Deep Learning Approach for Epileptic Focus Localization

The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures. This surgery usually aims t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 14; no. 2; pp. 209 - 220
Main Authors Daoud, Hisham, Bayoumi, Magdy
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2019.2957087

Cover

Abstract The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures. This surgery usually aims to remove the epileptogenic region which requires precise characterization of that area using the EEG recordings. In this paper, we propose two methods based on deep learning targeting accurate automatic epileptic focus localization using the non-stationary EEG recordings. Our first proposed method is based on semi-supervised learning, in which a deep convolutional autoencoder is trained and then the pre-trained encoder is used with multi-layer perceptron as a classifier. The goal is to determine the location of the EEG signal that is responsible for the epileptic activity. In the second proposed method, unsupervised learning scheme is implemented by merging deep convolutional variational autoencoder and K-means algorithm for clustering the iEEG signals into two distinct clusters based on the seizure source. The proposed methods automate and integrate the features extraction and classification processes instead of manually extracting the features as done in the previous studies. Dimensionality reduction is achieved using the autoencoder, while the important spatio-temporal features are extracted from the EEG recordings using the convolutional layers. Moreover, we implemented the inference network of the semi-supervised model on FPGA. The results of our experiments demonstrate high classification accuracy and clustering performance in localizing the epileptic focus compared with the state of the art.
AbstractList The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures. This surgery usually aims to remove the epileptogenic region which requires precise characterization of that area using the EEG recordings. In this paper, we propose two methods based on deep learning targeting accurate automatic epileptic focus localization using the non-stationary EEG recordings. Our first proposed method is based on semi-supervised learning, in which a deep convolutional autoencoder is trained and then the pre-trained encoder is used with multi-layer perceptron as a classifier. The goal is to determine the location of the EEG signal that is responsible for the epileptic activity. In the second proposed method, unsupervised learning scheme is implemented by merging deep convolutional variational autoencoder and K-means algorithm for clustering the iEEG signals into two distinct clusters based on the seizure source. The proposed methods automate and integrate the features extraction and classification processes instead of manually extracting the features as done in the previous studies. Dimensionality reduction is achieved using the autoencoder, while the important spatio-temporal features are extracted from the EEG recordings using the convolutional layers. Moreover, we implemented the inference network of the semi-supervised model on FPGA. The results of our experiments demonstrate high classification accuracy and clustering performance in localizing the epileptic focus compared with the state of the art.
The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures. This surgery usually aims to remove the epileptogenic region which requires precise characterization of that area using the EEG recordings. In this paper, we propose two methods based on deep learning targeting accurate automatic epileptic focus localization using the non-stationary EEG recordings. Our first proposed method is based on semi-supervised learning, in which a deep convolutional autoencoder is trained and then the pre-trained encoder is used with multi-layer perceptron as a classifier. The goal is to determine the location of the EEG signal that is responsible for the epileptic activity. In the second proposed method, unsupervised learning scheme is implemented by merging deep convolutional variational autoencoder and K-means algorithm for clustering the iEEG signals into two distinct clusters based on the seizure source. The proposed methods automate and integrate the features extraction and classification processes instead of manually extracting the features as done in the previous studies. Dimensionality reduction is achieved using the autoencoder, while the important spatio-temporal features are extracted from the EEG recordings using the convolutional layers. Moreover, we implemented the inference network of the semi-supervised model on FPGA. The results of our experiments demonstrate high classification accuracy and clustering performance in localizing the epileptic focus compared with the state of the art.The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures. This surgery usually aims to remove the epileptogenic region which requires precise characterization of that area using the EEG recordings. In this paper, we propose two methods based on deep learning targeting accurate automatic epileptic focus localization using the non-stationary EEG recordings. Our first proposed method is based on semi-supervised learning, in which a deep convolutional autoencoder is trained and then the pre-trained encoder is used with multi-layer perceptron as a classifier. The goal is to determine the location of the EEG signal that is responsible for the epileptic activity. In the second proposed method, unsupervised learning scheme is implemented by merging deep convolutional variational autoencoder and K-means algorithm for clustering the iEEG signals into two distinct clusters based on the seizure source. The proposed methods automate and integrate the features extraction and classification processes instead of manually extracting the features as done in the previous studies. Dimensionality reduction is achieved using the autoencoder, while the important spatio-temporal features are extracted from the EEG recordings using the convolutional layers. Moreover, we implemented the inference network of the semi-supervised model on FPGA. The results of our experiments demonstrate high classification accuracy and clustering performance in localizing the epileptic focus compared with the state of the art.
Author Bayoumi, Magdy
Daoud, Hisham
Author_xml – sequence: 1
  givenname: Hisham
  orcidid: 0000-0002-2067-7575
  surname: Daoud
  fullname: Daoud, Hisham
  email: hgd8133@louisiana.edu
  organization: Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, USA
– sequence: 2
  givenname: Magdy
  surname: Bayoumi
  fullname: Bayoumi, Magdy
  email: mab0778@louisiana.edu
  organization: Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31796417$$D View this record in MEDLINE/PubMed
BookMark eNp9kLFu2zAQhonCQROnfYEWCAR0ySKHpEiJNzqOnQYwkKHpTFDUsaUhiwopDe3TV46dDBk63Q3f9-Pun5NZFzok5AujC8Yo3DzdrpY_FpwyWHCQFVXVB3LBQNAcAOjssBc8F1LIczJPaUepLDnwj-S8YBWUglUXpLpD7LMtmtj57le27PsYjP2duRCzde9b7Advs02wY8q2wZrW_zWDD90ncuZMm_DzaV6Sn5v10-p7vn28f1gtt7md4odciMZSZyWvDXNUWWxANEhLqKQB6sApJwSrmxqpYeAaw-taFUoaU0k0riwuyfUxd7rrecQ06L1PFtvWdBjGpHnBWVlyDmpCv71Dd2GM3XTdRClRMFlIOVFXJ2qs99joPvq9iX_0ayUToI6AjSGliE5bP7z8PETjW82oPrSvX9rXh_b1qf1J5e_U1_T_Sl-PkkfEN0EBU4JC8Q_8aY7c
CODEN ITBCCW
CitedBy_id crossref_primary_10_1038_s41598_024_60622_5
crossref_primary_10_1007_s11571_022_09816_z
crossref_primary_10_1016_j_bspc_2024_107484
crossref_primary_10_1051_e3sconf_202235101068
crossref_primary_10_1088_1741_2552_aca04f
crossref_primary_10_1109_ACCESS_2024_3429195
crossref_primary_10_1007_s11571_022_09857_4
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1016_j_bspc_2023_105464
crossref_primary_10_1016_j_engappai_2021_104426
crossref_primary_10_3390_app12104879
crossref_primary_10_3390_make4040053
crossref_primary_10_4103_jmss_jmss_11_24
crossref_primary_10_4097_kja_19475
crossref_primary_10_1007_s11042_022_12512_z
crossref_primary_10_1016_j_compbiomed_2022_106053
crossref_primary_10_1109_TCAD_2022_3170248
crossref_primary_10_1142_S0219519423500653
crossref_primary_10_3390_app10030827
crossref_primary_10_1088_2057_1976_ad3cde
crossref_primary_10_1016_j_asoc_2021_107639
crossref_primary_10_3389_fncom_2023_1294770
crossref_primary_10_1007_s10489_023_04582_9
crossref_primary_10_1007_s11042_023_14430_0
crossref_primary_10_3389_fnhum_2022_913777
crossref_primary_10_1109_TBCAS_2023_3236976
crossref_primary_10_1140_epjs_s11734_021_00380_x
crossref_primary_10_3390_diagnostics13132261
crossref_primary_10_1093_braincomms_fcab307
crossref_primary_10_1109_TMC_2023_3320862
crossref_primary_10_3233_IDA_205534
crossref_primary_10_3390_s24248116
crossref_primary_10_1016_j_clinph_2024_08_012
crossref_primary_10_1109_JBHI_2021_3096127
crossref_primary_10_1109_JBHI_2022_3221211
crossref_primary_10_1093_braincomms_fcab267
crossref_primary_10_1177_15357597221150055
crossref_primary_10_54097_3v9scg07
Cites_doi 10.1109/CSPA.2018.8368709
10.1038/35016072
10.1111/epi.12550
10.1109/MLSP.2015.7324317
10.1109/ICCIC.2016.7919650
10.1103/PhysRevE.64.061907
10.1103/PhysRevE.86.046206
10.1080/01621459.2017.1285773
10.1109/ASICON.2017.8252525
10.1109/APSIPA.2017.8282255
10.23919/APSIPA.2018.8659747
10.1016/j.eswa.2012.02.040
10.3390/e17085218
10.1109/TBCAS.2019.2929053
10.3390/e17020669
10.1016/0377-0427(87)90125-7
10.1109/ICDSP.2018.8631885
10.1063/1.4824993
10.1016/j.artmed.2011.07.003
10.1007/978-3-642-15567-3_11
10.1109/TNSRE.2016.2604393
10.1109/PICC.2018.8384747
10.1109/BIOCAS.2019.8919222
10.1109/BIOCAS.2018.8584678
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2019.2957087
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 220
ExternalDocumentID 31796417
10_1109_TBCAS_2019_2957087
8918409
Genre orig-research
Journal Article
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c417t-44dc0fc52ba1f08ced94de06975a90f9f8f441bdbe0a19fda2bb8385aa75eaf63
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Sun Sep 28 06:06:38 EDT 2025
Mon Jun 30 08:32:38 EDT 2025
Thu Apr 03 07:04:23 EDT 2025
Wed Oct 01 04:05:59 EDT 2025
Thu Apr 24 23:11:43 EDT 2025
Wed Aug 27 06:29:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-44dc0fc52ba1f08ced94de06975a90f9f8f441bdbe0a19fda2bb8385aa75eaf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2067-7575
PMID 31796417
PQID 2384315355
PQPubID 85510
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TBCAS_2019_2957087
pubmed_primary_31796417
ieee_primary_8918409
proquest_miscellaneous_2321662298
crossref_primary_10_1109_TBCAS_2019_2957087
proquest_journals_2384315355
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref10
goodfellow (ref19) 2016
ref1
ref17
ref16
kingma (ref24) 2014
(ref33) 0
hoffman (ref29) 2013; 14
krizhevsky (ref21) 2012
ref26
ref20
ref22
ioffe (ref27) 0
ref28
ref8
ref7
(ref2) 2006
ref9
ref4
ref3
bengio (ref18) 1995
ref6
ref5
baldi (ref23) 2012
van der maaten (ref25) 2008; 9
References_xml – ident: ref14
  doi: 10.1109/CSPA.2018.8368709
– start-page: 37
  year: 2012
  ident: ref23
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: Proc ICML Workshop Unsupervised Transfer Learn
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref25
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref26
  doi: 10.1038/35016072
– ident: ref1
  doi: 10.1111/epi.12550
– ident: ref5
  doi: 10.1109/MLSP.2015.7324317
– year: 1995
  ident: ref18
  article-title: Convolutional networks for images, speech, and time-series
  publication-title: The Handbook of Brain Theory and Neural Networks
– year: 2006
  ident: ref2
  article-title: Neurological disorders: Public health challenges
– ident: ref34
  doi: 10.1109/ICCIC.2016.7919650
– ident: ref17
  doi: 10.1103/PhysRevE.64.061907
– ident: ref3
  doi: 10.1103/PhysRevE.86.046206
– year: 0
  ident: ref33
  article-title: Kruskal-Wallis H test in SPSS statistics | procedure, output and interpretation of the output using a relevant example
– ident: ref28
  doi: 10.1080/01621459.2017.1285773
– start-page: 448
  year: 0
  ident: ref27
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– ident: ref13
  doi: 10.1109/ASICON.2017.8252525
– ident: ref8
  doi: 10.1109/APSIPA.2017.8282255
– ident: ref10
  doi: 10.23919/APSIPA.2018.8659747
– ident: ref32
  doi: 10.1016/j.eswa.2012.02.040
– ident: ref4
  doi: 10.3390/e17085218
– ident: ref16
  doi: 10.1109/TBCAS.2019.2929053
– ident: ref9
  doi: 10.3390/e17020669
– ident: ref30
  doi: 10.1016/0377-0427(87)90125-7
– volume: 14
  start-page: 1303
  year: 2013
  ident: ref29
  article-title: Stochastic variational inference
  publication-title: J Mach Learn Res
– start-page: 1097
  year: 2012
  ident: ref21
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref11
  doi: 10.1109/ICDSP.2018.8631885
– year: 2016
  ident: ref19
  publication-title: Deep Learning
– year: 2014
  ident: ref24
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– ident: ref31
  doi: 10.1063/1.4824993
– ident: ref6
  doi: 10.1016/j.artmed.2011.07.003
– ident: ref20
  doi: 10.1007/978-3-642-15567-3_11
– ident: ref7
  doi: 10.1109/TNSRE.2016.2604393
– ident: ref12
  doi: 10.1109/PICC.2018.8384747
– ident: ref22
  doi: 10.1109/BIOCAS.2019.8919222
– ident: ref15
  doi: 10.1109/BIOCAS.2018.8584678
SSID ssj0056292
Score 2.427607
Snippet The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 209
SubjectTerms Algorithms
Brain modeling
Classification
Clustering
Coders
Convolution
convolutional autoen-coder
Decision making
Deep Learning
EEG
Electroencephalography
Electroencephalography - methods
Epilepsy
Epilepsy - diagnosis
epileptic focus localization
Feature extraction
Humans
Localization
Machine learning
Multilayers
Seizures
Seizures - diagnosis
Signal Processing, Computer-Assisted
Surgery
Temporal variations
Training
Unsupervised Machine Learning
variational autoencoder
Title Deep Learning Approach for Epileptic Focus Localization
URI https://ieeexplore.ieee.org/document/8918409
https://www.ncbi.nlm.nih.gov/pubmed/31796417
https://www.proquest.com/docview/2384315355
https://www.proquest.com/docview/2321662298
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1940-9990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056292
  issn: 1932-4545
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3roA_rYFlAq9UazJMbx47ilrBAqvQASt2jsjHtotbsqu5f--o4dJ0JVW3GLFMdxZmzPN_HMNwAfBCKbLTSlR2dLtrd1iWR9GRQ656QkiTFR-OqruriVl3fN3RZ8HHNhiCgFn9E0Xqaz_G7pN_FX2YmxyR_Zhm1tVJ-rNey6bMZTAeSIRyKPdzMkyFT25ObT2ew6RnHZqbCNrmL43AMjlKqq_BtgJkMzfwZXwxD7-JLv083aTf2vP9gbH_sNz-FpRpzFrJ8iL2CLFnvw5AEP4T7oz0SrIlOtfitmmWe8YEBbnK943-B9xRdz7vy--BKNX07efAm38_Obs4syV1Qovaz1mnXR-Sr4RjisQ2U8dVZ2VCmrG7RVsMEEVpfrHFVY29ChcM6cmgZRN4RBnb6CncVyQW-gwBB9Ga9sTVpadEajNF5IHYO0gjcTqAcRtz7TjceqFz_a5HZUtk1qaaNa2qyWCRyPz6x6so3_tt6P4h1bZslO4GDQZJvX433LwISRUsPgagLvx9u8kuLxCC5ouYltRK2UEJbH_rqfAWPfjLKsYhG-_fs738GuiH54iug5gJ31zw0dMlhZu6M0S38DfxDkew
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoAe-CqUhQJB4gbZJq6d2MeldLXAbi9spd6isTPmANpd0d0Lv56x40QVAsQtUhzHmbE9b-KZNwBvBCKbLdS5Q2tytrdljmRc7iu01kpJEkOi8OKiml3KT1fqag_eDbkwRBSDz2gcLuNZfrt2u_Cr7ESb6I_cgttKSqm6bK1-32VDHksgB0QSmLxVnyJTmJPl-7PJlxDHZcbCqLoIAXQ3zFCsq_J3iBlNzfQ-LPpBdhEm38a7rR27n7_xN_7vVzyAewlzZpNukjyEPVo9goMbTISHUH8g2mSJbPVrNklM4xlD2ux8wzsH7ywum3Ln19k8mL-UvvkYLqfny7NZnmoq5E6W9Za10brCOyUslr7QjlojWyoqUys0hTdee1aYbS0VWBrforBWn2qFWCtCX50-gf3VekVPIUMfvBlXmZJqadDqGqV2QtYhTMs7PYKyF3HjEuF4qHvxvYmOR2GaqJYmqKVJahnB2-GZTUe38c_Wh0G8Q8sk2REc95ps0oq8bhiaMFZSDK9G8Hq4zWspHJDgita70EaUVSWE4bEfdTNg6JtxlqlYhM_-_M5XcGe2XMyb-ceLz8_hrgheeYzvOYb97Y8dvWDosrUv44z9BZ9P58g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approach+for+Epileptic+Focus+Localization&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Daoud%2C+Hisham&rft.au=Bayoumi%2C+Magdy&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=1932-4545&rft.volume=14&rft.issue=2&rft.spage=209&rft.epage=220&rft_id=info:doi/10.1109%2FTBCAS.2019.2957087&rft.externalDocID=8918409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon