Efficient Online Learning Algorithms Based on LSTM Neural Networks

We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the unde...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 8; pp. 3772 - 3783
Main Authors Ergen, Tolga, Kozat, Suleyman Serdar
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2017.2741598

Cover

Abstract We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.
AbstractList We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.
We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.
Author Kozat, Suleyman Serdar
Ergen, Tolga
Author_xml – sequence: 1
  givenname: Tolga
  orcidid: 0000-0003-4806-0224
  surname: Ergen
  fullname: Ergen, Tolga
  email: ergen@ee.bilkent.edu.tr
  organization: Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
– sequence: 2
  givenname: Suleyman Serdar
  surname: Kozat
  fullname: Kozat, Suleyman Serdar
  email: kozat@ee.bilkent.edu.tr
  organization: Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28920911$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PHDEQhq0IFAjhDyRStFKaNHfx2F5_lIAgIC1HwUVKZ_l8s8Rkzyb2rqL8e0zuoKDIFDMunmc08vuO7MUUkZAPQOcA1HxdLhbd7ZxRUHOmBLRGvyGHDCSbMa713stb_Tggx6Xc01qStlKYt-SAacOoATgkp-d9H3zAODY3cQgRmw5djiHeNSfDXcph_LkpzakruG5SbLrb5XWzwCm7oY7xT8q_ynuy37uh4PFuHpHvF-fLs8tZd_Pt6uykm3kBapwpbI1bs5UwsJbSCN574RVDzil4bkTrAKWUYHqvxMp4RRX4qnDtFFe-50fky3bvQ06_Jyyj3YTicRhcxDQVC0ZQ0IZLWtHPr9D7NOVYr7OMKqFbxgWv1KcdNa02uLYPOWxc_muff6cCegv4nErJ2FsfRjeGFMfswmCB2qcs7L8s7FMWdpdFVdkr9Xn7f6WPWykg4ougKZestkdI_ZGc
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_apenergy_2021_118017
crossref_primary_10_1109_TNNLS_2021_3086029
crossref_primary_10_1109_JIOT_2020_3047539
crossref_primary_10_1016_j_ijhydene_2018_10_042
crossref_primary_10_1016_j_ress_2022_108818
crossref_primary_10_1016_j_epsr_2024_111055
crossref_primary_10_1109_MITS_2021_3049383
crossref_primary_10_1109_TII_2021_3086763
crossref_primary_10_1109_ACCESS_2018_2836950
crossref_primary_10_1063_5_0084468
crossref_primary_10_1016_j_knosys_2019_105124
crossref_primary_10_3390_math10071197
crossref_primary_10_1109_TVT_2022_3205439
crossref_primary_10_1109_TNNLS_2020_2978613
crossref_primary_10_1109_TNNLS_2021_3051019
crossref_primary_10_1109_TSP_2021_3071566
crossref_primary_10_1109_ACCESS_2018_2869470
crossref_primary_10_1109_TNNLS_2020_2989364
crossref_primary_10_1038_s41598_019_45605_1
crossref_primary_10_1016_j_future_2024_06_001
crossref_primary_10_1109_ACCESS_2021_3053651
crossref_primary_10_1016_j_egyr_2023_04_046
crossref_primary_10_1109_TII_2022_3181034
crossref_primary_10_1109_TNNLS_2021_3100528
crossref_primary_10_1109_ACCESS_2019_2937380
crossref_primary_10_1109_TNNLS_2019_2927869
crossref_primary_10_1109_TII_2020_3000184
crossref_primary_10_1155_2022_3057167
crossref_primary_10_5194_hess_27_83_2023
crossref_primary_10_1007_s42405_019_00208_y
crossref_primary_10_1109_ACCESS_2020_3025766
crossref_primary_10_1109_ACCESS_2020_2969460
crossref_primary_10_1109_ACCESS_2024_3443023
crossref_primary_10_1016_j_neucom_2023_126694
crossref_primary_10_1109_ACCESS_2020_2972344
crossref_primary_10_1016_j_jpowsour_2019_227149
crossref_primary_10_1109_TNNLS_2021_3098668
crossref_primary_10_1016_j_energy_2021_121981
crossref_primary_10_1007_s10489_022_03890_w
crossref_primary_10_1016_j_tsep_2025_103465
crossref_primary_10_1016_j_supflu_2025_106601
crossref_primary_10_1109_ACCESS_2020_3010359
crossref_primary_10_1109_TETCI_2023_3336920
crossref_primary_10_1109_TNNLS_2024_3354855
crossref_primary_10_1109_TIP_2021_3075086
Cites_doi 10.1109/78.978374
10.1017/CBO9780511546921
10.1109/TNNLS.2016.2536649
10.1109/MSP.2003.1236770
10.1109/TAC.1964.1105763
10.1016/j.neunet.2014.09.003
10.1109/TSP.2007.911295
10.1109/IJCNN.2014.6889426
10.1109/72.97934
10.1016/S0893-6080(02)00219-8
10.1109/WIAMIS.2007.74
10.1002/9780470316757
10.1162/neco.1989.1.2.270
10.1162/neco.1997.9.8.1735
10.1109/72.279181
10.1007/BFb0053994
10.2307/2291224
10.1006/dspr.1994.1021
10.1023/A:1008935410038
10.1109/TNNLS.2016.2582924
10.1109/TIE.2008.925315
10.1162/089976600300015015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2017.2741598
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Architecture
EISSN 2162-2388
EndPage 3783
ExternalDocumentID 28920911
10_1109_TNNLS_2017_2741598
8036280
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: TUBITAK
  grantid: 115E917
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-7e59ad2b491d66943fc4c72e3301c3945a1e66619fc74b9c7071c59a38a737cf3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 02:04:37 EDT 2025
Mon Jun 30 07:12:02 EDT 2025
Mon Jul 21 06:07:22 EDT 2025
Wed Oct 01 00:44:44 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Wed Aug 27 02:48:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-7e59ad2b491d66943fc4c72e3301c3945a1e66619fc74b9c7071c59a38a737cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4806-0224
PMID 28920911
PQID 2074852343
PQPubID 85436
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2017_2741598
pubmed_primary_28920911
crossref_primary_10_1109_TNNLS_2017_2741598
proquest_journals_2074852343
proquest_miscellaneous_1940189360
ieee_primary_8036280
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
frees (ref41) 2016
ref34
ref12
ref15
ref36
ref31
ref33
ref11
anderson (ref19) 2012
shaham (ref9) 2016
alcalá-fdez (ref38) 2011; 17
rasmussen (ref37) 2016
ref2
gers (ref30) 2002
ref1
hermans (ref10) 2013
ref18
jaeger (ref16) 2002
sayed (ref17) 2003
torgo (ref39) 2016
bergman (ref35) 1999; 579
enescu (ref32) 2002
hochreiter (ref6) 1991
ref23
ref26
martens (ref25) 2011
fan (ref14) 2003
ref21
bates (ref29) 1988
csáji (ref24) 2001; 24
ref28
dauphin (ref20) 2014
chung (ref22) 2014
ref27
ref8
(ref40) 2016
ref7
ref4
ref3
ref5
References_xml – start-page: 1033
  year: 2011
  ident: ref25
  article-title: Learning recurrent neural networks with hessian-free optimization
  publication-title: Proc 28th Int Conf Mach Learn (ICML)
– year: 2014
  ident: ref22
  publication-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– ident: ref26
  doi: 10.1109/78.978374
– volume: 579
  year: 1999
  ident: ref35
  article-title: Recursive bayesian estimation
– ident: ref1
  doi: 10.1017/CBO9780511546921
– year: 2016
  ident: ref37
  publication-title: Delve Data Sets
– ident: ref7
  doi: 10.1109/TNNLS.2016.2536649
– ident: ref21
  doi: 10.1109/MSP.2003.1236770
– start-page: 2933
  year: 2014
  ident: ref20
  article-title: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
  publication-title: Proc 27th Int Conf Neural Inf Process Syst (NIPS)
– ident: ref31
  doi: 10.1109/TAC.1964.1105763
– year: 2016
  ident: ref39
  publication-title: Regression Data Sets
– year: 2016
  ident: ref40
  publication-title: Common Stock
– ident: ref8
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref36
  doi: 10.1109/TSP.2007.911295
– ident: ref27
  doi: 10.1109/IJCNN.2014.6889426
– ident: ref2
  doi: 10.1109/72.97934
– volume: 17
  start-page: 255
  year: 2011
  ident: ref38
  article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J Multiple-Valued Logic Soft Comput
– start-page: 369
  year: 2002
  ident: ref30
  article-title: DEKF-LSTM
  publication-title: Proc ESANN
– ident: ref18
  doi: 10.1016/S0893-6080(02)00219-8
– year: 2016
  ident: ref41
  publication-title: Regression Modeling with Actuarial and Financial Applications
– year: 2002
  ident: ref16
  publication-title: Tutorial on Training Recurrent Neural Networks Covering BPPT RTRL EKF and the Echo State Network Approach
– ident: ref28
  doi: 10.1109/WIAMIS.2007.74
– volume: 24
  start-page: 48
  year: 2001
  ident: ref24
  article-title: Approximation with artificial neural networks
– year: 1988
  ident: ref29
  publication-title: Nonlinear Regression Analysis and Its Applications
  doi: 10.1002/9780470316757
– ident: ref23
  doi: 10.1162/neco.1989.1.2.270
– ident: ref12
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref11
  doi: 10.1109/72.279181
– ident: ref5
  doi: 10.1007/BFb0053994
– ident: ref33
  doi: 10.2307/2291224
– ident: ref3
  doi: 10.1006/dspr.1994.1021
– year: 2012
  ident: ref19
  publication-title: Optimal Filtering
– year: 1991
  ident: ref6
  article-title: Untersuchungen zu dynamischen neuronalen netzen
– ident: ref34
  doi: 10.1023/A:1008935410038
– ident: ref4
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref15
  doi: 10.1109/TIE.2008.925315
– year: 2016
  ident: ref9
  article-title: Provable approximation properties for deep neural networks
  publication-title: Appl Comput Harmon Anal
– start-page: 17
  year: 2002
  ident: ref32
  article-title: Recursive estimation of noise statistics in Kalman filter based MIMO equalization
  publication-title: Proc General Assembly of the International Union of Radio Science (URSI)
– start-page: 190
  year: 2013
  ident: ref10
  article-title: Training and analysing deep recurrent neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref13
  doi: 10.1162/089976600300015015
– year: 2003
  ident: ref17
  publication-title: Fundamentals of Adaptive Filtering
– start-page: 89
  year: 2003
  ident: ref14
  publication-title: ARMA Modeling and Forecasting
SSID ssj0000605649
Score 2.5603888
Snippet We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3772
SubjectTerms Algorithms
Architecture
Complexity theory
Computational modeling
Computer applications
Computer architecture
Control methods
Data models
Datasets
Distance learning
Error detection
Extended Kalman filter
Filtration
Gated recurrent unit (GRU)
Internet
Kalman filtering
Learning algorithms
long short term memory (LSTM)
Long short-term memory
Machine learning
Neural networks
Online instruction
online learning
Parameter estimation
particle filtering (PF)
Recurrent neural networks
regression
stochastic gradient descent (SGD)
Stochasticity
Training
Title Efficient Online Learning Algorithms Based on LSTM Neural Networks
URI https://ieeexplore.ieee.org/document/8036280
https://www.ncbi.nlm.nih.gov/pubmed/28920911
https://www.proquest.com/docview/2074852343
https://www.proquest.com/docview/1940189360
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExfej_FSkLhBx9KkTXMEBEIIdmFIu1XNo4AYLWLdhV-Pkz4kECBulRq7aezEduJ8BjgSVnBrwiiI8CHgJkqCzAgVaHRdJfX4JT7LdxhfP_CbcTSeg5PuLoy11ief2b579Gf5ptQzt1V2mrjlNsEAfV4kcX1Xq9tPGaBfHntvN6RxGIRMjNs7MgN5OhoOb-9dIpfoO7yWSLo6fRhrhGgu6ReT5Gus_O5uerNztQx3bYfrbJOX_qxSff3xDcvxv3-0AkuN_0nOaoVZhTlbrMFyW9uBNFN9Hc4vPbYEUpMajZQ0SKyP5GzyWL4_V0-vU3KONtCQsiC396M74oA-kPewziyfbsDD1eXo4jpo6i0EmlNRBcJGMjOh4pKaOJac5ZprEVqGi4BmkkcZtRjtUJmjJJXUAt0TjSQsyQQTOmebsFCUhd0GokKZMy6YO5XllhpphFbKIhOqchXpHtB2yFPdgJG7mhiT1AclA5l6iaVOYmkjsR4cdzRvNRTHn63X3XB3LZuR7sFeK9m0ma1TpBM8wYicsx4cdq9xnrnDk6yw5WyaUomRKDp3MbLYqjWi490q0s7P39yFRexZUqcN7sFC9T6z--jKVOrA6_An8SXp8A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hONBLKdDHtlBcqTeaZR3bcXwEBFra3VxYpL1F8SNQlSYVm73013fsPCRQi3qLFM_E8Yw9M_b4G4DP0knubCwigQ8RtyKNCit1ZNB1VTTgl4Qs3yyZ3vCvS7HcgC_DXRjnXEg-c2P_GM7ybW3WfqvsJPXLbYoB-pbgnIv2ttawozJBzzwJ_m5MkziKmVz2t2Qm6mSRZbNrn8olxx6xRShfqQ-jjRgNJn1klEKVlX87nMHwXO7AvO9ym2_yY7xu9Nj8foLm-L__9Apedh4oOW1VZhc2XLUHO311B9JN9n04uwjoEkhNWjxS0mGx3pLT-9v64Xtz93NFztAKWlJXZHa9mBMP9YG8sza3fPUabi4vFufTqKu4EBlOZRNJJ1RhY80VtUmiOCsNNzJ2DJcBwxQXBXUY71BVoiy1MhIdFIMkLC0kk6Zkb2Czqiv3DoiOVcm4ZP5cljtqlZVGa4dMqC61MCOg_ZDnpoMj91Ux7vMQlkxUHiSWe4nlncRGcDzQ_GrBOJ5tve-He2jZjfQIDnrJ5t18XSGd5CnG5JyN4NPwGmeaPz4pKlevVzlVGIuie5cgi7etRgy8e0V6__dvHsH2dDGf5bOr7NsHeIG9TNskwgPYbB7W7hAdm0Z_DPr8B1tZ7T0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Online+Learning+Algorithms+Based+on+LSTM+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Ergen%2C+Tolga&rft.au=Kozat%2C+Suleyman+Serdar&rft.date=2018-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=8&rft.spage=3772&rft_id=info:doi/10.1109%2FTNNLS.2017.2741598&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon