Toward simulating superstring/M-theory on a quantum computer
A bstract We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nast...
Saved in:
| Published in | The journal of high energy physics Vol. 2021; no. 7; pp. 1 - 56 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2021
Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1029-8479 1126-6708 1127-2236 1029-8479 |
| DOI | 10.1007/JHEP07(2021)140 |
Cover
| Abstract | A
bstract
We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. Our prescription consists of four steps: regularization of the Hilbert space, adiabatic state preparation, simulation of real-time dynamics, and measurements. Regularization is performed for the BMN matrix model with the introduction of energy cut-off via the truncation in the Fock space. We use the Wan-Kim algorithm for fast digital adiabatic state preparation to prepare the low-energy eigenstates of this model as well as thermofield double state. Then, we provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing. Lastly, we present a set of measurements and experiments that can be carried out on a quantum computer to further our understanding of superstring/M-theory beyond analytic results. |
|---|---|
| AbstractList | Abstract We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. Our prescription consists of four steps: regularization of the Hilbert space, adiabatic state preparation, simulation of real-time dynamics, and measurements. Regularization is performed for the BMN matrix model with the introduction of energy cut-off via the truncation in the Fock space. We use the Wan-Kim algorithm for fast digital adiabatic state preparation to prepare the low-energy eigenstates of this model as well as thermofield double state. Then, we provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing. Lastly, we present a set of measurements and experiments that can be carried out on a quantum computer to further our understanding of superstring/M-theory beyond analytic results. We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. Our prescription consists of four steps: regularization of the Hilbert space, adiabatic state preparation, simulation of real-time dynamics, and measurements. Regularization is performed for the BMN matrix model with the introduction of energy cut-off via the truncation in the Fock space. We use the Wan-Kim algorithm for fast digital adiabatic state preparation to prepare the low-energy eigenstates of this model as well as thermofield double state. Then, we provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing. Lastly, we present a set of measurements and experiments that can be carried out on a quantum computer to further our understanding of superstring/M-theory beyond analytic results. A bstract We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. Our prescription consists of four steps: regularization of the Hilbert space, adiabatic state preparation, simulation of real-time dynamics, and measurements. Regularization is performed for the BMN matrix model with the introduction of energy cut-off via the truncation in the Fock space. We use the Wan-Kim algorithm for fast digital adiabatic state preparation to prepare the low-energy eigenstates of this model as well as thermofield double state. Then, we provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing. Lastly, we present a set of measurements and experiments that can be carried out on a quantum computer to further our understanding of superstring/M-theory beyond analytic results. |
| ArticleNumber | 140 |
| Author | Honda, Masazumi Hanada, Masanori Gharibyan, Hrant Liu, Junyu |
| Author_xml | – sequence: 1 givenname: Hrant surname: Gharibyan fullname: Gharibyan, Hrant email: hrant@caltech.edu organization: Walter Burke Institute for Theoretical Physics and Institute for Quantum Information and Matter, California Institute of Technology – sequence: 2 givenname: Masanori surname: Hanada fullname: Hanada, Masanori organization: Department of Mathematics, University of Surrey, Yukawa Institute for Theoretical Physics, Kyoto University – sequence: 3 givenname: Masazumi surname: Honda fullname: Honda, Masazumi organization: Yukawa Institute for Theoretical Physics, Kyoto University – sequence: 4 givenname: Junyu surname: Liu fullname: Liu, Junyu organization: Walter Burke Institute for Theoretical Physics and Institute for Quantum Information and Matter, California Institute of Technology |
| BookMark | eNp1kUFP3DAQhS1EpcKWc6-RuJRDumM7ttdSLwhBlwoEBzhbk8TZzSobB9sR2n-Pt0EUUXGa8Wje55k3x-Swd70l5DuFnxRAzf8sL-9B_WDA6Bkt4IAcUWA6XxRKH77Lv5LjEDYAVFANR-TXg3tGX2eh3Y4dxrZfZWEcrA_Rp3x-m8e1dX6XuT7D7GnEPo7brHLbYYzWfyNfGuyCPXmNM_J4dflwscxv7n5fX5zf5FVBVcxFkT63bIHUMrCSlQxBapmetaq5SEVOaVMKUBosq8sFNEoJJbQsqrLhFZ-R64lbO9yYwbdb9DvjsDV_C86vDPrYVp01yKVWnErFmqpobKEFMMl4WUuGTYE2sWBijf2Au2fsujcgBbN30mzWdkhh76RJTibJ6SQZvHsabYhm40bfp40NE4JLqjlfpC4xdVXeheBtY6o2JkddHz223Rt9utN7-vyD7uM8_yteVwjD_kjW_5vnM8kLNYeiqw |
| CitedBy_id | crossref_primary_10_1103_PhysRevD_105_074507 crossref_primary_10_1007_JHEP01_2022_168 crossref_primary_10_1103_PhysRevD_105_074504 crossref_primary_10_1140_epjs_s11734_022_00708_1 crossref_primary_10_1007_JHEP05_2024_234 crossref_primary_10_1103_PhysRevD_106_074013 crossref_primary_10_1103_PhysRevD_108_114510 crossref_primary_10_1140_epjc_s10052_022_10377_y crossref_primary_10_1007_JHEP03_2024_002 crossref_primary_10_1007_JHEP05_2024_280 crossref_primary_10_1007_JHEP08_2022_178 crossref_primary_10_1007_JHEP05_2022_096 crossref_primary_10_1007_s40509_024_00342_7 crossref_primary_10_1103_PhysRevD_106_054510 crossref_primary_10_1103_PhysRevLett_134_101601 crossref_primary_10_1103_PhysRevA_108_042216 crossref_primary_10_22331_q_2021_07_05_495 crossref_primary_10_1103_PhysRevD_108_034501 crossref_primary_10_1103_PhysRevA_110_062601 crossref_primary_10_1007_JHEP09_2021_034 crossref_primary_10_1038_s41467_022_31058_0 crossref_primary_10_1103_PhysRevD_105_014504 |
| Cites_doi | 10.1088/1126-6708/2005/09/042 10.1007/JHEP06(2020)031 10.1016/0370-2693(84)91172-9 10.1007/JHEP03(2014)067 10.1126/science.273.5278.1073 10.1103/RevModPhys.90.015002 10.1142/S0217751X10049396 10.22323/1.139.0244 10.1007/JHEP11(2016)009 10.1016/j.nuclphysb.2019.114702 10.1088/1126-6708/1999/12/022 10.1007/JHEP02(2019)058 10.1007/JHEP09(2018)054 10.1088/1126-6708/2002/05/056 10.1103/RevModPhys.92.015003 10.1126/science.1163233 10.1016/0370-2693(92)91112-M 10.1088/1126-6708/2003/05/038 10.22331/q-2018-01-08-44 10.1103/PhysRevLett.123.220502 10.1016/j.nuclphysb.2003.08.019 10.1103/PhysRevD.94.094501 10.1103/PhysRevLett.102.111601 10.1016/j.nuclphysb.2012.07.022 10.1088/1126-6708/2002/09/021 10.1103/PhysRevD.91.054506 10.1016/j.nuclphysb.2006.10.005 10.1103/PhysRevD.78.105017 10.1007/JHEP10(2012)106 10.1007/JHEP11(2010)112 10.1088/1126-6708/2009/11/087 10.1016/j.nuclphysb.2015.01.016 10.1103/PhysRevD.27.2397 10.1063/1.4768229 10.1103/PhysRevLett.114.090502 10.1103/PhysRevLett.99.022001 10.1007/JHEP11(2013)200 10.1016/0550-3213(95)00610-9 10.1093/ptep/ptw124 10.1103/PhysRevD.55.5112 10.1088/1751-8113/44/44/445308 10.1103/PhysRevLett.118.010501 10.1073/pnas.2006337117 10.1016/0550-3213(88)90116-2 10.1088/1126-6708/2000/12/002 10.1103/PhysRevA.99.042314 10.1088/1126-6708/2008/01/025 10.1007/JHEP02(2021)004 10.1016/j.nuclphysb.2011.12.014 10.1016/S0370-2693(97)01368-3 10.1103/PhysRevD.96.126003 10.1007/978-3-642-18073-6_8 10.1103/PhysRevLett.100.021601 10.1103/PhysRevLett.48.1063 10.1103/PhysRevB.101.205148 10.22323/1.334.0024 10.1007/JHEP01(2016)175 10.1017/fms.2017.2 10.1088/1126-6708/2003/12/031 10.1007/JHEP10(2019)029 10.1007/JHEP12(2019)167 10.1103/PhysRevA.99.052335 10.1016/0550-3213(81)90361-8 10.1126/science.1217069 10.1007/BF01609348 10.1126/science.1250122 10.1007/JHEP05(2015)132 10.1103/PhysRevA.99.040301 10.1093/ptep/ptx108 10.1103/PhysRevLett.126.030602 10.1103/PhysRevLett.99.161602 10.1088/1126-6708/2003/01/038 10.1016/0370-2693(83)90647-0 10.1103/PhysRev.122.345 10.1103/PhysRevLett.119.040501 10.1007/JHEP02(2017)012 10.1007/JHEP02(2021)034 10.1145/2983539 10.1088/1126-6708/2003/05/037 10.1103/PhysRevD.11.395 10.1038/s41534-020-0278-0 10.1016/0550-3213(82)90278-4 10.1016/0370-2693(82)90106-X 10.1103/PhysRevD.85.106003 10.1088/1126-6708/2004/11/006 10.1103/PhysRevD.78.041502 10.1088/1126-6708/2004/03/067 10.1016/0370-2693(82)90849-8 10.1088/1126-6708/2004/01/015 10.1088/1126-6708/2005/01/016 10.1007/JHEP06(2018)124 10.1103/PhysRevA.78.052325 10.1143/PTP.126.597 10.1103/PhysRevD.10.2445 10.1016/0550-3213(87)90660-2 10.1007/JHEP08(2016)106 10.1038/s41586-019-0952-6 10.1088/1126-6708/2000/02/020 10.1103/PhysRevD.58.046004 10.1088/1126-6708/2009/09/029 10.1007/978-3-030-46044-0 10.1088/1126-6708/2003/08/024 10.1039/C9SC01313J 10.1103/PhysRevD.78.106001 10.1007/JHEP01(2017)013 10.1007/JHEP04(2018)084 10.1007/JHEP02(2018)076 10.1007/JHEP03(2018)055 10.1088/1126-6708/2009/10/079 10.1103/PhysRevLett.106.170501 10.1103/PhysRevA.95.032305 10.1103/PhysRevA.94.040302 10.1103/PhysRevA.98.012332 10.1103/PhysRevLett.124.240505 10.1103/PhysRevD.21.2308 10.1006/aphy.2002.6254 10.1109/FOCS.2015.54 10.1088/1126-6708/2002/04/013 10.1103/PhysRevResearch.2.043164 10.1088/1126-6708/2007/12/104 10.1088/1126-6708/2001/11/006 10.1142/S0217751X16430065 10.1007/JHEP10(2020)103 10.4310/ATMP.1998.v2.n2.a1 10.1007/JHEP12(2020)011 10.22323/1.105.0253 10.1103/PhysRevD.103.106007 10.1007/JHEP03(2015)069 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.1007/JHEP07(2021)140 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| EndPage | 56 |
| ExternalDocumentID | oai_doaj_org_article_a369731672fc4fe49502623bd62af4ae 10.1007/jhep07(2021)140 10_1007_JHEP07_2021_140 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEINN AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE PQGLB PUEGO Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c417t-54029e28a1e20e62b2a0696a1ed7d35e20311fb50790e2db80f77575964cbf3c3 |
| IEDL.DBID | BENPR |
| ISSN | 1029-8479 1126-6708 1127-2236 |
| IngestDate | Fri Oct 03 12:45:57 EDT 2025 Sun Oct 26 04:10:35 EDT 2025 Sat Oct 18 23:03:28 EDT 2025 Wed Oct 01 01:45:24 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Fri Feb 21 02:47:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Black Holes in String Theory M(atrix) Theories M-Theory |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-54029e28a1e20e62b2a0696a1ed7d35e20311fb50790e2db80f77575964cbf3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2553619338?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2553619338 |
| PQPubID | 2034718 |
| PageCount | 56 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a369731672fc4fe49502623bd62af4ae unpaywall_primary_10_1007_jhep07_2021_140 proquest_journals_2553619338 crossref_citationtrail_10_1007_JHEP07_2021_140 crossref_primary_10_1007_JHEP07_2021_140 springer_journals_10_1007_JHEP07_2021_140 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | KimNKloseTPlefkaJPlane wave matrix theory from N = 4 superYang-Mills on R × S3Nucl. Phys. B20036713592003NuPhB.671..359K1058.81713[hep-th/0306054] [INSPIRE] G.H. Low, V. Kliuchnikov and N. Wiebe, Well-conditioned multiproduct hamiltonian simulation, arXiv:1907.11679. G.H. Low and I.L. Chuang, Hamiltonian simulation by qubitization, arXiv:1610.06546. HanadaMMatsuuraSSuginoFTwo-dimensional lattice for four-dimensional N = 4 supersymmetric Yang-MillsProg. Theor. Phys.20111265972011PThPh.126..597H1248.81140[arXiv:1004.5513] [INSPIRE] McArdleSEndoSAspuru-GuzikABenjaminSCYuanXQuantum computational chemistryRev. Mod. Phys.2020920150032020RvMP...92a5003M4091711 García-ÁlvarezLEgusquizaILLamataLdel CampoASonnerJSolanoEDigital Quantum Simulation of Minimal AdS/CFTPhys. Rev. Lett.20171190405012017PhRvL.119d0501G[arXiv:1607.08560] [INSPIRE] M. Hanada, Yang-Mills theory on noncommutative space: does it exist?, PoSCORFU2015 (2016) 105 [arXiv:1604.04662] [INSPIRE]. BerryDWChildsAMCleveRKothariRSommaRDSimulating hamiltonian dynamics with a truncated taylor seriesPhys. Rev. Lett.20151140905022015PhRvL.114i0502B M. Hanada, Markov Chain Monte Carlo for Dummies, arXiv:1808.08490 [INSPIRE]. SwingleBBentsenGSchleier-SmithMHaydenPMeasuring the scrambling of quantum informationPhys. Rev. A2016940403022016PhRvA..94d0302S3608924[arXiv:1602.06271] [INSPIRE] F. Sugino, Various super Yang-Mills theories with exact supersymmetry on the lattice, JHEP01 (2005) 016 [hep-lat/0410035] [INSPIRE]. Van RaamsdonkMThe meaning of infrared singularities in noncommutative gauge theoriesJHEP2001110061878509[hep-th/0110093] [INSPIRE] S.P. Jordan, Black holes, quantum mechanics, and the limits of polynomial-time computability, XRDS: Crossroads, ACM Mag. Stud.23 (2016) 30. S. Xu, L. Susskind, Y. Su and B. Swingle, A Sparse Model of Quantum Holography, arXiv:2008.02303 [INSPIRE]. LloydSUniversal quantum simulatorsScience199627310731996Sci...273.1073L14079441226.81059 El-ShowkSPapadodimasKEmergent Spacetime and Holographic CFTsJHEP2012101062012JHEP...10..106E[arXiv:1101.4163] [INSPIRE] WittenEBound states of strings and p-branesNucl. Phys. B19964603351996NuPhB.460..335W13771681003.81527[hep-th/9510135] [INSPIRE] McArdleSMayorovAShanXBenjaminSYuanXDigital quantum simulation of molecular vibrationsChem. Sci.2019105725 PACS-CS collaboration, 2+1 Flavor Lattice QCD toward the Physical Point, Phys. Rev. D79 (2009) 034503 [arXiv:0807.1661] [INSPIRE]. HanadaMJevickiAPengCWintergerstNAnatomy of DeconfinementJHEP2019121672019JHEP...12..167H40612781431.83169[arXiv:1909.09118] [INSPIRE] AzeyanagiTHanadaMHirataTOn Matrix Model Formulations of Noncommutative Yang-Mills TheoriesPhys. Rev. D2008781050172008PhRvD..78j5017A2487312[arXiv:0806.3252] [INSPIRE] IshiiTIshikiGShimasakiSTsuchiyaAN = 4 Super Yang-Mills from the Plane Wave Matrix ModelPhys. Rev. D2008781060012008PhRvD..78j6001I2487314[arXiv:0807.2352] [INSPIRE] CatterallSWisemanTTowards lattice simulation of the gauge theory duals to black holes and hot stringsJHEP2007121042007JHEP...12..104C23664521246.81112[arXiv:0706.3518] [INSPIRE] AsanoYIshikiGShimasakiSTerashimaSSpherical transverse M5-branes from the plane wave matrix modelJHEP2018020762018JHEP...02..076A37895941387.83075[arXiv:1711.07681] [INSPIRE] N. Ishii, S. Aoki and T. Hatsuda, The Nuclear Force from Lattice QCD, Phys. Rev. Lett.99 (2007) 022001 [nucl-th/0611096] [INSPIRE]. HanadaMHyakutakeYIshikiGNishimuraJHolographic description of quantum black hole on a computerScience20143448822014Sci...344..882H[arXiv:1311.5607] [INSPIRE] ShenkerSHStanfordDBlack holes and the butterfly effectJHEP2014030672014JHEP...03..067S31909791333.83111[arXiv:1306.0622] [INSPIRE] A. Bouland, B. Fefferman and U. Vazirani, Computational pseudorandomness, the wormhole growth paradox, and constraints on the AdS/CFT duality, arXiv:1910.14646 [INSPIRE]. KogutJBSusskindLHamiltonian Formulation of Wilson’s Lattice Gauge TheoriesPhys. Rev. D1975113951975PhRvD..11..395K[INSPIRE] ParisiGA Simple Expression for Planar Field TheoriesPhys. Lett. B19821124631982PhLB..112..463P664381[INSPIRE] YangZHaydenPQiX-LBidirectional holographic codes and sub-AdS localityJHEP2016011752016JHEP...01..175Y34714051388.83147[arXiv:1510.03784] [INSPIRE] MaldacenaJShenkerSHStanfordDA bound on chaosJHEP2016081062016JHEP...08..106M35641421390.81388[arXiv:1503.01409] [INSPIRE] D.W. Berry, A.M. Childs, Y. Su, X. Wang and N. Wiebe, Time-dependent hamiltonian simulation with l1-norm scaling, arXiv:1906.07115. IshikiGKimS-WNishimuraJTsuchiyaATesting a novel large-N reduction for N = 4 super Yang-Mills theory on R × S3JHEP2009090292009JHEP...09..029I[arXiv:0907.1488] [INSPIRE] C.-F. Chen, R. Kueng, J.A. Tropp, et al., Quantum simulation via randomized product formulas: Low gate complexity with accuracy guarantees, arXiv:2008.11751. WuJHsiehTHVariational Thermal Quantum Simulation via Thermofield Double StatesPhys. Rev. Lett.20191232205022019PhRvL.123v0502W[arXiv:1811.11756] [INSPIRE] HondaMYoshidaYLocalization and Large N reduction on S3for the Planar and M-theory limitNucl. Phys. B2012865212012NuPhB.865...21H29685011262.81141[arXiv:1203.1016] [INSPIRE] LiuJScrambling and decoding the charged quantum informationPhys. Rev. Res.202020431642020hsm2.book.....L[arXiv:2003.11425] [INSPIRE] BanksTFischlerWShenkerSHSusskindLM theory as a matrix model: A ConjecturePhys. Rev. D19975551121997PhRvD..55.5112B14496171156.81433[hep-th/9610043] [INSPIRE] DasguptaKSheikh-JabbariMMVan RaamsdonkMMatrix perturbation theory for M-theory on a PP waveJHEP2002050562002JHEP...05..056D1915342[hep-th/0205185] [INSPIRE] ZoharEBurrelloMFormulation of lattice gauge theories for quantum simulationsPhys. Rev. D2015910545062015PhRvD..91e4506Z3415282[arXiv:1409.3085] [INSPIRE] BabbushRBerryDWNevenHQuantum Simulation of the Sachdev-Ye-Kitaev Model by Asymmetric QubitizationPhys. Rev. A2019990403012019PhRvA..99d0301B[arXiv:1806.02793] [INSPIRE] Y. Ouyang, D.R. White and E. Campbell, Compilation by stochastic hamiltonian sparsification, arXiv:1910.06255. BerryDWChildsAMBlack-box hamiltonian simulation and unitary implementationQuant. Inf. Comput.2012122928962961268.81045 EguchiTKawaiHReduction of Dynamical Degrees of Freedom in the Large N Gauge TheoryPhys. Rev. Lett.19824810631982PhRvL..48.1063E[INSPIRE] KobrinBMany-Body Chaos in the Sachdev-Ye-Kitaev ModelPhys. Rev. Lett.20211260306022021PhRvL.126c0602K[arXiv:2002.05725] [INSPIRE] H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B417 (1998) 141 [hep-lat/9707022] [INSPIRE]. Hamed MoosavianAJordanSFaster Quantum Algorithm to simulate Fermionic Quantum Field TheoryPhys. Rev. A2018980123322018PhRvA..98a2332H[arXiv:1711.04006] [INSPIRE] BabbushRGidneyCBerryDWWiebeNMcCleanJPalerAFowlerANevenHEncoding electronic spectra in quantum circuits with linear t complexityPhys. Rev. X20188041015 J. Preskill, Simulating quantum field theory with a quantum computer, PoSLATTICE2018 (2018) 024 [arXiv:1811.10085] [INSPIRE]. D.B. Kaplan and M. Ünsal, A Euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP09 (2005) 042 [hep-lat/0503039] [INSPIRE]. CurciGVenezianoGSupersymmetry and the Lattice: A Reconciliation?Nucl. Phys. B19872925551987NuPhB.292..555C[INSPIRE] KimNParkJ-HMassive super Yang-Mills quantum mechanics: Classification and the relation to supermembraneNucl. Phys. B20067592492006NuPhB.759..249K22823901116.83036[hep-th/0607005] [INSPIRE] BhanotGHellerUMNeubergerHThe Quenched Eguchi-Kawai ModelPhys. Lett. B1982113471982PhLB..113...47B[INSPIRE] JoshiMKQuantum information scrambling in a trapped-ion quantum simulator with tunable range interactionsPhys. Rev. Lett.20201242405052020PhRvL.124x0505J[arXiv:2001.02176] [INSPIRE] F. Sugino, A Lattice formulation of superYang-Mills theories with exact supersymmetry, JHEP01 (2004) 015 [hep-lat/0311021] [INSPIRE]. G.H. Low, Hamiltonian simulation with nearly optimal dependence on spectral norm, arXiv:1807.03967. CreutzMMonte Carlo Study of Quantized SU(2) Gauge TheoryPhys. Rev. D19802123081980PhRvD..21.2308C585979[INSPIRE] BerkowitzERinaldiEHanadaMIshikiGShimasakiSVranasPPrecision lattice test of the gauge/gravity duality at large-NPhys. Rev. D2016940945012016PhRvD..94i4501B[arXiv:1606.04951] [INSPIRE] M. Honda, G. Ishiki, J. Nishimura and A. Tsuchiya, Testing the AdS/CFT correspondence by Monte Carlo calculation of BPS and non-BPS Wilson loops in 4d N = 4 super-Yang-Mills theory, PoSLATTICE2011 (2011) 244 [arXiv:1112.4274] [INSPIRE]. J. Liu, Aspects of cyberpunkian quantum field theory, https://github.com/junyuphybies/cyber/blob/master/Cyber_QF.pdf. A. Milekhin, Quantum error correction and large N, arXiv:2008.12869 [INSPIRE]. HanadaMA proposal of a fine tuning free formulation of 4d N = 4 super Yang-MillsJHEP2010111122010JHEP...11..112H1294.81108[arXiv:1009.0901] [INSPIRE] MaldacenaJSimmons-DuffinDZhiboedovALooking for a bulk pointJHEP2017010132017JHEP...01..013M36368451373.81335[arXiv:1509.03612] [INSPIRE] M. Hanada, H. Shimada and N. Wintergerst, Color Confinement and Bose-Einstein Condensation, arXiv:2001.10459 [INSPIRE]. JordanSPLeeKSMPreskillJQuantum Computation of Scattering in Scalar Quantum Field TheoriesQuant. Inf. Comput.20141410143241901[arXiv:1112.4833] [INSPIRE] BravyiSBKitaevAYFermionic quantum computationAnnals Phys.20022982102002AnPhy.298..210B19100920995.81012 HanadaMWhat lattice theorists can do for superstring/M-theoryInt. J. Mod. Phys. A20163116430062016IJMPA..3143006H35351051345.81078[arXiv:1604.05421] [INSPIRE] JordanSPLeeKSMPreskillJQuantum Algorithms for Quantum Field TheoriesScience201233611302012Sci...336.1130J[arXiv:1111.3633] [INSPIRE] M. Hanada, G. Ishiki and H. Watanabe, Partial Deconfinement, JHEP03 (2019) 145 [Erratum ibid.10 (2019) 029] [arXiv:1812.05494] [INSPIRE]. CostaMSGreenspanLPenedonesJSantosJThermodynamics of the BMN matrix model at strong couplingJHEP2015030692015JHEP...03..069C33407141388.83649[arXiv:1411.5541] [INSPIRE] L. Susskind, Horizons Protect Church-Turing, arXiv:2003.01807 [INSPIRE]. S. Catterall, Lattice supersymmetry and topological 16324_CR103 16324_CR101 16324_CR26 16324_CR25 16324_CR24 B Yoshida (16324_CR123) 2020; 10 M Kieferova (16324_CR145) 2019; 99 H Watanabe (16324_CR104) 2021; 02 M Hanada (16324_CR99) 2017; 02 J Maldacena (16324_CR105) 2017; 01 GH Low (16324_CR162) 2016; 6 A Gonzalez-Arroyo (16324_CR38) 1983; 120 M Van Raamsdonk (16324_CR85) 2001; 11 16324_CR33 L García-Álvarez (16324_CR48) 2017; 119 JM Maldacena (16324_CR67) 2003; 01 A Hamed Moosavian (16324_CR135) 2018; 98 16324_CR19 16324_CR18 16324_CR17 T Eguchi (16324_CR37) 1982; 48 16324_CR16 16324_CR15 16324_CR14 J Liu (16324_CR52) 2020; 2 16324_CR118 Y Asano (16324_CR71) 2018; 02 W Cottrell (16324_CR95) 2019; 02 R Babbush (16324_CR47) 2019; 99 Z Yang (16324_CR108) 2016; 01 H Kawai (16324_CR73) 2010; 25 B Kobrin (16324_CR117) 2021; 126 16324_CR23 N Wiebe (16324_CR154) 2011; 44 16324_CR22 I Kim (16324_CR122) 2020; 06 16324_CR21 16324_CR20 SP Jordan (16324_CR136) 2018; 2 16324_CR125 16324_CR124 P Hayden (16324_CR109) 2016; 11 16324_CR121 R Babbush (16324_CR143) 2018; 8 16324_CR120 D Zhu (16324_CR114) 2020; 117 S Lloyd (16324_CR129) 1996; 273 E Witten (16324_CR65) 1996; 460 DB Kaplan (16324_CR27) 1984; 136 J Wu (16324_CR96) 2019; 123 G Ishiki (16324_CR74) 2009; 102 S El-Showk (16324_CR107) 2012; 10 16324_CR90 KA Landsman (16324_CR45) 2019; 567 J Liu (16324_CR126) 2020; 12 16324_CR12 16324_CR11 16324_CR97 T Ishii (16324_CR64) 2008; 78 N Bao (16324_CR127) 2019; 946 16324_CR94 16324_CR137 MS Costa (16324_CR111) 2015; 03 MK Joshi (16324_CR46) 2020; 124 16324_CR133 16324_CR131 M Hanada (16324_CR70) 2015; 892 J Maldacena (16324_CR113) 2016; 08 16324_CR130 KN Anagnostopoulos (16324_CR9) 2008; 100 T Azeyanagi (16324_CR87) 2008; 78 E Zohar (16324_CR36) 2015; 91 G Parisi (16324_CR82) 1982; 112 16324_CR139 S McArdle (16324_CR140) 2020; 92 16324_CR138 16324_CR80 M Hanada (16324_CR110) 2021; 103 A Kruchkov (16324_CR51) 2020; 101 16324_CR88 D Poulin (16324_CR155) 2011; 106 A Matusis (16324_CR69) 2000; 12 DE Berenstein (16324_CR53) 2002; 04 T Banks (16324_CR54) 1997; 55 N Klco (16324_CR60) 2019; 99 16324_CR146 16324_CR3 I Heemskerk (16324_CR106) 2009; 10 16324_CR144 16324_CR5 JT Seeley (16324_CR93) 2012; 137 F Alet (16324_CR98) 2021; 02 16324_CR142 16324_CR4 DW Berry (16324_CR160) 2012; 12 16324_CR6 16324_CR8 E Berkowitz (16324_CR32) 2016; 94 A Gonzalez-Arroyo (16324_CR39) 1983; 27 SH Shenker (16324_CR116) 2015; 05 S Catterall (16324_CR30) 2007; 12 16324_CR149 M Hanada (16324_CR29) 2007; 99 SP Jordan (16324_CR59) 2012; 336 M Hanada (16324_CR42) 2010; 11 S McArdle (16324_CR91) 2019; 10 16324_CR77 SP Jordan (16324_CR134) 2017; 95 16324_CR76 N Kim (16324_CR84) 2006; 759 Y Asano (16324_CR72) 2017; 96 T Albash (16324_CR128) 2018; 90 16324_CR158 16324_CR157 16324_CR156 G Ishiki (16324_CR75) 2009; 09 M Hanada (16324_CR119) 2012; 857 G Curci (16324_CR28) 1987; 292 16324_CR153 SP Jordan (16324_CR132) 2014; 14 16324_CR152 D Berenstein (16324_CR100) 2018; 09 N Itzhaki (16324_CR66) 1998; 58 RC Myers (16324_CR40) 1999; 12 M Honda (16324_CR78) 2013; 11 B Swingle (16324_CR112) 2016; 94 AM Childs (16324_CR159) 2012; 12 M Creutz (16324_CR2) 1980; 21 16324_CR151 M Suzuki (16324_CR147) 1976; 51 16324_CR150 M Hanada (16324_CR34) 2016; 31 S Catterall (16324_CR10) 2008; 78 N Kim (16324_CR57) 2003; 671 16324_CR61 DJ Gross (16324_CR83) 1982; 206 S Minwalla (16324_CR68) 2000; 02 16324_CR49 K Dasgupta (16324_CR63) 2002; 09 M Hanada (16324_CR31) 2014; 344 16324_CR163 M Hanada (16324_CR41) 2011; 126 B de Wit (16324_CR55) 1988; 305 SB Bravyi (16324_CR92) 2002; 298 SH Shenker (16324_CR115) 2014; 03 16324_CR161 GH Low (16324_CR13) 2017; 118 16324_CR50 J Maldacena (16324_CR58) 2018; 04 S Dürr (16324_CR7) 2008; 322 M Hanada (16324_CR102) 2019; 12 G Bhanot (16324_CR81) 1982; 113 T Azeyanagi (16324_CR86) 2008; 01 M Hanada (16324_CR89) 2009; 11 M Honda (16324_CR79) 2012; 865 E Berkowitz (16324_CR62) 2018; 06 W Dür (16324_CR148) 2008; 78 DW Berry (16324_CR141) 2015; 114 K Dasgupta (16324_CR56) 2002; 05 16324_CR44 16324_CR43 JB Kogut (16324_CR35) 1975; 11 KG Wilson (16324_CR1) 1974; 10 |
| References_xml | – reference: E. Campbell, A random compiler for fast hamiltonian simulation, arXiv:1811.08017. – reference: BanksTFischlerWShenkerSHSusskindLM theory as a matrix model: A ConjecturePhys. Rev. D19975551121997PhRvD..55.5112B14496171156.81433[hep-th/9610043] [INSPIRE] – reference: WilsonKGConfinement of QuarksPhys. Rev. D19741024451974PhRvD..10.2445W[INSPIRE] – reference: PACS-CS collaboration, 2+1 Flavor Lattice QCD toward the Physical Point, Phys. Rev. D79 (2009) 034503 [arXiv:0807.1661] [INSPIRE]. – reference: JordanSPKroviHLeeKSPreskillJBQP-completeness of scattering in scalar quantum field theoryQuantum2018244 – reference: M. Honda, G. Ishiki, J. Nishimura and A. Tsuchiya, Testing the AdS/CFT correspondence by Monte Carlo calculation of BPS and non-BPS Wilson loops in 4d N = 4 super-Yang-Mills theory, PoSLATTICE2011 (2011) 244 [arXiv:1112.4274] [INSPIRE]. – reference: BabbushRGidneyCBerryDWWiebeNMcCleanJPalerAFowlerANevenHEncoding electronic spectra in quantum circuits with linear t complexityPhys. Rev. X20188041015 – reference: Y. Asano, V.G. Filev, S. Kováčik and D. O’Connor, A computer test of holographic avour dynamics. Part II, JHEP03 (2018) 055 [arXiv:1612.09281] [INSPIRE]. – reference: A.M. Childs, Y. Su, M.C. Tran, N. Wiebe and S. Zhu, A theory of trotter error, arXiv:1912.08854. – reference: C.-F. Chen, R. Kueng, J.A. Tropp, et al., Quantum simulation via randomized product formulas: Low gate complexity with accuracy guarantees, arXiv:2008.11751. – reference: BerkowitzERinaldiEHanadaMIshikiGShimasakiSVranasPPrecision lattice test of the gauge/gravity duality at large-NPhys. Rev. D2016940945012016PhRvD..94i4501B[arXiv:1606.04951] [INSPIRE] – reference: BravyiSBKitaevAYFermionic quantum computationAnnals Phys.20022982102002AnPhy.298..210B19100920995.81012 – reference: HeemskerkIPenedonesJPolchinskiJSullyJHolography from Conformal Field TheoryJHEP2009100792009JHEP...10..079H2607436[arXiv:0907.0151] [INSPIRE] – reference: IshiiTIshikiGShimasakiSTsuchiyaAN = 4 Super Yang-Mills from the Plane Wave Matrix ModelPhys. Rev. D2008781060012008PhRvD..78j6001I2487314[arXiv:0807.2352] [INSPIRE] – reference: MaldacenaJMSheikh-JabbariMMVan RaamsdonkMTransverse five-branes in matrix theoryJHEP2003010382003JHEP...01..038M1226.81213[hep-th/0211139] [INSPIRE] – reference: SuzukiMGeneralized Trotter’s Formula and Systematic Approximants of Exponential Operators and Inner Derivations with Applications to Many Body ProblemsCommun. Math. Phys.1976511831976CMaPh..51..183S4256780341.47028[INSPIRE] – reference: KogutJBSusskindLHamiltonian Formulation of Wilson’s Lattice Gauge TheoriesPhys. Rev. D1975113951975PhRvD..11..395K[INSPIRE] – reference: MinwallaSVan RaamsdonkMSeibergNNoncommutative perturbative dynamicsJHEP2000020202000JHEP...02..020M17488010959.81108[hep-th/9912072] [INSPIRE] – reference: F. Sugino, SuperYang-Mills theories on the two-dimensional lattice with exact supersymmetry, JHEP03 (2004) 067 [hep-lat/0401017] [INSPIRE]. – reference: ItzhakiNMaldacenaJMSonnenscheinJYankielowiczSSupergravity and the large N limit of theories with sixteen superchargesPhys. Rev. D1998580460041998PhRvD..58d6004I1678195[hep-th/9802042] [INSPIRE] – reference: M. Honda, G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Supersymmetry non-renormalization theorem from a computer and the AdS/CFT correspondence, PoSLATTICE2010 (2010) 253 [arXiv:1011.3904] [INSPIRE]. – reference: HanadaMWhat lattice theorists can do for superstring/M-theoryInt. J. Mod. Phys. A20163116430062016IJMPA..3143006H35351051345.81078[arXiv:1604.05421] [INSPIRE] – reference: J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE]. – reference: J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. – reference: D.W. Berry, A.M. Childs, Y. Su, X. Wang and N. Wiebe, Time-dependent hamiltonian simulation with l1-norm scaling, arXiv:1906.07115. – reference: YangZHaydenPQiX-LBidirectional holographic codes and sub-AdS localityJHEP2016011752016JHEP...01..175Y34714051388.83147[arXiv:1510.03784] [INSPIRE] – reference: ChildsAMWiebeNHamiltonian simulation using linear combinations of unitary operationsQuant. Inf. Comput.20121290130128191263.81112 – reference: AsanoYIshikiGShimasakiSTerashimaSSpherical transverse M5-branes in matrix theoryPhys. Rev. D2017961260032017PhRvD..96l6003A38732931387.83075[arXiv:1701.07140] [INSPIRE] – reference: BerryDWChildsAMBlack-box hamiltonian simulation and unitary implementationQuant. Inf. Comput.2012122928962961268.81045 – reference: KimNKloseTPlefkaJPlane wave matrix theory from N = 4 superYang-Mills on R × S3Nucl. Phys. B20036713592003NuPhB.671..359K1058.81713[hep-th/0306054] [INSPIRE] – reference: M. Kreshchuk, W.M. Kirby, G. Goldstein, H. Beauchemin and P.J. Love, Quantum Simulation of Quantum Field Theory in the Light-Front Formulation, arXiv:2002.04016 [INSPIRE]. – reference: KobrinBMany-Body Chaos in the Sachdev-Ye-Kitaev ModelPhys. Rev. Lett.20211260306022021PhRvL.126c0602K[arXiv:2002.05725] [INSPIRE] – reference: G.H. Low, V. Kliuchnikov and N. Wiebe, Well-conditioned multiproduct hamiltonian simulation, arXiv:1907.11679. – reference: A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 1. A target theory with four supercharges, JHEP08 (2003) 024 [hep-lat/0302017] [INSPIRE]. – reference: KimITangEPreskillJThe ghost in the radiation: Robust encodings of the black hole interiorJHEP2020060312020JHEP...06..031K41360161437.83063[arXiv:2003.05451] [INSPIRE] – reference: MaldacenaJSimmons-DuffinDZhiboedovALooking for a bulk pointJHEP2017010132017JHEP...01..013M36368451373.81335[arXiv:1509.03612] [INSPIRE] – reference: A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 2. Target theories with eight supercharges, JHEP12 (2003) 031 [hep-lat/0307012] [INSPIRE]. – reference: HanadaMMatsuuraSSuginoFNon-perturbative construction of 2D and 4D supersymmetric Yang-Mills theories with 8 superchargesNucl. Phys. B20128573352012NuPhB.857..335H28742101246.81129[arXiv:1109.6807] [INSPIRE] – reference: IshikiGKimS-WNishimuraJTsuchiyaATesting a novel large-N reduction for N = 4 super Yang-Mills theory on R × S3JHEP2009090292009JHEP...09..029I[arXiv:0907.1488] [INSPIRE] – reference: McArdleSMayorovAShanXBenjaminSYuanXDigital quantum simulation of molecular vibrationsChem. Sci.2019105725 – reference: WittenEBound states of strings and p-branesNucl. Phys. B19964603351996NuPhB.460..335W13771681003.81527[hep-th/9510135] [INSPIRE] – reference: KimNParkJ-HMassive super Yang-Mills quantum mechanics: Classification and the relation to supermembraneNucl. Phys. B20067592492006NuPhB.759..249K22823901116.83036[hep-th/0607005] [INSPIRE] – reference: A. Buser, H. Gharibyan, M. Hanada, M. Honda and J. Liu, Quantum simulation of gauge theory via orbifold lattice, arXiv:2011.06576 [INSPIRE]. – reference: SeeleyJTRichardMJLovePJThe bravyi-kitaev transformation for quantum computation of electronic structureJ. Chem. Phys.20121372241092012JChPh.137v4109S – reference: McArdleSEndoSAspuru-GuzikABenjaminSCYuanXQuantum computational chemistryRev. Mod. Phys.2020920150032020RvMP...92a5003M4091711 – reference: A. Milekhin, Quantum error correction and large N, arXiv:2008.12869 [INSPIRE]. – reference: R.D. Somma, Quantum computation, complexity, and many-body physics, quant-ph/0512209. – reference: WatanabeHPartial deconfinement at strong coupling on the latticeJHEP2021020042021JHEP...02..004W4260415[arXiv:2005.04103] [INSPIRE] – reference: HanadaMJevickiAPengCWintergerstNAnatomy of DeconfinementJHEP2019121672019JHEP...12..167H40612781431.83169[arXiv:1909.09118] [INSPIRE] – reference: D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a spatial lattice, JHEP05 (2003) 037 [hep-lat/0206019] [INSPIRE]. – reference: HanadaMShimadaHOn the continuity of the commutative limit of the 4d N = 4 non-commutative super Yang-Mills theoryNucl. Phys. B20158924492015NuPhB.892..449H33109231328.81212[arXiv:1410.4503] [INSPIRE] – reference: N.P. Sawaya, T. Menke, T.H. Kyaw, S. Johri, A. Aspuru-Guzik and G.G. Guerreschi, Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s hamiltonians, npj Quantum Inf.6 (2020) 1. – reference: Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1, Phys. Rev.122 (1961) 345 [INSPIRE]. – reference: A.M. Childs and R. Kothari, Simulating sparse hamiltonians with star decompositions, in Theory of Quantum Computation, Communication, and Cryptography, W. van Dam, V.M. Kendon and S. Severini, eds., pp. 94–103. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany (2011). – reference: DürrSAb-Initio Determination of Light Hadron MassesScience200832212242008Sci...322.1224D[arXiv:0906.3599] [INSPIRE] – reference: CatterallSWisemanTBlack hole thermodynamics from simulations of lattice Yang-Mills theoryPhys. Rev. D2008780415022008PhRvD..78d1502C2447360[arXiv:0803.4273] [INSPIRE] – reference: JordanSPFast quantum computation at arbitrarily low energyPhys. Rev. A2017950323052017PhRvA..95c2305J3687639[arXiv:1701.01175] [INSPIRE] – reference: S.P. Jordan, Black holes, quantum mechanics, and the limits of polynomial-time computability, XRDS: Crossroads, ACM Mag. Stud.23 (2016) 30. – reference: B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi and A. Tomiya, Digital Quantum Simulation of the Schwinger Model with Topological Term via Adiabatic State Preparation, arXiv:2001.00485 [INSPIRE]. – reference: CatterallSWisemanTTowards lattice simulation of the gauge theory duals to black holes and hot stringsJHEP2007121042007JHEP...12..104C23664521246.81112[arXiv:0706.3518] [INSPIRE] – reference: WuJHsiehTHVariational Thermal Quantum Simulation via Thermofield Double StatesPhys. Rev. Lett.20191232205022019PhRvL.123v0502W[arXiv:1811.11756] [INSPIRE] – reference: AlbashTLidarDAAdiabatic quantum computationRev. Mod. Phys.2018900150022018RvMP...90a5002A3788424 – reference: HondaMYoshidaYLocalization and Large N reduction on S3for the Planar and M-theory limitNucl. Phys. B2012865212012NuPhB.865...21H29685011262.81141[arXiv:1203.1016] [INSPIRE] – reference: G.H. Low, Hamiltonian simulation with nearly optimal dependence on spectral norm, arXiv:1807.03967. – reference: D.B. Kaplan and M. Ünsal, A Euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP09 (2005) 042 [hep-lat/0503039] [INSPIRE]. – reference: Hamed MoosavianAJordanSFaster Quantum Algorithm to simulate Fermionic Quantum Field TheoryPhys. Rev. A2018980123322018PhRvA..98a2332H[arXiv:1711.04006] [INSPIRE] – reference: S. Catterall, Lattice supersymmetry and topological field theory, JHEP05 (2003) 038 [hep-lat/0301028] [INSPIRE]. – reference: KlcoNSavageMJDigitization of scalar fields for quantum computingPhys. Rev. A2019990523352019PhRvA..99e2335K[arXiv:1808.10378] [INSPIRE] – reference: IshikiGKimS-WNishimuraJTsuchiyaADeconfinement phase transition in N = 4 super Yang-Mills theory on R × S3from supersymmetric matrix quantum mechanicsPhys. Rev. Lett.20091021116012009PhRvL.102k1601I[arXiv:0810.2884] [INSPIRE] – reference: A.R. Brown et al., Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes, arXiv:1911.06314 [INSPIRE]. – reference: HanadaMMaltzJA proposal of the gauge theory description of the small Schwarzschild black hole in AdS5×S5JHEP2017020122017JHEP...02..012H1377.83046[arXiv:1608.03276] [INSPIRE] – reference: Y. Ouyang, D.R. White and E. Campbell, Compilation by stochastic hamiltonian sparsification, arXiv:1910.06255. – reference: S. Catterall, A geometrical approach to N = 2 super Yang-Mills theory on the two dimensional lattice, JHEP11 (2004) 006 [hep-lat/0410052] [INSPIRE]. – reference: MatusisASusskindLToumbasNThe IR/UV connection in the noncommutative gauge theoriesJHEP2000120022000JHEP...12..002M0990.81549[hep-th/0002075] [INSPIRE] – reference: MaldacenaJShenkerSHStanfordDA bound on chaosJHEP2016081062016JHEP...08..106M35641421390.81388[arXiv:1503.01409] [INSPIRE] – reference: HanadaMNishimuraJTakeuchiSNon-lattice simulation for supersymmetric gauge theories in one dimensionPhys. Rev. Lett.2007991616022007PhRvL..99p1602H[arXiv:0706.1647] [INSPIRE] – reference: DasguptaKSheikh-JabbariMMVan RaamsdonkMProtected multiplets of M-theory on a plane waveJHEP2002090212002JHEP...09..021D1949087[hep-th/0207050] [INSPIRE] – reference: BaoNLiuJQuantum algorithms for conformal bootstrapNucl. Phys. B201994611470239887331430.81020 – reference: LandsmanKAVerified Quantum Information ScramblingNature2019567612019Natur.567...61L[arXiv:1806.02807] [INSPIRE] – reference: BerkowitzEHanadaMRinaldiEVranasPGauged And Ungauged: A Nonperturbative TestJHEP2018061242018JHEP...06..124B1395.81175[arXiv:1802.02985] [INSPIRE] – reference: AzeyanagiTHanadaMHirataTIshikawaTPhase structure of twisted Eguchi-Kawai modelJHEP2008010252008JHEP...01..025A2375387[arXiv:0711.1925] [INSPIRE] – reference: S. Xu, L. Susskind, Y. Su and B. Swingle, A Sparse Model of Quantum Holography, arXiv:2008.02303 [INSPIRE]. – reference: BhanotGHellerUMNeubergerHThe Quenched Eguchi-Kawai ModelPhys. Lett. B1982113471982PhLB..113...47B[INSPIRE] – reference: ShenkerSHStanfordDBlack holes and the butterfly effectJHEP2014030672014JHEP...03..067S31909791333.83111[arXiv:1306.0622] [INSPIRE] – reference: LowGHChuangILOptimal hamiltonian simulation by quantum signal processingPhys. Rev. Lett.20171180105012017PhRvL.118a0501L3664821 – reference: H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B417 (1998) 141 [hep-lat/9707022] [INSPIRE]. – reference: G.H. Low and I.L. Chuang, Hamiltonian simulation by qubitization, arXiv:1610.06546. – reference: HaydenPNezamiSQiX-LThomasNWalterMYangZHolographic duality from random tensor networksJHEP2016110092016JHEP...11..009H35844421390.83344[arXiv:1601.01694] [INSPIRE] – reference: ShenkerSHStanfordDStringy effects in scramblingJHEP2015051322015JHEP...05..132S33588711388.83500[arXiv:1412.6087] [INSPIRE] – reference: HanadaMA proposal of a fine tuning free formulation of 4d N = 4 super Yang-MillsJHEP2010111122010JHEP...11..112H1294.81108[arXiv:1009.0901] [INSPIRE] – reference: EguchiTKawaiHReduction of Dynamical Degrees of Freedom in the Large N Gauge TheoryPhys. Rev. Lett.19824810631982PhRvL..48.1063E[INSPIRE] – reference: H.B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 1. Proof by Homotopy Theory, Nucl. Phys. B185 (1981) 20 [Erratum ibid.195 (1982) 541] [INSPIRE]. – reference: M. Hanada, Yang-Mills theory on noncommutative space: does it exist?, PoSCORFU2015 (2016) 105 [arXiv:1604.04662] [INSPIRE]. – reference: CreutzMMonte Carlo Study of Quantized SU(2) Gauge TheoryPhys. Rev. D19802123081980PhRvD..21.2308C585979[INSPIRE] – reference: García-ÁlvarezLEgusquizaILLamataLdel CampoASonnerJSolanoEDigital Quantum Simulation of Minimal AdS/CFTPhys. Rev. Lett.20171190405012017PhRvL.119d0501G[arXiv:1607.08560] [INSPIRE] – reference: Van RaamsdonkMThe meaning of infrared singularities in noncommutative gauge theoriesJHEP2001110061878509[hep-th/0110093] [INSPIRE] – reference: Y. Asano, G. Ishiki, T. Okada and S. Shimasaki, Large-N reduction forN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}=2 quiver Chern-Simons theories on S3and localization in matrix models, Phys. Rev. D85 (2012) 106003 [arXiv:1203.0559] [INSPIRE]. – reference: GrossDJKitazawaYA Quenched Momentum Prescription for Large N TheoriesNucl. Phys. B19822064401982NuPhB.206..440G[INSPIRE] – reference: Gonzalez-ArroyoAOkawaMA Twisted Model for Large N Lattice Gauge TheoryPhys. Lett. B19831201741983PhLB..120..174G[INSPIRE] – reference: I. Danshita, M. Hanada and M. Tezuka, Creating and probing the Sachdev-Ye-Kitaev model with ultracold gases: Towards experimental studies of quantum gravity, PTEP2017 (2017) 083I01 [arXiv:1606.02454] [INSPIRE]. – reference: J. Liu, Aspects of cyberpunkian quantum field theory, https://github.com/junyuphybies/cyber/blob/master/Cyber_QF.pdf. – reference: BerensteinDEMaldacenaJMNastaseHSStrings in flat space and pp waves from N = 4 superYang-MillsJHEP2002040132002JHEP...04..013B[hep-th/0202021] [INSPIRE] – reference: BerensteinDSubmatrix deconfinement and small black holes in AdSJHEP2018090542018JHEP...09..054B38712451398.83098[arXiv:1806.05729] [INSPIRE] – reference: M. Hanada, H. Shimada and N. Wintergerst, Color Confinement and Bose-Einstein Condensation, arXiv:2001.10459 [INSPIRE]. – reference: J. Preskill, Simulating quantum field theory with a quantum computer, PoSLATTICE2018 (2018) 024 [arXiv:1811.10085] [INSPIRE]. – reference: D.B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett. B288 (1992) 342 [hep-lat/9206013] [INSPIRE]. – reference: A. Joseph, Markov Chain Monte Carlo Methods in Quantum Field Theories: A Modern Primer, SpringerBriefs in Physics, Springer, (2019), DOI [arXiv:1912.10997] [INSPIRE]. – reference: KawaiHShimasakiSTsuchiyaALarge N reduction on group manifoldsInt. J. Mod. Phys. A20102533892010IJMPA..25.3389K26695941193.81066[arXiv:0912.1456] [INSPIRE] – reference: CostaMSGreenspanLPenedonesJSantosJThermodynamics of the BMN matrix model at strong couplingJHEP2015030692015JHEP...03..069C33407141388.83649[arXiv:1411.5541] [INSPIRE] – reference: PoulinDQarryASommaRVerstraeteFQuantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert SpacePhys. Rev. Lett.20111061705012011PhRvL.106q0501P[arXiv:1102.1360] [INSPIRE] – reference: HanadaMBulk geometry in gauge/gravity duality and color degrees of freedomPhys. Rev. D20211031060072021PhRvD.103j6007H4277614[arXiv:2102.08982] [INSPIRE] – reference: AsanoYIshikiGShimasakiSTerashimaSSpherical transverse M5-branes from the plane wave matrix modelJHEP2018020762018JHEP...02..076A37895941387.83075[arXiv:1711.07681] [INSPIRE] – reference: HanadaMHyakutakeYIshikiGNishimuraJHolographic description of quantum black hole on a computerScience20143448822014Sci...344..882H[arXiv:1311.5607] [INSPIRE] – reference: A.H. Moosavian, J.R. Garrison and S.P. Jordan, Site-by-site quantum state preparation algorithm for preparing vacua of fermionic lattice field theories, arXiv:1911.03505 [INSPIRE]. – reference: KieferovaMSchererABerryDWSimulating the dynamics of time-dependent hamiltonians with a truncated dyson seriesPhys. Rev. A2019990423142019PhRvA..99d2314K – reference: KaplanDBDynamical Generation of SupersymmetryPhys. Lett. B19841361621984PhLB..136..162K[INSPIRE] – reference: D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma, Exponential improvement in precision for simulating sparse hamiltonians, in Forum Math. Sigma5 (2017) E8. – reference: SwingleBBentsenGSchleier-SmithMHaydenPMeasuring the scrambling of quantum informationPhys. Rev. A2016940403022016PhRvA..94d0302S3608924[arXiv:1602.06271] [INSPIRE] – reference: BabbushRBerryDWNevenHQuantum Simulation of the Sachdev-Ye-Kitaev Model by Asymmetric QubitizationPhys. Rev. A2019990403012019PhRvA..99d0301B[arXiv:1806.02793] [INSPIRE] – reference: M. Hanada, Markov Chain Monte Carlo for Dummies, arXiv:1808.08490 [INSPIRE]. – reference: YoshidaBRemarks on black hole complexity puzzleJHEP2020101032020JHEP...10..103Y42040021456.83048[arXiv:2005.12491] [INSPIRE] – reference: KruchkovAPatelAAKimPSachdevSThermoelectric power of Sachdev-Ye-Kitaev islands: Probing Bekenstein-Hawking entropy in quantum matter experimentsPhys. Rev. B20201012051482020PhRvB.101t5148K[arXiv:1912.02835] [INSPIRE] – reference: ZoharEBurrelloMFormulation of lattice gauge theories for quantum simulationsPhys. Rev. D2015910545062015PhRvD..91e4506Z3415282[arXiv:1409.3085] [INSPIRE] – reference: MaldacenaJMilekhinATo gauge or not to gauge?JHEP2018040842018JHEP...04..084M1390.81337[arXiv:1802.00428] [INSPIRE] – reference: HanadaMMannelliLMatsuoYLarge-N reduced models of supersymmetric quiver, Chern-Simons gauge theories and ABJMJHEP2009110872009JHEP...11..087H2628867[arXiv:0907.4937] [INSPIRE] – reference: LiuJXinYQuantum simulation of quantum field theories as quantum chemistryJHEP2020120112020JHEP...12..011L42394411457.81082[arXiv:2004.13234] [INSPIRE] – reference: BerryDWChildsAMCleveRKothariRSommaRDSimulating hamiltonian dynamics with a truncated taylor seriesPhys. Rev. Lett.20151140905022015PhRvL.114i0502B – reference: WiebeNBerryDWHøyerPSandersBCSimulating quantum dynamics on a quantum computerJ. Phys. A2011444453082011JPhA...44R5308W28470671270.81064 – reference: El-ShowkSPapadodimasKEmergent Spacetime and Holographic CFTsJHEP2012101062012JHEP...10..106E[arXiv:1101.4163] [INSPIRE] – reference: DürWBremnerMJBriegelHJQuantum simulation of interacting high-dimensional systems: The influence of noisePhys. Rev. A2008780523252008PhRvA..78e2325D – reference: ParisiGA Simple Expression for Planar Field TheoriesPhys. Lett. B19821124631982PhLB..112..463P664381[INSPIRE] – reference: A.M. Childs, D. Maslov, Y. Nam, N.J. Ross and Y. Su, Toward the first quantum simulation with quantum speedup, arXiv:1711.10980. – reference: J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 Adv. Theor. Math. Phys.2 (1998) 231 [hep-th/9711200] [INSPIRE]. – reference: CurciGVenezianoGSupersymmetry and the Lattice: A Reconciliation?Nucl. Phys. B19872925551987NuPhB.292..555C[INSPIRE] – reference: ZhuDGeneration of thermofield double states and critical ground states with a quantum computerProc. Nat. Acad. Sci.2020117254022020PNAS..11725402Z4250199[arXiv:1906.02699] [INSPIRE] – reference: LowGHYoderTJChuangILMethodology of resonant equiangular composite quantum gatesPhys. Rev. X20166041067 – reference: K. Wan and I. Kim, Fast digital methods for adiabatic state preparation, arXiv:2004.04164. – reference: MyersRCDielectric branesJHEP1999120221999JHEP...12..022M17430600958.81091[hep-th/9910053] [INSPIRE] – reference: AnagnostopoulosKNHanadaMNishimuraJTakeuchiSMonte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperaturePhys. Rev. Lett.20081000216012008PhRvL.100b1601A[arXiv:0707.4454] [INSPIRE] – reference: Gonzalez-ArroyoAOkawaMThe Twisted Eguchi-Kawai Model: A Reduced Model for Large N Lattice Gauge TheoryPhys. Rev. D19832723971983PhRvD..27.2397G[INSPIRE] – reference: JoshiMKQuantum information scrambling in a trapped-ion quantum simulator with tunable range interactionsPhys. Rev. Lett.20201242405052020PhRvL.124x0505J[arXiv:2001.02176] [INSPIRE] – reference: DasguptaKSheikh-JabbariMMVan RaamsdonkMMatrix perturbation theory for M-theory on a PP waveJHEP2002050562002JHEP...05..056D1915342[hep-th/0205185] [INSPIRE] – reference: F. Sugino, A Lattice formulation of superYang-Mills theories with exact supersymmetry, JHEP01 (2004) 015 [hep-lat/0311021] [INSPIRE]. – reference: F. Sugino, Various super Yang-Mills theories with exact supersymmetry on the lattice, JHEP01 (2005) 016 [hep-lat/0410035] [INSPIRE]. – reference: AletFHanadaMJevickiAPengCEntanglement and Confinement in Coupled Quantum SystemsJHEP2021020342021JHEP...02..034A42603851460.81005[arXiv:2001.03158] [INSPIRE] – reference: M. Hanada, G. Ishiki and H. Watanabe, Partial Deconfinement, JHEP03 (2019) 145 [Erratum ibid.10 (2019) 029] [arXiv:1812.05494] [INSPIRE]. – reference: B. Şahinoğlu and R.D. Somma, Hamiltonian simulation in the low energy subspace, arXiv:2006.02660. – reference: L. Susskind, Horizons Protect Church-Turing, arXiv:2003.01807 [INSPIRE]. – reference: A. Bouland, B. Fefferman and U. Vazirani, Computational pseudorandomness, the wormhole growth paradox, and constraints on the AdS/CFT duality, arXiv:1910.14646 [INSPIRE]. – reference: CottrellWFreivogelBHofmanDMLokhandeSFHow to Build the Thermofield Double StateJHEP2019020582019JHEP...02..058C39331411411.81174[arXiv:1811.11528] [INSPIRE] – reference: S. Subramanian, S. Brierley and R. Jozsa, Implementing smooth functions of a hermitian matrix on a quantum computer, arXiv:1806.06885. – reference: JordanSPLeeKSMPreskillJQuantum Algorithms for Quantum Field TheoriesScience201233611302012Sci...336.1130J[arXiv:1111.3633] [INSPIRE] – reference: AzeyanagiTHanadaMHirataTOn Matrix Model Formulations of Noncommutative Yang-Mills TheoriesPhys. Rev. D2008781050172008PhRvD..78j5017A2487312[arXiv:0806.3252] [INSPIRE] – reference: N. Ishii, S. Aoki and T. Hatsuda, The Nuclear Force from Lattice QCD, Phys. Rev. Lett.99 (2007) 022001 [nucl-th/0611096] [INSPIRE]. – reference: LiuJScrambling and decoding the charged quantum informationPhys. Rev. Res.202020431642020hsm2.book.....L[arXiv:2003.11425] [INSPIRE] – reference: A.M. Childs, A. Ostrander and Y. Su, Faster quantum simulation by randomization, arXiv:1805.08385. – reference: de WitBHoppeJNicolaiHOn the Quantum Mechanics of SupermembranesNucl. Phys. B19883055451988NuPhB.305..545D9842841156.81457[INSPIRE] – reference: HanadaMMatsuuraSSuginoFTwo-dimensional lattice for four-dimensional N = 4 supersymmetric Yang-MillsProg. Theor. Phys.20111265972011PThPh.126..597H1248.81140[arXiv:1004.5513] [INSPIRE] – reference: HondaMIshikiGKimS-WNishimuraJTsuchiyaADirect test of the AdS/CFT correspondence by Monte Carlo studies of N = 4 super Yang-Mills theoryJHEP2013112002013JHEP...11..200H[arXiv:1308.3525] [INSPIRE] – reference: S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Algorithms for Fermionic Quantum Field Theories, arXiv:1404.7115 [INSPIRE]. – reference: JordanSPLeeKSMPreskillJQuantum Computation of Scattering in Scalar Quantum Field TheoriesQuant. Inf. Comput.20141410143241901[arXiv:1112.4833] [INSPIRE] – reference: D.W. Berry, A.M. Childs and R. Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pp. 792–809, IEEE (2015). – reference: LloydSUniversal quantum simulatorsScience199627310731996Sci...273.1073L14079441226.81059 – ident: 16324_CR21 doi: 10.1088/1126-6708/2005/09/042 – volume: 06 start-page: 031 year: 2020 ident: 16324_CR122 publication-title: JHEP doi: 10.1007/JHEP06(2020)031 – ident: 16324_CR97 – volume: 136 start-page: 162 year: 1984 ident: 16324_CR27 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(84)91172-9 – ident: 16324_CR103 – volume: 03 start-page: 067 year: 2014 ident: 16324_CR115 publication-title: JHEP doi: 10.1007/JHEP03(2014)067 – volume: 273 start-page: 1073 year: 1996 ident: 16324_CR129 publication-title: Science doi: 10.1126/science.273.5278.1073 – volume: 90 start-page: 015002 year: 2018 ident: 16324_CR128 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015002 – ident: 16324_CR161 – ident: 16324_CR149 – volume: 25 start-page: 3389 year: 2010 ident: 16324_CR73 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X10049396 – ident: 16324_CR77 doi: 10.22323/1.139.0244 – volume: 11 start-page: 009 year: 2016 ident: 16324_CR109 publication-title: JHEP doi: 10.1007/JHEP11(2016)009 – volume: 946 start-page: 114702 year: 2019 ident: 16324_CR127 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2019.114702 – ident: 16324_CR146 – volume: 12 start-page: 022 year: 1999 ident: 16324_CR40 publication-title: JHEP doi: 10.1088/1126-6708/1999/12/022 – volume: 02 start-page: 058 year: 2019 ident: 16324_CR95 publication-title: JHEP doi: 10.1007/JHEP02(2019)058 – ident: 16324_CR152 – volume: 09 start-page: 054 year: 2018 ident: 16324_CR100 publication-title: JHEP doi: 10.1007/JHEP09(2018)054 – ident: 16324_CR158 – volume: 05 start-page: 056 year: 2002 ident: 16324_CR56 publication-title: JHEP doi: 10.1088/1126-6708/2002/05/056 – volume: 92 start-page: 015003 year: 2020 ident: 16324_CR140 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.92.015003 – volume: 322 start-page: 1224 year: 2008 ident: 16324_CR7 publication-title: Science doi: 10.1126/science.1163233 – ident: 16324_CR17 doi: 10.1016/0370-2693(92)91112-M – ident: 16324_CR94 – ident: 16324_CR25 doi: 10.1088/1126-6708/2003/05/038 – volume: 2 start-page: 44 year: 2018 ident: 16324_CR136 publication-title: Quantum doi: 10.22331/q-2018-01-08-44 – ident: 16324_CR88 – volume: 123 start-page: 220502 year: 2019 ident: 16324_CR96 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.220502 – ident: 16324_CR11 – volume: 671 start-page: 359 year: 2003 ident: 16324_CR57 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2003.08.019 – volume: 94 start-page: 094501 year: 2016 ident: 16324_CR32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.094501 – volume: 102 start-page: 111601 year: 2009 ident: 16324_CR74 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.111601 – volume: 865 start-page: 21 year: 2012 ident: 16324_CR79 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2012.07.022 – volume: 09 start-page: 021 year: 2002 ident: 16324_CR63 publication-title: JHEP doi: 10.1088/1126-6708/2002/09/021 – volume: 91 start-page: 054506 year: 2015 ident: 16324_CR36 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.054506 – ident: 16324_CR120 – volume: 12 start-page: 29 year: 2012 ident: 16324_CR160 publication-title: Quant. Inf. Comput. – volume: 759 start-page: 249 year: 2006 ident: 16324_CR84 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2006.10.005 – ident: 16324_CR138 – volume: 78 start-page: 105017 year: 2008 ident: 16324_CR87 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.105017 – volume: 10 start-page: 106 year: 2012 ident: 16324_CR107 publication-title: JHEP doi: 10.1007/JHEP10(2012)106 – volume: 11 start-page: 112 year: 2010 ident: 16324_CR42 publication-title: JHEP doi: 10.1007/JHEP11(2010)112 – volume: 11 start-page: 087 year: 2009 ident: 16324_CR89 publication-title: JHEP doi: 10.1088/1126-6708/2009/11/087 – volume: 892 start-page: 449 year: 2015 ident: 16324_CR70 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2015.01.016 – volume: 27 start-page: 2397 year: 1983 ident: 16324_CR39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.27.2397 – volume: 137 start-page: 224109 year: 2012 ident: 16324_CR93 publication-title: J. Chem. Phys. doi: 10.1063/1.4768229 – volume: 114 start-page: 090502 year: 2015 ident: 16324_CR141 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.090502 – ident: 16324_CR8 doi: 10.1103/PhysRevLett.99.022001 – volume: 11 start-page: 200 year: 2013 ident: 16324_CR78 publication-title: JHEP doi: 10.1007/JHEP11(2013)200 – ident: 16324_CR121 – ident: 16324_CR118 – volume: 460 start-page: 335 year: 1996 ident: 16324_CR65 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(95)00610-9 – volume: 8 start-page: 041015 year: 2018 ident: 16324_CR143 publication-title: Phys. Rev. X – ident: 16324_CR50 doi: 10.1093/ptep/ptw124 – volume: 55 start-page: 5112 year: 1997 ident: 16324_CR54 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.55.5112 – ident: 16324_CR137 – volume: 44 start-page: 445308 year: 2011 ident: 16324_CR154 publication-title: J. Phys. A doi: 10.1088/1751-8113/44/44/445308 – volume: 14 start-page: 1014 year: 2014 ident: 16324_CR132 publication-title: Quant. Inf. Comput. – volume: 118 start-page: 010501 year: 2017 ident: 16324_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.010501 – volume: 12 start-page: 901 year: 2012 ident: 16324_CR159 publication-title: Quant. Inf. Comput. – volume: 117 start-page: 25402 year: 2020 ident: 16324_CR114 publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.2006337117 – volume: 305 start-page: 545 year: 1988 ident: 16324_CR55 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(88)90116-2 – volume: 12 start-page: 002 year: 2000 ident: 16324_CR69 publication-title: JHEP doi: 10.1088/1126-6708/2000/12/002 – volume: 99 start-page: 042314 year: 2019 ident: 16324_CR145 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.042314 – volume: 01 start-page: 025 year: 2008 ident: 16324_CR86 publication-title: JHEP doi: 10.1088/1126-6708/2008/01/025 – volume: 02 start-page: 004 year: 2021 ident: 16324_CR104 publication-title: JHEP doi: 10.1007/JHEP02(2021)004 – volume: 857 start-page: 335 year: 2012 ident: 16324_CR119 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2011.12.014 – ident: 16324_CR16 doi: 10.1016/S0370-2693(97)01368-3 – volume: 96 start-page: 126003 year: 2017 ident: 16324_CR72 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.126003 – ident: 16324_CR156 doi: 10.1007/978-3-642-18073-6_8 – volume: 6 start-page: 041067 year: 2016 ident: 16324_CR162 publication-title: Phys. Rev. X – volume: 100 start-page: 021601 year: 2008 ident: 16324_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.021601 – volume: 48 start-page: 1063 year: 1982 ident: 16324_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1063 – volume: 101 start-page: 205148 year: 2020 ident: 16324_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.205148 – ident: 16324_CR124 doi: 10.22323/1.334.0024 – volume: 01 start-page: 175 year: 2016 ident: 16324_CR108 publication-title: JHEP doi: 10.1007/JHEP01(2016)175 – ident: 16324_CR144 doi: 10.1017/fms.2017.2 – ident: 16324_CR20 doi: 10.1088/1126-6708/2003/12/031 – ident: 16324_CR101 doi: 10.1007/JHEP10(2019)029 – volume: 12 start-page: 167 year: 2019 ident: 16324_CR102 publication-title: JHEP doi: 10.1007/JHEP12(2019)167 – ident: 16324_CR49 – volume: 99 start-page: 052335 year: 2019 ident: 16324_CR60 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.052335 – ident: 16324_CR15 doi: 10.1016/0550-3213(81)90361-8 – volume: 336 start-page: 1130 year: 2012 ident: 16324_CR59 publication-title: Science doi: 10.1126/science.1217069 – volume: 51 start-page: 183 year: 1976 ident: 16324_CR147 publication-title: Commun. Math. Phys. doi: 10.1007/BF01609348 – volume: 344 start-page: 882 year: 2014 ident: 16324_CR31 publication-title: Science doi: 10.1126/science.1250122 – ident: 16324_CR12 – volume: 05 start-page: 132 year: 2015 ident: 16324_CR116 publication-title: JHEP doi: 10.1007/JHEP05(2015)132 – volume: 99 start-page: 040301 year: 2019 ident: 16324_CR47 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.040301 – ident: 16324_CR142 – ident: 16324_CR43 doi: 10.1093/ptep/ptx108 – volume: 126 start-page: 030602 year: 2021 ident: 16324_CR117 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.030602 – volume: 99 start-page: 161602 year: 2007 ident: 16324_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.161602 – volume: 01 start-page: 038 year: 2003 ident: 16324_CR67 publication-title: JHEP doi: 10.1088/1126-6708/2003/01/038 – ident: 16324_CR139 – volume: 120 start-page: 174 year: 1983 ident: 16324_CR38 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)90647-0 – ident: 16324_CR14 doi: 10.1103/PhysRev.122.345 – volume: 119 start-page: 040501 year: 2017 ident: 16324_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.040501 – volume: 02 start-page: 012 year: 2017 ident: 16324_CR99 publication-title: JHEP doi: 10.1007/JHEP02(2017)012 – volume: 02 start-page: 034 year: 2021 ident: 16324_CR98 publication-title: JHEP doi: 10.1007/JHEP02(2021)034 – ident: 16324_CR131 doi: 10.1145/2983539 – ident: 16324_CR18 doi: 10.1088/1126-6708/2003/05/037 – volume: 11 start-page: 395 year: 1975 ident: 16324_CR35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.11.395 – ident: 16324_CR163 doi: 10.1038/s41534-020-0278-0 – volume: 206 start-page: 440 year: 1982 ident: 16324_CR83 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(82)90278-4 – ident: 16324_CR90 – volume: 113 start-page: 47 year: 1982 ident: 16324_CR81 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(82)90106-X – ident: 16324_CR80 doi: 10.1103/PhysRevD.85.106003 – ident: 16324_CR26 doi: 10.1088/1126-6708/2004/11/006 – volume: 78 start-page: 041502 year: 2008 ident: 16324_CR10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.041502 – ident: 16324_CR23 doi: 10.1088/1126-6708/2004/03/067 – volume: 112 start-page: 463 year: 1982 ident: 16324_CR82 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(82)90849-8 – ident: 16324_CR22 doi: 10.1088/1126-6708/2004/01/015 – ident: 16324_CR24 doi: 10.1088/1126-6708/2005/01/016 – ident: 16324_CR151 – volume: 06 start-page: 124 year: 2018 ident: 16324_CR62 publication-title: JHEP doi: 10.1007/JHEP06(2018)124 – volume: 78 start-page: 052325 year: 2008 ident: 16324_CR148 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.052325 – ident: 16324_CR4 – volume: 126 start-page: 597 year: 2011 ident: 16324_CR41 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.126.597 – volume: 10 start-page: 2445 year: 1974 ident: 16324_CR1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.10.2445 – volume: 292 start-page: 555 year: 1987 ident: 16324_CR28 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(87)90660-2 – volume: 08 start-page: 106 year: 2016 ident: 16324_CR113 publication-title: JHEP doi: 10.1007/JHEP08(2016)106 – ident: 16324_CR130 – volume: 567 start-page: 61 year: 2019 ident: 16324_CR45 publication-title: Nature doi: 10.1038/s41586-019-0952-6 – volume: 02 start-page: 020 year: 2000 ident: 16324_CR68 publication-title: JHEP doi: 10.1088/1126-6708/2000/02/020 – volume: 58 start-page: 046004 year: 1998 ident: 16324_CR66 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.046004 – volume: 09 start-page: 029 year: 2009 ident: 16324_CR75 publication-title: JHEP doi: 10.1088/1126-6708/2009/09/029 – ident: 16324_CR5 doi: 10.1007/978-3-030-46044-0 – ident: 16324_CR19 doi: 10.1088/1126-6708/2003/08/024 – volume: 10 start-page: 5725 year: 2019 ident: 16324_CR91 publication-title: Chem. Sci. doi: 10.1039/C9SC01313J – ident: 16324_CR150 – volume: 78 start-page: 106001 year: 2008 ident: 16324_CR64 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.106001 – volume: 01 start-page: 013 year: 2017 ident: 16324_CR105 publication-title: JHEP doi: 10.1007/JHEP01(2017)013 – volume: 04 start-page: 084 year: 2018 ident: 16324_CR58 publication-title: JHEP doi: 10.1007/JHEP04(2018)084 – volume: 02 start-page: 076 year: 2018 ident: 16324_CR71 publication-title: JHEP doi: 10.1007/JHEP02(2018)076 – ident: 16324_CR33 doi: 10.1007/JHEP03(2018)055 – volume: 10 start-page: 079 year: 2009 ident: 16324_CR106 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/079 – ident: 16324_CR133 – volume: 106 start-page: 170501 year: 2011 ident: 16324_CR155 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.170501 – volume: 95 start-page: 032305 year: 2017 ident: 16324_CR134 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.032305 – ident: 16324_CR44 – volume: 94 start-page: 040302 year: 2016 ident: 16324_CR112 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.94.040302 – volume: 98 start-page: 012332 year: 2018 ident: 16324_CR135 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.012332 – volume: 124 start-page: 240505 year: 2020 ident: 16324_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.240505 – volume: 21 start-page: 2308 year: 1980 ident: 16324_CR2 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.21.2308 – volume: 298 start-page: 210 year: 2002 ident: 16324_CR92 publication-title: Annals Phys. doi: 10.1006/aphy.2002.6254 – ident: 16324_CR157 doi: 10.1109/FOCS.2015.54 – volume: 04 start-page: 013 year: 2002 ident: 16324_CR53 publication-title: JHEP doi: 10.1088/1126-6708/2002/04/013 – ident: 16324_CR125 – volume: 2 start-page: 043164 year: 2020 ident: 16324_CR52 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043164 – volume: 12 start-page: 104 year: 2007 ident: 16324_CR30 publication-title: JHEP doi: 10.1088/1126-6708/2007/12/104 – ident: 16324_CR61 – volume: 11 start-page: 006 year: 2001 ident: 16324_CR85 publication-title: JHEP doi: 10.1088/1126-6708/2001/11/006 – volume: 31 start-page: 1643006 year: 2016 ident: 16324_CR34 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X16430065 – volume: 10 start-page: 103 year: 2020 ident: 16324_CR123 publication-title: JHEP doi: 10.1007/JHEP10(2020)103 – ident: 16324_CR3 doi: 10.4310/ATMP.1998.v2.n2.a1 – volume: 12 start-page: 011 year: 2020 ident: 16324_CR126 publication-title: JHEP doi: 10.1007/JHEP12(2020)011 – ident: 16324_CR76 doi: 10.22323/1.105.0253 – ident: 16324_CR153 – ident: 16324_CR6 – volume: 103 start-page: 106007 year: 2021 ident: 16324_CR110 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.106007 – volume: 03 start-page: 069 year: 2015 ident: 16324_CR111 publication-title: JHEP doi: 10.1007/JHEP03(2015)069 |
| SSID | ssj0015190 |
| Score | 2.5627103 |
| Snippet | A
bstract
We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to... We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory... Abstract We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to... |
| SourceID | doaj unpaywall proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adiabatic flow Algorithms Black Holes in String Theory Classical and Quantum Gravitation Eigenvectors Elementary Particles Gravitation theory High energy physics Hilbert space M theory M(atrix) Theories Physics Physics and Astronomy Quantum computers Quantum computing Quantum Field Theories Quantum Field Theory Quantum Physics Quantum theory Real time Regular Article - Theoretical Physics Regularization Relativity Theory Signal processing Simulation String Theory Supersymmetry Time measurement |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIOpBfGK0Sg4e2kPsZpPuJuBFpaUUFA8t9Bb2FR-0abUN0n_v7CapFREvHrPZhGFmH99kv3yD0KWiWHESUk9ISb1QtJnHVRp5HAZQqg0DUFmC7APtDcP-qD1aK_VlOGGFPHDhuBYPqK2uxEgqw1QDnoesgQRCUcLTkGuz-uIorpKp8vwAcAmuhHwwa_V7nUfMGpDo-03ffOdY24OsVP83fLk6Et1BW3k248sPPh6v7TrdPbRbwkX3pjBzH23o7ABtWtqmnB-i64Flvbrzl4ktw5U9ufN8ZhCdeXXr3rP_KS7daeZy9y0HL-YTV5aFHI7QsNsZ3PW8sh6CJ0OfLQyHgcSaRNzXBGtKBOGYxhQuFVNBGxoD308FILwYa6JEhFPGTAFOGkqRBjI4RrVsmukT5KpIx0z6mgUSIBQnkYCZHGPJYOHESkkHXVUeSmQpFm5qVoyTSua4cGliXArpA3ZQY_XArNDJ-L3rrXH5qpsRuLYNEPakDHvyV9gdVK8ClpSzbp5AehRAQghZt4OaVRC_bv9qT3MV5R-2vz7r2Vrf0_-w_Qxtm_cVpN86qi3ec30O0GYhLuwo_gR2QvFd priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6qIupBfGJ9kYOH9hDdbNLdBLyoKKWgeLDQW9hXfFDTahvEf-_sNqkt0oO3ZF8sM_uYj_1mBuBMM6IFjZgvlWJ-JFvcFzqLfYELKDOWAagdQfaBtbtRp9fq1SCofGEc2716knQndeXs1mnfPhLeQLAeNBEVLMEKGh_UZmu4sQ4O5cMBlpEqgs_fTnOXj4vRP2dYTt9CN2CtyIfi-0v0-zPXzd0WbJZ2onc1Uew21Ey-A6uOr6lGu3D55Oiu3uj13eXfyp-9UTG0ppwd-uLedw6K394g94T3UaD4indPlRkc9qB7d_t00_bLRAi-igI-tuQFmhgai8BQYhiVVBCWMPzVXIctLAyDIJNo2iXEUC1jknFuM2-ySMksVOE-LOeD3ByAp2OTcBUYHiq0nQSNJW7hhCiOJybRWtXhvJJQqsoo4TZZRT-t4htPRJpakSJuIHVoTDsMJwEyFje9tiKfNrORrV3B4PM5LTdKKkLmsmlxmqkoM4jfECXSUGpGRRYJU4fjSmFpud1GKeKiEJEgwu06NCsl_lYvnE9zquU_c397McOZtof_GPcI1u3nhNR7DMvjz8KcoOkylqdusf4AtEfkfg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVohyKM-KpQXlwKF78G7iZO1E4tKiVqtKVD10JThFfqUFttnQJELl1zN24rQF9YC4JfbEsT1je0bzeQbgvWahFjRhRCrFSCLnnAhdpESgABXGIgC1A8iesMUyOf4892jC2qPdvUuyu9NgozSVzazShffqz44Xh6ch30PDPZqghTDFuoewweaojo9gY3lyuv_FeTlpRnD3zVyCFcoI4y5DHT5zgsci86F-sMVvF6a61eKdU8oF87-jgQ5O0yfwuC0rcf1TrFa3zqWjpyD9iDo4yvdp28ip-vVHsMf_GvIz2Oq11mC_E7Pn8MCUL-CRQ4-q-iV8OHPg26D-eumygZXnQd1WVrG0v5t9Iu665HWwLgMR_GiRme1loPp8Eq9geXR49nFB-rQMRCURbyyUgmaGpiIyNDSMSipCljF81VzHcyyMo6iQqGhmoaFapmHBuc0DyhIli1jF2zAq16V5DYFOTcZVZHisUJMTNJW4oWSh4rh_h1qrMUw9G3LVxyy3qTNWuY-23E1LbqcFrZhwDHvDB1UXruN-0gPL14HMxtl2Beur87xftrmImcvtxWmhksKgNYk2K42lZlQUiTBj2PVSkfeLv87RSovRLkXjfwwTz9ib6nv7MxlE6a--d-I50L75B9od2LSPHcR4F0bNVWveoiLVyHf9UvkNLIsRZA priority: 102 providerName: Unpaywall |
| Title | Toward simulating superstring/M-theory on a quantum computer |
| URI | https://link.springer.com/article/10.1007/JHEP07(2021)140 https://www.proquest.com/docview/2553619338 https://link.springer.com/content/pdf/10.1007/JHEP07(2021)140.pdf https://doaj.org/article/a369731672fc4fe49502623bd62af4ae |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: AMVHM dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: 8FG dateStart: 20121201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C6C dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_ahNHtYWxry7J1wQ99aB7cyLIj2bAx2pA0FBbCaKB7Mvpyu5E6bhMz-t_vpNhuxuheBJLPtjh9_U463Q_gWDOiBY2YL5VifiQH3Bc6i32BHSgz1gNQOwfZKZvMo8vrwfUOTOu7MNatsp4T3UStl8rukfcR-oYI9tGi-lrc-5Y1yp6u1hQaoqJW0F9ciLFdaFMbGasF7fPRdPa9OVdAvELqAD-E9y8noxnhJxQXul5g9z-21iYXwv8v3Nkclb6CvTIvxONvsVhsrUbjN_C6gpHe2abd38KOyd_BC-fOqVb78PnKecN6q593jp4rv_FWZWGRnv10_5vv7i8-esvcE959idot7zxVETwcwHw8uhpO_IonwVdRwNfWt4EmhsYiMJQYRiUVhCUMs5rrcICFYRBkEpFfQgzVMiYZ55aYk0VKZqEKD6GVL3PzHjwdm4SrwPBQIbQSNJY4whOiOE6oRGvVgdNaQ6mqgohbLotFWoc_3qg0tSpFs4J04KR5odjEz3he9NyqvBGzga9dwfLhJq3GUSpC5si2OM1UlBk079CIpKHUjIosEqYDR3WDpdVoXKVPfacDvboRnx4_W59e08r_1P3XrSm2ZD_8_7cf4aWV3Lj5HkFr_VCaTwhm1rILu_H4olv1U8wNaWRTNuy67QFM5xTT9nw6O_vxB28S9cU |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWjwgPgUhQF5AGl9CHWc1E4kJsSgU_dVTaiT9pb5K2NTl2ZLo6n_HH8bZzfJitB422McO7Huzvbv7PP9AD5qRrSgEfOlUsyPZJ_7QmexL9CAMmMjALULkB2x4XG0d9I_WYHfzV0YG1bZzIluotZTZffIewh9QwT76FF9La58yxplT1cbCg1RUyvoLZdirL7YsW_mN-jClVu7P1DfnyjdGYy_D_2aZcBXUcBnNjKAJobGIjCUGEYlFYQlDB8112EfC8MgyCTipoQYqmVMMs4trSWLlMxCFeJ3H8BaFEYJOn9r24PR0c_2HAPxEWkSChHe2xsOjgjfpLiwdgO737K0FjrKgL9wbns0-xjWq7wQ8xsxmSytfjtP4UkNW71vCzt7Bismfw4PXfioKl_Al7GLvvXK80tHB5afeWVVWGRpP9079N19ybk3zT3hXVWozerSUzWhxEs4vheJvYLVfJqb1-Dp2CRcBYaHCqGcoLHEGSUhiuMETrRWHfjcSChVddJyy50xSZt0ywuRplak6MaQDmy2DYpFvo67q25bkbfVbKJtVzC9PkvrcZuKkDlyL04zFWUG3Ul0WmkoNaMii4TpwEajsLQe_WV6a6sd6DZKvH19Z3-6rZb_6fvFL1Ms1X3z_99-gPXh-PAgPdgd7b-FR7bVIsR4A1Zn15V5h0BqJt_X1urB6X0PkD_zDCs9 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Rqr4OVZ_qtrT1oZXYQ1jHydqJBKrawnaBFnEAiVvq2A5QLdlANkL71_h1jJ0HW1X0xjGOnVgzY_sbezwfwCfNqZYs5F6qFPfCdCg8qbPIk2hAmbERgNoFyO7x8WG4czQ8WoKr9i6MDats50Q3UeupsnvkA4S-AYJ99KgGWRMWsb85-lKce5ZByp60tnQatYnsmvklum_lxvYm6vozY6Otg-9jr2EY8FToi5mNCmCxYZH0DaOGs5RJymOOj1roYIiFge9nKWKmmBqm04hmQlhKSx6qNAtUgN-9B_eFzeJub6mPfnQnGIiMaJtKiIrBznhrn4pVhktq37c7LQuroCML-AvhdoeyT-BRlRdyfiknk4V1b_QMnjaAlXytLew5LJn8BTxwgaOqfAnrBy7ulpSnZ44ILD8mZVVYTGk_PfjluZuSczLNiSTnFeqxOiOqoZJ4BYd3Iq_XsJxPc_MGiI5MLJRvRKAQxEkWpTiXxFQJnLqp1qoHa62EEtWkK7esGZOkTbRcizSxIkUHhvZgtWtQ1Jk6bq_6zYq8q2ZTbLuC6cVx0ozYRAbc0XoJlqkwM-hIorvKglRzJrNQmh6stApLmnFfJjdW2oN-q8Sb17f2p99p-Z--_zkxxULdt___7Ud4iMMi-bm9t_sOHttGdWzxCizPLirzHhHULP3gTJXA77seG9etmyjX |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVohyKM-KpQXlwKF78G7iZO1E4tKiVqtKVD10JThFfqUFttnQJELl1zN24rQF9YC4JfbEsT1je0bzeQbgvWahFjRhRCrFSCLnnAhdpESgABXGIgC1A8iesMUyOf4892jC2qPdvUuyu9NgozSVzazShffqz44Xh6ch30PDPZqghTDFuoewweaojo9gY3lyuv_FeTlpRnD3zVyCFcoI4y5DHT5zgsci86F-sMVvF6a61eKdU8oF87-jgQ5O0yfwuC0rcf1TrFa3zqWjpyD9iDo4yvdp28ip-vVHsMf_GvIz2Oq11mC_E7Pn8MCUL-CRQ4-q-iV8OHPg26D-eumygZXnQd1WVrG0v5t9Iu665HWwLgMR_GiRme1loPp8Eq9geXR49nFB-rQMRCURbyyUgmaGpiIyNDSMSipCljF81VzHcyyMo6iQqGhmoaFapmHBuc0DyhIli1jF2zAq16V5DYFOTcZVZHisUJMTNJW4oWSh4rh_h1qrMUw9G3LVxyy3qTNWuY-23E1LbqcFrZhwDHvDB1UXruN-0gPL14HMxtl2Beur87xftrmImcvtxWmhksKgNYk2K42lZlQUiTBj2PVSkfeLv87RSovRLkXjfwwTz9ib6nv7MxlE6a--d-I50L75B9od2LSPHcR4F0bNVWveoiLVyHf9UvkNLIsRZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+simulating+superstring%2FM-theory+on+a+quantum+computer&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Gharibyan+Hrant&rft.au=Hanada+Masanori&rft.au=Honda+Masazumi&rft.au=Liu+Junyu&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2021&rft.issue=7&rft_id=info:doi/10.1007%2FJHEP07%282021%29140&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |