Dynamic Task Assignment and Path Planning of Multi-AUV System Based on an Improved Self-Organizing Map and Velocity Synthesis Method in Three-Dimensional Underwater Workspace
For a 3-D underwater workspace with a variable ocean current, an integrated multiple autonomous underwater vehicle (AUV) dynamic task assignment and path planning algorithm is proposed by combing the improved self-organizing map (SOM) neural network and a novel velocity synthesis approach. The goal...
        Saved in:
      
    
          | Published in | IEEE transactions on cybernetics Vol. 43; no. 2; pp. 504 - 514 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.04.2013
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2267 2168-2275 2168-2275  | 
| DOI | 10.1109/TSMCB.2012.2210212 | 
Cover
| Summary: | For a 3-D underwater workspace with a variable ocean current, an integrated multiple autonomous underwater vehicle (AUV) dynamic task assignment and path planning algorithm is proposed by combing the improved self-organizing map (SOM) neural network and a novel velocity synthesis approach. The goal is to control a team of AUVs to reach all appointed target locations for only one time on the premise of workload balance and energy sufficiency while guaranteeing the least total and individual consumption in the presence of the variable ocean current. First, the SOM neuron network is developed to assign a team of AUVs to achieve multiple target locations in 3-D ocean environment. The working process involves special definition of the initial neural weights of the SOM network, the rule to select the winner, the computation of the neighborhood function, and the method to update weights. Then, the velocity synthesis approach is applied to plan the shortest path for each AUV to visit the corresponding target in a dynamic environment subject to the ocean current being variable and targets being movable. Lastly, to demonstrate the effectiveness of the proposed approach, simulation results are given in this paper. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 2168-2267 2168-2275 2168-2275  | 
| DOI: | 10.1109/TSMCB.2012.2210212 |