Predicting stable gravel-bed river hydraulic geometry: A test of novel, advanced, hybrid data mining algorithms
Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical topics in the field of river engineering. Data mining algorithms have been gaining more attention in this field due to their high performance an...
Saved in:
| Published in | Environmental modelling & software : with environment data news Vol. 144; p. 105165 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.10.2021
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1364-8152 1873-6726 1873-6726 |
| DOI | 10.1016/j.envsoft.2021.105165 |
Cover
| Abstract | Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical topics in the field of river engineering. Data mining algorithms have been gaining more attention in this field due to their high performance and flexibility. However, an understanding of the potential for these algorithms to provide fast, cheap, and accurate predictions of hydraulic geometry is lacking. This study provides the first quantification of this potential. Using at-a-station field data, predictions of flow depth, water-surface width and longitudinal water surface slope are made using three standalone data mining techniques -, Instance-based Learning (IBK), KStar, Locally Weighted Learning (LWL) - along with four types of novel hybrid algorithms in which the standalone models are trained with Vote, Attribute Selected Classifier (ASC), Regression by Discretization (RBD), and Cross-validation Parameter Selection (CVPS) algorithms (Vote-IBK, Vote-Kstar, Vote-LWL, ASC-IBK, ASC-Kstar, ASC-LWL, RBD-IBK, RBD-Kstar, RBD-LWL, CVPS-IBK, CVPS-Kstar, CVPS-LWL). Through a comparison of their predictive performance and a sensitivity analysis of the driving variables, the results reveal: (1) Shield stress was the most effective parameter in the prediction of all geometry dimensions; (2) hybrid models had a higher prediction power than standalone data mining models, empirical equations and traditional machine learning algorithms; (3) Vote-Kstar model had the highest performance in predicting depth and width, and ASC-Kstar in estimating slope, each providing very good prediction performance. Through these algorithms, the hydraulic geometry of any river can potentially be predicted accurately and with ease using just a few, readily available flow and channel parameters. Thus, the results reveal that these models have great potential for use in stable channel design in data poor catchments, especially in developing nations where technical modelling skills and understanding of the hydraulic and sediment processes occurring in the river system may be lacking.
•The data mining algorithms is provided to predict stable channel geometry.•Predictions were made using standalone and novel hybrid datamining models.•A comparison was made of the predictive power of these data-driven models, and a sensitivity analysis of three driving variables was performed.•The developed hybrid models had a higher performance than empirical and traditional models extended by other researchers. |
|---|---|
| AbstractList | Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical topics in the field of river engineering. Data mining algorithms have been gaining more attention in this field due to their high performance and flexibility. However, an understanding of the potential for these algorithms to provide fast, cheap, and accurate predictions of hydraulic geometry is lacking. This study provides the first quantification of this potential. Using at-a-station field data, predictions of flow depth, water-surface width and longitudinal water surface slope are made using three standalone data mining techniques -, Instance-based Learning (IBK), KStar, Locally Weighted Learning (LWL) - along with four types of novel hybrid algorithms in which the standalone models are trained with Vote, Attribute Selected Classifier (ASC), Regression by Discretization (RBD), and Cross-validation Parameter Selection (CVPS) algorithms (Vote-IBK, Vote-Kstar, Vote-LWL, ASC-IBK, ASC-Kstar, ASC-LWL, RBD-IBK, RBD-Kstar, RBD-LWL, CVPS-IBK, CVPS-Kstar, CVPS-LWL). Through a comparison of their predictive performance and a sensitivity analysis of the driving variables, the results reveal: (1) Shield stress was the most effective parameter in the prediction of all geometry dimensions; (2) hybrid models had a higher prediction power than standalone data mining models, empirical equations and traditional machine learning algorithms; (3) Vote-Kstar model had the highest performance in predicting depth and width, and ASC-Kstar in estimating slope, each providing very good prediction performance. Through these algorithms, the hydraulic geometry of any river can potentially be predicted accurately and with ease using just a few, readily available flow and channel parameters. Thus, the results reveal that these models have great potential for use in stable channel design in data poor catchments, especially in developing nations where technical modelling skills and understanding of the hydraulic and sediment processes occurring in the river system may be lacking. Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical topics in the field of river engineering. Data mining algorithms have been gaining more attention in this field due to their high performance and flexibility. However, an understanding of the potential for these algorithms to provide fast, cheap, and accurate predictions of hydraulic geometry is lacking. This study provides the first quantification of this potential. Using at-a-station field data, predictions of flow depth, water-surface width and longitudinal water surface slope are made using three standalone data mining techniques -, Instance-based Learning (IBK), KStar, Locally Weighted Learning (LWL) - along with four types of novel hybrid algorithms in which the standalone models are trained with Vote, Attribute Selected Classifier (ASC), Regression by Discretization (RBD), and Cross-validation Parameter Selection (CVPS) algorithms (Vote-IBK, Vote-Kstar, Vote-LWL, ASC-IBK, ASC-Kstar, ASC-LWL, RBD-IBK, RBD-Kstar, RBD-LWL, CVPS-IBK, CVPS-Kstar, CVPS-LWL). Through a comparison of their predictive performance and a sensitivity analysis of the driving variables, the results reveal: (1) Shield stress was the most effective parameter in the prediction of all geometry dimensions; (2) hybrid models had a higher prediction power than standalone data mining models, empirical equations and traditional machine learning algorithms; (3) Vote-Kstar model had the highest performance in predicting depth and width, and ASC-Kstar in estimating slope, each providing very good prediction performance. Through these algorithms, the hydraulic geometry of any river can potentially be predicted accurately and with ease using just a few, readily available flow and channel parameters. Thus, the results reveal that these models have great potential for use in stable channel design in data poor catchments, especially in developing nations where technical modelling skills and understanding of the hydraulic and sediment processes occurring in the river system may be lacking. •The data mining algorithms is provided to predict stable channel geometry.•Predictions were made using standalone and novel hybrid datamining models.•A comparison was made of the predictive power of these data-driven models, and a sensitivity analysis of three driving variables was performed.•The developed hybrid models had a higher performance than empirical and traditional models extended by other researchers. |
| ArticleNumber | 105165 |
| Author | Sheikh Khozani, Zohreh Cooper, James R. Khosravi, Khabat |
| Author_xml | – sequence: 1 givenname: Khabat surname: Khosravi fullname: Khosravi, Khabat email: Khabat.khosravi@gmail.com organization: - Department of Watershed Management Engineering, Ferdowsi University of Mashhad, Mashhad, Iran – sequence: 2 givenname: Zohreh surname: Sheikh Khozani fullname: Sheikh Khozani, Zohreh email: zohreh.khozani.sheikh@uni-weimar.de organization: - Institute of Structural Mechanics, Bauhaus Universität Weimar, 99423, Weimar, Germany – sequence: 3 givenname: James R. surname: Cooper fullname: Cooper, James R. email: James.Cooper@liverpool.ac.uk organization: - Department of Geography and Planning, University of Liverpool, Liverpool, UK |
| BookMark | eNqNkUFrHSEUhYeSQpO0P6EgdNNF5lWdp860ixJCkxYC7aJdi6PXFx-Ovqoz4f37-pissklXXuQ7h3vOvWjOQgzQNO8J3hBM-Kf9BsKSoy0biimpf4xw9qo5J73oWi4oP6tzx7dtTxh901zkvMcY13l73sRfCYzTxYUdykWNHtAuqQV8O4JByS2Q0MPRJDV7p9EO4gQlHT-ja1QgFxQtCrHSV0iZRQUN5qriY3IGGVUUmlw4OSu_i8mVhym_bV5b5TO8e3ovmz-3337ffG_vf979uLm-b_WWiNKKzg6DoZzaHhuuiSBaU90xjjkz1hLgXNlBDCPr7agF7jVTIxOVE4Zpa7vLhq--czio46PyXh6Sm1Q6SoLlqTa5l0-1yVNtcq2tCj-uwkOKf-eaUU4ua_BeBYhzlpR3XAy1WlzRD8_QfZxTqLEkZX3H-rogqdSXldIp5pzASu2KKi6GkpTzL67Dnqn_N8bXVQe15MVBklk7OB3IJdBFmuhecPgHum68Ig |
| CitedBy_id | crossref_primary_10_3390_rs14133107 crossref_primary_10_3390_w15030419 crossref_primary_10_5194_esurf_12_367_2024 crossref_primary_10_1080_10106049_2022_2032388 crossref_primary_10_1016_j_eswa_2023_120885 crossref_primary_10_2166_hydro_2023_188 crossref_primary_10_1016_j_geomorph_2022_108254 crossref_primary_10_1007_s11600_022_00738_2 crossref_primary_10_1007_s40899_022_00700_6 crossref_primary_10_1186_s12302_024_00981_y |
| Cites_doi | 10.1007/s00477-002-0088-2 10.1109/24.370218 10.1029/1998WR900018 10.1016/j.asoc.2017.05.024 10.1002/ldr.3255 10.1007/s13762-012-0036-8 10.1061/(ASCE)HE.1943-5584.0000260 10.1061/(ASCE)HE.1943-5584.0000095 10.1002/hyp.5932 10.1061/JYCEAJ.0005914 10.1016/S0005-1098(01)00030-9 10.1061/(ASCE)HY.1943-7900.0000408 10.1002/hyp.6411 10.1007/s00477-016-1338-z 10.1177/030913338601000101 10.1016/j.compag.2019.105041 10.3390/w9100782 10.1109/ICRAIE.2014.6909184 10.1002/esp.4104 10.1002/1096-9837(200008)25:9<921::AID-ESP93>3.0.CO;2-7 10.1061/TACEAT.0006641 10.3390/app9122534 10.1177/0309133314567584 10.13031/2013.23153 10.2166/hydro.2019.037 10.1061/(ASCE)HY.1943-7900.0001062 10.1142/S0219525902000626 10.1061/(ASCE)0733-9429(1986)112:8(671) 10.1214/aos/1176345969 10.1016/j.scitotenv.2020.136836 10.1061/JYCEAJ.0005429 10.1016/j.aej.2015.12.011 10.2166/hydro.2014.138 10.1061/JYCEAJ.0000653 10.1016/j.jhydrol.2018.10.015 10.1016/j.ijsrc.2017.04.004 10.1029/TR035i006p00951 10.2991/ijcis.11.1.22 10.1080/1573062X.2018.1455880 10.1016/j.jclepro.2018.08.207 10.1016/j.jhydrol.2018.09.057 10.1109/TIM.2013.2272173 10.1016/j.scitotenv.2020.137612 10.1016/j.envsoft.2006.06.008 10.1134/S0097807812040033 10.1109/TEVC.2015.2457437 10.1023/A:1006559212014 10.1111/j.2517-6161.1974.tb00994.x 10.1016/j.geomorph.2004.07.001 10.1061/(ASCE)0733-9429(1987)113:11(1359) 10.1016/j.scitotenv.2017.09.293 10.1016/j.catena.2017.05.034 10.1080/19942060.2020.1715844 10.1002/(SICI)1096-9837(199810)23:10<865::AID-ESP903>3.0.CO;2-3 10.1061/(ASCE)0733-9429(1995)121:4(312) 10.1016/j.asej.2012.08.009 10.1016/j.jher.2013.11.004 10.1016/j.jhydrol.2020.124774 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Oct 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Oct 2021 |
| DBID | AAYXX CITATION 7QH 7SC 7ST 7UA 8FD C1K FR3 JQ2 KR7 L7M L~C L~D SOI 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.envsoft.2021.105165 |
| DatabaseName | CrossRef Aqualine Computer and Information Systems Abstracts Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Aqualine Environment Abstracts Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Ecology Computer Science Environmental Sciences |
| EISSN | 1873-6726 |
| ExternalDocumentID | oai:www.db-thueringen.de:dbt_mods_00061182 10_1016_j_envsoft_2021_105165 S1364815221002085 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSJ SSV SSZ T5K UHS ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QH 7SC 7ST 7UA 8FD AGCQF C1K FR3 JQ2 KR7 L7M L~C L~D SOI 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c417t-73f99d262f80d6c171cc2c356065dff1e66af979b58fbc708c5ab571717d5cff3 |
| IEDL.DBID | .~1 |
| ISSN | 1364-8152 1873-6726 |
| IngestDate | Sun Oct 26 04:12:32 EDT 2025 Thu Oct 02 10:36:29 EDT 2025 Wed Aug 13 06:42:17 EDT 2025 Wed Oct 29 21:22:29 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Fri Feb 23 02:40:27 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Modelling Gravel-bed rivers Data mining Artificial intelligence Hydraulic geometry Machine learning |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-73f99d262f80d6c171cc2c356065dff1e66af979b58fbc708c5ab571717d5cff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.25643/bauhaus-universitaet.4499 |
| PQID | 2583589791 |
| PQPubID | 2047471 |
| ParticipantIDs | unpaywall_primary_10_1016_j_envsoft_2021_105165 proquest_miscellaneous_2636791870 proquest_journals_2583589791 crossref_citationtrail_10_1016_j_envsoft_2021_105165 crossref_primary_10_1016_j_envsoft_2021_105165 elsevier_sciencedirect_doi_10_1016_j_envsoft_2021_105165 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Environmental modelling & software : with environment data news |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Shelley, Parr (bib68) 2009; 342 Zounemat-Kermani, Seo, Kim, Ghorbani, Samadianfard, Naghshara (bib84) 2019; 9 Leopold, Wolman (bib52) 1957 Mohamed (bib56) 2013; 4 Ferreira (bib31) 2001; 13 Abdelhaleem, Amin, Ibraheem (bib1) 2016; 55 Gislason, Benediktsson, Sveinsson (bib36) 2006; 27 Hey, Thorne (bib41) 1986; 112 Wang, Xing, Li, Yang, Qu, Pan (bib79) 2016; 20 Stevens, Nordin (bib71) 1987; 113 Taheri, Shahabi, Chapi, Shirzadi, Gutiérrez, Khosravi (bib74) 2019; 30 Afzalimehr, Singh, Abdolhosseini (bib4) 2009; 14 Hooshyaripor, Tahershamsi, Golian (bib42) 2014; 8 Ayele, Teshale, Yu, Rutherfurd, Jeong (bib11) 2017; 9 Bui, Khosravi, Li, Shahabi, Panahi, Singh (bib18) 2018; 10 Barzegar, Asghari Moghaddam, Adamowski, Fijani (bib12) 2017; 31 Singh, Zhang (bib69) 2008; 22 Chang (bib20) 1980 Dawson, Abrahart, See (bib26) 2007; 22 Huang, Nanson (bib43) 1998; 23 Sheikh Khozani, Khosravi, Pham, Kløve, Wan Mohtar, Yaseen (bib67) 2019; 21 Bui, Khosravi, Tiefenbacher, Nguyen, Kazakis (bib19) 2020; 721 Chen, Panahi, Pourghasemi (bib21) 2017; 157 Atkeson, Moore, Schaal (bib10) 1997; 11 Shamshirband, Hashemi, Salimi, Samadianfard, Asadi, Shadkani (bib64) 2020; 14 Witten, Frank, Hall, Pal (bib81) 2016 Frank, Bouckaert (bib33) 2009; 5828 LNAI Hey, Thorne (bib40) 1986; 112 Choubin, Darabi, Rahmati, Sajedi-Hosseini, Kløve (bib22) 2018; 615 Bose (bib15) 1936 Antar, Elassiouti, Allam (bib8) 2006; 20 Julien, Wargadalam (bib44) 1995; 121 Parhami (bib59) 1994; 43 Parker, Wilcock, Paola, Dietrich, Pitlick (bib60) 2007; 112 Abernethy B (bib2) 2000; 25 Thornton, Hutter, Hoos, Leyton-Brown (bib76) 2013; Part F1288 Khosravi, Mao, Kisi, Yaseen, Shahid (bib49) 2018; 567 Robinson (bib62) 1998 Khosravi, Cooper, Daggupati, Thai Pham, Bui (bib47) 2020; 585 Lane (bib50) 1957 Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (bib57) 2007; 50 Blench (bib13) 1969 Garg, Khurana (bib34) 2014 Cleary, Trigg (bib23) 1995 Dietterich (bib28) 1997; 18 Wolman (bib82) 1954; 35 Deshpande, Kumar (bib27) 2012; 39 White (bib80) 1982; 108 Ferreira (bib32) 2002 Gholami, Bonakdari, Ebtehaj, Shaghaghi, Khoshbin (bib35) 2017; 42 Anastasakis, Mort (bib7) 2001 Davidson, Hey (bib25) 2011; 137 Tahershamsi, Majdzade Tabatabai, Shirkhani (bib75) 2012; 9 Hastie, Loader (bib38) 1993; 8 Ahmadi, Han, Lafdani, Moridi (bib6) 2015; 17 Gleason (bib37) 2015; 39 Shaghaghi, Bonakdari, Gholami, Kisi, Shiri, Binns, Gharabaghi (bib63) 2018; 566 Mehta, Yadav, Anal (bib53) 2013; 2 Stone (bib73) 1974; 36 Cuest Cordoba, Tuhovčák, Tauš (bib24) 2014; 70 Khosravi, Daggupati, Alami, Awadh, Ghareb, Panahi (bib48) 2019; 167 Blench (bib14) 1952; 117 Khosravi, Barzegar, Miraki, Adamowski, Daggupati, Alizadeh (bib46) 2019 Afzalimehr, Abdolhosseini, Singh (bib3) 2010; 15 Bray (bib16) 1982 Eaton, Church (bib29) 2007; 112 Ahmad, Reynolds, Rezgui (bib5) 2018; 203 Ferguson (bib30) 1986; 10 Mislan, Hardwinarto, Sumaryono, Aipassa (bib55) 2015; 59 Noori, Deng, Kiaghadi, Kachoosangi (bib58) 2016; 142 Stone (bib72) 1982; 10 Bui, Khosravi, Karimi, Busico, Khozani, Nguyen (bib17) 2020; 715 Khadangi, Madvar, Kiani (bib45) 2009 Sheikh Khozani, Bonakdari, Zaji (bib66) 2017; 58 Wan Mohtar, Afan, El-Shafie, Bong, Ab Ghani (bib78) 2018; 15 Reyes, Cano, Fardoun, Ventura (bib61) 2018; 11 Sheikh Khozani, Bonakdari, Ebtehaj (bib65) 2017; 32 Vojinovic, Abebe, Ranasinghe, Vacher, Martens, Mandl (bib77) 2013; 15 Wu, Lin, Wei, Cheng (bib83) 2013; 62 Arif, Ishihara, Inooka (bib9) 2001; 37 Henderson (bib39) 1961; 87 Legates, McCabe (bib51) 1999; 35 Millar (bib54) 2005; 64 Sterling, Knight (bib70) 2002; 16 Gleason (10.1016/j.envsoft.2021.105165_bib37) 2015; 39 Parker (10.1016/j.envsoft.2021.105165_bib60) 2007; 112 Robinson (10.1016/j.envsoft.2021.105165_bib62) 1998 Bui (10.1016/j.envsoft.2021.105165_bib19) 2020; 721 Henderson (10.1016/j.envsoft.2021.105165_bib39) 1961; 87 Arif (10.1016/j.envsoft.2021.105165_bib9) 2001; 37 Eaton (10.1016/j.envsoft.2021.105165_bib29) 2007; 112 Khosravi (10.1016/j.envsoft.2021.105165_bib46) 2019 Mehta (10.1016/j.envsoft.2021.105165_bib53) 2013; 2 Huang (10.1016/j.envsoft.2021.105165_bib43) 1998; 23 Lane (10.1016/j.envsoft.2021.105165_bib50) 1957 Zounemat-Kermani (10.1016/j.envsoft.2021.105165_bib84) 2019; 9 Sheikh Khozani (10.1016/j.envsoft.2021.105165_bib66) 2017; 58 Garg (10.1016/j.envsoft.2021.105165_bib34) 2014 Khosravi (10.1016/j.envsoft.2021.105165_bib49) 2018; 567 Thornton (10.1016/j.envsoft.2021.105165_bib76) 2013; Part F1288 Parhami (10.1016/j.envsoft.2021.105165_bib59) 1994; 43 Stevens (10.1016/j.envsoft.2021.105165_bib71) 1987; 113 Ahmad (10.1016/j.envsoft.2021.105165_bib5) 2018; 203 Noori (10.1016/j.envsoft.2021.105165_bib58) 2016; 142 Hey (10.1016/j.envsoft.2021.105165_bib40) 1986; 112 Stone (10.1016/j.envsoft.2021.105165_bib73) 1974; 36 Hey (10.1016/j.envsoft.2021.105165_bib41) 1986; 112 Dawson (10.1016/j.envsoft.2021.105165_bib26) 2007; 22 Abernethy B (10.1016/j.envsoft.2021.105165_bib2) 2000; 25 Julien (10.1016/j.envsoft.2021.105165_bib44) 1995; 121 Vojinovic (10.1016/j.envsoft.2021.105165_bib77) 2013; 15 Barzegar (10.1016/j.envsoft.2021.105165_bib12) 2017; 31 Shelley (10.1016/j.envsoft.2021.105165_bib68) 2009; 342 Afzalimehr (10.1016/j.envsoft.2021.105165_bib4) 2009; 14 Sterling (10.1016/j.envsoft.2021.105165_bib70) 2002; 16 Atkeson (10.1016/j.envsoft.2021.105165_bib10) 1997; 11 Ahmadi (10.1016/j.envsoft.2021.105165_bib6) 2015; 17 Ferreira (10.1016/j.envsoft.2021.105165_bib31) 2001; 13 Sheikh Khozani (10.1016/j.envsoft.2021.105165_bib67) 2019; 21 Khadangi (10.1016/j.envsoft.2021.105165_bib45) 2009 Bui (10.1016/j.envsoft.2021.105165_bib17) 2020; 715 Reyes (10.1016/j.envsoft.2021.105165_bib61) 2018; 11 Wolman (10.1016/j.envsoft.2021.105165_bib82) 1954; 35 Singh (10.1016/j.envsoft.2021.105165_bib69) 2008; 22 Deshpande (10.1016/j.envsoft.2021.105165_bib27) 2012; 39 Ferreira (10.1016/j.envsoft.2021.105165_bib32) 2002 Frank (10.1016/j.envsoft.2021.105165_bib33) 2009; 5828 LNAI Blench (10.1016/j.envsoft.2021.105165_bib13) 1969 Gislason (10.1016/j.envsoft.2021.105165_bib36) 2006; 27 Tahershamsi (10.1016/j.envsoft.2021.105165_bib75) 2012; 9 Millar (10.1016/j.envsoft.2021.105165_bib54) 2005; 64 Wan Mohtar (10.1016/j.envsoft.2021.105165_bib78) 2018; 15 Hastie (10.1016/j.envsoft.2021.105165_bib38) 1993; 8 Stone (10.1016/j.envsoft.2021.105165_bib72) 1982; 10 Blench (10.1016/j.envsoft.2021.105165_bib14) 1952; 117 Davidson (10.1016/j.envsoft.2021.105165_bib25) 2011; 137 Cleary (10.1016/j.envsoft.2021.105165_bib23) 1995 Moriasi (10.1016/j.envsoft.2021.105165_bib57) 2007; 50 Antar (10.1016/j.envsoft.2021.105165_bib8) 2006; 20 Choubin (10.1016/j.envsoft.2021.105165_bib22) 2018; 615 Gholami (10.1016/j.envsoft.2021.105165_bib35) 2017; 42 Sheikh Khozani (10.1016/j.envsoft.2021.105165_bib65) 2017; 32 Wang (10.1016/j.envsoft.2021.105165_bib79) 2016; 20 Hooshyaripor (10.1016/j.envsoft.2021.105165_bib42) 2014; 8 White (10.1016/j.envsoft.2021.105165_bib80) 1982; 108 Khosravi (10.1016/j.envsoft.2021.105165_bib48) 2019; 167 Anastasakis (10.1016/j.envsoft.2021.105165_bib7) 2001 Ferguson (10.1016/j.envsoft.2021.105165_bib30) 1986; 10 Legates (10.1016/j.envsoft.2021.105165_bib51) 1999; 35 Chang (10.1016/j.envsoft.2021.105165_bib20) 1980; 106 Ayele (10.1016/j.envsoft.2021.105165_bib11) 2017; 9 Khosravi (10.1016/j.envsoft.2021.105165_bib47) 2020; 585 Shaghaghi (10.1016/j.envsoft.2021.105165_bib63) 2018; 566 Dietterich (10.1016/j.envsoft.2021.105165_bib28) 1997; 18 Cuest Cordoba (10.1016/j.envsoft.2021.105165_bib24) 2014; 70 Bray (10.1016/j.envsoft.2021.105165_bib16) 1982 Abdelhaleem (10.1016/j.envsoft.2021.105165_bib1) 2016; 55 Leopold (10.1016/j.envsoft.2021.105165_bib52) 1957 Mislan (10.1016/j.envsoft.2021.105165_bib55) 2015; 59 Chen (10.1016/j.envsoft.2021.105165_bib21) 2017; 157 Mohamed (10.1016/j.envsoft.2021.105165_bib56) 2013; 4 Shamshirband (10.1016/j.envsoft.2021.105165_bib64) 2020; 14 Afzalimehr (10.1016/j.envsoft.2021.105165_bib3) 2010; 15 Taheri (10.1016/j.envsoft.2021.105165_bib74) 2019; 30 Witten (10.1016/j.envsoft.2021.105165_bib81) 2016 Wu (10.1016/j.envsoft.2021.105165_bib83) 2013; 62 Bose (10.1016/j.envsoft.2021.105165_bib15) 1936 Bui (10.1016/j.envsoft.2021.105165_bib18) 2018; 10 |
| References_xml | – start-page: 389 year: 2002 end-page: 408 ident: bib32 article-title: Genetic representation and genetic neutrality in gene expression programming publication-title: Adv. Complex Syst. – volume: 32 start-page: 575 year: 2017 end-page: 584 ident: bib65 article-title: An analysis of shear stress distribution in circular channels with sediment deposition based on Gene Expression Programming publication-title: Int. J. Sediment Res. – volume: 2 start-page: 90 year: 2013 end-page: 93 ident: bib53 article-title: Geomorphic channel design and analysis using HEC-RAS hydraulic design functions publication-title: J. Global Anal. – year: 2014 ident: bib34 article-title: Comparison of classification techniques for intrusion detection dataset using WEKA publication-title: International Conference on Recent Advances and Innovations in Engineering – volume: 27 start-page: 294 year: 2006 end-page: 300 ident: bib36 article-title: Random forests for land cover classification publication-title: Pattern Recognition Letters – volume: 20 start-page: 1201 year: 2006 end-page: 1216 ident: bib8 article-title: Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study publication-title: Hydrol. Process. – volume: 21 start-page: 798 year: 2019 end-page: 811 ident: bib67 article-title: Determination of compound channel apparent shear stress: application of novel data mining models publication-title: J. Hydroinf. – volume: 342 start-page: 3722 year: 2009 end-page: 3731 ident: bib68 article-title: Using HEC-RAS hydraulic design functions for geomorphic channel design and analysis publication-title: Proceedings of World Environmental and Water Resources Congress 2009 - World Environmental and Water Resources Congress 2009: Great Rivers – year: 1936 ident: bib15 article-title: Silt movement and design of channels publication-title: Punjab Eng Congr. Punjab – volume: 35 start-page: 233 year: 1999 end-page: 241 ident: bib51 article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. – volume: 39 start-page: 481 year: 2012 end-page: 487 ident: bib27 article-title: Review and assessment of the theories of stable alluvial channel design publication-title: Water Resour. – volume: 22 start-page: 1034 year: 2007 end-page: 1052 ident: bib26 article-title: HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts publication-title: Environ. Model. Software – volume: 50 start-page: 885 year: 2007 end-page: 900 ident: bib57 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Transactions of the ASABE – volume: 4 start-page: 163 year: 2013 end-page: 171 ident: bib56 article-title: Design of alluvial Egyptian irrigation canals using artificial neural networks method publication-title: Ain Shams Engineering Journal – volume: 31 start-page: 2705 year: 2017 end-page: 2718 ident: bib12 article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater publication-title: Stoch. Environ. Res. Risk Assess. – volume: 121 start-page: 312 year: 1995 end-page: 325 ident: bib44 article-title: Alluvial channel geometry: theory and applications publication-title: J. Hydraul. Eng. – volume: 11 start-page: 282 year: 2018 end-page: 295 ident: bib61 article-title: A locally weighted learning method based on a data gravitation model for multi-target regression publication-title: Int. J. Comput. Intell. Syst. – year: 2009 ident: bib45 article-title: Application of artificial neural networks in establishing regime channel relationships publication-title: 2009 2nd International Conference on Computer, Control and Communication – volume: 585 start-page: 124774 year: 2020 ident: bib47 article-title: Bedload transport rate prediction: application of novel hybrid data mining techniques publication-title: J. Hydrol. – volume: 203 start-page: 810 year: 2018 end-page: 821 ident: bib5 article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees publication-title: J. Clean. Prod. – volume: 58 start-page: 441 year: 2017 end-page: 448 ident: bib66 article-title: Estimating the shear stress distribution in circular channels based on the randomized neural network technique publication-title: Appl. Soft Comput. – volume: 715 start-page: 136836 year: 2020 ident: bib17 article-title: Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm publication-title: Sci. Total Environ. – volume: 23 start-page: 865 year: 1998 end-page: 876 ident: bib43 article-title: The influence of bank strength on channel geometry: an integrated analysis of some observations publication-title: Earth Surf. Process. Landforms – volume: 64 start-page: 207 year: 2005 end-page: 220 ident: bib54 article-title: Theoretical regime equations for mobile gravel-bed rivers with stable banks publication-title: Geomorphology – volume: 9 start-page: 782 year: 2017 ident: bib11 article-title: Streamflow and sediment yield prediction for watershed prioritization in the upper Blue Nile river basin, Ethiopia publication-title: Water – volume: 20 start-page: 325 year: 2016 end-page: 342 ident: bib79 article-title: A modified ant colony optimization algorithm for network coding resource minimization publication-title: IEEE Trans. Evol. Comput. – year: 2016 ident: bib81 article-title: Data Mining: Practical Machine Learning Tools and Techniques – volume: 112 year: 2007 ident: bib60 article-title: Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers publication-title: J. Geophys. Res.: Earth Surf. – volume: 10 start-page: 1 year: 1986 end-page: 31 ident: bib30 article-title: Hydraulics and hydraulic geometry publication-title: Prog. Phys. Geogr. – volume: 17 start-page: 114 year: 2015 end-page: 129 ident: bib6 article-title: Input selection for long-lead precipitation prediction using large-scale climate variables: a case study publication-title: J. Hydroinf. – volume: 9 year: 2019 ident: bib84 article-title: Can decomposition approaches always enhance soft computing models? Predicting the dissolved oxygen concentration in the St. Johns River, Florida publication-title: Appl. Sci. – volume: 11 start-page: 11 year: 1997 end-page: 73 ident: bib10 article-title: Locally weighted learning publication-title: Artif. Intell. Rev. – volume: 14 start-page: 339 year: 2020 end-page: 350 ident: bib64 article-title: Predicting Standardized Streamflow index for hydrological drought using machine learning models publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 615 start-page: 272 year: 2018 end-page: 281 ident: bib22 article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques publication-title: Sci. Total Environ. – volume: 108 start-page: 1179 year: 1982 end-page: 1193 ident: bib80 article-title: Analytical approach to river regime publication-title: J. Hydraul. Div. – volume: 87 start-page: 109 year: 1961 end-page: 138 ident: bib39 article-title: Stability of alluvial channels publication-title: J. Hydraul. Div. – volume: 36 start-page: 111 year: 1974 end-page: 147 ident: bib73 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J. Roy. Stat. Soc. – start-page: 108 year: 1995 end-page: 114 ident: bib23 article-title: K*: an instance-based learner using an entropic distance measure publication-title: Machine Learning Proceedings – volume: 18 year: 1997 ident: bib28 article-title: Machine learning research_ four current directions publication-title: AI Mag. – year: 2001 ident: bib7 article-title: The Development of Self-Organization Techniques in Modelling: a Review of the Group Method of Data Handling (GMDH) – volume: 167 year: 2019 ident: bib48 article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: a case study in Iraq publication-title: Comput. Electron. Agric. – volume: 59 start-page: 142 year: 2015 end-page: 151 ident: bib55 article-title: Rainfall monthly prediction based on artificial neural network: a case study in tenggarong station, east kalimantan - Indonesia publication-title: Procedia Computer Science – volume: 9 start-page: 333 year: 2012 end-page: 342 ident: bib75 article-title: An evaluation model of artificial neural network to predict stable width in gravel bed rivers publication-title: Int. J. Environ. Sci. Technol. – volume: 567 start-page: 165 year: 2018 end-page: 179 ident: bib49 article-title: Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile publication-title: J. Hydrol. – volume: 62 start-page: 3218 year: 2013 end-page: 3230 ident: bib83 article-title: Target position estimation by genetic expression programming for mobile robots with vision sensors publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 70 start-page: 399 year: 2014 end-page: 408 ident: bib24 article-title: Using artificial neural network models to assess water quality in water distribution networks publication-title: Procedia Engineering – volume: 113 start-page: 1359 year: 1987 end-page: 1380 ident: bib71 article-title: Critique of the regime theory for alluvial channels publication-title: J. Hydraul. Eng. – volume: 721 year: 2020 ident: bib19 article-title: Improving prediction of water quality indices using novel hybrid machine-learning algorithms publication-title: Sci. Total Environ. – volume: 43 start-page: 617 year: 1994 end-page: 629 ident: bib59 article-title: Voting algorithms publication-title: IEEE Trans. Reliab. – volume: 15 start-page: 296 year: 2018 end-page: 302 ident: bib78 article-title: Influence of bed deposit in the prediction of incipient sediment motion in sewers using artificial neural networks publication-title: Urban Water J. – volume: 157 start-page: 310 year: 2017 end-page: 324 ident: bib21 article-title: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling publication-title: Catena – volume: 30 start-page: 730 year: 2019 end-page: 745 ident: bib74 article-title: Sinkhole susceptibility mapping: a comparison between Bayes-based machine learning algorithms publication-title: Land Degrad. Dev. – volume: 37 start-page: 881 year: 2001 end-page: 888 ident: bib9 article-title: Incorporation of experience in iterative learning controllers using locally weighted learning publication-title: Automatica – volume: 8 start-page: 120 year: 1993 end-page: 129 ident: bib38 article-title: Local regression: automatic kernel carpentry publication-title: Stat. Sci. – volume: 15 start-page: 859 year: 2010 end-page: 864 ident: bib3 article-title: Hydraulic geometry relations for stable channel design publication-title: J. Hydrol. Eng. – start-page: 51 year: 1957 ident: bib52 article-title: River Channel Patterns: Braided, Meandering, and Straight – start-page: 141 year: 1957 ident: bib50 article-title: A Study of the Shape of Channels Formed by Natural Streams Flowing in Erodible Material – volume: 10 year: 2018 ident: bib18 article-title: New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling publication-title: Water – year: 2019 ident: bib46 article-title: Stochastic Modeling of Groundwater Fluoride Contamination: Introducing Lazy Learners. – volume: 10 start-page: 1040 year: 1982 end-page: 1053 ident: bib72 article-title: Optimal global rates of convergence for nonparametric regression publication-title: Ann. Stat. – volume: 137 start-page: 894 year: 2011 end-page: 910 ident: bib25 article-title: Regime equations for natural meandering cobble- and gravel-bed rivers publication-title: J. Hydraul. Eng. – volume: 13 start-page: 87 year: 2001 end-page: 129 ident: bib31 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Syst. – year: 1998 ident: bib62 article-title: Multi-objective Optimisation of Polynomial Models for Time Series Prediction Using Genetic Algorithms and Neural Networks – start-page: 517 year: 1982 end-page: 552 ident: bib16 article-title: Regime equations for gravel-bed rivers publication-title: Gravel Bed Rivers: Fluvial Processes, Engineering and Management – volume: 22 start-page: 189 year: 2008 end-page: 215 ident: bib69 article-title: At-a-station hydraulic geometry relations, 1: theoretical development publication-title: Hydrol. Process. – volume: 112 start-page: 671 year: 1986 end-page: 689 ident: bib40 article-title: Stable channels with mobile gravel beds publication-title: J. Hydraul. Eng. – volume: 112 start-page: 671 year: 1986 end-page: 689 ident: bib41 article-title: Stable channels with mobile gravel beds publication-title: J. Hydraul. Eng. – volume: 5828 LNAI start-page: 65 year: 2009 end-page: 81 ident: bib33 article-title: Conditional density estimation with class probability estimators publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – start-page: 873 year: 1980 end-page: 891 ident: bib20 article-title: Stable alluvial canal design publication-title: J. Hydraul. Div. – volume: 55 start-page: 505 year: 2016 end-page: 512 ident: bib1 article-title: Updated regime equations for alluvial Egyptian canals publication-title: Alexandria Engineering Journal – volume: 15 start-page: 1408 year: 2013 end-page: 1424 ident: bib77 article-title: A machine learning approach for estimation of shallow water depths from optical satellite images and sonar measurements publication-title: Journal of Hydroinformatics – volume: 566 start-page: 770 year: 2018 end-page: 782 ident: bib63 article-title: Stable alluvial channel design using evolutionary neural networks publication-title: J. Hydrol. – volume: 117 start-page: 383 year: 1952 end-page: 400 ident: bib14 article-title: Regime theory for self-formed sediment-bearing channels publication-title: Trans. Am. Soc. Civ. Eng. – volume: Part F1288 start-page: 847 year: 2013 end-page: 855 ident: bib76 article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 25 start-page: 921 year: 2000 end-page: 937 ident: bib2 article-title: The effect of riparian tree roots on the mass-stability of riverbanks publication-title: Earth Surf. Process. Landforms – year: 1969 ident: bib13 article-title: Mobile-bed Fluviology – volume: 14 start-page: 1028 year: 2009 end-page: 1034 ident: bib4 article-title: Effect of nonuniformity of flow on hydraulic geometry relations publication-title: J. Hydrol. Eng. – volume: 39 start-page: 337 year: 2015 end-page: 360 ident: bib37 article-title: Hydraulic geometry of natural rivers: a review and future directions publication-title: Prog. Phys. Geogr. – volume: 16 start-page: 127 year: 2002 end-page: 142 ident: bib70 article-title: An attempt at using the entropy approach to predict the transverse distribution of boundary shear stress in open channel flow publication-title: Stoch. Environ. Res. Risk Assess. – volume: 35 start-page: 951 year: 1954 end-page: 956 ident: bib82 article-title: A method of sampling coarse river‐bed material publication-title: Eos, Transactions American Geophysical Union – volume: 8 start-page: 292 year: 2014 end-page: 303 ident: bib42 article-title: Application of copula method and neural networks for predicting peak outflow from breached embankments publication-title: Journal of Hydro-Environment Research – volume: 142 year: 2016 ident: bib58 article-title: How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? publication-title: J. Hydraul. Eng. – volume: 112 start-page: 3025 year: 2007 ident: bib29 article-title: Predicting downstream hydraulic geometry: a test of rational regime theory publication-title: J. Geophys. Res.: Earth Surf. – volume: 42 start-page: 1460 year: 2017 end-page: 1471 ident: bib35 article-title: Developing an expert group method of data handling system for predicting the geometry of a stable channel with a gravel bed publication-title: Earth Surf. Process. Landforms – volume: 16 start-page: 127 issue: 2 year: 2002 ident: 10.1016/j.envsoft.2021.105165_bib70 article-title: An attempt at using the entropy approach to predict the transverse distribution of boundary shear stress in open channel flow publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-002-0088-2 – volume: 43 start-page: 617 issue: 4 year: 1994 ident: 10.1016/j.envsoft.2021.105165_bib59 article-title: Voting algorithms publication-title: IEEE Trans. Reliab. doi: 10.1109/24.370218 – start-page: 141 year: 1957 ident: 10.1016/j.envsoft.2021.105165_bib50 – volume: 35 start-page: 233 issue: 1 year: 1999 ident: 10.1016/j.envsoft.2021.105165_bib51 article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. doi: 10.1029/1998WR900018 – volume: 58 start-page: 441 year: 2017 ident: 10.1016/j.envsoft.2021.105165_bib66 article-title: Estimating the shear stress distribution in circular channels based on the randomized neural network technique publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.024 – volume: 30 start-page: 730 issue: 7 year: 2019 ident: 10.1016/j.envsoft.2021.105165_bib74 article-title: Sinkhole susceptibility mapping: a comparison between Bayes-based machine learning algorithms publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3255 – volume: 9 start-page: 333 issue: 2 year: 2012 ident: 10.1016/j.envsoft.2021.105165_bib75 article-title: An evaluation model of artificial neural network to predict stable width in gravel bed rivers publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-012-0036-8 – volume: 18 issue: 4 year: 1997 ident: 10.1016/j.envsoft.2021.105165_bib28 article-title: Machine learning research_ four current directions publication-title: AI Mag. – volume: 15 start-page: 859 issue: 10 year: 2010 ident: 10.1016/j.envsoft.2021.105165_bib3 article-title: Hydraulic geometry relations for stable channel design publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000260 – volume: 8 start-page: 120 issue: 2 year: 1993 ident: 10.1016/j.envsoft.2021.105165_bib38 article-title: Local regression: automatic kernel carpentry publication-title: Stat. Sci. – volume: 14 start-page: 1028 issue: 9 year: 2009 ident: 10.1016/j.envsoft.2021.105165_bib4 article-title: Effect of nonuniformity of flow on hydraulic geometry relations publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000095 – volume: 20 start-page: 1201 issue: 5 year: 2006 ident: 10.1016/j.envsoft.2021.105165_bib8 article-title: Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study publication-title: Hydrol. Process. doi: 10.1002/hyp.5932 – year: 2019 ident: 10.1016/j.envsoft.2021.105165_bib46 – volume: 108 start-page: 1179 issue: 10 year: 1982 ident: 10.1016/j.envsoft.2021.105165_bib80 article-title: Analytical approach to river regime publication-title: J. Hydraul. Div. doi: 10.1061/JYCEAJ.0005914 – volume: 37 start-page: 881 issue: 6 year: 2001 ident: 10.1016/j.envsoft.2021.105165_bib9 article-title: Incorporation of experience in iterative learning controllers using locally weighted learning publication-title: Automatica doi: 10.1016/S0005-1098(01)00030-9 – volume: 137 start-page: 894 issue: 9 year: 2011 ident: 10.1016/j.envsoft.2021.105165_bib25 article-title: Regime equations for natural meandering cobble- and gravel-bed rivers publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000408 – volume: 22 start-page: 189 issue: 2 year: 2008 ident: 10.1016/j.envsoft.2021.105165_bib69 article-title: At-a-station hydraulic geometry relations, 1: theoretical development publication-title: Hydrol. Process. doi: 10.1002/hyp.6411 – volume: 31 start-page: 2705 issue: 10 year: 2017 ident: 10.1016/j.envsoft.2021.105165_bib12 article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-016-1338-z – volume: 10 start-page: 1 issue: 1 year: 1986 ident: 10.1016/j.envsoft.2021.105165_bib30 article-title: Hydraulics and hydraulic geometry publication-title: Prog. Phys. Geogr. doi: 10.1177/030913338601000101 – volume: 167 year: 2019 ident: 10.1016/j.envsoft.2021.105165_bib48 article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: a case study in Iraq publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105041 – volume: 9 start-page: 782 issue: 10 year: 2017 ident: 10.1016/j.envsoft.2021.105165_bib11 article-title: Streamflow and sediment yield prediction for watershed prioritization in the upper Blue Nile river basin, Ethiopia publication-title: Water doi: 10.3390/w9100782 – year: 2014 ident: 10.1016/j.envsoft.2021.105165_bib34 article-title: Comparison of classification techniques for intrusion detection dataset using WEKA doi: 10.1109/ICRAIE.2014.6909184 – volume: 42 start-page: 1460 issue: 10 year: 2017 ident: 10.1016/j.envsoft.2021.105165_bib35 article-title: Developing an expert group method of data handling system for predicting the geometry of a stable channel with a gravel bed publication-title: Earth Surf. Process. Landforms doi: 10.1002/esp.4104 – volume: 25 start-page: 921 issue: 9 year: 2000 ident: 10.1016/j.envsoft.2021.105165_bib2 article-title: The effect of riparian tree roots on the mass-stability of riverbanks publication-title: Earth Surf. Process. Landforms doi: 10.1002/1096-9837(200008)25:9<921::AID-ESP93>3.0.CO;2-7 – volume: 15 start-page: 1408 year: 2013 ident: 10.1016/j.envsoft.2021.105165_bib77 article-title: A machine learning approach for estimation of shallow water depths from optical satellite images and sonar measurements – volume: 117 start-page: 383 issue: 1 year: 1952 ident: 10.1016/j.envsoft.2021.105165_bib14 article-title: Regime theory for self-formed sediment-bearing channels publication-title: Trans. Am. Soc. Civ. Eng. doi: 10.1061/TACEAT.0006641 – volume: 9 issue: 12 year: 2019 ident: 10.1016/j.envsoft.2021.105165_bib84 article-title: Can decomposition approaches always enhance soft computing models? Predicting the dissolved oxygen concentration in the St. Johns River, Florida publication-title: Appl. Sci. doi: 10.3390/app9122534 – volume: 342 start-page: 3722 year: 2009 ident: 10.1016/j.envsoft.2021.105165_bib68 article-title: Using HEC-RAS hydraulic design functions for geomorphic channel design and analysis – volume: 39 start-page: 337 issue: 3 year: 2015 ident: 10.1016/j.envsoft.2021.105165_bib37 article-title: Hydraulic geometry of natural rivers: a review and future directions publication-title: Prog. Phys. Geogr. doi: 10.1177/0309133314567584 – year: 1969 ident: 10.1016/j.envsoft.2021.105165_bib13 – volume: 50 start-page: 885 issue: 3 year: 2007 ident: 10.1016/j.envsoft.2021.105165_bib57 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Transactions of the ASABE doi: 10.13031/2013.23153 – volume: 112 issue: 4 year: 2007 ident: 10.1016/j.envsoft.2021.105165_bib60 article-title: Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers publication-title: J. Geophys. Res.: Earth Surf. – volume: 21 start-page: 798 issue: 5 year: 2019 ident: 10.1016/j.envsoft.2021.105165_bib67 article-title: Determination of compound channel apparent shear stress: application of novel data mining models publication-title: J. Hydroinf. doi: 10.2166/hydro.2019.037 – volume: 142 issue: 1 year: 2016 ident: 10.1016/j.envsoft.2021.105165_bib58 article-title: How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0001062 – start-page: 389 year: 2002 ident: 10.1016/j.envsoft.2021.105165_bib32 article-title: Genetic representation and genetic neutrality in gene expression programming publication-title: Adv. Complex Syst. doi: 10.1142/S0219525902000626 – volume: 112 start-page: 671 issue: 8 year: 1986 ident: 10.1016/j.envsoft.2021.105165_bib41 article-title: Stable channels with mobile gravel beds publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1986)112:8(671) – volume: 10 start-page: 1040 year: 1982 ident: 10.1016/j.envsoft.2021.105165_bib72 article-title: Optimal global rates of convergence for nonparametric regression publication-title: Ann. Stat. doi: 10.1214/aos/1176345969 – volume: Part F1288 start-page: 847 year: 2013 ident: 10.1016/j.envsoft.2021.105165_bib76 article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms – volume: 715 start-page: 136836 year: 2020 ident: 10.1016/j.envsoft.2021.105165_bib17 article-title: Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136836 – volume: 112 start-page: 3025 issue: 3 year: 2007 ident: 10.1016/j.envsoft.2021.105165_bib29 article-title: Predicting downstream hydraulic geometry: a test of rational regime theory publication-title: J. Geophys. Res.: Earth Surf. – volume: 106 start-page: 873 year: 1980 ident: 10.1016/j.envsoft.2021.105165_bib20 article-title: Stable alluvial canal design publication-title: J. Hydraul. Div. doi: 10.1061/JYCEAJ.0005429 – volume: 55 start-page: 505 issue: 1 year: 2016 ident: 10.1016/j.envsoft.2021.105165_bib1 article-title: Updated regime equations for alluvial Egyptian canals publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2015.12.011 – volume: 17 start-page: 114 issue: 1 year: 2015 ident: 10.1016/j.envsoft.2021.105165_bib6 article-title: Input selection for long-lead precipitation prediction using large-scale climate variables: a case study publication-title: J. Hydroinf. doi: 10.2166/hydro.2014.138 – volume: 87 start-page: 109 issue: 6 year: 1961 ident: 10.1016/j.envsoft.2021.105165_bib39 article-title: Stability of alluvial channels publication-title: J. Hydraul. Div. doi: 10.1061/JYCEAJ.0000653 – volume: 567 start-page: 165 year: 2018 ident: 10.1016/j.envsoft.2021.105165_bib49 article-title: Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.10.015 – volume: 32 start-page: 575 issue: 4 year: 2017 ident: 10.1016/j.envsoft.2021.105165_bib65 article-title: An analysis of shear stress distribution in circular channels with sediment deposition based on Gene Expression Programming publication-title: Int. J. Sediment Res. doi: 10.1016/j.ijsrc.2017.04.004 – volume: 35 start-page: 951 issue: 6 year: 1954 ident: 10.1016/j.envsoft.2021.105165_bib82 article-title: A method of sampling coarse river‐bed material publication-title: Eos, Transactions American Geophysical Union doi: 10.1029/TR035i006p00951 – volume: 11 start-page: 282 issue: 1 year: 2018 ident: 10.1016/j.envsoft.2021.105165_bib61 article-title: A locally weighted learning method based on a data gravitation model for multi-target regression publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.11.1.22 – volume: 15 start-page: 296 issue: 4 year: 2018 ident: 10.1016/j.envsoft.2021.105165_bib78 article-title: Influence of bed deposit in the prediction of incipient sediment motion in sewers using artificial neural networks publication-title: Urban Water J. doi: 10.1080/1573062X.2018.1455880 – volume: 203 start-page: 810 year: 2018 ident: 10.1016/j.envsoft.2021.105165_bib5 article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.207 – volume: 566 start-page: 770 year: 2018 ident: 10.1016/j.envsoft.2021.105165_bib63 article-title: Stable alluvial channel design using evolutionary neural networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.09.057 – year: 1998 ident: 10.1016/j.envsoft.2021.105165_bib62 – year: 2009 ident: 10.1016/j.envsoft.2021.105165_bib45 article-title: Application of artificial neural networks in establishing regime channel relationships – volume: 62 start-page: 3218 issue: 12 year: 2013 ident: 10.1016/j.envsoft.2021.105165_bib83 article-title: Target position estimation by genetic expression programming for mobile robots with vision sensors publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2013.2272173 – volume: 721 year: 2020 ident: 10.1016/j.envsoft.2021.105165_bib19 article-title: Improving prediction of water quality indices using novel hybrid machine-learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137612 – volume: 22 start-page: 1034 issue: 7 year: 2007 ident: 10.1016/j.envsoft.2021.105165_bib26 article-title: HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2006.06.008 – volume: 2 start-page: 90 issue: 4 year: 2013 ident: 10.1016/j.envsoft.2021.105165_bib53 article-title: Geomorphic channel design and analysis using HEC-RAS hydraulic design functions publication-title: J. Global Anal. – volume: 39 start-page: 481 issue: 4 year: 2012 ident: 10.1016/j.envsoft.2021.105165_bib27 article-title: Review and assessment of the theories of stable alluvial channel design publication-title: Water Resour. doi: 10.1134/S0097807812040033 – volume: 20 start-page: 325 issue: 3 year: 2016 ident: 10.1016/j.envsoft.2021.105165_bib79 article-title: A modified ant colony optimization algorithm for network coding resource minimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2457437 – volume: 5828 LNAI start-page: 65 year: 2009 ident: 10.1016/j.envsoft.2021.105165_bib33 article-title: Conditional density estimation with class probability estimators – volume: 11 start-page: 11 issue: 1–5 year: 1997 ident: 10.1016/j.envsoft.2021.105165_bib10 article-title: Locally weighted learning publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006559212014 – year: 1936 ident: 10.1016/j.envsoft.2021.105165_bib15 article-title: Silt movement and design of channels – year: 2016 ident: 10.1016/j.envsoft.2021.105165_bib81 – start-page: 108 year: 1995 ident: 10.1016/j.envsoft.2021.105165_bib23 article-title: K*: an instance-based learner using an entropic distance measure publication-title: Machine Learning Proceedings – volume: 36 start-page: 111 issue: 2 year: 1974 ident: 10.1016/j.envsoft.2021.105165_bib73 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J. Roy. Stat. Soc. doi: 10.1111/j.2517-6161.1974.tb00994.x – year: 2001 ident: 10.1016/j.envsoft.2021.105165_bib7 – volume: 64 start-page: 207 issue: 3–4 year: 2005 ident: 10.1016/j.envsoft.2021.105165_bib54 article-title: Theoretical regime equations for mobile gravel-bed rivers with stable banks publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.07.001 – start-page: 51 year: 1957 ident: 10.1016/j.envsoft.2021.105165_bib52 – volume: 113 start-page: 1359 issue: 11 year: 1987 ident: 10.1016/j.envsoft.2021.105165_bib71 article-title: Critique of the regime theory for alluvial channels publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1987)113:11(1359) – volume: 615 start-page: 272 year: 2018 ident: 10.1016/j.envsoft.2021.105165_bib22 article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.293 – volume: 112 start-page: 671 issue: 8 year: 1986 ident: 10.1016/j.envsoft.2021.105165_bib40 article-title: Stable channels with mobile gravel beds publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1986)112:8(671) – volume: 157 start-page: 310 year: 2017 ident: 10.1016/j.envsoft.2021.105165_bib21 article-title: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling publication-title: Catena doi: 10.1016/j.catena.2017.05.034 – volume: 14 start-page: 339 issue: 1 year: 2020 ident: 10.1016/j.envsoft.2021.105165_bib64 article-title: Predicting Standardized Streamflow index for hydrological drought using machine learning models publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2020.1715844 – volume: 13 start-page: 87 issue: 2 year: 2001 ident: 10.1016/j.envsoft.2021.105165_bib31 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Syst. – volume: 23 start-page: 865 issue: 10 year: 1998 ident: 10.1016/j.envsoft.2021.105165_bib43 article-title: The influence of bank strength on channel geometry: an integrated analysis of some observations publication-title: Earth Surf. Process. Landforms doi: 10.1002/(SICI)1096-9837(199810)23:10<865::AID-ESP903>3.0.CO;2-3 – volume: 70 start-page: 399 year: 2014 ident: 10.1016/j.envsoft.2021.105165_bib24 article-title: Using artificial neural network models to assess water quality in water distribution networks – start-page: 517 year: 1982 ident: 10.1016/j.envsoft.2021.105165_bib16 article-title: Regime equations for gravel-bed rivers – volume: 59 start-page: 142 year: 2015 ident: 10.1016/j.envsoft.2021.105165_bib55 article-title: Rainfall monthly prediction based on artificial neural network: a case study in tenggarong station, east kalimantan - Indonesia – volume: 121 start-page: 312 issue: 4 year: 1995 ident: 10.1016/j.envsoft.2021.105165_bib44 article-title: Alluvial channel geometry: theory and applications publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1995)121:4(312) – volume: 4 start-page: 163 issue: 2 year: 2013 ident: 10.1016/j.envsoft.2021.105165_bib56 article-title: Design of alluvial Egyptian irrigation canals using artificial neural networks method publication-title: Ain Shams Engineering Journal doi: 10.1016/j.asej.2012.08.009 – volume: 27 start-page: 294 year: 2006 ident: 10.1016/j.envsoft.2021.105165_bib36 article-title: Random forests for land cover classification – volume: 8 start-page: 292 issue: 3 year: 2014 ident: 10.1016/j.envsoft.2021.105165_bib42 article-title: Application of copula method and neural networks for predicting peak outflow from breached embankments publication-title: Journal of Hydro-Environment Research doi: 10.1016/j.jher.2013.11.004 – volume: 585 start-page: 124774 year: 2020 ident: 10.1016/j.envsoft.2021.105165_bib47 article-title: Bedload transport rate prediction: application of novel hybrid data mining techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124774 – volume: 10 issue: 9 year: 2018 ident: 10.1016/j.envsoft.2021.105165_bib18 article-title: New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling publication-title: Water |
| SSID | ssj0001524 |
| Score | 2.4169705 |
| Snippet | Accurate prediction of stable alluvial hydraulic geometry, in which erosion and sedimentation are in equilibrium, is one of the most difficult but critical... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105165 |
| SubjectTerms | Algorithms Artificial intelligence Catchments Classifiers (sedimentation) computer software Data mining Developing countries Empirical equations Geometry Gravel Gravel-bed rivers Hydraulic geometry Hydraulics LDCs Learning algorithms Machine learning Mathematical models Modelling Parameters Performance prediction prediction Predictions River engineering Rivers sediments Sensitivity analysis Stable channels Water depth |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgjxwKAwUTSQkXhc0jqJ7YS3CnWaeJj2QKXxFNmOvW6kyZQPUPnrOTdJVyGksefc5cs_3_1Ovg-AT2xmecas9qwJhBdJjFnjjGaeVIoGgnOJdtllW1zw82X09YpdHUAw1MLsnd-jM47CqZLtSra11w55CtI0foQ8_Qkccob8ewSHy4vL-feuwCry4m7MDo1F6HER8Puynemtb4qfNZo3jAsD6kbcUudU_u2Q9gjns7a4k5tfMs_3fM_ZUVcPWG9bFrqUkx9-2yhf__6roePjPuslvOipKJl32HkFB6YYw9Ew5oH0u34MTxfbztabMTzf6144huPFfZEc3qeXr19DeVm54x-XUE2QfKrckO2Uo9xTJiOVexWy2mSVbPMbTa5NuTZNtflM5gR5b0NKS4oSpU_JkKBwiuKusoy4fFay3s60IDK_LqubZrWu38DybPHty7nXD3bwdERF44nQJkkW8MDGs4xrKqjWgQ6RfHGWWUsNYsQmIlEstkqLWayZVAwDTyoypq0Nj2FUlIV5CyTBCM9RysTOZKQliyWKJIlQzD1DJhOIhtVNdd_13A3fyNMhve027UGROlCkHSgm4O_U7rq2Hw8pxAN00p67dJwkxaV_SPVkgFraG5A6DRhS4xj_AZ3Ax91l3PruPEcWpmxRhoccBdDiTmC6g-j_ve-7R2ucwKipWvMeOVijPvSb7g-P4TNk priority: 102 providerName: Unpaywall |
| Title | Predicting stable gravel-bed river hydraulic geometry: A test of novel, advanced, hybrid data mining algorithms |
| URI | https://dx.doi.org/10.1016/j.envsoft.2021.105165 https://www.proquest.com/docview/2583589791 https://www.proquest.com/docview/2636791870 https://doi.org/10.25643/bauhaus-universitaet.4499 |
| UnpaywallVersion | submittedVersion |
| Volume | 144 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1873-6726 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1873-6726 databaseCode: ACRLP dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1873-6726 databaseCode: AIKHN dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1873-6726 databaseCode: .~1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1873-6726 databaseCode: AKRWK dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5Kx9j2sB_ZyrJ1RYM91klkW5K9t1BSsg1CYQt0T0aWpTbFsYPjbORlf_tOtpxkMOjYk7F9soVOOt2h7-4D-MBGhmfMKM9oX3ihxJg1ymjmyTSlvuBcol22aIsZn87Dz9fs-gguulwYC6t0tr-16Y21dk-GbjSHq8Vi-JUG3FYa8X3aMk3aDPZQWBaDwa89zAMFWmJbHnpWep_FM7wb6OLHGq0dhok-tYy31O4xf9-fDvzPR5tiJbc_ZZ4fbEWXz-Gp8yHJuO3mCzjSRQ-edfwMxC3XHjycNCWptz14clB2sAcnk312G37Hya9fQnlV2XMbi4Qm6DWmuSYNPVHupTojlYVwkNttVslNvlDkRpdLXVfbj2RM0GGtSWlIUaL0OemQBecoblPCiAWikmVDRkFkflNWi_p2uX4F88vJt4up5xgZPBVSUXsiMHGc-dw30SjjigqqlK8C9Jo4y4yhGpVrYhGnLDKpEqNIMZkyjBipyJgyJjiB46Is9GsgMYZm1heMzUiGSrJIokgci5TZf8i4D2Gnh0S5cuWWNSNPOlzaXeLUl1j1Ja36-jDYNVu19TruaxB1Sk7-mHgJ7in3NT3tJkXiVv468Rn6tBGOAe3D-91rXLP2IEYWutygDA84CqCp7MNwN5n-rb9v_r-_b-GxvWuhiKdwXFcb_Q5dqjo9a9bMGTwYf_oyneF1Prsaf_8N8_Ujxg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NITR44EdhojDASDwuTZ3GTsLbNHUqMCYkNmlvluPYW6c0qdJ0U1_42zknTlskpCFek3Ni-Xzn7-Tv7gA-saHhGTPKMzqIvFBizBpnNPNkmtIg4lyiX7ZsizM-uQi_XrLLHTjucmEsrdL5_tanN97aPfHdavrz6dT_SUfcVhoJAtp2mnwAD0MWRDYCG_za8DxQou1sy0PPim_SePybgS5uF-juME4MqG15S-0h8_cDaguA7i2LuVzdyTzfOotOnsNTByLJUTvPF7Cjix486xo0EGevPXg0bmpSr3rwZKvuYA_2x5v0NvyOk1-8hPJHZS9uLBWaIGxMc02a_kS5l-qMVJbDQa5XWSWX-VSRK13OdF2tPpMjgoi1JqUhRYnSh6SjFhyiuM0JI5aJSmZNNwoi86uymtbXs8UruDgZnx9PPNeSwVMhjWovGpkkyQIemHiYcUUjqlSgRgibOMuMoRq1a5IoSVlsUhUNY8VkyjBkpFHGlDGjfdgtykK_BpJgbGbBYGKGMlSSxRJFkiRKmf2HTPoQdnoQytUrt20zctER026EU5-w6hOt-vowWA-btwU77hsQd0oWf-w8gYfKfUMPuk0hnOkvRMAQ1Ma4BrQPH9ev0WjtTYwsdLlEGT7iKIC-sg_-ejP923zf_P98P8De5Pz7qTj9cvbtLTy2b1pe4gHs1tVSv0N8VafvG_v5DVs2I6s |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgjxwKAwUTSQkXhc0jqJ7YS3CnWaeJj2QKXxFNmOvW6kyZQPUPnrOTdJVyGksefc5cs_3_1Ovg-AT2xmecas9qwJhBdJjFnjjGaeVIoGgnOJdtllW1zw82X09YpdHUAw1MLsnd-jM47CqZLtSra11w55CtI0foQ8_Qkccob8ewSHy4vL-feuwCry4m7MDo1F6HER8Puynemtb4qfNZo3jAsD6kbcUudU_u2Q9gjns7a4k5tfMs_3fM_ZUVcPWG9bFrqUkx9-2yhf__6roePjPuslvOipKJl32HkFB6YYw9Ew5oH0u34MTxfbztabMTzf6144huPFfZEc3qeXr19DeVm54x-XUE2QfKrckO2Uo9xTJiOVexWy2mSVbPMbTa5NuTZNtflM5gR5b0NKS4oSpU_JkKBwiuKusoy4fFay3s60IDK_LqubZrWu38DybPHty7nXD3bwdERF44nQJkkW8MDGs4xrKqjWgQ6RfHGWWUsNYsQmIlEstkqLWayZVAwDTyoypq0Nj2FUlIV5CyTBCM9RysTOZKQliyWKJIlQzD1DJhOIhtVNdd_13A3fyNMhve027UGROlCkHSgm4O_U7rq2Hw8pxAN00p67dJwkxaV_SPVkgFraG5A6DRhS4xj_AZ3Ax91l3PruPEcWpmxRhoccBdDiTmC6g-j_ve-7R2ucwKipWvMeOVijPvSb7g-P4TNk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+stable+gravel-bed+river+hydraulic+geometry%3A+A+test+of+novel%2C+advanced%2C+hybrid+data+mining+algorithms&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Khosravi%2C+Khabat&rft.au=Sheikh+Khozani%2C+Zohreh&rft.au=Cooper%2C+James+R&rft.date=2021-10-01&rft.issn=1364-8152&rft.volume=144+p.105165-&rft_id=info:doi/10.1016%2Fj.envsoft.2021.105165&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon |