566 crossref_primary_10_1109_ACCESS_2018_2869470 crossref_primary_10_1109_TNNLS_2020_2989364 crossref_primary_10_1038_s41598_019_45605_1 crossref_primary_10_1016_j_future_2024_06_001 crossref_primary_10_1109_ACCESS_2021_3053651 crossref_primary_10_1016_j_egyr_2023_04_046 crossref_primary_10_1109_TII_2022_3181034 crossref_primary_10_1109_TNNLS_2021_3100528 crossref_primary_10_1109_ACCESS_2019_2937380 crossref_primary_10_1109_TNNLS_2019_2927869 crossref_primary_10_1109_TII_2020_3000184 crossref_primary_10_1155_2022_3057167 crossref_primary_10_5194_hess_27_83_2023 crossref_primary_10_1007_s42405_019_00208_y crossref_primary_10_1109_ACCESS_2020_3025766 crossref_primary_10_1109_ACCESS_2020_2969460 crossref_primary_10_1109_ACCESS_2024_3443023 crossref_primary_10_1016_j_neucom_2023_126694 crossref_primary_10_1109_ACCESS_2020_2972344 crossref_primary_10_1016_j_jpowsour_2019_227149 crossref_primary_10_1109_TNNLS_2021_3098668 crossref_primary_10_1016_j_energy_2021_121981 crossref_primary_10_1007_s10489_022_03890_w crossref_primary_10_1016_j_tsep_2025_103465 crossref_primary_10_1016_j_supflu_2025_106601 crossref_primary_10_1109_ACCESS_2020_3010359 crossref_primary_10_1109_TETCI_2023_3336920 crossref_primary_10_1109_TNNLS_2024_3354855 crossref_primary_10_1109_TIP_2021_3075086 |
| Cites_doi | 10.1109/78.978374 10.1017/CBO9780511546921 10.1109/TNNLS.2016.2536649 10.1109/MSP.2003.1236770 10.1109/TAC.1964.1105763 10.1016/j.neunet.2014.09.003 10.1109/TSP.2007.911295 10.1109/IJCNN.2014.6889426 10.1109/72.97934 10.1016/S0893-6080(02)00219-8 10.1109/WIAMIS.2007.74 10.1002/9780470316757 10.1162/neco.1989.1.2.270 10.1162/neco.1997.9.8.1735 10.1109/72.279181 10.1007/BFb0053994 10.2307/2291224 10.1006/dspr.1994.1021 10.1023/A:1008935410038 10.1109/TNNLS.2016.2582924 10.1109/TIE.2008.925315 10.1162/089976600300015015 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2017.2741598 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Architecture |
| EISSN | 2162-2388 |
| EndPage | 3783 |
| ExternalDocumentID | 28920911 10_1109_TNNLS_2017_2741598 8036280 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: TUBITAK grantid: 115E917 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c417t-7e59ad2b491d66943fc4c72e3301c3945a1e66619fc74b9c7071c59a38a737cf3 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 02:04:37 EDT 2025 Mon Jun 30 07:12:02 EDT 2025 Mon Jul 21 06:07:22 EDT 2025 Wed Oct 01 00:44:44 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Wed Aug 27 02:48:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-7e59ad2b491d66943fc4c72e3301c3945a1e66619fc74b9c7071c59a38a737cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4806-0224 |
| PMID | 28920911 |
| PQID | 2074852343 |
| PQPubID | 85436 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2017_2741598 pubmed_primary_28920911 crossref_primary_10_1109_TNNLS_2017_2741598 proquest_journals_2074852343 proquest_miscellaneous_1940189360 ieee_primary_8036280 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-01 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 frees (ref41) 2016 ref34 ref12 ref15 ref36 ref31 ref33 ref11 anderson (ref19) 2012 shaham (ref9) 2016 alcalá-fdez (ref38) 2011; 17 rasmussen (ref37) 2016 ref2 gers (ref30) 2002 ref1 hermans (ref10) 2013 ref18 jaeger (ref16) 2002 sayed (ref17) 2003 torgo (ref39) 2016 bergman (ref35) 1999; 579 enescu (ref32) 2002 hochreiter (ref6) 1991 ref23 ref26 martens (ref25) 2011 fan (ref14) 2003 ref21 bates (ref29) 1988 csáji (ref24) 2001; 24 ref28 dauphin (ref20) 2014 chung (ref22) 2014 ref27 ref8 (ref40) 2016 ref7 ref4 ref3 ref5 |
| References_xml | – start-page: 1033 year: 2011 ident: ref25 article-title: Learning recurrent neural networks with hessian-free optimization publication-title: Proc 28th Int Conf Mach Learn (ICML) – year: 2014 ident: ref22 publication-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – ident: ref26 doi: 10.1109/78.978374 – volume: 579 year: 1999 ident: ref35 article-title: Recursive bayesian estimation – ident: ref1 doi: 10.1017/CBO9780511546921 – year: 2016 ident: ref37 publication-title: Delve Data Sets – ident: ref7 doi: 10.1109/TNNLS.2016.2536649 – ident: ref21 doi: 10.1109/MSP.2003.1236770 – start-page: 2933 year: 2014 ident: ref20 article-title: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization publication-title: Proc 27th Int Conf Neural Inf Process Syst (NIPS) – ident: ref31 doi: 10.1109/TAC.1964.1105763 – year: 2016 ident: ref39 publication-title: Regression Data Sets – year: 2016 ident: ref40 publication-title: Common Stock – ident: ref8 doi: 10.1016/j.neunet.2014.09.003 – ident: ref36 doi: 10.1109/TSP.2007.911295 – ident: ref27 doi: 10.1109/IJCNN.2014.6889426 – ident: ref2 doi: 10.1109/72.97934 – volume: 17 start-page: 255 year: 2011 ident: ref38 article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J Multiple-Valued Logic Soft Comput – start-page: 369 year: 2002 ident: ref30 article-title: DEKF-LSTM publication-title: Proc ESANN – ident: ref18 doi: 10.1016/S0893-6080(02)00219-8 – year: 2016 ident: ref41 publication-title: Regression Modeling with Actuarial and Financial Applications – year: 2002 ident: ref16 publication-title: Tutorial on Training Recurrent Neural Networks Covering BPPT RTRL EKF and the Echo State Network Approach – ident: ref28 doi: 10.1109/WIAMIS.2007.74 – volume: 24 start-page: 48 year: 2001 ident: ref24 article-title: Approximation with artificial neural networks – year: 1988 ident: ref29 publication-title: Nonlinear Regression Analysis and Its Applications doi: 10.1002/9780470316757 – ident: ref23 doi: 10.1162/neco.1989.1.2.270 – ident: ref12 doi: 10.1162/neco.1997.9.8.1735 – ident: ref11 doi: 10.1109/72.279181 – ident: ref5 doi: 10.1007/BFb0053994 – ident: ref33 doi: 10.2307/2291224 – ident: ref3 doi: 10.1006/dspr.1994.1021 – year: 2012 ident: ref19 publication-title: Optimal Filtering – year: 1991 ident: ref6 article-title: Untersuchungen zu dynamischen neuronalen netzen – ident: ref34 doi: 10.1023/A:1008935410038 – ident: ref4 doi: 10.1109/TNNLS.2016.2582924 – ident: ref15 doi: 10.1109/TIE.2008.925315 – year: 2016 ident: ref9 article-title: Provable approximation properties for deep neural networks publication-title: Appl Comput Harmon Anal – start-page: 17 year: 2002 ident: ref32 article-title: Recursive estimation of noise statistics in Kalman filter based MIMO equalization publication-title: Proc General Assembly of the International Union of Radio Science (URSI) – start-page: 190 year: 2013 ident: ref10 article-title: Training and analysing deep recurrent neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref13 doi: 10.1162/089976600300015015 – year: 2003 ident: ref17 publication-title: Fundamentals of Adaptive Filtering – start-page: 89 year: 2003 ident: ref14 publication-title: ARMA Modeling and Forecasting |
| SSID | ssj0000605649 |
| Score | 2.5603888 |
| Snippet | We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3772 |
| SubjectTerms | Algorithms Architecture Complexity theory Computational modeling Computer applications Computer architecture Control methods Data models Datasets Distance learning Error detection Extended Kalman filter Filtration Gated recurrent unit (GRU) Internet Kalman filtering Learning algorithms long short term memory (LSTM) Long short-term memory Machine learning Neural networks Online instruction online learning Parameter estimation particle filtering (PF) Recurrent neural networks regression stochastic gradient descent (SGD) Stochasticity Training |
| Title | Efficient Online Learning Algorithms Based on LSTM Neural Networks |
| URI | https://ieeexplore.ieee.org/document/8036280 https://www.ncbi.nlm.nih.gov/pubmed/28920911 https://www.proquest.com/docview/2074852343 https://www.proquest.com/docview/1940189360 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExfej_FSkLhBx9KkTXMEBEIIdmFIu1XNo4AYLWLdhV-Pkz4kECBulRq7aezEduJ8BjgSVnBrwiiI8CHgJkqCzAgVaHRdJfX4JT7LdxhfP_CbcTSeg5PuLoy11ief2b579Gf5ptQzt1V2mrjlNsEAfV4kcX1Xq9tPGaBfHntvN6RxGIRMjNs7MgN5OhoOb-9dIpfoO7yWSLo6fRhrhGgu6ReT5Gus_O5uerNztQx3bYfrbJOX_qxSff3xDcvxv3-0AkuN_0nOaoVZhTlbrMFyW9uBNFN9Hc4vPbYEUpMajZQ0SKyP5GzyWL4_V0-vU3KONtCQsiC396M74oA-kPewziyfbsDD1eXo4jpo6i0EmlNRBcJGMjOh4pKaOJac5ZprEVqGi4BmkkcZtRjtUJmjJJXUAt0TjSQsyQQTOmebsFCUhd0GokKZMy6YO5XllhpphFbKIhOqchXpHtB2yFPdgJG7mhiT1AclA5l6iaVOYmkjsR4cdzRvNRTHn63X3XB3LZuR7sFeK9m0ma1TpBM8wYicsx4cdq9xnrnDk6yw5WyaUomRKDp3MbLYqjWi490q0s7P39yFRexZUqcN7sFC9T6z--jKVOrA6_An8SXp8A |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hONBLKdDHtlBcqTeaZR3bcXwEBFra3VxYpL1F8SNQlSYVm73013fsPCRQi3qLFM_E8Yw9M_b4G4DP0knubCwigQ8RtyKNCit1ZNB1VTTgl4Qs3yyZ3vCvS7HcgC_DXRjnXEg-c2P_GM7ybW3WfqvsJPXLbYoB-pbgnIv2ttawozJBzzwJ_m5MkziKmVz2t2Qm6mSRZbNrn8olxx6xRShfqQ-jjRgNJn1klEKVlX87nMHwXO7AvO9ym2_yY7xu9Nj8foLm-L__9Apedh4oOW1VZhc2XLUHO311B9JN9n04uwjoEkhNWjxS0mGx3pLT-9v64Xtz93NFztAKWlJXZHa9mBMP9YG8sza3fPUabi4vFufTqKu4EBlOZRNJJ1RhY80VtUmiOCsNNzJ2DJcBwxQXBXUY71BVoiy1MhIdFIMkLC0kk6Zkb2Czqiv3DoiOVcm4ZP5cljtqlZVGa4dMqC61MCOg_ZDnpoMj91Ux7vMQlkxUHiSWe4nlncRGcDzQ_GrBOJ5tve-He2jZjfQIDnrJ5t18XSGd5CnG5JyN4NPwGmeaPz4pKlevVzlVGIuie5cgi7etRgy8e0V6__dvHsH2dDGf5bOr7NsHeIG9TNskwgPYbB7W7hAdm0Z_DPr8B1tZ7T0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Online+Learning+Algorithms+Based+on+LSTM+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Ergen%2C+Tolga&rft.au=Kozat%2C+Suleyman+Serdar&rft.date=2018-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=8&rft.spage=3772&rft_id=info:doi/10.1109%2FTNNLS.2017.2741598&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |