Predicting stable gravel-bed river hydraulic geometry: A test of novel, advanced, hybrid data mining algorithms

Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical topics in the field of river engineering. Data mining algorithms have been gaining more attention in this field due to their high performance an...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental modelling & software : with environment data news Vol. 144; p. 105165
Main Authors Khosravi, Khabat, Sheikh Khozani, Zohreh, Cooper, James R.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.10.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN1364-8152
1873-6726
1873-6726
DOI10.1016/j.envsoft.2021.105165

Cover

Abstract Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical topics in the field of river engineering. Data mining algorithms have been gaining more attention in this field due to their high performance and flexibility. However, an understanding of the potential for these algorithms to provide fast, cheap, and accurate predictions of hydraulic geometry is lacking. This study provides the first quantification of this potential. Using at-a-station field data, predictions of flow depth, water-surface width and longitudinal water surface slope are made using three standalone data mining techniques -, Instance-based Learning (IBK), KStar, Locally Weighted Learning (LWL) - along with four types of novel hybrid algorithms in which the standalone models are trained with Vote, Attribute Selected Classifier (ASC), Regression by Discretization (RBD), and Cross-validation Parameter Selection (CVPS) algorithms (Vote-IBK, Vote-Kstar, Vote-LWL, ASC-IBK, ASC-Kstar, ASC-LWL, RBD-IBK, RBD-Kstar, RBD-LWL, CVPS-IBK, CVPS-Kstar, CVPS-LWL). Through a comparison of their predictive performance and a sensitivity analysis of the driving variables, the results reveal: (1) Shield stress was the most effective parameter in the prediction of all geometry dimensions; (2) hybrid models had a higher prediction power than standalone data mining models, empirical equations and traditional machine learning algorithms; (3) Vote-Kstar model had the highest performance in predicting depth and width, and ASC-Kstar in estimating slope, each providing very good prediction performance. Through these algorithms, the hydraulic geometry of any river can potentially be predicted accurately and with ease using just a few, readily available flow and channel parameters. Thus, the results reveal that these models have great potential for use in stable channel design in data poor catchments, especially in developing nations where technical modelling skills and understanding of the hydraulic and sediment processes occurring in the river system may be lacking. •The data mining algorithms is provided to predict stable channel geometry.•Predictions were made using standalone and novel hybrid datamining models.•A comparison was made of the predictive power of these data-driven models, and a sensitivity analysis of three driving variables was performed.•The developed hybrid models had a higher performance than empirical and traditional models extended by other researchers.
AbstractList Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical topics in the field of river engineering. Data mining algorithms have been gaining more attention in this field due to their high performance and flexibility. However, an understanding of the potential for these algorithms to provide fast, cheap, and accurate predictions of hydraulic geometry is lacking. This study provides the first quantification of this potential. Using at-a-station field data, predictions of flow depth, water-surface width and longitudinal water surface slope are made using three standalone data mining techniques -, Instance-based Learning (IBK), KStar, Locally Weighted Learning (LWL) - along with four types of novel hybrid algorithms in which the standalone models are trained with Vote, Attribute Selected Classifier (ASC), Regression by Discretization (RBD), and Cross-validation Parameter Selection (CVPS) algorithms (Vote-IBK, Vote-Kstar, Vote-LWL, ASC-IBK, ASC-Kstar, ASC-LWL, RBD-IBK, RBD-Kstar, RBD-LWL, CVPS-IBK, CVPS-Kstar, CVPS-LWL). Through a comparison of their predictive performance and a sensitivity analysis of the driving variables, the results reveal: (1) Shield stress was the most effective parameter in the prediction of all geometry dimensions; (2) hybrid models had a higher prediction power than standalone data mining models, empirical equations and traditional machine learning algorithms; (3) Vote-Kstar model had the highest performance in predicting depth and width, and ASC-Kstar in estimating slope, each providing very good prediction performance. Through these algorithms, the hydraulic geometry of any river can potentially be predicted accurately and with ease using just a few, readily available flow and channel parameters. Thus, the results reveal that these models have great potential for use in stable channel design in data poor catchments, especially in developing nations where technical modelling skills and understanding of the hydraulic and sediment processes occurring in the river system may be lacking.
Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical topics in the field of river engineering. Data mining algorithms have been gaining more attention in this field due to their high performance and flexibility. However, an understanding of the potential for these algorithms to provide fast, cheap, and accurate predictions of hydraulic geometry is lacking. This study provides the first quantification of this potential. Using at-a-station field data, predictions of flow depth, water-surface width and longitudinal water surface slope are made using three standalone data mining techniques -, Instance-based Learning (IBK), KStar, Locally Weighted Learning (LWL) - along with four types of novel hybrid algorithms in which the standalone models are trained with Vote, Attribute Selected Classifier (ASC), Regression by Discretization (RBD), and Cross-validation Parameter Selection (CVPS) algorithms (Vote-IBK, Vote-Kstar, Vote-LWL, ASC-IBK, ASC-Kstar, ASC-LWL, RBD-IBK, RBD-Kstar, RBD-LWL, CVPS-IBK, CVPS-Kstar, CVPS-LWL). Through a comparison of their predictive performance and a sensitivity analysis of the driving variables, the results reveal: (1) Shield stress was the most effective parameter in the prediction of all geometry dimensions; (2) hybrid models had a higher prediction power than standalone data mining models, empirical equations and traditional machine learning algorithms; (3) Vote-Kstar model had the highest performance in predicting depth and width, and ASC-Kstar in estimating slope, each providing very good prediction performance. Through these algorithms, the hydraulic geometry of any river can potentially be predicted accurately and with ease using just a few, readily available flow and channel parameters. Thus, the results reveal that these models have great potential for use in stable channel design in data poor catchments, especially in developing nations where technical modelling skills and understanding of the hydraulic and sediment processes occurring in the river system may be lacking. •The data mining algorithms is provided to predict stable channel geometry.•Predictions were made using standalone and novel hybrid datamining models.•A comparison was made of the predictive power of these data-driven models, and a sensitivity analysis of three driving variables was performed.•The developed hybrid models had a higher performance than empirical and traditional models extended by other researchers.
ArticleNumber 105165
Author Sheikh Khozani, Zohreh
Cooper, James R.
Khosravi, Khabat
Author_xml – sequence: 1
  givenname: Khabat
  surname: Khosravi
  fullname: Khosravi, Khabat
  email: Khabat.khosravi@gmail.com
  organization: - Department of Watershed Management Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
– sequence: 2
  givenname: Zohreh
  surname: Sheikh Khozani
  fullname: Sheikh Khozani, Zohreh
  email: zohreh.khozani.sheikh@uni-weimar.de
  organization: - Institute of Structural Mechanics, Bauhaus Universität Weimar, 99423, Weimar, Germany
– sequence: 3
  givenname: James R.
  surname: Cooper
  fullname: Cooper, James R.
  email: James.Cooper@liverpool.ac.uk
  organization: - Department of Geography and Planning, University of Liverpool, Liverpool, UK
BookMark eNqNkUFrHSEUhYeSQpO0P6EgdNNF5lWdp860ixJCkxYC7aJdi6PXFx-Ovqoz4f37-pissklXXuQ7h3vOvWjOQgzQNO8J3hBM-Kf9BsKSoy0biimpf4xw9qo5J73oWi4oP6tzx7dtTxh901zkvMcY13l73sRfCYzTxYUdykWNHtAuqQV8O4JByS2Q0MPRJDV7p9EO4gQlHT-ja1QgFxQtCrHSV0iZRQUN5qriY3IGGVUUmlw4OSu_i8mVhym_bV5b5TO8e3ovmz-3337ffG_vf979uLm-b_WWiNKKzg6DoZzaHhuuiSBaU90xjjkz1hLgXNlBDCPr7agF7jVTIxOVE4Zpa7vLhq--czio46PyXh6Sm1Q6SoLlqTa5l0-1yVNtcq2tCj-uwkOKf-eaUU4ua_BeBYhzlpR3XAy1WlzRD8_QfZxTqLEkZX3H-rogqdSXldIp5pzASu2KKi6GkpTzL67Dnqn_N8bXVQe15MVBklk7OB3IJdBFmuhecPgHum68Ig
CitedBy_id crossref_primary_10_3390_rs14133107
crossref_primary_10_3390_w15030419
crossref_primary_10_5194_esurf_12_367_2024
crossref_primary_10_1080_10106049_2022_2032388
crossref_primary_10_1016_j_eswa_2023_120885
crossref_primary_10_2166_hydro_2023_188
crossref_primary_10_1016_j_geomorph_2022_108254
crossref_primary_10_1007_s11600_022_00738_2
crossref_primary_10_1007_s40899_022_00700_6
crossref_primary_10_1186_s12302_024_00981_y
Cites_doi 10.1007/s00477-002-0088-2
10.1109/24.370218
10.1029/1998WR900018
10.1016/j.asoc.2017.05.024
10.1002/ldr.3255
10.1007/s13762-012-0036-8
10.1061/(ASCE)HE.1943-5584.0000260
10.1061/(ASCE)HE.1943-5584.0000095
10.1002/hyp.5932
10.1061/JYCEAJ.0005914
10.1016/S0005-1098(01)00030-9
10.1061/(ASCE)HY.1943-7900.0000408
10.1002/hyp.6411
10.1007/s00477-016-1338-z
10.1177/030913338601000101
10.1016/j.compag.2019.105041
10.3390/w9100782
10.1109/ICRAIE.2014.6909184
10.1002/esp.4104
10.1002/1096-9837(200008)25:9<921::AID-ESP93>3.0.CO;2-7
10.1061/TACEAT.0006641
10.3390/app9122534
10.1177/0309133314567584
10.13031/2013.23153
10.2166/hydro.2019.037
10.1061/(ASCE)HY.1943-7900.0001062
10.1142/S0219525902000626
10.1061/(ASCE)0733-9429(1986)112:8(671)
10.1214/aos/1176345969
10.1016/j.scitotenv.2020.136836
10.1061/JYCEAJ.0005429
10.1016/j.aej.2015.12.011
10.2166/hydro.2014.138
10.1061/JYCEAJ.0000653
10.1016/j.jhydrol.2018.10.015
10.1016/j.ijsrc.2017.04.004
10.1029/TR035i006p00951
10.2991/ijcis.11.1.22
10.1080/1573062X.2018.1455880
10.1016/j.jclepro.2018.08.207
10.1016/j.jhydrol.2018.09.057
10.1109/TIM.2013.2272173
10.1016/j.scitotenv.2020.137612
10.1016/j.envsoft.2006.06.008
10.1134/S0097807812040033
10.1109/TEVC.2015.2457437
10.1023/A:1006559212014
10.1111/j.2517-6161.1974.tb00994.x
10.1016/j.geomorph.2004.07.001
10.1061/(ASCE)0733-9429(1987)113:11(1359)
10.1016/j.scitotenv.2017.09.293
10.1016/j.catena.2017.05.034
10.1080/19942060.2020.1715844
10.1002/(SICI)1096-9837(199810)23:10<865::AID-ESP903>3.0.CO;2-3
10.1061/(ASCE)0733-9429(1995)121:4(312)
10.1016/j.asej.2012.08.009
10.1016/j.jher.2013.11.004
10.1016/j.jhydrol.2020.124774
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Oct 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Oct 2021
DBID AAYXX
CITATION
7QH
7SC
7ST
7UA
8FD
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.envsoft.2021.105165
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Computer Science
Environmental Sciences
EISSN 1873-6726
ExternalDocumentID oai:www.db-thueringen.de:dbt_mods_00061182
10_1016_j_envsoft_2021_105165
S1364815221002085
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSV
SSZ
T5K
UHS
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QH
7SC
7ST
7UA
8FD
AGCQF
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c417t-73f99d262f80d6c171cc2c356065dff1e66af979b58fbc708c5ab571717d5cff3
IEDL.DBID .~1
ISSN 1364-8152
1873-6726
IngestDate Sun Oct 26 04:12:32 EDT 2025
Thu Oct 02 10:36:29 EDT 2025
Wed Aug 13 06:42:17 EDT 2025
Wed Oct 29 21:22:29 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Fri Feb 23 02:40:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Modelling
Gravel-bed rivers
Data mining
Artificial intelligence
Hydraulic geometry
Machine learning
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-73f99d262f80d6c171cc2c356065dff1e66af979b58fbc708c5ab571717d5cff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.25643/bauhaus-universitaet.4499
PQID 2583589791
PQPubID 2047471
ParticipantIDs unpaywall_primary_10_1016_j_envsoft_2021_105165
proquest_miscellaneous_2636791870
proquest_journals_2583589791
crossref_citationtrail_10_1016_j_envsoft_2021_105165
crossref_primary_10_1016_j_envsoft_2021_105165
elsevier_sciencedirect_doi_10_1016_j_envsoft_2021_105165
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Environmental modelling & software : with environment data news
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Shelley, Parr (bib68) 2009; 342
Zounemat-Kermani, Seo, Kim, Ghorbani, Samadianfard, Naghshara (bib84) 2019; 9
Leopold, Wolman (bib52) 1957
Mohamed (bib56) 2013; 4
Ferreira (bib31) 2001; 13
Abdelhaleem, Amin, Ibraheem (bib1) 2016; 55
Gislason, Benediktsson, Sveinsson (bib36) 2006; 27
Hey, Thorne (bib41) 1986; 112
Wang, Xing, Li, Yang, Qu, Pan (bib79) 2016; 20
Stevens, Nordin (bib71) 1987; 113
Taheri, Shahabi, Chapi, Shirzadi, Gutiérrez, Khosravi (bib74) 2019; 30
Afzalimehr, Singh, Abdolhosseini (bib4) 2009; 14
Hooshyaripor, Tahershamsi, Golian (bib42) 2014; 8
Ayele, Teshale, Yu, Rutherfurd, Jeong (bib11) 2017; 9
Bui, Khosravi, Li, Shahabi, Panahi, Singh (bib18) 2018; 10
Barzegar, Asghari Moghaddam, Adamowski, Fijani (bib12) 2017; 31
Singh, Zhang (bib69) 2008; 22
Chang (bib20) 1980
Dawson, Abrahart, See (bib26) 2007; 22
Huang, Nanson (bib43) 1998; 23
Sheikh Khozani, Khosravi, Pham, Kløve, Wan Mohtar, Yaseen (bib67) 2019; 21
Bui, Khosravi, Tiefenbacher, Nguyen, Kazakis (bib19) 2020; 721
Chen, Panahi, Pourghasemi (bib21) 2017; 157
Atkeson, Moore, Schaal (bib10) 1997; 11
Shamshirband, Hashemi, Salimi, Samadianfard, Asadi, Shadkani (bib64) 2020; 14
Witten, Frank, Hall, Pal (bib81) 2016
Frank, Bouckaert (bib33) 2009; 5828 LNAI
Hey, Thorne (bib40) 1986; 112
Choubin, Darabi, Rahmati, Sajedi-Hosseini, Kløve (bib22) 2018; 615
Bose (bib15) 1936
Antar, Elassiouti, Allam (bib8) 2006; 20
Julien, Wargadalam (bib44) 1995; 121
Parhami (bib59) 1994; 43
Parker, Wilcock, Paola, Dietrich, Pitlick (bib60) 2007; 112
Abernethy B (bib2) 2000; 25
Thornton, Hutter, Hoos, Leyton-Brown (bib76) 2013; Part F1288
Khosravi, Mao, Kisi, Yaseen, Shahid (bib49) 2018; 567
Robinson (bib62) 1998
Khosravi, Cooper, Daggupati, Thai Pham, Bui (bib47) 2020; 585
Lane (bib50) 1957
Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (bib57) 2007; 50
Blench (bib13) 1969
Garg, Khurana (bib34) 2014
Cleary, Trigg (bib23) 1995
Dietterich (bib28) 1997; 18
Wolman (bib82) 1954; 35
Deshpande, Kumar (bib27) 2012; 39
White (bib80) 1982; 108
Ferreira (bib32) 2002
Gholami, Bonakdari, Ebtehaj, Shaghaghi, Khoshbin (bib35) 2017; 42
Anastasakis, Mort (bib7) 2001
Davidson, Hey (bib25) 2011; 137
Tahershamsi, Majdzade Tabatabai, Shirkhani (bib75) 2012; 9
Hastie, Loader (bib38) 1993; 8
Ahmadi, Han, Lafdani, Moridi (bib6) 2015; 17
Gleason (bib37) 2015; 39
Shaghaghi, Bonakdari, Gholami, Kisi, Shiri, Binns, Gharabaghi (bib63) 2018; 566
Mehta, Yadav, Anal (bib53) 2013; 2
Stone (bib73) 1974; 36
Cuest Cordoba, Tuhovčák, Tauš (bib24) 2014; 70
Khosravi, Daggupati, Alami, Awadh, Ghareb, Panahi (bib48) 2019; 167
Blench (bib14) 1952; 117
Khosravi, Barzegar, Miraki, Adamowski, Daggupati, Alizadeh (bib46) 2019
Afzalimehr, Abdolhosseini, Singh (bib3) 2010; 15
Bray (bib16) 1982
Eaton, Church (bib29) 2007; 112
Ahmad, Reynolds, Rezgui (bib5) 2018; 203
Ferguson (bib30) 1986; 10
Mislan, Hardwinarto, Sumaryono, Aipassa (bib55) 2015; 59
Noori, Deng, Kiaghadi, Kachoosangi (bib58) 2016; 142
Stone (bib72) 1982; 10
Bui, Khosravi, Karimi, Busico, Khozani, Nguyen (bib17) 2020; 715
Khadangi, Madvar, Kiani (bib45) 2009
Sheikh Khozani, Bonakdari, Zaji (bib66) 2017; 58
Wan Mohtar, Afan, El-Shafie, Bong, Ab Ghani (bib78) 2018; 15
Reyes, Cano, Fardoun, Ventura (bib61) 2018; 11
Sheikh Khozani, Bonakdari, Ebtehaj (bib65) 2017; 32
Vojinovic, Abebe, Ranasinghe, Vacher, Martens, Mandl (bib77) 2013; 15
Wu, Lin, Wei, Cheng (bib83) 2013; 62
Arif, Ishihara, Inooka (bib9) 2001; 37
Henderson (bib39) 1961; 87
Legates, McCabe (bib51) 1999; 35
Millar (bib54) 2005; 64
Sterling, Knight (bib70) 2002; 16
Gleason (10.1016/j.envsoft.2021.105165_bib37) 2015; 39
Parker (10.1016/j.envsoft.2021.105165_bib60) 2007; 112
Robinson (10.1016/j.envsoft.2021.105165_bib62) 1998
Bui (10.1016/j.envsoft.2021.105165_bib19) 2020; 721
Henderson (10.1016/j.envsoft.2021.105165_bib39) 1961; 87
Arif (10.1016/j.envsoft.2021.105165_bib9) 2001; 37
Eaton (10.1016/j.envsoft.2021.105165_bib29) 2007; 112
Khosravi (10.1016/j.envsoft.2021.105165_bib46) 2019
Mehta (10.1016/j.envsoft.2021.105165_bib53) 2013; 2
Huang (10.1016/j.envsoft.2021.105165_bib43) 1998; 23
Lane (10.1016/j.envsoft.2021.105165_bib50) 1957
Zounemat-Kermani (10.1016/j.envsoft.2021.105165_bib84) 2019; 9
Sheikh Khozani (10.1016/j.envsoft.2021.105165_bib66) 2017; 58
Garg (10.1016/j.envsoft.2021.105165_bib34) 2014
Khosravi (10.1016/j.envsoft.2021.105165_bib49) 2018; 567
Thornton (10.1016/j.envsoft.2021.105165_bib76) 2013; Part F1288
Parhami (10.1016/j.envsoft.2021.105165_bib59) 1994; 43
Stevens (10.1016/j.envsoft.2021.105165_bib71) 1987; 113
Ahmad (10.1016/j.envsoft.2021.105165_bib5) 2018; 203
Noori (10.1016/j.envsoft.2021.105165_bib58) 2016; 142
Hey (10.1016/j.envsoft.2021.105165_bib40) 1986; 112
Stone (10.1016/j.envsoft.2021.105165_bib73) 1974; 36
Hey (10.1016/j.envsoft.2021.105165_bib41) 1986; 112
Dawson (10.1016/j.envsoft.2021.105165_bib26) 2007; 22
Abernethy B (10.1016/j.envsoft.2021.105165_bib2) 2000; 25
Julien (10.1016/j.envsoft.2021.105165_bib44) 1995; 121
Vojinovic (10.1016/j.envsoft.2021.105165_bib77) 2013; 15
Barzegar (10.1016/j.envsoft.2021.105165_bib12) 2017; 31
Shelley (10.1016/j.envsoft.2021.105165_bib68) 2009; 342
Afzalimehr (10.1016/j.envsoft.2021.105165_bib4) 2009; 14
Sterling (10.1016/j.envsoft.2021.105165_bib70) 2002; 16
Atkeson (10.1016/j.envsoft.2021.105165_bib10) 1997; 11
Ahmadi (10.1016/j.envsoft.2021.105165_bib6) 2015; 17
Ferreira (10.1016/j.envsoft.2021.105165_bib31) 2001; 13
Sheikh Khozani (10.1016/j.envsoft.2021.105165_bib67) 2019; 21
Khadangi (10.1016/j.envsoft.2021.105165_bib45) 2009
Bui (10.1016/j.envsoft.2021.105165_bib17) 2020; 715
Reyes (10.1016/j.envsoft.2021.105165_bib61) 2018; 11
Wolman (10.1016/j.envsoft.2021.105165_bib82) 1954; 35
Singh (10.1016/j.envsoft.2021.105165_bib69) 2008; 22
Deshpande (10.1016/j.envsoft.2021.105165_bib27) 2012; 39
Ferreira (10.1016/j.envsoft.2021.105165_bib32) 2002
Frank (10.1016/j.envsoft.2021.105165_bib33) 2009; 5828 LNAI
Blench (10.1016/j.envsoft.2021.105165_bib13) 1969
Gislason (10.1016/j.envsoft.2021.105165_bib36) 2006; 27
Tahershamsi (10.1016/j.envsoft.2021.105165_bib75) 2012; 9
Millar (10.1016/j.envsoft.2021.105165_bib54) 2005; 64
Wan Mohtar (10.1016/j.envsoft.2021.105165_bib78) 2018; 15
Hastie (10.1016/j.envsoft.2021.105165_bib38) 1993; 8
Stone (10.1016/j.envsoft.2021.105165_bib72) 1982; 10
Blench (10.1016/j.envsoft.2021.105165_bib14) 1952; 117
Davidson (10.1016/j.envsoft.2021.105165_bib25) 2011; 137
Cleary (10.1016/j.envsoft.2021.105165_bib23) 1995
Moriasi (10.1016/j.envsoft.2021.105165_bib57) 2007; 50
Antar (10.1016/j.envsoft.2021.105165_bib8) 2006; 20
Choubin (10.1016/j.envsoft.2021.105165_bib22) 2018; 615
Gholami (10.1016/j.envsoft.2021.105165_bib35) 2017; 42
Sheikh Khozani (10.1016/j.envsoft.2021.105165_bib65) 2017; 32
Wang (10.1016/j.envsoft.2021.105165_bib79) 2016; 20
Hooshyaripor (10.1016/j.envsoft.2021.105165_bib42) 2014; 8
White (10.1016/j.envsoft.2021.105165_bib80) 1982; 108
Khosravi (10.1016/j.envsoft.2021.105165_bib48) 2019; 167
Anastasakis (10.1016/j.envsoft.2021.105165_bib7) 2001
Ferguson (10.1016/j.envsoft.2021.105165_bib30) 1986; 10
Legates (10.1016/j.envsoft.2021.105165_bib51) 1999; 35
Chang (10.1016/j.envsoft.2021.105165_bib20) 1980; 106
Ayele (10.1016/j.envsoft.2021.105165_bib11) 2017; 9
Khosravi (10.1016/j.envsoft.2021.105165_bib47) 2020; 585
Shaghaghi (10.1016/j.envsoft.2021.105165_bib63) 2018; 566
Dietterich (10.1016/j.envsoft.2021.105165_bib28) 1997; 18
Cuest Cordoba (10.1016/j.envsoft.2021.105165_bib24) 2014; 70
Bray (10.1016/j.envsoft.2021.105165_bib16) 1982
Abdelhaleem (10.1016/j.envsoft.2021.105165_bib1) 2016; 55
Leopold (10.1016/j.envsoft.2021.105165_bib52) 1957
Mislan (10.1016/j.envsoft.2021.105165_bib55) 2015; 59
Chen (10.1016/j.envsoft.2021.105165_bib21) 2017; 157
Mohamed (10.1016/j.envsoft.2021.105165_bib56) 2013; 4
Shamshirband (10.1016/j.envsoft.2021.105165_bib64) 2020; 14
Afzalimehr (10.1016/j.envsoft.2021.105165_bib3) 2010; 15
Taheri (10.1016/j.envsoft.2021.105165_bib74) 2019; 30
Witten (10.1016/j.envsoft.2021.105165_bib81) 2016
Wu (10.1016/j.envsoft.2021.105165_bib83) 2013; 62
Bose (10.1016/j.envsoft.2021.105165_bib15) 1936
Bui (10.1016/j.envsoft.2021.105165_bib18) 2018; 10
References_xml – start-page: 389
  year: 2002
  end-page: 408
  ident: bib32
  article-title: Genetic representation and genetic neutrality in gene expression programming
  publication-title: Adv. Complex Syst.
– volume: 32
  start-page: 575
  year: 2017
  end-page: 584
  ident: bib65
  article-title: An analysis of shear stress distribution in circular channels with sediment deposition based on Gene Expression Programming
  publication-title: Int. J. Sediment Res.
– volume: 2
  start-page: 90
  year: 2013
  end-page: 93
  ident: bib53
  article-title: Geomorphic channel design and analysis using HEC-RAS hydraulic design functions
  publication-title: J. Global Anal.
– year: 2014
  ident: bib34
  article-title: Comparison of classification techniques for intrusion detection dataset using WEKA
  publication-title: International Conference on Recent Advances and Innovations in Engineering
– volume: 27
  start-page: 294
  year: 2006
  end-page: 300
  ident: bib36
  article-title: Random forests for land cover classification
  publication-title: Pattern Recognition Letters
– volume: 20
  start-page: 1201
  year: 2006
  end-page: 1216
  ident: bib8
  article-title: Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study
  publication-title: Hydrol. Process.
– volume: 21
  start-page: 798
  year: 2019
  end-page: 811
  ident: bib67
  article-title: Determination of compound channel apparent shear stress: application of novel data mining models
  publication-title: J. Hydroinf.
– volume: 342
  start-page: 3722
  year: 2009
  end-page: 3731
  ident: bib68
  article-title: Using HEC-RAS hydraulic design functions for geomorphic channel design and analysis
  publication-title: Proceedings of World Environmental and Water Resources Congress 2009 - World Environmental and Water Resources Congress 2009: Great Rivers
– year: 1936
  ident: bib15
  article-title: Silt movement and design of channels
  publication-title: Punjab Eng Congr. Punjab
– volume: 35
  start-page: 233
  year: 1999
  end-page: 241
  ident: bib51
  article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
– volume: 39
  start-page: 481
  year: 2012
  end-page: 487
  ident: bib27
  article-title: Review and assessment of the theories of stable alluvial channel design
  publication-title: Water Resour.
– volume: 22
  start-page: 1034
  year: 2007
  end-page: 1052
  ident: bib26
  article-title: HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
  publication-title: Environ. Model. Software
– volume: 50
  start-page: 885
  year: 2007
  end-page: 900
  ident: bib57
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Transactions of the ASABE
– volume: 4
  start-page: 163
  year: 2013
  end-page: 171
  ident: bib56
  article-title: Design of alluvial Egyptian irrigation canals using artificial neural networks method
  publication-title: Ain Shams Engineering Journal
– volume: 31
  start-page: 2705
  year: 2017
  end-page: 2718
  ident: bib12
  article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 121
  start-page: 312
  year: 1995
  end-page: 325
  ident: bib44
  article-title: Alluvial channel geometry: theory and applications
  publication-title: J. Hydraul. Eng.
– volume: 11
  start-page: 282
  year: 2018
  end-page: 295
  ident: bib61
  article-title: A locally weighted learning method based on a data gravitation model for multi-target regression
  publication-title: Int. J. Comput. Intell. Syst.
– year: 2009
  ident: bib45
  article-title: Application of artificial neural networks in establishing regime channel relationships
  publication-title: 2009 2nd International Conference on Computer, Control and Communication
– volume: 585
  start-page: 124774
  year: 2020
  ident: bib47
  article-title: Bedload transport rate prediction: application of novel hybrid data mining techniques
  publication-title: J. Hydrol.
– volume: 203
  start-page: 810
  year: 2018
  end-page: 821
  ident: bib5
  article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees
  publication-title: J. Clean. Prod.
– volume: 58
  start-page: 441
  year: 2017
  end-page: 448
  ident: bib66
  article-title: Estimating the shear stress distribution in circular channels based on the randomized neural network technique
  publication-title: Appl. Soft Comput.
– volume: 715
  start-page: 136836
  year: 2020
  ident: bib17
  article-title: Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm
  publication-title: Sci. Total Environ.
– volume: 23
  start-page: 865
  year: 1998
  end-page: 876
  ident: bib43
  article-title: The influence of bank strength on channel geometry: an integrated analysis of some observations
  publication-title: Earth Surf. Process. Landforms
– volume: 64
  start-page: 207
  year: 2005
  end-page: 220
  ident: bib54
  article-title: Theoretical regime equations for mobile gravel-bed rivers with stable banks
  publication-title: Geomorphology
– volume: 9
  start-page: 782
  year: 2017
  ident: bib11
  article-title: Streamflow and sediment yield prediction for watershed prioritization in the upper Blue Nile river basin, Ethiopia
  publication-title: Water
– volume: 20
  start-page: 325
  year: 2016
  end-page: 342
  ident: bib79
  article-title: A modified ant colony optimization algorithm for network coding resource minimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2016
  ident: bib81
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 112
  year: 2007
  ident: bib60
  article-title: Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers
  publication-title: J. Geophys. Res.: Earth Surf.
– volume: 10
  start-page: 1
  year: 1986
  end-page: 31
  ident: bib30
  article-title: Hydraulics and hydraulic geometry
  publication-title: Prog. Phys. Geogr.
– volume: 17
  start-page: 114
  year: 2015
  end-page: 129
  ident: bib6
  article-title: Input selection for long-lead precipitation prediction using large-scale climate variables: a case study
  publication-title: J. Hydroinf.
– volume: 9
  year: 2019
  ident: bib84
  article-title: Can decomposition approaches always enhance soft computing models? Predicting the dissolved oxygen concentration in the St. Johns River, Florida
  publication-title: Appl. Sci.
– volume: 11
  start-page: 11
  year: 1997
  end-page: 73
  ident: bib10
  article-title: Locally weighted learning
  publication-title: Artif. Intell. Rev.
– volume: 14
  start-page: 339
  year: 2020
  end-page: 350
  ident: bib64
  article-title: Predicting Standardized Streamflow index for hydrological drought using machine learning models
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 615
  start-page: 272
  year: 2018
  end-page: 281
  ident: bib22
  article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques
  publication-title: Sci. Total Environ.
– volume: 108
  start-page: 1179
  year: 1982
  end-page: 1193
  ident: bib80
  article-title: Analytical approach to river regime
  publication-title: J. Hydraul. Div.
– volume: 87
  start-page: 109
  year: 1961
  end-page: 138
  ident: bib39
  article-title: Stability of alluvial channels
  publication-title: J. Hydraul. Div.
– volume: 36
  start-page: 111
  year: 1974
  end-page: 147
  ident: bib73
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. Roy. Stat. Soc.
– start-page: 108
  year: 1995
  end-page: 114
  ident: bib23
  article-title: K*: an instance-based learner using an entropic distance measure
  publication-title: Machine Learning Proceedings
– volume: 18
  year: 1997
  ident: bib28
  article-title: Machine learning research_ four current directions
  publication-title: AI Mag.
– year: 2001
  ident: bib7
  article-title: The Development of Self-Organization Techniques in Modelling: a Review of the Group Method of Data Handling (GMDH)
– volume: 167
  year: 2019
  ident: bib48
  article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: a case study in Iraq
  publication-title: Comput. Electron. Agric.
– volume: 59
  start-page: 142
  year: 2015
  end-page: 151
  ident: bib55
  article-title: Rainfall monthly prediction based on artificial neural network: a case study in tenggarong station, east kalimantan - Indonesia
  publication-title: Procedia Computer Science
– volume: 9
  start-page: 333
  year: 2012
  end-page: 342
  ident: bib75
  article-title: An evaluation model of artificial neural network to predict stable width in gravel bed rivers
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 567
  start-page: 165
  year: 2018
  end-page: 179
  ident: bib49
  article-title: Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile
  publication-title: J. Hydrol.
– volume: 62
  start-page: 3218
  year: 2013
  end-page: 3230
  ident: bib83
  article-title: Target position estimation by genetic expression programming for mobile robots with vision sensors
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 70
  start-page: 399
  year: 2014
  end-page: 408
  ident: bib24
  article-title: Using artificial neural network models to assess water quality in water distribution networks
  publication-title: Procedia Engineering
– volume: 113
  start-page: 1359
  year: 1987
  end-page: 1380
  ident: bib71
  article-title: Critique of the regime theory for alluvial channels
  publication-title: J. Hydraul. Eng.
– volume: 721
  year: 2020
  ident: bib19
  article-title: Improving prediction of water quality indices using novel hybrid machine-learning algorithms
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 617
  year: 1994
  end-page: 629
  ident: bib59
  article-title: Voting algorithms
  publication-title: IEEE Trans. Reliab.
– volume: 15
  start-page: 296
  year: 2018
  end-page: 302
  ident: bib78
  article-title: Influence of bed deposit in the prediction of incipient sediment motion in sewers using artificial neural networks
  publication-title: Urban Water J.
– volume: 157
  start-page: 310
  year: 2017
  end-page: 324
  ident: bib21
  article-title: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling
  publication-title: Catena
– volume: 30
  start-page: 730
  year: 2019
  end-page: 745
  ident: bib74
  article-title: Sinkhole susceptibility mapping: a comparison between Bayes-based machine learning algorithms
  publication-title: Land Degrad. Dev.
– volume: 37
  start-page: 881
  year: 2001
  end-page: 888
  ident: bib9
  article-title: Incorporation of experience in iterative learning controllers using locally weighted learning
  publication-title: Automatica
– volume: 8
  start-page: 120
  year: 1993
  end-page: 129
  ident: bib38
  article-title: Local regression: automatic kernel carpentry
  publication-title: Stat. Sci.
– volume: 15
  start-page: 859
  year: 2010
  end-page: 864
  ident: bib3
  article-title: Hydraulic geometry relations for stable channel design
  publication-title: J. Hydrol. Eng.
– start-page: 51
  year: 1957
  ident: bib52
  article-title: River Channel Patterns: Braided, Meandering, and Straight
– start-page: 141
  year: 1957
  ident: bib50
  article-title: A Study of the Shape of Channels Formed by Natural Streams Flowing in Erodible Material
– volume: 10
  year: 2018
  ident: bib18
  article-title: New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling
  publication-title: Water
– year: 2019
  ident: bib46
  article-title: Stochastic Modeling of Groundwater Fluoride Contamination: Introducing Lazy Learners.
– volume: 10
  start-page: 1040
  year: 1982
  end-page: 1053
  ident: bib72
  article-title: Optimal global rates of convergence for nonparametric regression
  publication-title: Ann. Stat.
– volume: 137
  start-page: 894
  year: 2011
  end-page: 910
  ident: bib25
  article-title: Regime equations for natural meandering cobble- and gravel-bed rivers
  publication-title: J. Hydraul. Eng.
– volume: 13
  start-page: 87
  year: 2001
  end-page: 129
  ident: bib31
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– year: 1998
  ident: bib62
  article-title: Multi-objective Optimisation of Polynomial Models for Time Series Prediction Using Genetic Algorithms and Neural Networks
– start-page: 517
  year: 1982
  end-page: 552
  ident: bib16
  article-title: Regime equations for gravel-bed rivers
  publication-title: Gravel Bed Rivers: Fluvial Processes, Engineering and Management
– volume: 22
  start-page: 189
  year: 2008
  end-page: 215
  ident: bib69
  article-title: At-a-station hydraulic geometry relations, 1: theoretical development
  publication-title: Hydrol. Process.
– volume: 112
  start-page: 671
  year: 1986
  end-page: 689
  ident: bib40
  article-title: Stable channels with mobile gravel beds
  publication-title: J. Hydraul. Eng.
– volume: 112
  start-page: 671
  year: 1986
  end-page: 689
  ident: bib41
  article-title: Stable channels with mobile gravel beds
  publication-title: J. Hydraul. Eng.
– volume: 5828 LNAI
  start-page: 65
  year: 2009
  end-page: 81
  ident: bib33
  article-title: Conditional density estimation with class probability estimators
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– start-page: 873
  year: 1980
  end-page: 891
  ident: bib20
  article-title: Stable alluvial canal design
  publication-title: J. Hydraul. Div.
– volume: 55
  start-page: 505
  year: 2016
  end-page: 512
  ident: bib1
  article-title: Updated regime equations for alluvial Egyptian canals
  publication-title: Alexandria Engineering Journal
– volume: 15
  start-page: 1408
  year: 2013
  end-page: 1424
  ident: bib77
  article-title: A machine learning approach for estimation of shallow water depths from optical satellite images and sonar measurements
  publication-title: Journal of Hydroinformatics
– volume: 566
  start-page: 770
  year: 2018
  end-page: 782
  ident: bib63
  article-title: Stable alluvial channel design using evolutionary neural networks
  publication-title: J. Hydrol.
– volume: 117
  start-page: 383
  year: 1952
  end-page: 400
  ident: bib14
  article-title: Regime theory for self-formed sediment-bearing channels
  publication-title: Trans. Am. Soc. Civ. Eng.
– volume: Part F1288
  start-page: 847
  year: 2013
  end-page: 855
  ident: bib76
  article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms
  publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 25
  start-page: 921
  year: 2000
  end-page: 937
  ident: bib2
  article-title: The effect of riparian tree roots on the mass-stability of riverbanks
  publication-title: Earth Surf. Process. Landforms
– year: 1969
  ident: bib13
  article-title: Mobile-bed Fluviology
– volume: 14
  start-page: 1028
  year: 2009
  end-page: 1034
  ident: bib4
  article-title: Effect of nonuniformity of flow on hydraulic geometry relations
  publication-title: J. Hydrol. Eng.
– volume: 39
  start-page: 337
  year: 2015
  end-page: 360
  ident: bib37
  article-title: Hydraulic geometry of natural rivers: a review and future directions
  publication-title: Prog. Phys. Geogr.
– volume: 16
  start-page: 127
  year: 2002
  end-page: 142
  ident: bib70
  article-title: An attempt at using the entropy approach to predict the transverse distribution of boundary shear stress in open channel flow
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 35
  start-page: 951
  year: 1954
  end-page: 956
  ident: bib82
  article-title: A method of sampling coarse river‐bed material
  publication-title: Eos, Transactions American Geophysical Union
– volume: 8
  start-page: 292
  year: 2014
  end-page: 303
  ident: bib42
  article-title: Application of copula method and neural networks for predicting peak outflow from breached embankments
  publication-title: Journal of Hydro-Environment Research
– volume: 142
  year: 2016
  ident: bib58
  article-title: How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers?
  publication-title: J. Hydraul. Eng.
– volume: 112
  start-page: 3025
  year: 2007
  ident: bib29
  article-title: Predicting downstream hydraulic geometry: a test of rational regime theory
  publication-title: J. Geophys. Res.: Earth Surf.
– volume: 42
  start-page: 1460
  year: 2017
  end-page: 1471
  ident: bib35
  article-title: Developing an expert group method of data handling system for predicting the geometry of a stable channel with a gravel bed
  publication-title: Earth Surf. Process. Landforms
– volume: 16
  start-page: 127
  issue: 2
  year: 2002
  ident: 10.1016/j.envsoft.2021.105165_bib70
  article-title: An attempt at using the entropy approach to predict the transverse distribution of boundary shear stress in open channel flow
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-002-0088-2
– volume: 43
  start-page: 617
  issue: 4
  year: 1994
  ident: 10.1016/j.envsoft.2021.105165_bib59
  article-title: Voting algorithms
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/24.370218
– start-page: 141
  year: 1957
  ident: 10.1016/j.envsoft.2021.105165_bib50
– volume: 35
  start-page: 233
  issue: 1
  year: 1999
  ident: 10.1016/j.envsoft.2021.105165_bib51
  article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900018
– volume: 58
  start-page: 441
  year: 2017
  ident: 10.1016/j.envsoft.2021.105165_bib66
  article-title: Estimating the shear stress distribution in circular channels based on the randomized neural network technique
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.024
– volume: 30
  start-page: 730
  issue: 7
  year: 2019
  ident: 10.1016/j.envsoft.2021.105165_bib74
  article-title: Sinkhole susceptibility mapping: a comparison between Bayes-based machine learning algorithms
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3255
– volume: 9
  start-page: 333
  issue: 2
  year: 2012
  ident: 10.1016/j.envsoft.2021.105165_bib75
  article-title: An evaluation model of artificial neural network to predict stable width in gravel bed rivers
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-012-0036-8
– volume: 18
  issue: 4
  year: 1997
  ident: 10.1016/j.envsoft.2021.105165_bib28
  article-title: Machine learning research_ four current directions
  publication-title: AI Mag.
– volume: 15
  start-page: 859
  issue: 10
  year: 2010
  ident: 10.1016/j.envsoft.2021.105165_bib3
  article-title: Hydraulic geometry relations for stable channel design
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000260
– volume: 8
  start-page: 120
  issue: 2
  year: 1993
  ident: 10.1016/j.envsoft.2021.105165_bib38
  article-title: Local regression: automatic kernel carpentry
  publication-title: Stat. Sci.
– volume: 14
  start-page: 1028
  issue: 9
  year: 2009
  ident: 10.1016/j.envsoft.2021.105165_bib4
  article-title: Effect of nonuniformity of flow on hydraulic geometry relations
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000095
– volume: 20
  start-page: 1201
  issue: 5
  year: 2006
  ident: 10.1016/j.envsoft.2021.105165_bib8
  article-title: Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5932
– year: 2019
  ident: 10.1016/j.envsoft.2021.105165_bib46
– volume: 108
  start-page: 1179
  issue: 10
  year: 1982
  ident: 10.1016/j.envsoft.2021.105165_bib80
  article-title: Analytical approach to river regime
  publication-title: J. Hydraul. Div.
  doi: 10.1061/JYCEAJ.0005914
– volume: 37
  start-page: 881
  issue: 6
  year: 2001
  ident: 10.1016/j.envsoft.2021.105165_bib9
  article-title: Incorporation of experience in iterative learning controllers using locally weighted learning
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00030-9
– volume: 137
  start-page: 894
  issue: 9
  year: 2011
  ident: 10.1016/j.envsoft.2021.105165_bib25
  article-title: Regime equations for natural meandering cobble- and gravel-bed rivers
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000408
– volume: 22
  start-page: 189
  issue: 2
  year: 2008
  ident: 10.1016/j.envsoft.2021.105165_bib69
  article-title: At-a-station hydraulic geometry relations, 1: theoretical development
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6411
– volume: 31
  start-page: 2705
  issue: 10
  year: 2017
  ident: 10.1016/j.envsoft.2021.105165_bib12
  article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-016-1338-z
– volume: 10
  start-page: 1
  issue: 1
  year: 1986
  ident: 10.1016/j.envsoft.2021.105165_bib30
  article-title: Hydraulics and hydraulic geometry
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/030913338601000101
– volume: 167
  year: 2019
  ident: 10.1016/j.envsoft.2021.105165_bib48
  article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: a case study in Iraq
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105041
– volume: 9
  start-page: 782
  issue: 10
  year: 2017
  ident: 10.1016/j.envsoft.2021.105165_bib11
  article-title: Streamflow and sediment yield prediction for watershed prioritization in the upper Blue Nile river basin, Ethiopia
  publication-title: Water
  doi: 10.3390/w9100782
– year: 2014
  ident: 10.1016/j.envsoft.2021.105165_bib34
  article-title: Comparison of classification techniques for intrusion detection dataset using WEKA
  doi: 10.1109/ICRAIE.2014.6909184
– volume: 42
  start-page: 1460
  issue: 10
  year: 2017
  ident: 10.1016/j.envsoft.2021.105165_bib35
  article-title: Developing an expert group method of data handling system for predicting the geometry of a stable channel with a gravel bed
  publication-title: Earth Surf. Process. Landforms
  doi: 10.1002/esp.4104
– volume: 25
  start-page: 921
  issue: 9
  year: 2000
  ident: 10.1016/j.envsoft.2021.105165_bib2
  article-title: The effect of riparian tree roots on the mass-stability of riverbanks
  publication-title: Earth Surf. Process. Landforms
  doi: 10.1002/1096-9837(200008)25:9<921::AID-ESP93>3.0.CO;2-7
– volume: 15
  start-page: 1408
  year: 2013
  ident: 10.1016/j.envsoft.2021.105165_bib77
  article-title: A machine learning approach for estimation of shallow water depths from optical satellite images and sonar measurements
– volume: 117
  start-page: 383
  issue: 1
  year: 1952
  ident: 10.1016/j.envsoft.2021.105165_bib14
  article-title: Regime theory for self-formed sediment-bearing channels
  publication-title: Trans. Am. Soc. Civ. Eng.
  doi: 10.1061/TACEAT.0006641
– volume: 9
  issue: 12
  year: 2019
  ident: 10.1016/j.envsoft.2021.105165_bib84
  article-title: Can decomposition approaches always enhance soft computing models? Predicting the dissolved oxygen concentration in the St. Johns River, Florida
  publication-title: Appl. Sci.
  doi: 10.3390/app9122534
– volume: 342
  start-page: 3722
  year: 2009
  ident: 10.1016/j.envsoft.2021.105165_bib68
  article-title: Using HEC-RAS hydraulic design functions for geomorphic channel design and analysis
– volume: 39
  start-page: 337
  issue: 3
  year: 2015
  ident: 10.1016/j.envsoft.2021.105165_bib37
  article-title: Hydraulic geometry of natural rivers: a review and future directions
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133314567584
– year: 1969
  ident: 10.1016/j.envsoft.2021.105165_bib13
– volume: 50
  start-page: 885
  issue: 3
  year: 2007
  ident: 10.1016/j.envsoft.2021.105165_bib57
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Transactions of the ASABE
  doi: 10.13031/2013.23153
– volume: 112
  issue: 4
  year: 2007
  ident: 10.1016/j.envsoft.2021.105165_bib60
  article-title: Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers
  publication-title: J. Geophys. Res.: Earth Surf.
– volume: 21
  start-page: 798
  issue: 5
  year: 2019
  ident: 10.1016/j.envsoft.2021.105165_bib67
  article-title: Determination of compound channel apparent shear stress: application of novel data mining models
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2019.037
– volume: 142
  issue: 1
  year: 2016
  ident: 10.1016/j.envsoft.2021.105165_bib58
  article-title: How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers?
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0001062
– start-page: 389
  year: 2002
  ident: 10.1016/j.envsoft.2021.105165_bib32
  article-title: Genetic representation and genetic neutrality in gene expression programming
  publication-title: Adv. Complex Syst.
  doi: 10.1142/S0219525902000626
– volume: 112
  start-page: 671
  issue: 8
  year: 1986
  ident: 10.1016/j.envsoft.2021.105165_bib41
  article-title: Stable channels with mobile gravel beds
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(1986)112:8(671)
– volume: 10
  start-page: 1040
  year: 1982
  ident: 10.1016/j.envsoft.2021.105165_bib72
  article-title: Optimal global rates of convergence for nonparametric regression
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176345969
– volume: Part F1288
  start-page: 847
  year: 2013
  ident: 10.1016/j.envsoft.2021.105165_bib76
  article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms
– volume: 715
  start-page: 136836
  year: 2020
  ident: 10.1016/j.envsoft.2021.105165_bib17
  article-title: Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136836
– volume: 112
  start-page: 3025
  issue: 3
  year: 2007
  ident: 10.1016/j.envsoft.2021.105165_bib29
  article-title: Predicting downstream hydraulic geometry: a test of rational regime theory
  publication-title: J. Geophys. Res.: Earth Surf.
– volume: 106
  start-page: 873
  year: 1980
  ident: 10.1016/j.envsoft.2021.105165_bib20
  article-title: Stable alluvial canal design
  publication-title: J. Hydraul. Div.
  doi: 10.1061/JYCEAJ.0005429
– volume: 55
  start-page: 505
  issue: 1
  year: 2016
  ident: 10.1016/j.envsoft.2021.105165_bib1
  article-title: Updated regime equations for alluvial Egyptian canals
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2015.12.011
– volume: 17
  start-page: 114
  issue: 1
  year: 2015
  ident: 10.1016/j.envsoft.2021.105165_bib6
  article-title: Input selection for long-lead precipitation prediction using large-scale climate variables: a case study
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2014.138
– volume: 87
  start-page: 109
  issue: 6
  year: 1961
  ident: 10.1016/j.envsoft.2021.105165_bib39
  article-title: Stability of alluvial channels
  publication-title: J. Hydraul. Div.
  doi: 10.1061/JYCEAJ.0000653
– volume: 567
  start-page: 165
  year: 2018
  ident: 10.1016/j.envsoft.2021.105165_bib49
  article-title: Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.10.015
– volume: 32
  start-page: 575
  issue: 4
  year: 2017
  ident: 10.1016/j.envsoft.2021.105165_bib65
  article-title: An analysis of shear stress distribution in circular channels with sediment deposition based on Gene Expression Programming
  publication-title: Int. J. Sediment Res.
  doi: 10.1016/j.ijsrc.2017.04.004
– volume: 35
  start-page: 951
  issue: 6
  year: 1954
  ident: 10.1016/j.envsoft.2021.105165_bib82
  article-title: A method of sampling coarse river‐bed material
  publication-title: Eos, Transactions American Geophysical Union
  doi: 10.1029/TR035i006p00951
– volume: 11
  start-page: 282
  issue: 1
  year: 2018
  ident: 10.1016/j.envsoft.2021.105165_bib61
  article-title: A locally weighted learning method based on a data gravitation model for multi-target regression
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.11.1.22
– volume: 15
  start-page: 296
  issue: 4
  year: 2018
  ident: 10.1016/j.envsoft.2021.105165_bib78
  article-title: Influence of bed deposit in the prediction of incipient sediment motion in sewers using artificial neural networks
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2018.1455880
– volume: 203
  start-page: 810
  year: 2018
  ident: 10.1016/j.envsoft.2021.105165_bib5
  article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.207
– volume: 566
  start-page: 770
  year: 2018
  ident: 10.1016/j.envsoft.2021.105165_bib63
  article-title: Stable alluvial channel design using evolutionary neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.09.057
– year: 1998
  ident: 10.1016/j.envsoft.2021.105165_bib62
– year: 2009
  ident: 10.1016/j.envsoft.2021.105165_bib45
  article-title: Application of artificial neural networks in establishing regime channel relationships
– volume: 62
  start-page: 3218
  issue: 12
  year: 2013
  ident: 10.1016/j.envsoft.2021.105165_bib83
  article-title: Target position estimation by genetic expression programming for mobile robots with vision sensors
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2013.2272173
– volume: 721
  year: 2020
  ident: 10.1016/j.envsoft.2021.105165_bib19
  article-title: Improving prediction of water quality indices using novel hybrid machine-learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137612
– volume: 22
  start-page: 1034
  issue: 7
  year: 2007
  ident: 10.1016/j.envsoft.2021.105165_bib26
  article-title: HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2006.06.008
– volume: 2
  start-page: 90
  issue: 4
  year: 2013
  ident: 10.1016/j.envsoft.2021.105165_bib53
  article-title: Geomorphic channel design and analysis using HEC-RAS hydraulic design functions
  publication-title: J. Global Anal.
– volume: 39
  start-page: 481
  issue: 4
  year: 2012
  ident: 10.1016/j.envsoft.2021.105165_bib27
  article-title: Review and assessment of the theories of stable alluvial channel design
  publication-title: Water Resour.
  doi: 10.1134/S0097807812040033
– volume: 20
  start-page: 325
  issue: 3
  year: 2016
  ident: 10.1016/j.envsoft.2021.105165_bib79
  article-title: A modified ant colony optimization algorithm for network coding resource minimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2457437
– volume: 5828 LNAI
  start-page: 65
  year: 2009
  ident: 10.1016/j.envsoft.2021.105165_bib33
  article-title: Conditional density estimation with class probability estimators
– volume: 11
  start-page: 11
  issue: 1–5
  year: 1997
  ident: 10.1016/j.envsoft.2021.105165_bib10
  article-title: Locally weighted learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006559212014
– year: 1936
  ident: 10.1016/j.envsoft.2021.105165_bib15
  article-title: Silt movement and design of channels
– year: 2016
  ident: 10.1016/j.envsoft.2021.105165_bib81
– start-page: 108
  year: 1995
  ident: 10.1016/j.envsoft.2021.105165_bib23
  article-title: K*: an instance-based learner using an entropic distance measure
  publication-title: Machine Learning Proceedings
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  ident: 10.1016/j.envsoft.2021.105165_bib73
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. Roy. Stat. Soc.
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– year: 2001
  ident: 10.1016/j.envsoft.2021.105165_bib7
– volume: 64
  start-page: 207
  issue: 3–4
  year: 2005
  ident: 10.1016/j.envsoft.2021.105165_bib54
  article-title: Theoretical regime equations for mobile gravel-bed rivers with stable banks
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.07.001
– start-page: 51
  year: 1957
  ident: 10.1016/j.envsoft.2021.105165_bib52
– volume: 113
  start-page: 1359
  issue: 11
  year: 1987
  ident: 10.1016/j.envsoft.2021.105165_bib71
  article-title: Critique of the regime theory for alluvial channels
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(1987)113:11(1359)
– volume: 615
  start-page: 272
  year: 2018
  ident: 10.1016/j.envsoft.2021.105165_bib22
  article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.293
– volume: 112
  start-page: 671
  issue: 8
  year: 1986
  ident: 10.1016/j.envsoft.2021.105165_bib40
  article-title: Stable channels with mobile gravel beds
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(1986)112:8(671)
– volume: 157
  start-page: 310
  year: 2017
  ident: 10.1016/j.envsoft.2021.105165_bib21
  article-title: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling
  publication-title: Catena
  doi: 10.1016/j.catena.2017.05.034
– volume: 14
  start-page: 339
  issue: 1
  year: 2020
  ident: 10.1016/j.envsoft.2021.105165_bib64
  article-title: Predicting Standardized Streamflow index for hydrological drought using machine learning models
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2020.1715844
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  ident: 10.1016/j.envsoft.2021.105165_bib31
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– volume: 23
  start-page: 865
  issue: 10
  year: 1998
  ident: 10.1016/j.envsoft.2021.105165_bib43
  article-title: The influence of bank strength on channel geometry: an integrated analysis of some observations
  publication-title: Earth Surf. Process. Landforms
  doi: 10.1002/(SICI)1096-9837(199810)23:10<865::AID-ESP903>3.0.CO;2-3
– volume: 70
  start-page: 399
  year: 2014
  ident: 10.1016/j.envsoft.2021.105165_bib24
  article-title: Using artificial neural network models to assess water quality in water distribution networks
– start-page: 517
  year: 1982
  ident: 10.1016/j.envsoft.2021.105165_bib16
  article-title: Regime equations for gravel-bed rivers
– volume: 59
  start-page: 142
  year: 2015
  ident: 10.1016/j.envsoft.2021.105165_bib55
  article-title: Rainfall monthly prediction based on artificial neural network: a case study in tenggarong station, east kalimantan - Indonesia
– volume: 121
  start-page: 312
  issue: 4
  year: 1995
  ident: 10.1016/j.envsoft.2021.105165_bib44
  article-title: Alluvial channel geometry: theory and applications
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(1995)121:4(312)
– volume: 4
  start-page: 163
  issue: 2
  year: 2013
  ident: 10.1016/j.envsoft.2021.105165_bib56
  article-title: Design of alluvial Egyptian irrigation canals using artificial neural networks method
  publication-title: Ain Shams Engineering Journal
  doi: 10.1016/j.asej.2012.08.009
– volume: 27
  start-page: 294
  year: 2006
  ident: 10.1016/j.envsoft.2021.105165_bib36
  article-title: Random forests for land cover classification
– volume: 8
  start-page: 292
  issue: 3
  year: 2014
  ident: 10.1016/j.envsoft.2021.105165_bib42
  article-title: Application of copula method and neural networks for predicting peak outflow from breached embankments
  publication-title: Journal of Hydro-Environment Research
  doi: 10.1016/j.jher.2013.11.004
– volume: 585
  start-page: 124774
  year: 2020
  ident: 10.1016/j.envsoft.2021.105165_bib47
  article-title: Bedload transport rate prediction: application of novel hybrid data mining techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124774
– volume: 10
  issue: 9
  year: 2018
  ident: 10.1016/j.envsoft.2021.105165_bib18
  article-title: New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling
  publication-title: Water
SSID ssj0001524
Score 2.4169705
Snippet Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105165
SubjectTerms Algorithms
Artificial intelligence
Catchments
Classifiers (sedimentation)
computer software
Data mining
Developing countries
Empirical equations
Geometry
Gravel
Gravel-bed rivers
Hydraulic geometry
Hydraulics
LDCs
Learning algorithms
Machine learning
Mathematical models
Modelling
Parameters
Performance prediction
prediction
Predictions
River engineering
Rivers
sediments
Sensitivity analysis
Stable channels
Water depth
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgjxwKAwUTSQkXhc0jqJ7YS3CnWaeJj2QKXxFNmOvW6kyZQPUPnrOTdJVyGksefc5cs_3_1Ovg-AT2xmecas9qwJhBdJjFnjjGaeVIoGgnOJdtllW1zw82X09YpdHUAw1MLsnd-jM47CqZLtSra11w55CtI0foQ8_Qkccob8ewSHy4vL-feuwCry4m7MDo1F6HER8Puynemtb4qfNZo3jAsD6kbcUudU_u2Q9gjns7a4k5tfMs_3fM_ZUVcPWG9bFrqUkx9-2yhf__6roePjPuslvOipKJl32HkFB6YYw9Ew5oH0u34MTxfbztabMTzf6144huPFfZEc3qeXr19DeVm54x-XUE2QfKrckO2Uo9xTJiOVexWy2mSVbPMbTa5NuTZNtflM5gR5b0NKS4oSpU_JkKBwiuKusoy4fFay3s60IDK_LqubZrWu38DybPHty7nXD3bwdERF44nQJkkW8MDGs4xrKqjWgQ6RfHGWWUsNYsQmIlEstkqLWayZVAwDTyoypq0Nj2FUlIV5CyTBCM9RysTOZKQliyWKJIlQzD1DJhOIhtVNdd_13A3fyNMhve027UGROlCkHSgm4O_U7rq2Hw8pxAN00p67dJwkxaV_SPVkgFraG5A6DRhS4xj_AZ3Ax91l3PruPEcWpmxRhoccBdDiTmC6g-j_ve-7R2ucwKipWvMeOVijPvSb7g-P4TNk
  priority: 102
  providerName: Unpaywall
Title Predicting stable gravel-bed river hydraulic geometry: A test of novel, advanced, hybrid data mining algorithms
URI https://dx.doi.org/10.1016/j.envsoft.2021.105165
https://www.proquest.com/docview/2583589791
https://www.proquest.com/docview/2636791870
https://doi.org/10.25643/bauhaus-universitaet.4499
UnpaywallVersion submittedVersion
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1873-6726
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1873-6726
  databaseCode: ACRLP
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1873-6726
  databaseCode: AIKHN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1873-6726
  databaseCode: .~1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1873-6726
  databaseCode: AKRWK
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5Kx9j2sB_ZyrJ1RYM91klkW5K9t1BSsg1CYQt0T0aWpTbFsYPjbORlf_tOtpxkMOjYk7F9soVOOt2h7-4D-MBGhmfMKM9oX3ihxJg1ymjmyTSlvuBcol22aIsZn87Dz9fs-gguulwYC6t0tr-16Y21dk-GbjSHq8Vi-JUG3FYa8X3aMk3aDPZQWBaDwa89zAMFWmJbHnpWep_FM7wb6OLHGq0dhok-tYy31O4xf9-fDvzPR5tiJbc_ZZ4fbEWXz-Gp8yHJuO3mCzjSRQ-edfwMxC3XHjycNCWptz14clB2sAcnk312G37Hya9fQnlV2XMbi4Qm6DWmuSYNPVHupTojlYVwkNttVslNvlDkRpdLXVfbj2RM0GGtSWlIUaL0OemQBecoblPCiAWikmVDRkFkflNWi_p2uX4F88vJt4up5xgZPBVSUXsiMHGc-dw30SjjigqqlK8C9Jo4y4yhGpVrYhGnLDKpEqNIMZkyjBipyJgyJjiB46Is9GsgMYZm1heMzUiGSrJIokgci5TZf8i4D2Gnh0S5cuWWNSNPOlzaXeLUl1j1Ja36-jDYNVu19TruaxB1Sk7-mHgJ7in3NT3tJkXiVv468Rn6tBGOAe3D-91rXLP2IEYWutygDA84CqCp7MNwN5n-rb9v_r-_b-GxvWuhiKdwXFcb_Q5dqjo9a9bMGTwYf_oyneF1Prsaf_8N8_Ujxg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NITR44EdhojDASDwuTZ3GTsLbNHUqMCYkNmlvluPYW6c0qdJ0U1_42zknTlskpCFek3Ni-Xzn7-Tv7gA-saHhGTPKMzqIvFBizBpnNPNkmtIg4lyiX7ZsizM-uQi_XrLLHTjucmEsrdL5_tanN97aPfHdavrz6dT_SUfcVhoJAtp2mnwAD0MWRDYCG_za8DxQou1sy0PPim_SePybgS5uF-juME4MqG15S-0h8_cDaguA7i2LuVzdyTzfOotOnsNTByLJUTvPF7Cjix486xo0EGevPXg0bmpSr3rwZKvuYA_2x5v0NvyOk1-8hPJHZS9uLBWaIGxMc02a_kS5l-qMVJbDQa5XWSWX-VSRK13OdF2tPpMjgoi1JqUhRYnSh6SjFhyiuM0JI5aJSmZNNwoi86uymtbXs8UruDgZnx9PPNeSwVMhjWovGpkkyQIemHiYcUUjqlSgRgibOMuMoRq1a5IoSVlsUhUNY8VkyjBkpFHGlDGjfdgtykK_BpJgbGbBYGKGMlSSxRJFkiRKmf2HTPoQdnoQytUrt20zctER026EU5-w6hOt-vowWA-btwU77hsQd0oWf-w8gYfKfUMPuk0hnOkvRMAQ1Ma4BrQPH9ev0WjtTYwsdLlEGT7iKIC-sg_-ejP923zf_P98P8De5Pz7qTj9cvbtLTy2b1pe4gHs1tVSv0N8VafvG_v5DVs2I6s
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgjxwKAwUTSQkXhc0jqJ7YS3CnWaeJj2QKXxFNmOvW6kyZQPUPnrOTdJVyGksefc5cs_3_1Ovg-AT2xmecas9qwJhBdJjFnjjGaeVIoGgnOJdtllW1zw82X09YpdHUAw1MLsnd-jM47CqZLtSra11w55CtI0foQ8_Qkccob8ewSHy4vL-feuwCry4m7MDo1F6HER8Puynemtb4qfNZo3jAsD6kbcUudU_u2Q9gjns7a4k5tfMs_3fM_ZUVcPWG9bFrqUkx9-2yhf__6roePjPuslvOipKJl32HkFB6YYw9Ew5oH0u34MTxfbztabMTzf6144huPFfZEc3qeXr19DeVm54x-XUE2QfKrckO2Uo9xTJiOVexWy2mSVbPMbTa5NuTZNtflM5gR5b0NKS4oSpU_JkKBwiuKusoy4fFay3s60IDK_LqubZrWu38DybPHty7nXD3bwdERF44nQJkkW8MDGs4xrKqjWgQ6RfHGWWUsNYsQmIlEstkqLWayZVAwDTyoypq0Nj2FUlIV5CyTBCM9RysTOZKQliyWKJIlQzD1DJhOIhtVNdd_13A3fyNMhve027UGROlCkHSgm4O_U7rq2Hw8pxAN00p67dJwkxaV_SPVkgFraG5A6DRhS4xj_AZ3Ax91l3PruPEcWpmxRhoccBdDiTmC6g-j_ve-7R2ucwKipWvMeOVijPvSb7g-P4TNk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+stable+gravel-bed+river+hydraulic+geometry%3A+A+test+of+novel%2C+advanced%2C+hybrid+data+mining+algorithms&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Khosravi%2C+Khabat&rft.au=Sheikh+Khozani%2C+Zohreh&rft.au=Cooper%2C+James+R&rft.date=2021-10-01&rft.issn=1364-8152&rft.volume=144+p.105165-&rft_id=info:doi/10.1016%2Fj.envsoft.2021.105165&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon