Toward simulating superstring/M-theory on a quantum computer

A bstract We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nast...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 7; pp. 1 - 56
Main Authors Gharibyan, Hrant, Hanada, Masanori, Honda, Masazumi, Liu, Junyu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1127-2236
1029-8479
DOI10.1007/JHEP07(2021)140

Cover

Abstract A bstract We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. Our prescription consists of four steps: regularization of the Hilbert space, adiabatic state preparation, simulation of real-time dynamics, and measurements. Regularization is performed for the BMN matrix model with the introduction of energy cut-off via the truncation in the Fock space. We use the Wan-Kim algorithm for fast digital adiabatic state preparation to prepare the low-energy eigenstates of this model as well as thermofield double state. Then, we provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing. Lastly, we present a set of measurements and experiments that can be carried out on a quantum computer to further our understanding of superstring/M-theory beyond analytic results.
AbstractList Abstract We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. Our prescription consists of four steps: regularization of the Hilbert space, adiabatic state preparation, simulation of real-time dynamics, and measurements. Regularization is performed for the BMN matrix model with the introduction of energy cut-off via the truncation in the Fock space. We use the Wan-Kim algorithm for fast digital adiabatic state preparation to prepare the low-energy eigenstates of this model as well as thermofield double state. Then, we provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing. Lastly, we present a set of measurements and experiments that can be carried out on a quantum computer to further our understanding of superstring/M-theory beyond analytic results.
We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. Our prescription consists of four steps: regularization of the Hilbert space, adiabatic state preparation, simulation of real-time dynamics, and measurements. Regularization is performed for the BMN matrix model with the introduction of energy cut-off via the truncation in the Fock space. We use the Wan-Kim algorithm for fast digital adiabatic state preparation to prepare the low-energy eigenstates of this model as well as thermofield double state. Then, we provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing. Lastly, we present a set of measurements and experiments that can be carried out on a quantum computer to further our understanding of superstring/M-theory beyond analytic results.
A bstract We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. Our prescription consists of four steps: regularization of the Hilbert space, adiabatic state preparation, simulation of real-time dynamics, and measurements. Regularization is performed for the BMN matrix model with the introduction of energy cut-off via the truncation in the Fock space. We use the Wan-Kim algorithm for fast digital adiabatic state preparation to prepare the low-energy eigenstates of this model as well as thermofield double state. Then, we provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing. Lastly, we present a set of measurements and experiments that can be carried out on a quantum computer to further our understanding of superstring/M-theory beyond analytic results.
ArticleNumber 140
Author Honda, Masazumi
Hanada, Masanori
Gharibyan, Hrant
Liu, Junyu
Author_xml – sequence: 1
  givenname: Hrant
  surname: Gharibyan
  fullname: Gharibyan, Hrant
  email: hrant@caltech.edu
  organization: Walter Burke Institute for Theoretical Physics and Institute for Quantum Information and Matter, California Institute of Technology
– sequence: 2
  givenname: Masanori
  surname: Hanada
  fullname: Hanada, Masanori
  organization: Department of Mathematics, University of Surrey, Yukawa Institute for Theoretical Physics, Kyoto University
– sequence: 3
  givenname: Masazumi
  surname: Honda
  fullname: Honda, Masazumi
  organization: Yukawa Institute for Theoretical Physics, Kyoto University
– sequence: 4
  givenname: Junyu
  surname: Liu
  fullname: Liu, Junyu
  organization: Walter Burke Institute for Theoretical Physics and Institute for Quantum Information and Matter, California Institute of Technology
BookMark eNp1kUFP3DAQhS1EpcKWc6-RuJRDumM7ttdSLwhBlwoEBzhbk8TZzSobB9sR2n-Pt0EUUXGa8Wje55k3x-Swd70l5DuFnxRAzf8sL-9B_WDA6Bkt4IAcUWA6XxRKH77Lv5LjEDYAVFANR-TXg3tGX2eh3Y4dxrZfZWEcrA_Rp3x-m8e1dX6XuT7D7GnEPo7brHLbYYzWfyNfGuyCPXmNM_J4dflwscxv7n5fX5zf5FVBVcxFkT63bIHUMrCSlQxBapmetaq5SEVOaVMKUBosq8sFNEoJJbQsqrLhFZ-R64lbO9yYwbdb9DvjsDV_C86vDPrYVp01yKVWnErFmqpobKEFMMl4WUuGTYE2sWBijf2Au2fsujcgBbN30mzWdkhh76RJTibJ6SQZvHsabYhm40bfp40NE4JLqjlfpC4xdVXeheBtY6o2JkddHz223Rt9utN7-vyD7uM8_yteVwjD_kjW_5vnM8kLNYeiqw
CitedBy_id crossref_primary_10_1103_PhysRevD_105_074507
crossref_primary_10_1007_JHEP01_2022_168
crossref_primary_10_1103_PhysRevD_105_074504
crossref_primary_10_1140_epjs_s11734_022_00708_1
crossref_primary_10_1007_JHEP05_2024_234
crossref_primary_10_1103_PhysRevD_106_074013
crossref_primary_10_1103_PhysRevD_108_114510
crossref_primary_10_1140_epjc_s10052_022_10377_y
crossref_primary_10_1007_JHEP03_2024_002
crossref_primary_10_1007_JHEP05_2024_280
crossref_primary_10_1007_JHEP08_2022_178
crossref_primary_10_1007_JHEP05_2022_096
crossref_primary_10_1007_s40509_024_00342_7
crossref_primary_10_1103_PhysRevD_106_054510
crossref_primary_10_1103_PhysRevLett_134_101601
crossref_primary_10_1103_PhysRevA_108_042216
crossref_primary_10_22331_q_2021_07_05_495
crossref_primary_10_1103_PhysRevD_108_034501
crossref_primary_10_1103_PhysRevA_110_062601
crossref_primary_10_1007_JHEP09_2021_034
crossref_primary_10_1038_s41467_022_31058_0
crossref_primary_10_1103_PhysRevD_105_014504
Cites_doi 10.1088/1126-6708/2005/09/042
10.1007/JHEP06(2020)031
10.1016/0370-2693(84)91172-9
10.1007/JHEP03(2014)067
10.1126/science.273.5278.1073
10.1103/RevModPhys.90.015002
10.1142/S0217751X10049396
10.22323/1.139.0244
10.1007/JHEP11(2016)009
10.1016/j.nuclphysb.2019.114702
10.1088/1126-6708/1999/12/022
10.1007/JHEP02(2019)058
10.1007/JHEP09(2018)054
10.1088/1126-6708/2002/05/056
10.1103/RevModPhys.92.015003
10.1126/science.1163233
10.1016/0370-2693(92)91112-M
10.1088/1126-6708/2003/05/038
10.22331/q-2018-01-08-44
10.1103/PhysRevLett.123.220502
10.1016/j.nuclphysb.2003.08.019
10.1103/PhysRevD.94.094501
10.1103/PhysRevLett.102.111601
10.1016/j.nuclphysb.2012.07.022
10.1088/1126-6708/2002/09/021
10.1103/PhysRevD.91.054506
10.1016/j.nuclphysb.2006.10.005
10.1103/PhysRevD.78.105017
10.1007/JHEP10(2012)106
10.1007/JHEP11(2010)112
10.1088/1126-6708/2009/11/087
10.1016/j.nuclphysb.2015.01.016
10.1103/PhysRevD.27.2397
10.1063/1.4768229
10.1103/PhysRevLett.114.090502
10.1103/PhysRevLett.99.022001
10.1007/JHEP11(2013)200
10.1016/0550-3213(95)00610-9
10.1093/ptep/ptw124
10.1103/PhysRevD.55.5112
10.1088/1751-8113/44/44/445308
10.1103/PhysRevLett.118.010501
10.1073/pnas.2006337117
10.1016/0550-3213(88)90116-2
10.1088/1126-6708/2000/12/002
10.1103/PhysRevA.99.042314
10.1088/1126-6708/2008/01/025
10.1007/JHEP02(2021)004
10.1016/j.nuclphysb.2011.12.014
10.1016/S0370-2693(97)01368-3
10.1103/PhysRevD.96.126003
10.1007/978-3-642-18073-6_8
10.1103/PhysRevLett.100.021601
10.1103/PhysRevLett.48.1063
10.1103/PhysRevB.101.205148
10.22323/1.334.0024
10.1007/JHEP01(2016)175
10.1017/fms.2017.2
10.1088/1126-6708/2003/12/031
10.1007/JHEP10(2019)029
10.1007/JHEP12(2019)167
10.1103/PhysRevA.99.052335
10.1016/0550-3213(81)90361-8
10.1126/science.1217069
10.1007/BF01609348
10.1126/science.1250122
10.1007/JHEP05(2015)132
10.1103/PhysRevA.99.040301
10.1093/ptep/ptx108
10.1103/PhysRevLett.126.030602
10.1103/PhysRevLett.99.161602
10.1088/1126-6708/2003/01/038
10.1016/0370-2693(83)90647-0
10.1103/PhysRev.122.345
10.1103/PhysRevLett.119.040501
10.1007/JHEP02(2017)012
10.1007/JHEP02(2021)034
10.1145/2983539
10.1088/1126-6708/2003/05/037
10.1103/PhysRevD.11.395
10.1038/s41534-020-0278-0
10.1016/0550-3213(82)90278-4
10.1016/0370-2693(82)90106-X
10.1103/PhysRevD.85.106003
10.1088/1126-6708/2004/11/006
10.1103/PhysRevD.78.041502
10.1088/1126-6708/2004/03/067
10.1016/0370-2693(82)90849-8
10.1088/1126-6708/2004/01/015
10.1088/1126-6708/2005/01/016
10.1007/JHEP06(2018)124
10.1103/PhysRevA.78.052325
10.1143/PTP.126.597
10.1103/PhysRevD.10.2445
10.1016/0550-3213(87)90660-2
10.1007/JHEP08(2016)106
10.1038/s41586-019-0952-6
10.1088/1126-6708/2000/02/020
10.1103/PhysRevD.58.046004
10.1088/1126-6708/2009/09/029
10.1007/978-3-030-46044-0
10.1088/1126-6708/2003/08/024
10.1039/C9SC01313J
10.1103/PhysRevD.78.106001
10.1007/JHEP01(2017)013
10.1007/JHEP04(2018)084
10.1007/JHEP02(2018)076
10.1007/JHEP03(2018)055
10.1088/1126-6708/2009/10/079
10.1103/PhysRevLett.106.170501
10.1103/PhysRevA.95.032305
10.1103/PhysRevA.94.040302
10.1103/PhysRevA.98.012332
10.1103/PhysRevLett.124.240505
10.1103/PhysRevD.21.2308
10.1006/aphy.2002.6254
10.1109/FOCS.2015.54
10.1088/1126-6708/2002/04/013
10.1103/PhysRevResearch.2.043164
10.1088/1126-6708/2007/12/104
10.1088/1126-6708/2001/11/006
10.1142/S0217751X16430065
10.1007/JHEP10(2020)103
10.4310/ATMP.1998.v2.n2.a1
10.1007/JHEP12(2020)011
10.22323/1.105.0253
10.1103/PhysRevD.103.106007
10.1007/JHEP03(2015)069
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.1007/JHEP07(2021)140
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 56
ExternalDocumentID oai_doaj_org_article_a369731672fc4fe49502623bd62af4ae
10.1007/jhep07(2021)140
10_1007_JHEP07_2021_140
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
PQGLB
PUEGO
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c417t-54029e28a1e20e62b2a0696a1ed7d35e20311fb50790e2db80f77575964cbf3c3
IEDL.DBID BENPR
ISSN 1029-8479
1126-6708
1127-2236
IngestDate Fri Oct 03 12:45:57 EDT 2025
Sun Oct 26 04:10:35 EDT 2025
Sat Oct 18 23:03:28 EDT 2025
Wed Oct 01 01:45:24 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Fri Feb 21 02:47:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Black Holes in String Theory
M(atrix) Theories
M-Theory
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-54029e28a1e20e62b2a0696a1ed7d35e20311fb50790e2db80f77575964cbf3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2553619338?pq-origsite=%requestingapplication%&accountid=15518
PQID 2553619338
PQPubID 2034718
PageCount 56
ParticipantIDs doaj_primary_oai_doaj_org_article_a369731672fc4fe49502623bd62af4ae
unpaywall_primary_10_1007_jhep07_2021_140
proquest_journals_2553619338
crossref_citationtrail_10_1007_JHEP07_2021_140
crossref_primary_10_1007_JHEP07_2021_140
springer_journals_10_1007_JHEP07_2021_140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References KimNKloseTPlefkaJPlane wave matrix theory from N = 4 superYang-Mills on R × S3Nucl. Phys. B20036713592003NuPhB.671..359K1058.81713[hep-th/0306054] [INSPIRE]
G.H. Low, V. Kliuchnikov and N. Wiebe, Well-conditioned multiproduct hamiltonian simulation, arXiv:1907.11679.
G.H. Low and I.L. Chuang, Hamiltonian simulation by qubitization, arXiv:1610.06546.
HanadaMMatsuuraSSuginoFTwo-dimensional lattice for four-dimensional N = 4 supersymmetric Yang-MillsProg. Theor. Phys.20111265972011PThPh.126..597H1248.81140[arXiv:1004.5513] [INSPIRE]
McArdleSEndoSAspuru-GuzikABenjaminSCYuanXQuantum computational chemistryRev. Mod. Phys.2020920150032020RvMP...92a5003M4091711
García-ÁlvarezLEgusquizaILLamataLdel CampoASonnerJSolanoEDigital Quantum Simulation of Minimal AdS/CFTPhys. Rev. Lett.20171190405012017PhRvL.119d0501G[arXiv:1607.08560] [INSPIRE]
M. Hanada, Yang-Mills theory on noncommutative space: does it exist?, PoSCORFU2015 (2016) 105 [arXiv:1604.04662] [INSPIRE].
BerryDWChildsAMCleveRKothariRSommaRDSimulating hamiltonian dynamics with a truncated taylor seriesPhys. Rev. Lett.20151140905022015PhRvL.114i0502B
M. Hanada, Markov Chain Monte Carlo for Dummies, arXiv:1808.08490 [INSPIRE].
SwingleBBentsenGSchleier-SmithMHaydenPMeasuring the scrambling of quantum informationPhys. Rev. A2016940403022016PhRvA..94d0302S3608924[arXiv:1602.06271] [INSPIRE]
F. Sugino, Various super Yang-Mills theories with exact supersymmetry on the lattice, JHEP01 (2005) 016 [hep-lat/0410035] [INSPIRE].
Van RaamsdonkMThe meaning of infrared singularities in noncommutative gauge theoriesJHEP2001110061878509[hep-th/0110093] [INSPIRE]
S.P. Jordan, Black holes, quantum mechanics, and the limits of polynomial-time computability, XRDS: Crossroads, ACM Mag. Stud.23 (2016) 30.
S. Xu, L. Susskind, Y. Su and B. Swingle, A Sparse Model of Quantum Holography, arXiv:2008.02303 [INSPIRE].
LloydSUniversal quantum simulatorsScience199627310731996Sci...273.1073L14079441226.81059
El-ShowkSPapadodimasKEmergent Spacetime and Holographic CFTsJHEP2012101062012JHEP...10..106E[arXiv:1101.4163] [INSPIRE]
WittenEBound states of strings and p-branesNucl. Phys. B19964603351996NuPhB.460..335W13771681003.81527[hep-th/9510135] [INSPIRE]
McArdleSMayorovAShanXBenjaminSYuanXDigital quantum simulation of molecular vibrationsChem. Sci.2019105725
PACS-CS collaboration, 2+1 Flavor Lattice QCD toward the Physical Point, Phys. Rev. D79 (2009) 034503 [arXiv:0807.1661] [INSPIRE].
HanadaMJevickiAPengCWintergerstNAnatomy of DeconfinementJHEP2019121672019JHEP...12..167H40612781431.83169[arXiv:1909.09118] [INSPIRE]
AzeyanagiTHanadaMHirataTOn Matrix Model Formulations of Noncommutative Yang-Mills TheoriesPhys. Rev. D2008781050172008PhRvD..78j5017A2487312[arXiv:0806.3252] [INSPIRE]
IshiiTIshikiGShimasakiSTsuchiyaAN = 4 Super Yang-Mills from the Plane Wave Matrix ModelPhys. Rev. D2008781060012008PhRvD..78j6001I2487314[arXiv:0807.2352] [INSPIRE]
CatterallSWisemanTTowards lattice simulation of the gauge theory duals to black holes and hot stringsJHEP2007121042007JHEP...12..104C23664521246.81112[arXiv:0706.3518] [INSPIRE]
AsanoYIshikiGShimasakiSTerashimaSSpherical transverse M5-branes from the plane wave matrix modelJHEP2018020762018JHEP...02..076A37895941387.83075[arXiv:1711.07681] [INSPIRE]
N. Ishii, S. Aoki and T. Hatsuda, The Nuclear Force from Lattice QCD, Phys. Rev. Lett.99 (2007) 022001 [nucl-th/0611096] [INSPIRE].
HanadaMHyakutakeYIshikiGNishimuraJHolographic description of quantum black hole on a computerScience20143448822014Sci...344..882H[arXiv:1311.5607] [INSPIRE]
ShenkerSHStanfordDBlack holes and the butterfly effectJHEP2014030672014JHEP...03..067S31909791333.83111[arXiv:1306.0622] [INSPIRE]
A. Bouland, B. Fefferman and U. Vazirani, Computational pseudorandomness, the wormhole growth paradox, and constraints on the AdS/CFT duality, arXiv:1910.14646 [INSPIRE].
KogutJBSusskindLHamiltonian Formulation of Wilson’s Lattice Gauge TheoriesPhys. Rev. D1975113951975PhRvD..11..395K[INSPIRE]
ParisiGA Simple Expression for Planar Field TheoriesPhys. Lett. B19821124631982PhLB..112..463P664381[INSPIRE]
YangZHaydenPQiX-LBidirectional holographic codes and sub-AdS localityJHEP2016011752016JHEP...01..175Y34714051388.83147[arXiv:1510.03784] [INSPIRE]
MaldacenaJShenkerSHStanfordDA bound on chaosJHEP2016081062016JHEP...08..106M35641421390.81388[arXiv:1503.01409] [INSPIRE]
D.W. Berry, A.M. Childs, Y. Su, X. Wang and N. Wiebe, Time-dependent hamiltonian simulation with l1-norm scaling, arXiv:1906.07115.
IshikiGKimS-WNishimuraJTsuchiyaATesting a novel large-N reduction for N = 4 super Yang-Mills theory on R × S3JHEP2009090292009JHEP...09..029I[arXiv:0907.1488] [INSPIRE]
C.-F. Chen, R. Kueng, J.A. Tropp, et al., Quantum simulation via randomized product formulas: Low gate complexity with accuracy guarantees, arXiv:2008.11751.
WuJHsiehTHVariational Thermal Quantum Simulation via Thermofield Double StatesPhys. Rev. Lett.20191232205022019PhRvL.123v0502W[arXiv:1811.11756] [INSPIRE]
HondaMYoshidaYLocalization and Large N reduction on S3for the Planar and M-theory limitNucl. Phys. B2012865212012NuPhB.865...21H29685011262.81141[arXiv:1203.1016] [INSPIRE]
LiuJScrambling and decoding the charged quantum informationPhys. Rev. Res.202020431642020hsm2.book.....L[arXiv:2003.11425] [INSPIRE]
BanksTFischlerWShenkerSHSusskindLM theory as a matrix model: A ConjecturePhys. Rev. D19975551121997PhRvD..55.5112B14496171156.81433[hep-th/9610043] [INSPIRE]
DasguptaKSheikh-JabbariMMVan RaamsdonkMMatrix perturbation theory for M-theory on a PP waveJHEP2002050562002JHEP...05..056D1915342[hep-th/0205185] [INSPIRE]
ZoharEBurrelloMFormulation of lattice gauge theories for quantum simulationsPhys. Rev. D2015910545062015PhRvD..91e4506Z3415282[arXiv:1409.3085] [INSPIRE]
BabbushRBerryDWNevenHQuantum Simulation of the Sachdev-Ye-Kitaev Model by Asymmetric QubitizationPhys. Rev. A2019990403012019PhRvA..99d0301B[arXiv:1806.02793] [INSPIRE]
Y. Ouyang, D.R. White and E. Campbell, Compilation by stochastic hamiltonian sparsification, arXiv:1910.06255.
BerryDWChildsAMBlack-box hamiltonian simulation and unitary implementationQuant. Inf. Comput.2012122928962961268.81045
EguchiTKawaiHReduction of Dynamical Degrees of Freedom in the Large N Gauge TheoryPhys. Rev. Lett.19824810631982PhRvL..48.1063E[INSPIRE]
KobrinBMany-Body Chaos in the Sachdev-Ye-Kitaev ModelPhys. Rev. Lett.20211260306022021PhRvL.126c0602K[arXiv:2002.05725] [INSPIRE]
H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B417 (1998) 141 [hep-lat/9707022] [INSPIRE].
Hamed MoosavianAJordanSFaster Quantum Algorithm to simulate Fermionic Quantum Field TheoryPhys. Rev. A2018980123322018PhRvA..98a2332H[arXiv:1711.04006] [INSPIRE]
BabbushRGidneyCBerryDWWiebeNMcCleanJPalerAFowlerANevenHEncoding electronic spectra in quantum circuits with linear t complexityPhys. Rev. X20188041015
J. Preskill, Simulating quantum field theory with a quantum computer, PoSLATTICE2018 (2018) 024 [arXiv:1811.10085] [INSPIRE].
D.B. Kaplan and M. Ünsal, A Euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP09 (2005) 042 [hep-lat/0503039] [INSPIRE].
CurciGVenezianoGSupersymmetry and the Lattice: A Reconciliation?Nucl. Phys. B19872925551987NuPhB.292..555C[INSPIRE]
KimNParkJ-HMassive super Yang-Mills quantum mechanics: Classification and the relation to supermembraneNucl. Phys. B20067592492006NuPhB.759..249K22823901116.83036[hep-th/0607005] [INSPIRE]
BhanotGHellerUMNeubergerHThe Quenched Eguchi-Kawai ModelPhys. Lett. B1982113471982PhLB..113...47B[INSPIRE]
JoshiMKQuantum information scrambling in a trapped-ion quantum simulator with tunable range interactionsPhys. Rev. Lett.20201242405052020PhRvL.124x0505J[arXiv:2001.02176] [INSPIRE]
F. Sugino, A Lattice formulation of superYang-Mills theories with exact supersymmetry, JHEP01 (2004) 015 [hep-lat/0311021] [INSPIRE].
G.H. Low, Hamiltonian simulation with nearly optimal dependence on spectral norm, arXiv:1807.03967.
CreutzMMonte Carlo Study of Quantized SU(2) Gauge TheoryPhys. Rev. D19802123081980PhRvD..21.2308C585979[INSPIRE]
BerkowitzERinaldiEHanadaMIshikiGShimasakiSVranasPPrecision lattice test of the gauge/gravity duality at large-NPhys. Rev. D2016940945012016PhRvD..94i4501B[arXiv:1606.04951] [INSPIRE]
M. Honda, G. Ishiki, J. Nishimura and A. Tsuchiya, Testing the AdS/CFT correspondence by Monte Carlo calculation of BPS and non-BPS Wilson loops in 4d N = 4 super-Yang-Mills theory, PoSLATTICE2011 (2011) 244 [arXiv:1112.4274] [INSPIRE].
J. Liu, Aspects of cyberpunkian quantum field theory, https://github.com/junyuphybies/cyber/blob/master/Cyber_QF.pdf.
A. Milekhin, Quantum error correction and large N, arXiv:2008.12869 [INSPIRE].
HanadaMA proposal of a fine tuning free formulation of 4d N = 4 super Yang-MillsJHEP2010111122010JHEP...11..112H1294.81108[arXiv:1009.0901] [INSPIRE]
MaldacenaJSimmons-DuffinDZhiboedovALooking for a bulk pointJHEP2017010132017JHEP...01..013M36368451373.81335[arXiv:1509.03612] [INSPIRE]
M. Hanada, H. Shimada and N. Wintergerst, Color Confinement and Bose-Einstein Condensation, arXiv:2001.10459 [INSPIRE].
JordanSPLeeKSMPreskillJQuantum Computation of Scattering in Scalar Quantum Field TheoriesQuant. Inf. Comput.20141410143241901[arXiv:1112.4833] [INSPIRE]
BravyiSBKitaevAYFermionic quantum computationAnnals Phys.20022982102002AnPhy.298..210B19100920995.81012
HanadaMWhat lattice theorists can do for superstring/M-theoryInt. J. Mod. Phys. A20163116430062016IJMPA..3143006H35351051345.81078[arXiv:1604.05421] [INSPIRE]
JordanSPLeeKSMPreskillJQuantum Algorithms for Quantum Field TheoriesScience201233611302012Sci...336.1130J[arXiv:1111.3633] [INSPIRE]
M. Hanada, G. Ishiki and H. Watanabe, Partial Deconfinement, JHEP03 (2019) 145 [Erratum ibid.10 (2019) 029] [arXiv:1812.05494] [INSPIRE].
CostaMSGreenspanLPenedonesJSantosJThermodynamics of the BMN matrix model at strong couplingJHEP2015030692015JHEP...03..069C33407141388.83649[arXiv:1411.5541] [INSPIRE]
L. Susskind, Horizons Protect Church-Turing, arXiv:2003.01807 [INSPIRE].
S. Catterall, Lattice supersymmetry and topological
16324_CR103
16324_CR101
16324_CR26
16324_CR25
16324_CR24
B Yoshida (16324_CR123) 2020; 10
M Kieferova (16324_CR145) 2019; 99
H Watanabe (16324_CR104) 2021; 02
M Hanada (16324_CR99) 2017; 02
J Maldacena (16324_CR105) 2017; 01
GH Low (16324_CR162) 2016; 6
A Gonzalez-Arroyo (16324_CR38) 1983; 120
M Van Raamsdonk (16324_CR85) 2001; 11
16324_CR33
L García-Álvarez (16324_CR48) 2017; 119
JM Maldacena (16324_CR67) 2003; 01
A Hamed Moosavian (16324_CR135) 2018; 98
16324_CR19
16324_CR18
16324_CR17
T Eguchi (16324_CR37) 1982; 48
16324_CR16
16324_CR15
16324_CR14
J Liu (16324_CR52) 2020; 2
16324_CR118
Y Asano (16324_CR71) 2018; 02
W Cottrell (16324_CR95) 2019; 02
R Babbush (16324_CR47) 2019; 99
Z Yang (16324_CR108) 2016; 01
H Kawai (16324_CR73) 2010; 25
B Kobrin (16324_CR117) 2021; 126
16324_CR23
N Wiebe (16324_CR154) 2011; 44
16324_CR22
I Kim (16324_CR122) 2020; 06
16324_CR21
16324_CR20
SP Jordan (16324_CR136) 2018; 2
16324_CR125
16324_CR124
P Hayden (16324_CR109) 2016; 11
16324_CR121
R Babbush (16324_CR143) 2018; 8
16324_CR120
D Zhu (16324_CR114) 2020; 117
S Lloyd (16324_CR129) 1996; 273
E Witten (16324_CR65) 1996; 460
DB Kaplan (16324_CR27) 1984; 136
J Wu (16324_CR96) 2019; 123
G Ishiki (16324_CR74) 2009; 102
S El-Showk (16324_CR107) 2012; 10
16324_CR90
KA Landsman (16324_CR45) 2019; 567
J Liu (16324_CR126) 2020; 12
16324_CR12
16324_CR11
16324_CR97
T Ishii (16324_CR64) 2008; 78
N Bao (16324_CR127) 2019; 946
16324_CR94
16324_CR137
MS Costa (16324_CR111) 2015; 03
MK Joshi (16324_CR46) 2020; 124
16324_CR133
16324_CR131
M Hanada (16324_CR70) 2015; 892
J Maldacena (16324_CR113) 2016; 08
16324_CR130
KN Anagnostopoulos (16324_CR9) 2008; 100
T Azeyanagi (16324_CR87) 2008; 78
E Zohar (16324_CR36) 2015; 91
G Parisi (16324_CR82) 1982; 112
16324_CR139
S McArdle (16324_CR140) 2020; 92
16324_CR138
16324_CR80
M Hanada (16324_CR110) 2021; 103
A Kruchkov (16324_CR51) 2020; 101
16324_CR88
D Poulin (16324_CR155) 2011; 106
A Matusis (16324_CR69) 2000; 12
DE Berenstein (16324_CR53) 2002; 04
T Banks (16324_CR54) 1997; 55
N Klco (16324_CR60) 2019; 99
16324_CR146
16324_CR3
I Heemskerk (16324_CR106) 2009; 10
16324_CR144
16324_CR5
JT Seeley (16324_CR93) 2012; 137
F Alet (16324_CR98) 2021; 02
16324_CR142
16324_CR4
DW Berry (16324_CR160) 2012; 12
16324_CR6
16324_CR8
E Berkowitz (16324_CR32) 2016; 94
A Gonzalez-Arroyo (16324_CR39) 1983; 27
SH Shenker (16324_CR116) 2015; 05
S Catterall (16324_CR30) 2007; 12
16324_CR149
M Hanada (16324_CR29) 2007; 99
SP Jordan (16324_CR59) 2012; 336
M Hanada (16324_CR42) 2010; 11
S McArdle (16324_CR91) 2019; 10
16324_CR77
SP Jordan (16324_CR134) 2017; 95
16324_CR76
N Kim (16324_CR84) 2006; 759
Y Asano (16324_CR72) 2017; 96
T Albash (16324_CR128) 2018; 90
16324_CR158
16324_CR157
16324_CR156
G Ishiki (16324_CR75) 2009; 09
M Hanada (16324_CR119) 2012; 857
G Curci (16324_CR28) 1987; 292
16324_CR153
SP Jordan (16324_CR132) 2014; 14
16324_CR152
D Berenstein (16324_CR100) 2018; 09
N Itzhaki (16324_CR66) 1998; 58
RC Myers (16324_CR40) 1999; 12
M Honda (16324_CR78) 2013; 11
B Swingle (16324_CR112) 2016; 94
AM Childs (16324_CR159) 2012; 12
M Creutz (16324_CR2) 1980; 21
16324_CR151
M Suzuki (16324_CR147) 1976; 51
16324_CR150
M Hanada (16324_CR34) 2016; 31
S Catterall (16324_CR10) 2008; 78
N Kim (16324_CR57) 2003; 671
16324_CR61
DJ Gross (16324_CR83) 1982; 206
S Minwalla (16324_CR68) 2000; 02
16324_CR49
K Dasgupta (16324_CR63) 2002; 09
M Hanada (16324_CR31) 2014; 344
16324_CR163
M Hanada (16324_CR41) 2011; 126
B de Wit (16324_CR55) 1988; 305
SB Bravyi (16324_CR92) 2002; 298
SH Shenker (16324_CR115) 2014; 03
16324_CR161
GH Low (16324_CR13) 2017; 118
16324_CR50
J Maldacena (16324_CR58) 2018; 04
S Dürr (16324_CR7) 2008; 322
M Hanada (16324_CR102) 2019; 12
G Bhanot (16324_CR81) 1982; 113
T Azeyanagi (16324_CR86) 2008; 01
M Hanada (16324_CR89) 2009; 11
M Honda (16324_CR79) 2012; 865
E Berkowitz (16324_CR62) 2018; 06
W Dür (16324_CR148) 2008; 78
DW Berry (16324_CR141) 2015; 114
K Dasgupta (16324_CR56) 2002; 05
16324_CR44
16324_CR43
JB Kogut (16324_CR35) 1975; 11
KG Wilson (16324_CR1) 1974; 10
References_xml – reference: E. Campbell, A random compiler for fast hamiltonian simulation, arXiv:1811.08017.
– reference: BanksTFischlerWShenkerSHSusskindLM theory as a matrix model: A ConjecturePhys. Rev. D19975551121997PhRvD..55.5112B14496171156.81433[hep-th/9610043] [INSPIRE]
– reference: WilsonKGConfinement of QuarksPhys. Rev. D19741024451974PhRvD..10.2445W[INSPIRE]
– reference: PACS-CS collaboration, 2+1 Flavor Lattice QCD toward the Physical Point, Phys. Rev. D79 (2009) 034503 [arXiv:0807.1661] [INSPIRE].
– reference: JordanSPKroviHLeeKSPreskillJBQP-completeness of scattering in scalar quantum field theoryQuantum2018244
– reference: M. Honda, G. Ishiki, J. Nishimura and A. Tsuchiya, Testing the AdS/CFT correspondence by Monte Carlo calculation of BPS and non-BPS Wilson loops in 4d N = 4 super-Yang-Mills theory, PoSLATTICE2011 (2011) 244 [arXiv:1112.4274] [INSPIRE].
– reference: BabbushRGidneyCBerryDWWiebeNMcCleanJPalerAFowlerANevenHEncoding electronic spectra in quantum circuits with linear t complexityPhys. Rev. X20188041015
– reference: Y. Asano, V.G. Filev, S. Kováčik and D. O’Connor, A computer test of holographic avour dynamics. Part II, JHEP03 (2018) 055 [arXiv:1612.09281] [INSPIRE].
– reference: A.M. Childs, Y. Su, M.C. Tran, N. Wiebe and S. Zhu, A theory of trotter error, arXiv:1912.08854.
– reference: C.-F. Chen, R. Kueng, J.A. Tropp, et al., Quantum simulation via randomized product formulas: Low gate complexity with accuracy guarantees, arXiv:2008.11751.
– reference: BerkowitzERinaldiEHanadaMIshikiGShimasakiSVranasPPrecision lattice test of the gauge/gravity duality at large-NPhys. Rev. D2016940945012016PhRvD..94i4501B[arXiv:1606.04951] [INSPIRE]
– reference: BravyiSBKitaevAYFermionic quantum computationAnnals Phys.20022982102002AnPhy.298..210B19100920995.81012
– reference: HeemskerkIPenedonesJPolchinskiJSullyJHolography from Conformal Field TheoryJHEP2009100792009JHEP...10..079H2607436[arXiv:0907.0151] [INSPIRE]
– reference: IshiiTIshikiGShimasakiSTsuchiyaAN = 4 Super Yang-Mills from the Plane Wave Matrix ModelPhys. Rev. D2008781060012008PhRvD..78j6001I2487314[arXiv:0807.2352] [INSPIRE]
– reference: MaldacenaJMSheikh-JabbariMMVan RaamsdonkMTransverse five-branes in matrix theoryJHEP2003010382003JHEP...01..038M1226.81213[hep-th/0211139] [INSPIRE]
– reference: SuzukiMGeneralized Trotter’s Formula and Systematic Approximants of Exponential Operators and Inner Derivations with Applications to Many Body ProblemsCommun. Math. Phys.1976511831976CMaPh..51..183S4256780341.47028[INSPIRE]
– reference: KogutJBSusskindLHamiltonian Formulation of Wilson’s Lattice Gauge TheoriesPhys. Rev. D1975113951975PhRvD..11..395K[INSPIRE]
– reference: MinwallaSVan RaamsdonkMSeibergNNoncommutative perturbative dynamicsJHEP2000020202000JHEP...02..020M17488010959.81108[hep-th/9912072] [INSPIRE]
– reference: F. Sugino, SuperYang-Mills theories on the two-dimensional lattice with exact supersymmetry, JHEP03 (2004) 067 [hep-lat/0401017] [INSPIRE].
– reference: ItzhakiNMaldacenaJMSonnenscheinJYankielowiczSSupergravity and the large N limit of theories with sixteen superchargesPhys. Rev. D1998580460041998PhRvD..58d6004I1678195[hep-th/9802042] [INSPIRE]
– reference: M. Honda, G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Supersymmetry non-renormalization theorem from a computer and the AdS/CFT correspondence, PoSLATTICE2010 (2010) 253 [arXiv:1011.3904] [INSPIRE].
– reference: HanadaMWhat lattice theorists can do for superstring/M-theoryInt. J. Mod. Phys. A20163116430062016IJMPA..3143006H35351051345.81078[arXiv:1604.05421] [INSPIRE]
– reference: J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
– reference: J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
– reference: D.W. Berry, A.M. Childs, Y. Su, X. Wang and N. Wiebe, Time-dependent hamiltonian simulation with l1-norm scaling, arXiv:1906.07115.
– reference: YangZHaydenPQiX-LBidirectional holographic codes and sub-AdS localityJHEP2016011752016JHEP...01..175Y34714051388.83147[arXiv:1510.03784] [INSPIRE]
– reference: ChildsAMWiebeNHamiltonian simulation using linear combinations of unitary operationsQuant. Inf. Comput.20121290130128191263.81112
– reference: AsanoYIshikiGShimasakiSTerashimaSSpherical transverse M5-branes in matrix theoryPhys. Rev. D2017961260032017PhRvD..96l6003A38732931387.83075[arXiv:1701.07140] [INSPIRE]
– reference: BerryDWChildsAMBlack-box hamiltonian simulation and unitary implementationQuant. Inf. Comput.2012122928962961268.81045
– reference: KimNKloseTPlefkaJPlane wave matrix theory from N = 4 superYang-Mills on R × S3Nucl. Phys. B20036713592003NuPhB.671..359K1058.81713[hep-th/0306054] [INSPIRE]
– reference: M. Kreshchuk, W.M. Kirby, G. Goldstein, H. Beauchemin and P.J. Love, Quantum Simulation of Quantum Field Theory in the Light-Front Formulation, arXiv:2002.04016 [INSPIRE].
– reference: KobrinBMany-Body Chaos in the Sachdev-Ye-Kitaev ModelPhys. Rev. Lett.20211260306022021PhRvL.126c0602K[arXiv:2002.05725] [INSPIRE]
– reference: G.H. Low, V. Kliuchnikov and N. Wiebe, Well-conditioned multiproduct hamiltonian simulation, arXiv:1907.11679.
– reference: A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 1. A target theory with four supercharges, JHEP08 (2003) 024 [hep-lat/0302017] [INSPIRE].
– reference: KimITangEPreskillJThe ghost in the radiation: Robust encodings of the black hole interiorJHEP2020060312020JHEP...06..031K41360161437.83063[arXiv:2003.05451] [INSPIRE]
– reference: MaldacenaJSimmons-DuffinDZhiboedovALooking for a bulk pointJHEP2017010132017JHEP...01..013M36368451373.81335[arXiv:1509.03612] [INSPIRE]
– reference: A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 2. Target theories with eight supercharges, JHEP12 (2003) 031 [hep-lat/0307012] [INSPIRE].
– reference: HanadaMMatsuuraSSuginoFNon-perturbative construction of 2D and 4D supersymmetric Yang-Mills theories with 8 superchargesNucl. Phys. B20128573352012NuPhB.857..335H28742101246.81129[arXiv:1109.6807] [INSPIRE]
– reference: IshikiGKimS-WNishimuraJTsuchiyaATesting a novel large-N reduction for N = 4 super Yang-Mills theory on R × S3JHEP2009090292009JHEP...09..029I[arXiv:0907.1488] [INSPIRE]
– reference: McArdleSMayorovAShanXBenjaminSYuanXDigital quantum simulation of molecular vibrationsChem. Sci.2019105725
– reference: WittenEBound states of strings and p-branesNucl. Phys. B19964603351996NuPhB.460..335W13771681003.81527[hep-th/9510135] [INSPIRE]
– reference: KimNParkJ-HMassive super Yang-Mills quantum mechanics: Classification and the relation to supermembraneNucl. Phys. B20067592492006NuPhB.759..249K22823901116.83036[hep-th/0607005] [INSPIRE]
– reference: A. Buser, H. Gharibyan, M. Hanada, M. Honda and J. Liu, Quantum simulation of gauge theory via orbifold lattice, arXiv:2011.06576 [INSPIRE].
– reference: SeeleyJTRichardMJLovePJThe bravyi-kitaev transformation for quantum computation of electronic structureJ. Chem. Phys.20121372241092012JChPh.137v4109S
– reference: McArdleSEndoSAspuru-GuzikABenjaminSCYuanXQuantum computational chemistryRev. Mod. Phys.2020920150032020RvMP...92a5003M4091711
– reference: A. Milekhin, Quantum error correction and large N, arXiv:2008.12869 [INSPIRE].
– reference: R.D. Somma, Quantum computation, complexity, and many-body physics, quant-ph/0512209.
– reference: WatanabeHPartial deconfinement at strong coupling on the latticeJHEP2021020042021JHEP...02..004W4260415[arXiv:2005.04103] [INSPIRE]
– reference: HanadaMJevickiAPengCWintergerstNAnatomy of DeconfinementJHEP2019121672019JHEP...12..167H40612781431.83169[arXiv:1909.09118] [INSPIRE]
– reference: D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a spatial lattice, JHEP05 (2003) 037 [hep-lat/0206019] [INSPIRE].
– reference: HanadaMShimadaHOn the continuity of the commutative limit of the 4d N = 4 non-commutative super Yang-Mills theoryNucl. Phys. B20158924492015NuPhB.892..449H33109231328.81212[arXiv:1410.4503] [INSPIRE]
– reference: N.P. Sawaya, T. Menke, T.H. Kyaw, S. Johri, A. Aspuru-Guzik and G.G. Guerreschi, Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s hamiltonians, npj Quantum Inf.6 (2020) 1.
– reference: Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1, Phys. Rev.122 (1961) 345 [INSPIRE].
– reference: A.M. Childs and R. Kothari, Simulating sparse hamiltonians with star decompositions, in Theory of Quantum Computation, Communication, and Cryptography, W. van Dam, V.M. Kendon and S. Severini, eds., pp. 94–103. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany (2011).
– reference: DürrSAb-Initio Determination of Light Hadron MassesScience200832212242008Sci...322.1224D[arXiv:0906.3599] [INSPIRE]
– reference: CatterallSWisemanTBlack hole thermodynamics from simulations of lattice Yang-Mills theoryPhys. Rev. D2008780415022008PhRvD..78d1502C2447360[arXiv:0803.4273] [INSPIRE]
– reference: JordanSPFast quantum computation at arbitrarily low energyPhys. Rev. A2017950323052017PhRvA..95c2305J3687639[arXiv:1701.01175] [INSPIRE]
– reference: S.P. Jordan, Black holes, quantum mechanics, and the limits of polynomial-time computability, XRDS: Crossroads, ACM Mag. Stud.23 (2016) 30.
– reference: B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi and A. Tomiya, Digital Quantum Simulation of the Schwinger Model with Topological Term via Adiabatic State Preparation, arXiv:2001.00485 [INSPIRE].
– reference: CatterallSWisemanTTowards lattice simulation of the gauge theory duals to black holes and hot stringsJHEP2007121042007JHEP...12..104C23664521246.81112[arXiv:0706.3518] [INSPIRE]
– reference: WuJHsiehTHVariational Thermal Quantum Simulation via Thermofield Double StatesPhys. Rev. Lett.20191232205022019PhRvL.123v0502W[arXiv:1811.11756] [INSPIRE]
– reference: AlbashTLidarDAAdiabatic quantum computationRev. Mod. Phys.2018900150022018RvMP...90a5002A3788424
– reference: HondaMYoshidaYLocalization and Large N reduction on S3for the Planar and M-theory limitNucl. Phys. B2012865212012NuPhB.865...21H29685011262.81141[arXiv:1203.1016] [INSPIRE]
– reference: G.H. Low, Hamiltonian simulation with nearly optimal dependence on spectral norm, arXiv:1807.03967.
– reference: D.B. Kaplan and M. Ünsal, A Euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP09 (2005) 042 [hep-lat/0503039] [INSPIRE].
– reference: Hamed MoosavianAJordanSFaster Quantum Algorithm to simulate Fermionic Quantum Field TheoryPhys. Rev. A2018980123322018PhRvA..98a2332H[arXiv:1711.04006] [INSPIRE]
– reference: S. Catterall, Lattice supersymmetry and topological field theory, JHEP05 (2003) 038 [hep-lat/0301028] [INSPIRE].
– reference: KlcoNSavageMJDigitization of scalar fields for quantum computingPhys. Rev. A2019990523352019PhRvA..99e2335K[arXiv:1808.10378] [INSPIRE]
– reference: IshikiGKimS-WNishimuraJTsuchiyaADeconfinement phase transition in N = 4 super Yang-Mills theory on R × S3from supersymmetric matrix quantum mechanicsPhys. Rev. Lett.20091021116012009PhRvL.102k1601I[arXiv:0810.2884] [INSPIRE]
– reference: A.R. Brown et al., Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes, arXiv:1911.06314 [INSPIRE].
– reference: HanadaMMaltzJA proposal of the gauge theory description of the small Schwarzschild black hole in AdS5×S5JHEP2017020122017JHEP...02..012H1377.83046[arXiv:1608.03276] [INSPIRE]
– reference: Y. Ouyang, D.R. White and E. Campbell, Compilation by stochastic hamiltonian sparsification, arXiv:1910.06255.
– reference: S. Catterall, A geometrical approach to N = 2 super Yang-Mills theory on the two dimensional lattice, JHEP11 (2004) 006 [hep-lat/0410052] [INSPIRE].
– reference: MatusisASusskindLToumbasNThe IR/UV connection in the noncommutative gauge theoriesJHEP2000120022000JHEP...12..002M0990.81549[hep-th/0002075] [INSPIRE]
– reference: MaldacenaJShenkerSHStanfordDA bound on chaosJHEP2016081062016JHEP...08..106M35641421390.81388[arXiv:1503.01409] [INSPIRE]
– reference: HanadaMNishimuraJTakeuchiSNon-lattice simulation for supersymmetric gauge theories in one dimensionPhys. Rev. Lett.2007991616022007PhRvL..99p1602H[arXiv:0706.1647] [INSPIRE]
– reference: DasguptaKSheikh-JabbariMMVan RaamsdonkMProtected multiplets of M-theory on a plane waveJHEP2002090212002JHEP...09..021D1949087[hep-th/0207050] [INSPIRE]
– reference: BaoNLiuJQuantum algorithms for conformal bootstrapNucl. Phys. B201994611470239887331430.81020
– reference: LandsmanKAVerified Quantum Information ScramblingNature2019567612019Natur.567...61L[arXiv:1806.02807] [INSPIRE]
– reference: BerkowitzEHanadaMRinaldiEVranasPGauged And Ungauged: A Nonperturbative TestJHEP2018061242018JHEP...06..124B1395.81175[arXiv:1802.02985] [INSPIRE]
– reference: AzeyanagiTHanadaMHirataTIshikawaTPhase structure of twisted Eguchi-Kawai modelJHEP2008010252008JHEP...01..025A2375387[arXiv:0711.1925] [INSPIRE]
– reference: S. Xu, L. Susskind, Y. Su and B. Swingle, A Sparse Model of Quantum Holography, arXiv:2008.02303 [INSPIRE].
– reference: BhanotGHellerUMNeubergerHThe Quenched Eguchi-Kawai ModelPhys. Lett. B1982113471982PhLB..113...47B[INSPIRE]
– reference: ShenkerSHStanfordDBlack holes and the butterfly effectJHEP2014030672014JHEP...03..067S31909791333.83111[arXiv:1306.0622] [INSPIRE]
– reference: LowGHChuangILOptimal hamiltonian simulation by quantum signal processingPhys. Rev. Lett.20171180105012017PhRvL.118a0501L3664821
– reference: H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B417 (1998) 141 [hep-lat/9707022] [INSPIRE].
– reference: G.H. Low and I.L. Chuang, Hamiltonian simulation by qubitization, arXiv:1610.06546.
– reference: HaydenPNezamiSQiX-LThomasNWalterMYangZHolographic duality from random tensor networksJHEP2016110092016JHEP...11..009H35844421390.83344[arXiv:1601.01694] [INSPIRE]
– reference: ShenkerSHStanfordDStringy effects in scramblingJHEP2015051322015JHEP...05..132S33588711388.83500[arXiv:1412.6087] [INSPIRE]
– reference: HanadaMA proposal of a fine tuning free formulation of 4d N = 4 super Yang-MillsJHEP2010111122010JHEP...11..112H1294.81108[arXiv:1009.0901] [INSPIRE]
– reference: EguchiTKawaiHReduction of Dynamical Degrees of Freedom in the Large N Gauge TheoryPhys. Rev. Lett.19824810631982PhRvL..48.1063E[INSPIRE]
– reference: H.B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 1. Proof by Homotopy Theory, Nucl. Phys. B185 (1981) 20 [Erratum ibid.195 (1982) 541] [INSPIRE].
– reference: M. Hanada, Yang-Mills theory on noncommutative space: does it exist?, PoSCORFU2015 (2016) 105 [arXiv:1604.04662] [INSPIRE].
– reference: CreutzMMonte Carlo Study of Quantized SU(2) Gauge TheoryPhys. Rev. D19802123081980PhRvD..21.2308C585979[INSPIRE]
– reference: García-ÁlvarezLEgusquizaILLamataLdel CampoASonnerJSolanoEDigital Quantum Simulation of Minimal AdS/CFTPhys. Rev. Lett.20171190405012017PhRvL.119d0501G[arXiv:1607.08560] [INSPIRE]
– reference: Van RaamsdonkMThe meaning of infrared singularities in noncommutative gauge theoriesJHEP2001110061878509[hep-th/0110093] [INSPIRE]
– reference: Y. Asano, G. Ishiki, T. Okada and S. Shimasaki, Large-N reduction forN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}=2 quiver Chern-Simons theories on S3and localization in matrix models, Phys. Rev. D85 (2012) 106003 [arXiv:1203.0559] [INSPIRE].
– reference: GrossDJKitazawaYA Quenched Momentum Prescription for Large N TheoriesNucl. Phys. B19822064401982NuPhB.206..440G[INSPIRE]
– reference: Gonzalez-ArroyoAOkawaMA Twisted Model for Large N Lattice Gauge TheoryPhys. Lett. B19831201741983PhLB..120..174G[INSPIRE]
– reference: I. Danshita, M. Hanada and M. Tezuka, Creating and probing the Sachdev-Ye-Kitaev model with ultracold gases: Towards experimental studies of quantum gravity, PTEP2017 (2017) 083I01 [arXiv:1606.02454] [INSPIRE].
– reference: J. Liu, Aspects of cyberpunkian quantum field theory, https://github.com/junyuphybies/cyber/blob/master/Cyber_QF.pdf.
– reference: BerensteinDEMaldacenaJMNastaseHSStrings in flat space and pp waves from N = 4 superYang-MillsJHEP2002040132002JHEP...04..013B[hep-th/0202021] [INSPIRE]
– reference: BerensteinDSubmatrix deconfinement and small black holes in AdSJHEP2018090542018JHEP...09..054B38712451398.83098[arXiv:1806.05729] [INSPIRE]
– reference: M. Hanada, H. Shimada and N. Wintergerst, Color Confinement and Bose-Einstein Condensation, arXiv:2001.10459 [INSPIRE].
– reference: J. Preskill, Simulating quantum field theory with a quantum computer, PoSLATTICE2018 (2018) 024 [arXiv:1811.10085] [INSPIRE].
– reference: D.B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett. B288 (1992) 342 [hep-lat/9206013] [INSPIRE].
– reference: A. Joseph, Markov Chain Monte Carlo Methods in Quantum Field Theories: A Modern Primer, SpringerBriefs in Physics, Springer, (2019), DOI [arXiv:1912.10997] [INSPIRE].
– reference: KawaiHShimasakiSTsuchiyaALarge N reduction on group manifoldsInt. J. Mod. Phys. A20102533892010IJMPA..25.3389K26695941193.81066[arXiv:0912.1456] [INSPIRE]
– reference: CostaMSGreenspanLPenedonesJSantosJThermodynamics of the BMN matrix model at strong couplingJHEP2015030692015JHEP...03..069C33407141388.83649[arXiv:1411.5541] [INSPIRE]
– reference: PoulinDQarryASommaRVerstraeteFQuantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert SpacePhys. Rev. Lett.20111061705012011PhRvL.106q0501P[arXiv:1102.1360] [INSPIRE]
– reference: HanadaMBulk geometry in gauge/gravity duality and color degrees of freedomPhys. Rev. D20211031060072021PhRvD.103j6007H4277614[arXiv:2102.08982] [INSPIRE]
– reference: AsanoYIshikiGShimasakiSTerashimaSSpherical transverse M5-branes from the plane wave matrix modelJHEP2018020762018JHEP...02..076A37895941387.83075[arXiv:1711.07681] [INSPIRE]
– reference: HanadaMHyakutakeYIshikiGNishimuraJHolographic description of quantum black hole on a computerScience20143448822014Sci...344..882H[arXiv:1311.5607] [INSPIRE]
– reference: A.H. Moosavian, J.R. Garrison and S.P. Jordan, Site-by-site quantum state preparation algorithm for preparing vacua of fermionic lattice field theories, arXiv:1911.03505 [INSPIRE].
– reference: KieferovaMSchererABerryDWSimulating the dynamics of time-dependent hamiltonians with a truncated dyson seriesPhys. Rev. A2019990423142019PhRvA..99d2314K
– reference: KaplanDBDynamical Generation of SupersymmetryPhys. Lett. B19841361621984PhLB..136..162K[INSPIRE]
– reference: D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma, Exponential improvement in precision for simulating sparse hamiltonians, in Forum Math. Sigma5 (2017) E8.
– reference: SwingleBBentsenGSchleier-SmithMHaydenPMeasuring the scrambling of quantum informationPhys. Rev. A2016940403022016PhRvA..94d0302S3608924[arXiv:1602.06271] [INSPIRE]
– reference: BabbushRBerryDWNevenHQuantum Simulation of the Sachdev-Ye-Kitaev Model by Asymmetric QubitizationPhys. Rev. A2019990403012019PhRvA..99d0301B[arXiv:1806.02793] [INSPIRE]
– reference: M. Hanada, Markov Chain Monte Carlo for Dummies, arXiv:1808.08490 [INSPIRE].
– reference: YoshidaBRemarks on black hole complexity puzzleJHEP2020101032020JHEP...10..103Y42040021456.83048[arXiv:2005.12491] [INSPIRE]
– reference: KruchkovAPatelAAKimPSachdevSThermoelectric power of Sachdev-Ye-Kitaev islands: Probing Bekenstein-Hawking entropy in quantum matter experimentsPhys. Rev. B20201012051482020PhRvB.101t5148K[arXiv:1912.02835] [INSPIRE]
– reference: ZoharEBurrelloMFormulation of lattice gauge theories for quantum simulationsPhys. Rev. D2015910545062015PhRvD..91e4506Z3415282[arXiv:1409.3085] [INSPIRE]
– reference: MaldacenaJMilekhinATo gauge or not to gauge?JHEP2018040842018JHEP...04..084M1390.81337[arXiv:1802.00428] [INSPIRE]
– reference: HanadaMMannelliLMatsuoYLarge-N reduced models of supersymmetric quiver, Chern-Simons gauge theories and ABJMJHEP2009110872009JHEP...11..087H2628867[arXiv:0907.4937] [INSPIRE]
– reference: LiuJXinYQuantum simulation of quantum field theories as quantum chemistryJHEP2020120112020JHEP...12..011L42394411457.81082[arXiv:2004.13234] [INSPIRE]
– reference: BerryDWChildsAMCleveRKothariRSommaRDSimulating hamiltonian dynamics with a truncated taylor seriesPhys. Rev. Lett.20151140905022015PhRvL.114i0502B
– reference: WiebeNBerryDWHøyerPSandersBCSimulating quantum dynamics on a quantum computerJ. Phys. A2011444453082011JPhA...44R5308W28470671270.81064
– reference: El-ShowkSPapadodimasKEmergent Spacetime and Holographic CFTsJHEP2012101062012JHEP...10..106E[arXiv:1101.4163] [INSPIRE]
– reference: DürWBremnerMJBriegelHJQuantum simulation of interacting high-dimensional systems: The influence of noisePhys. Rev. A2008780523252008PhRvA..78e2325D
– reference: ParisiGA Simple Expression for Planar Field TheoriesPhys. Lett. B19821124631982PhLB..112..463P664381[INSPIRE]
– reference: A.M. Childs, D. Maslov, Y. Nam, N.J. Ross and Y. Su, Toward the first quantum simulation with quantum speedup, arXiv:1711.10980.
– reference: J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 Adv. Theor. Math. Phys.2 (1998) 231 [hep-th/9711200] [INSPIRE].
– reference: CurciGVenezianoGSupersymmetry and the Lattice: A Reconciliation?Nucl. Phys. B19872925551987NuPhB.292..555C[INSPIRE]
– reference: ZhuDGeneration of thermofield double states and critical ground states with a quantum computerProc. Nat. Acad. Sci.2020117254022020PNAS..11725402Z4250199[arXiv:1906.02699] [INSPIRE]
– reference: LowGHYoderTJChuangILMethodology of resonant equiangular composite quantum gatesPhys. Rev. X20166041067
– reference: K. Wan and I. Kim, Fast digital methods for adiabatic state preparation, arXiv:2004.04164.
– reference: MyersRCDielectric branesJHEP1999120221999JHEP...12..022M17430600958.81091[hep-th/9910053] [INSPIRE]
– reference: AnagnostopoulosKNHanadaMNishimuraJTakeuchiSMonte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperaturePhys. Rev. Lett.20081000216012008PhRvL.100b1601A[arXiv:0707.4454] [INSPIRE]
– reference: Gonzalez-ArroyoAOkawaMThe Twisted Eguchi-Kawai Model: A Reduced Model for Large N Lattice Gauge TheoryPhys. Rev. D19832723971983PhRvD..27.2397G[INSPIRE]
– reference: JoshiMKQuantum information scrambling in a trapped-ion quantum simulator with tunable range interactionsPhys. Rev. Lett.20201242405052020PhRvL.124x0505J[arXiv:2001.02176] [INSPIRE]
– reference: DasguptaKSheikh-JabbariMMVan RaamsdonkMMatrix perturbation theory for M-theory on a PP waveJHEP2002050562002JHEP...05..056D1915342[hep-th/0205185] [INSPIRE]
– reference: F. Sugino, A Lattice formulation of superYang-Mills theories with exact supersymmetry, JHEP01 (2004) 015 [hep-lat/0311021] [INSPIRE].
– reference: F. Sugino, Various super Yang-Mills theories with exact supersymmetry on the lattice, JHEP01 (2005) 016 [hep-lat/0410035] [INSPIRE].
– reference: AletFHanadaMJevickiAPengCEntanglement and Confinement in Coupled Quantum SystemsJHEP2021020342021JHEP...02..034A42603851460.81005[arXiv:2001.03158] [INSPIRE]
– reference: M. Hanada, G. Ishiki and H. Watanabe, Partial Deconfinement, JHEP03 (2019) 145 [Erratum ibid.10 (2019) 029] [arXiv:1812.05494] [INSPIRE].
– reference: B. Şahinoğlu and R.D. Somma, Hamiltonian simulation in the low energy subspace, arXiv:2006.02660.
– reference: L. Susskind, Horizons Protect Church-Turing, arXiv:2003.01807 [INSPIRE].
– reference: A. Bouland, B. Fefferman and U. Vazirani, Computational pseudorandomness, the wormhole growth paradox, and constraints on the AdS/CFT duality, arXiv:1910.14646 [INSPIRE].
– reference: CottrellWFreivogelBHofmanDMLokhandeSFHow to Build the Thermofield Double StateJHEP2019020582019JHEP...02..058C39331411411.81174[arXiv:1811.11528] [INSPIRE]
– reference: S. Subramanian, S. Brierley and R. Jozsa, Implementing smooth functions of a hermitian matrix on a quantum computer, arXiv:1806.06885.
– reference: JordanSPLeeKSMPreskillJQuantum Algorithms for Quantum Field TheoriesScience201233611302012Sci...336.1130J[arXiv:1111.3633] [INSPIRE]
– reference: AzeyanagiTHanadaMHirataTOn Matrix Model Formulations of Noncommutative Yang-Mills TheoriesPhys. Rev. D2008781050172008PhRvD..78j5017A2487312[arXiv:0806.3252] [INSPIRE]
– reference: N. Ishii, S. Aoki and T. Hatsuda, The Nuclear Force from Lattice QCD, Phys. Rev. Lett.99 (2007) 022001 [nucl-th/0611096] [INSPIRE].
– reference: LiuJScrambling and decoding the charged quantum informationPhys. Rev. Res.202020431642020hsm2.book.....L[arXiv:2003.11425] [INSPIRE]
– reference: A.M. Childs, A. Ostrander and Y. Su, Faster quantum simulation by randomization, arXiv:1805.08385.
– reference: de WitBHoppeJNicolaiHOn the Quantum Mechanics of SupermembranesNucl. Phys. B19883055451988NuPhB.305..545D9842841156.81457[INSPIRE]
– reference: HanadaMMatsuuraSSuginoFTwo-dimensional lattice for four-dimensional N = 4 supersymmetric Yang-MillsProg. Theor. Phys.20111265972011PThPh.126..597H1248.81140[arXiv:1004.5513] [INSPIRE]
– reference: HondaMIshikiGKimS-WNishimuraJTsuchiyaADirect test of the AdS/CFT correspondence by Monte Carlo studies of N = 4 super Yang-Mills theoryJHEP2013112002013JHEP...11..200H[arXiv:1308.3525] [INSPIRE]
– reference: S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Algorithms for Fermionic Quantum Field Theories, arXiv:1404.7115 [INSPIRE].
– reference: JordanSPLeeKSMPreskillJQuantum Computation of Scattering in Scalar Quantum Field TheoriesQuant. Inf. Comput.20141410143241901[arXiv:1112.4833] [INSPIRE]
– reference: D.W. Berry, A.M. Childs and R. Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pp. 792–809, IEEE (2015).
– reference: LloydSUniversal quantum simulatorsScience199627310731996Sci...273.1073L14079441226.81059
– ident: 16324_CR21
  doi: 10.1088/1126-6708/2005/09/042
– volume: 06
  start-page: 031
  year: 2020
  ident: 16324_CR122
  publication-title: JHEP
  doi: 10.1007/JHEP06(2020)031
– ident: 16324_CR97
– volume: 136
  start-page: 162
  year: 1984
  ident: 16324_CR27
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(84)91172-9
– ident: 16324_CR103
– volume: 03
  start-page: 067
  year: 2014
  ident: 16324_CR115
  publication-title: JHEP
  doi: 10.1007/JHEP03(2014)067
– volume: 273
  start-page: 1073
  year: 1996
  ident: 16324_CR129
  publication-title: Science
  doi: 10.1126/science.273.5278.1073
– volume: 90
  start-page: 015002
  year: 2018
  ident: 16324_CR128
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015002
– ident: 16324_CR161
– ident: 16324_CR149
– volume: 25
  start-page: 3389
  year: 2010
  ident: 16324_CR73
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X10049396
– ident: 16324_CR77
  doi: 10.22323/1.139.0244
– volume: 11
  start-page: 009
  year: 2016
  ident: 16324_CR109
  publication-title: JHEP
  doi: 10.1007/JHEP11(2016)009
– volume: 946
  start-page: 114702
  year: 2019
  ident: 16324_CR127
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2019.114702
– ident: 16324_CR146
– volume: 12
  start-page: 022
  year: 1999
  ident: 16324_CR40
  publication-title: JHEP
  doi: 10.1088/1126-6708/1999/12/022
– volume: 02
  start-page: 058
  year: 2019
  ident: 16324_CR95
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)058
– ident: 16324_CR152
– volume: 09
  start-page: 054
  year: 2018
  ident: 16324_CR100
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)054
– ident: 16324_CR158
– volume: 05
  start-page: 056
  year: 2002
  ident: 16324_CR56
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/05/056
– volume: 92
  start-page: 015003
  year: 2020
  ident: 16324_CR140
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.015003
– volume: 322
  start-page: 1224
  year: 2008
  ident: 16324_CR7
  publication-title: Science
  doi: 10.1126/science.1163233
– ident: 16324_CR17
  doi: 10.1016/0370-2693(92)91112-M
– ident: 16324_CR94
– ident: 16324_CR25
  doi: 10.1088/1126-6708/2003/05/038
– volume: 2
  start-page: 44
  year: 2018
  ident: 16324_CR136
  publication-title: Quantum
  doi: 10.22331/q-2018-01-08-44
– ident: 16324_CR88
– volume: 123
  start-page: 220502
  year: 2019
  ident: 16324_CR96
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.220502
– ident: 16324_CR11
– volume: 671
  start-page: 359
  year: 2003
  ident: 16324_CR57
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2003.08.019
– volume: 94
  start-page: 094501
  year: 2016
  ident: 16324_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.094501
– volume: 102
  start-page: 111601
  year: 2009
  ident: 16324_CR74
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.111601
– volume: 865
  start-page: 21
  year: 2012
  ident: 16324_CR79
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2012.07.022
– volume: 09
  start-page: 021
  year: 2002
  ident: 16324_CR63
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/09/021
– volume: 91
  start-page: 054506
  year: 2015
  ident: 16324_CR36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.054506
– ident: 16324_CR120
– volume: 12
  start-page: 29
  year: 2012
  ident: 16324_CR160
  publication-title: Quant. Inf. Comput.
– volume: 759
  start-page: 249
  year: 2006
  ident: 16324_CR84
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2006.10.005
– ident: 16324_CR138
– volume: 78
  start-page: 105017
  year: 2008
  ident: 16324_CR87
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.105017
– volume: 10
  start-page: 106
  year: 2012
  ident: 16324_CR107
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)106
– volume: 11
  start-page: 112
  year: 2010
  ident: 16324_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP11(2010)112
– volume: 11
  start-page: 087
  year: 2009
  ident: 16324_CR89
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/11/087
– volume: 892
  start-page: 449
  year: 2015
  ident: 16324_CR70
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2015.01.016
– volume: 27
  start-page: 2397
  year: 1983
  ident: 16324_CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.27.2397
– volume: 137
  start-page: 224109
  year: 2012
  ident: 16324_CR93
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4768229
– volume: 114
  start-page: 090502
  year: 2015
  ident: 16324_CR141
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.090502
– ident: 16324_CR8
  doi: 10.1103/PhysRevLett.99.022001
– volume: 11
  start-page: 200
  year: 2013
  ident: 16324_CR78
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)200
– ident: 16324_CR121
– ident: 16324_CR118
– volume: 460
  start-page: 335
  year: 1996
  ident: 16324_CR65
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(95)00610-9
– volume: 8
  start-page: 041015
  year: 2018
  ident: 16324_CR143
  publication-title: Phys. Rev. X
– ident: 16324_CR50
  doi: 10.1093/ptep/ptw124
– volume: 55
  start-page: 5112
  year: 1997
  ident: 16324_CR54
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.55.5112
– ident: 16324_CR137
– volume: 44
  start-page: 445308
  year: 2011
  ident: 16324_CR154
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/44/44/445308
– volume: 14
  start-page: 1014
  year: 2014
  ident: 16324_CR132
  publication-title: Quant. Inf. Comput.
– volume: 118
  start-page: 010501
  year: 2017
  ident: 16324_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.010501
– volume: 12
  start-page: 901
  year: 2012
  ident: 16324_CR159
  publication-title: Quant. Inf. Comput.
– volume: 117
  start-page: 25402
  year: 2020
  ident: 16324_CR114
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.2006337117
– volume: 305
  start-page: 545
  year: 1988
  ident: 16324_CR55
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(88)90116-2
– volume: 12
  start-page: 002
  year: 2000
  ident: 16324_CR69
  publication-title: JHEP
  doi: 10.1088/1126-6708/2000/12/002
– volume: 99
  start-page: 042314
  year: 2019
  ident: 16324_CR145
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.042314
– volume: 01
  start-page: 025
  year: 2008
  ident: 16324_CR86
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/01/025
– volume: 02
  start-page: 004
  year: 2021
  ident: 16324_CR104
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)004
– volume: 857
  start-page: 335
  year: 2012
  ident: 16324_CR119
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2011.12.014
– ident: 16324_CR16
  doi: 10.1016/S0370-2693(97)01368-3
– volume: 96
  start-page: 126003
  year: 2017
  ident: 16324_CR72
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.126003
– ident: 16324_CR156
  doi: 10.1007/978-3-642-18073-6_8
– volume: 6
  start-page: 041067
  year: 2016
  ident: 16324_CR162
  publication-title: Phys. Rev. X
– volume: 100
  start-page: 021601
  year: 2008
  ident: 16324_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.021601
– volume: 48
  start-page: 1063
  year: 1982
  ident: 16324_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1063
– volume: 101
  start-page: 205148
  year: 2020
  ident: 16324_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.205148
– ident: 16324_CR124
  doi: 10.22323/1.334.0024
– volume: 01
  start-page: 175
  year: 2016
  ident: 16324_CR108
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)175
– ident: 16324_CR144
  doi: 10.1017/fms.2017.2
– ident: 16324_CR20
  doi: 10.1088/1126-6708/2003/12/031
– ident: 16324_CR101
  doi: 10.1007/JHEP10(2019)029
– volume: 12
  start-page: 167
  year: 2019
  ident: 16324_CR102
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)167
– ident: 16324_CR49
– volume: 99
  start-page: 052335
  year: 2019
  ident: 16324_CR60
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.052335
– ident: 16324_CR15
  doi: 10.1016/0550-3213(81)90361-8
– volume: 336
  start-page: 1130
  year: 2012
  ident: 16324_CR59
  publication-title: Science
  doi: 10.1126/science.1217069
– volume: 51
  start-page: 183
  year: 1976
  ident: 16324_CR147
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01609348
– volume: 344
  start-page: 882
  year: 2014
  ident: 16324_CR31
  publication-title: Science
  doi: 10.1126/science.1250122
– ident: 16324_CR12
– volume: 05
  start-page: 132
  year: 2015
  ident: 16324_CR116
  publication-title: JHEP
  doi: 10.1007/JHEP05(2015)132
– volume: 99
  start-page: 040301
  year: 2019
  ident: 16324_CR47
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.040301
– ident: 16324_CR142
– ident: 16324_CR43
  doi: 10.1093/ptep/ptx108
– volume: 126
  start-page: 030602
  year: 2021
  ident: 16324_CR117
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.030602
– volume: 99
  start-page: 161602
  year: 2007
  ident: 16324_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.161602
– volume: 01
  start-page: 038
  year: 2003
  ident: 16324_CR67
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/01/038
– ident: 16324_CR139
– volume: 120
  start-page: 174
  year: 1983
  ident: 16324_CR38
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)90647-0
– ident: 16324_CR14
  doi: 10.1103/PhysRev.122.345
– volume: 119
  start-page: 040501
  year: 2017
  ident: 16324_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.040501
– volume: 02
  start-page: 012
  year: 2017
  ident: 16324_CR99
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)012
– volume: 02
  start-page: 034
  year: 2021
  ident: 16324_CR98
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)034
– ident: 16324_CR131
  doi: 10.1145/2983539
– ident: 16324_CR18
  doi: 10.1088/1126-6708/2003/05/037
– volume: 11
  start-page: 395
  year: 1975
  ident: 16324_CR35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.11.395
– ident: 16324_CR163
  doi: 10.1038/s41534-020-0278-0
– volume: 206
  start-page: 440
  year: 1982
  ident: 16324_CR83
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(82)90278-4
– ident: 16324_CR90
– volume: 113
  start-page: 47
  year: 1982
  ident: 16324_CR81
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(82)90106-X
– ident: 16324_CR80
  doi: 10.1103/PhysRevD.85.106003
– ident: 16324_CR26
  doi: 10.1088/1126-6708/2004/11/006
– volume: 78
  start-page: 041502
  year: 2008
  ident: 16324_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.041502
– ident: 16324_CR23
  doi: 10.1088/1126-6708/2004/03/067
– volume: 112
  start-page: 463
  year: 1982
  ident: 16324_CR82
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(82)90849-8
– ident: 16324_CR22
  doi: 10.1088/1126-6708/2004/01/015
– ident: 16324_CR24
  doi: 10.1088/1126-6708/2005/01/016
– ident: 16324_CR151
– volume: 06
  start-page: 124
  year: 2018
  ident: 16324_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP06(2018)124
– volume: 78
  start-page: 052325
  year: 2008
  ident: 16324_CR148
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.052325
– ident: 16324_CR4
– volume: 126
  start-page: 597
  year: 2011
  ident: 16324_CR41
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.126.597
– volume: 10
  start-page: 2445
  year: 1974
  ident: 16324_CR1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.10.2445
– volume: 292
  start-page: 555
  year: 1987
  ident: 16324_CR28
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(87)90660-2
– volume: 08
  start-page: 106
  year: 2016
  ident: 16324_CR113
  publication-title: JHEP
  doi: 10.1007/JHEP08(2016)106
– ident: 16324_CR130
– volume: 567
  start-page: 61
  year: 2019
  ident: 16324_CR45
  publication-title: Nature
  doi: 10.1038/s41586-019-0952-6
– volume: 02
  start-page: 020
  year: 2000
  ident: 16324_CR68
  publication-title: JHEP
  doi: 10.1088/1126-6708/2000/02/020
– volume: 58
  start-page: 046004
  year: 1998
  ident: 16324_CR66
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.046004
– volume: 09
  start-page: 029
  year: 2009
  ident: 16324_CR75
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/09/029
– ident: 16324_CR5
  doi: 10.1007/978-3-030-46044-0
– ident: 16324_CR19
  doi: 10.1088/1126-6708/2003/08/024
– volume: 10
  start-page: 5725
  year: 2019
  ident: 16324_CR91
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC01313J
– ident: 16324_CR150
– volume: 78
  start-page: 106001
  year: 2008
  ident: 16324_CR64
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.106001
– volume: 01
  start-page: 013
  year: 2017
  ident: 16324_CR105
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)013
– volume: 04
  start-page: 084
  year: 2018
  ident: 16324_CR58
  publication-title: JHEP
  doi: 10.1007/JHEP04(2018)084
– volume: 02
  start-page: 076
  year: 2018
  ident: 16324_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP02(2018)076
– ident: 16324_CR33
  doi: 10.1007/JHEP03(2018)055
– volume: 10
  start-page: 079
  year: 2009
  ident: 16324_CR106
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/079
– ident: 16324_CR133
– volume: 106
  start-page: 170501
  year: 2011
  ident: 16324_CR155
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.170501
– volume: 95
  start-page: 032305
  year: 2017
  ident: 16324_CR134
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.032305
– ident: 16324_CR44
– volume: 94
  start-page: 040302
  year: 2016
  ident: 16324_CR112
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.040302
– volume: 98
  start-page: 012332
  year: 2018
  ident: 16324_CR135
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.012332
– volume: 124
  start-page: 240505
  year: 2020
  ident: 16324_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.240505
– volume: 21
  start-page: 2308
  year: 1980
  ident: 16324_CR2
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.21.2308
– volume: 298
  start-page: 210
  year: 2002
  ident: 16324_CR92
  publication-title: Annals Phys.
  doi: 10.1006/aphy.2002.6254
– ident: 16324_CR157
  doi: 10.1109/FOCS.2015.54
– volume: 04
  start-page: 013
  year: 2002
  ident: 16324_CR53
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/04/013
– ident: 16324_CR125
– volume: 2
  start-page: 043164
  year: 2020
  ident: 16324_CR52
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043164
– volume: 12
  start-page: 104
  year: 2007
  ident: 16324_CR30
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/12/104
– ident: 16324_CR61
– volume: 11
  start-page: 006
  year: 2001
  ident: 16324_CR85
  publication-title: JHEP
  doi: 10.1088/1126-6708/2001/11/006
– volume: 31
  start-page: 1643006
  year: 2016
  ident: 16324_CR34
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X16430065
– volume: 10
  start-page: 103
  year: 2020
  ident: 16324_CR123
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)103
– ident: 16324_CR3
  doi: 10.4310/ATMP.1998.v2.n2.a1
– volume: 12
  start-page: 011
  year: 2020
  ident: 16324_CR126
  publication-title: JHEP
  doi: 10.1007/JHEP12(2020)011
– ident: 16324_CR76
  doi: 10.22323/1.105.0253
– ident: 16324_CR153
– ident: 16324_CR6
– volume: 103
  start-page: 106007
  year: 2021
  ident: 16324_CR110
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.106007
– volume: 03
  start-page: 069
  year: 2015
  ident: 16324_CR111
  publication-title: JHEP
  doi: 10.1007/JHEP03(2015)069
SSID ssj0015190
Score 2.5627103
Snippet A bstract We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to...
We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory...
Abstract We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adiabatic flow
Algorithms
Black Holes in String Theory
Classical and Quantum Gravitation
Eigenvectors
Elementary Particles
Gravitation theory
High energy physics
Hilbert space
M theory
M(atrix) Theories
Physics
Physics and Astronomy
Quantum computers
Quantum computing
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quantum theory
Real time
Regular Article - Theoretical Physics
Regularization
Relativity Theory
Signal processing
Simulation
String Theory
Supersymmetry
Time measurement
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIOpBfGK0Sg4e2kPsZpPuJuBFpaUUFA8t9Bb2FR-0abUN0n_v7CapFREvHrPZhGFmH99kv3yD0KWiWHESUk9ISb1QtJnHVRp5HAZQqg0DUFmC7APtDcP-qD1aK_VlOGGFPHDhuBYPqK2uxEgqw1QDnoesgQRCUcLTkGuz-uIorpKp8vwAcAmuhHwwa_V7nUfMGpDo-03ffOdY24OsVP83fLk6Et1BW3k248sPPh6v7TrdPbRbwkX3pjBzH23o7ABtWtqmnB-i64Flvbrzl4ktw5U9ufN8ZhCdeXXr3rP_KS7daeZy9y0HL-YTV5aFHI7QsNsZ3PW8sh6CJ0OfLQyHgcSaRNzXBGtKBOGYxhQuFVNBGxoD308FILwYa6JEhFPGTAFOGkqRBjI4RrVsmukT5KpIx0z6mgUSIBQnkYCZHGPJYOHESkkHXVUeSmQpFm5qVoyTSua4cGliXArpA3ZQY_XArNDJ-L3rrXH5qpsRuLYNEPakDHvyV9gdVK8ClpSzbp5AehRAQghZt4OaVRC_bv9qT3MV5R-2vz7r2Vrf0_-w_Qxtm_cVpN86qi3ec30O0GYhLuwo_gR2QvFd
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6qIupBfGJ9kYOH9hDdbNLdBLyoKKWgeLDQW9hXfFDTahvEf-_sNqkt0oO3ZF8sM_uYj_1mBuBMM6IFjZgvlWJ-JFvcFzqLfYELKDOWAagdQfaBtbtRp9fq1SCofGEc2716knQndeXs1mnfPhLeQLAeNBEVLMEKGh_UZmu4sQ4O5cMBlpEqgs_fTnOXj4vRP2dYTt9CN2CtyIfi-0v0-zPXzd0WbJZ2onc1Uew21Ey-A6uOr6lGu3D55Oiu3uj13eXfyp-9UTG0ppwd-uLedw6K394g94T3UaD4indPlRkc9qB7d_t00_bLRAi-igI-tuQFmhgai8BQYhiVVBCWMPzVXIctLAyDIJNo2iXEUC1jknFuM2-ySMksVOE-LOeD3ByAp2OTcBUYHiq0nQSNJW7hhCiOJybRWtXhvJJQqsoo4TZZRT-t4htPRJpakSJuIHVoTDsMJwEyFje9tiKfNrORrV3B4PM5LTdKKkLmsmlxmqkoM4jfECXSUGpGRRYJU4fjSmFpud1GKeKiEJEgwu06NCsl_lYvnE9zquU_c397McOZtof_GPcI1u3nhNR7DMvjz8KcoOkylqdusf4AtEfkfg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVohyKM-KpQXlwKF78G7iZO1E4tKiVqtKVD10JThFfqUFttnQJELl1zN24rQF9YC4JfbEsT1je0bzeQbgvWahFjRhRCrFSCLnnAhdpESgABXGIgC1A8iesMUyOf4892jC2qPdvUuyu9NgozSVzazShffqz44Xh6ch30PDPZqghTDFuoewweaojo9gY3lyuv_FeTlpRnD3zVyCFcoI4y5DHT5zgsci86F-sMVvF6a61eKdU8oF87-jgQ5O0yfwuC0rcf1TrFa3zqWjpyD9iDo4yvdp28ip-vVHsMf_GvIz2Oq11mC_E7Pn8MCUL-CRQ4-q-iV8OHPg26D-eumygZXnQd1WVrG0v5t9Iu665HWwLgMR_GiRme1loPp8Eq9geXR49nFB-rQMRCURbyyUgmaGpiIyNDSMSipCljF81VzHcyyMo6iQqGhmoaFapmHBuc0DyhIli1jF2zAq16V5DYFOTcZVZHisUJMTNJW4oWSh4rh_h1qrMUw9G3LVxyy3qTNWuY-23E1LbqcFrZhwDHvDB1UXruN-0gPL14HMxtl2Beur87xftrmImcvtxWmhksKgNYk2K42lZlQUiTBj2PVSkfeLv87RSovRLkXjfwwTz9ib6nv7MxlE6a--d-I50L75B9od2LSPHcR4F0bNVWveoiLVyHf9UvkNLIsRZA
  priority: 102
  providerName: Unpaywall
Title Toward simulating superstring/M-theory on a quantum computer
URI https://link.springer.com/article/10.1007/JHEP07(2021)140
https://www.proquest.com/docview/2553619338
https://link.springer.com/content/pdf/10.1007/JHEP07(2021)140.pdf
https://doaj.org/article/a369731672fc4fe49502623bd62af4ae
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: AMVHM
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: 8FG
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C6C
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_ahNHtYWxry7J1wQ99aB7cyLIj2bAx2pA0FBbCaKB7Mvpyu5E6bhMz-t_vpNhuxuheBJLPtjh9_U463Q_gWDOiBY2YL5VifiQH3Bc6i32BHSgz1gNQOwfZKZvMo8vrwfUOTOu7MNatsp4T3UStl8rukfcR-oYI9tGi-lrc-5Y1yp6u1hQaoqJW0F9ciLFdaFMbGasF7fPRdPa9OVdAvELqAD-E9y8noxnhJxQXul5g9z-21iYXwv8v3Nkclb6CvTIvxONvsVhsrUbjN_C6gpHe2abd38KOyd_BC-fOqVb78PnKecN6q593jp4rv_FWZWGRnv10_5vv7i8-esvcE959idot7zxVETwcwHw8uhpO_IonwVdRwNfWt4EmhsYiMJQYRiUVhCUMs5rrcICFYRBkEpFfQgzVMiYZ55aYk0VKZqEKD6GVL3PzHjwdm4SrwPBQIbQSNJY4whOiOE6oRGvVgdNaQ6mqgohbLotFWoc_3qg0tSpFs4J04KR5odjEz3he9NyqvBGzga9dwfLhJq3GUSpC5si2OM1UlBk079CIpKHUjIosEqYDR3WDpdVoXKVPfacDvboRnx4_W59e08r_1P3XrSm2ZD_8_7cf4aWV3Lj5HkFr_VCaTwhm1rILu_H4olv1U8wNaWRTNuy67QFM5xTT9nw6O_vxB28S9cU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWjwgPgUhQF5AGl9CHWc1E4kJsSgU_dVTaiT9pb5K2NTl2ZLo6n_HH8bZzfJitB422McO7Huzvbv7PP9AD5qRrSgEfOlUsyPZJ_7QmexL9CAMmMjALULkB2x4XG0d9I_WYHfzV0YG1bZzIluotZTZffIewh9QwT76FF9La58yxplT1cbCg1RUyvoLZdirL7YsW_mN-jClVu7P1DfnyjdGYy_D_2aZcBXUcBnNjKAJobGIjCUGEYlFYQlDB8112EfC8MgyCTipoQYqmVMMs4trSWLlMxCFeJ3H8BaFEYJOn9r24PR0c_2HAPxEWkSChHe2xsOjgjfpLiwdgO737K0FjrKgL9wbns0-xjWq7wQ8xsxmSytfjtP4UkNW71vCzt7Bismfw4PXfioKl_Al7GLvvXK80tHB5afeWVVWGRpP9079N19ybk3zT3hXVWozerSUzWhxEs4vheJvYLVfJqb1-Dp2CRcBYaHCqGcoLHEGSUhiuMETrRWHfjcSChVddJyy50xSZt0ywuRplak6MaQDmy2DYpFvo67q25bkbfVbKJtVzC9PkvrcZuKkDlyL04zFWUG3Ul0WmkoNaMii4TpwEajsLQe_WV6a6sd6DZKvH19Z3-6rZb_6fvFL1Ms1X3z_99-gPXh-PAgPdgd7b-FR7bVIsR4A1Zn15V5h0BqJt_X1urB6X0PkD_zDCs9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Rqr4OVZ_qtrT1oZXYQ1jHydqJBKrawnaBFnEAiVvq2A5QLdlANkL71_h1jJ0HW1X0xjGOnVgzY_sbezwfwCfNqZYs5F6qFPfCdCg8qbPIk2hAmbERgNoFyO7x8WG4czQ8WoKr9i6MDats50Q3UeupsnvkA4S-AYJ99KgGWRMWsb85-lKce5ZByp60tnQatYnsmvklum_lxvYm6vozY6Otg-9jr2EY8FToi5mNCmCxYZH0DaOGs5RJymOOj1roYIiFge9nKWKmmBqm04hmQlhKSx6qNAtUgN-9B_eFzeJub6mPfnQnGIiMaJtKiIrBznhrn4pVhktq37c7LQuroCML-AvhdoeyT-BRlRdyfiknk4V1b_QMnjaAlXytLew5LJn8BTxwgaOqfAnrBy7ulpSnZ44ILD8mZVVYTGk_PfjluZuSczLNiSTnFeqxOiOqoZJ4BYd3Iq_XsJxPc_MGiI5MLJRvRKAQxEkWpTiXxFQJnLqp1qoHa62EEtWkK7esGZOkTbRcizSxIkUHhvZgtWtQ1Jk6bq_6zYq8q2ZTbLuC6cVx0ozYRAbc0XoJlqkwM-hIorvKglRzJrNQmh6stApLmnFfJjdW2oN-q8Sb17f2p99p-Z--_zkxxULdt___7Ud4iMMi-bm9t_sOHttGdWzxCizPLirzHhHULP3gTJXA77seG9etmyjX
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVohyKM-KpQXlwKF78G7iZO1E4tKiVqtKVD10JThFfqUFttnQJELl1zN24rQF9YC4JfbEsT1je0bzeQbgvWahFjRhRCrFSCLnnAhdpESgABXGIgC1A8iesMUyOf4892jC2qPdvUuyu9NgozSVzazShffqz44Xh6ch30PDPZqghTDFuoewweaojo9gY3lyuv_FeTlpRnD3zVyCFcoI4y5DHT5zgsci86F-sMVvF6a61eKdU8oF87-jgQ5O0yfwuC0rcf1TrFa3zqWjpyD9iDo4yvdp28ip-vVHsMf_GvIz2Oq11mC_E7Pn8MCUL-CRQ4-q-iV8OHPg26D-eumygZXnQd1WVrG0v5t9Iu665HWwLgMR_GiRme1loPp8Eq9geXR49nFB-rQMRCURbyyUgmaGpiIyNDSMSipCljF81VzHcyyMo6iQqGhmoaFapmHBuc0DyhIli1jF2zAq16V5DYFOTcZVZHisUJMTNJW4oWSh4rh_h1qrMUw9G3LVxyy3qTNWuY-23E1LbqcFrZhwDHvDB1UXruN-0gPL14HMxtl2Beur87xftrmImcvtxWmhksKgNYk2K42lZlQUiTBj2PVSkfeLv87RSovRLkXjfwwTz9ib6nv7MxlE6a--d-I50L75B9od2LSPHcR4F0bNVWveoiLVyHf9UvkNLIsRZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+simulating+superstring%2FM-theory+on+a+quantum+computer&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Gharibyan+Hrant&rft.au=Hanada+Masanori&rft.au=Honda+Masazumi&rft.au=Liu+Junyu&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2021&rft.issue=7&rft_id=info:doi/10.1007%2FJHEP07%282021%29140&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon