Deep Learning Approach for Epileptic Focus Localization
The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures. This surgery usually aims t...
Saved in:
| Published in | IEEE transactions on biomedical circuits and systems Vol. 14; no. 2; pp. 209 - 220 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-4545 1940-9990 1940-9990 |
| DOI | 10.1109/TBCAS.2019.2957087 |
Cover
| Abstract | The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures. This surgery usually aims to remove the epileptogenic region which requires precise characterization of that area using the EEG recordings. In this paper, we propose two methods based on deep learning targeting accurate automatic epileptic focus localization using the non-stationary EEG recordings. Our first proposed method is based on semi-supervised learning, in which a deep convolutional autoencoder is trained and then the pre-trained encoder is used with multi-layer perceptron as a classifier. The goal is to determine the location of the EEG signal that is responsible for the epileptic activity. In the second proposed method, unsupervised learning scheme is implemented by merging deep convolutional variational autoencoder and K-means algorithm for clustering the iEEG signals into two distinct clusters based on the seizure source. The proposed methods automate and integrate the features extraction and classification processes instead of manually extracting the features as done in the previous studies. Dimensionality reduction is achieved using the autoencoder, while the important spatio-temporal features are extracted from the EEG recordings using the convolutional layers. Moreover, we implemented the inference network of the semi-supervised model on FPGA. The results of our experiments demonstrate high classification accuracy and clustering performance in localizing the epileptic focus compared with the state of the art. |
|---|---|
| AbstractList | The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures. This surgery usually aims to remove the epileptogenic region which requires precise characterization of that area using the EEG recordings. In this paper, we propose two methods based on deep learning targeting accurate automatic epileptic focus localization using the non-stationary EEG recordings. Our first proposed method is based on semi-supervised learning, in which a deep convolutional autoencoder is trained and then the pre-trained encoder is used with multi-layer perceptron as a classifier. The goal is to determine the location of the EEG signal that is responsible for the epileptic activity. In the second proposed method, unsupervised learning scheme is implemented by merging deep convolutional variational autoencoder and K-means algorithm for clustering the iEEG signals into two distinct clusters based on the seizure source. The proposed methods automate and integrate the features extraction and classification processes instead of manually extracting the features as done in the previous studies. Dimensionality reduction is achieved using the autoencoder, while the important spatio-temporal features are extracted from the EEG recordings using the convolutional layers. Moreover, we implemented the inference network of the semi-supervised model on FPGA. The results of our experiments demonstrate high classification accuracy and clustering performance in localizing the epileptic focus compared with the state of the art. The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures. This surgery usually aims to remove the epileptogenic region which requires precise characterization of that area using the EEG recordings. In this paper, we propose two methods based on deep learning targeting accurate automatic epileptic focus localization using the non-stationary EEG recordings. Our first proposed method is based on semi-supervised learning, in which a deep convolutional autoencoder is trained and then the pre-trained encoder is used with multi-layer perceptron as a classifier. The goal is to determine the location of the EEG signal that is responsible for the epileptic activity. In the second proposed method, unsupervised learning scheme is implemented by merging deep convolutional variational autoencoder and K-means algorithm for clustering the iEEG signals into two distinct clusters based on the seizure source. The proposed methods automate and integrate the features extraction and classification processes instead of manually extracting the features as done in the previous studies. Dimensionality reduction is achieved using the autoencoder, while the important spatio-temporal features are extracted from the EEG recordings using the convolutional layers. Moreover, we implemented the inference network of the semi-supervised model on FPGA. The results of our experiments demonstrate high classification accuracy and clustering performance in localizing the epileptic focus compared with the state of the art.The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures. This surgery usually aims to remove the epileptogenic region which requires precise characterization of that area using the EEG recordings. In this paper, we propose two methods based on deep learning targeting accurate automatic epileptic focus localization using the non-stationary EEG recordings. Our first proposed method is based on semi-supervised learning, in which a deep convolutional autoencoder is trained and then the pre-trained encoder is used with multi-layer perceptron as a classifier. The goal is to determine the location of the EEG signal that is responsible for the epileptic activity. In the second proposed method, unsupervised learning scheme is implemented by merging deep convolutional variational autoencoder and K-means algorithm for clustering the iEEG signals into two distinct clusters based on the seizure source. The proposed methods automate and integrate the features extraction and classification processes instead of manually extracting the features as done in the previous studies. Dimensionality reduction is achieved using the autoencoder, while the important spatio-temporal features are extracted from the EEG recordings using the convolutional layers. Moreover, we implemented the inference network of the semi-supervised model on FPGA. The results of our experiments demonstrate high classification accuracy and clustering performance in localizing the epileptic focus compared with the state of the art. |
| Author | Bayoumi, Magdy Daoud, Hisham |
| Author_xml | – sequence: 1 givenname: Hisham orcidid: 0000-0002-2067-7575 surname: Daoud fullname: Daoud, Hisham email: hgd8133@louisiana.edu organization: Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, USA – sequence: 2 givenname: Magdy surname: Bayoumi fullname: Bayoumi, Magdy email: mab0778@louisiana.edu organization: Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31796417$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kLFu2zAQhonCQROnfYEWCAR0ySKHpEiJNzqOnQYwkKHpTFDUsaUhiwopDe3TV46dDBk63Q3f9-Pun5NZFzok5AujC8Yo3DzdrpY_FpwyWHCQFVXVB3LBQNAcAOjssBc8F1LIczJPaUepLDnwj-S8YBWUglUXpLpD7LMtmtj57le27PsYjP2duRCzde9b7Advs02wY8q2wZrW_zWDD90ncuZMm_DzaV6Sn5v10-p7vn28f1gtt7md4odciMZSZyWvDXNUWWxANEhLqKQB6sApJwSrmxqpYeAaw-taFUoaU0k0riwuyfUxd7rrecQ06L1PFtvWdBjGpHnBWVlyDmpCv71Dd2GM3XTdRClRMFlIOVFXJ2qs99joPvq9iX_0ayUToI6AjSGliE5bP7z8PETjW82oPrSvX9rXh_b1qf1J5e_U1_T_Sl-PkkfEN0EBU4JC8Q_8aY7c |
| CODEN | ITBCCW |
| CitedBy_id | crossref_primary_10_1038_s41598_024_60622_5 crossref_primary_10_1007_s11571_022_09816_z crossref_primary_10_1016_j_bspc_2024_107484 crossref_primary_10_1051_e3sconf_202235101068 crossref_primary_10_1088_1741_2552_aca04f crossref_primary_10_1109_ACCESS_2024_3429195 crossref_primary_10_1007_s11571_022_09857_4 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1016_j_bspc_2023_105464 crossref_primary_10_1016_j_engappai_2021_104426 crossref_primary_10_3390_app12104879 crossref_primary_10_3390_make4040053 crossref_primary_10_4103_jmss_jmss_11_24 crossref_primary_10_4097_kja_19475 crossref_primary_10_1007_s11042_022_12512_z crossref_primary_10_1016_j_compbiomed_2022_106053 crossref_primary_10_1109_TCAD_2022_3170248 crossref_primary_10_1142_S0219519423500653 crossref_primary_10_3390_app10030827 crossref_primary_10_1088_2057_1976_ad3cde crossref_primary_10_1016_j_asoc_2021_107639 crossref_primary_10_3389_fncom_2023_1294770 crossref_primary_10_1007_s10489_023_04582_9 crossref_primary_10_1007_s11042_023_14430_0 crossref_primary_10_3389_fnhum_2022_913777 crossref_primary_10_1109_TBCAS_2023_3236976 crossref_primary_10_1140_epjs_s11734_021_00380_x crossref_primary_10_3390_diagnostics13132261 crossref_primary_10_1093_braincomms_fcab307 crossref_primary_10_1109_TMC_2023_3320862 crossref_primary_10_3233_IDA_205534 crossref_primary_10_3390_s24248116 crossref_primary_10_1016_j_clinph_2024_08_012 crossref_primary_10_1109_JBHI_2021_3096127 crossref_primary_10_1109_JBHI_2022_3221211 crossref_primary_10_1093_braincomms_fcab267 crossref_primary_10_1177_15357597221150055 crossref_primary_10_54097_3v9scg07 |
| Cites_doi | 10.1109/CSPA.2018.8368709 10.1038/35016072 10.1111/epi.12550 10.1109/MLSP.2015.7324317 10.1109/ICCIC.2016.7919650 10.1103/PhysRevE.64.061907 10.1103/PhysRevE.86.046206 10.1080/01621459.2017.1285773 10.1109/ASICON.2017.8252525 10.1109/APSIPA.2017.8282255 10.23919/APSIPA.2018.8659747 10.1016/j.eswa.2012.02.040 10.3390/e17085218 10.1109/TBCAS.2019.2929053 10.3390/e17020669 10.1016/0377-0427(87)90125-7 10.1109/ICDSP.2018.8631885 10.1063/1.4824993 10.1016/j.artmed.2011.07.003 10.1007/978-3-642-15567-3_11 10.1109/TNSRE.2016.2604393 10.1109/PICC.2018.8384747 10.1109/BIOCAS.2019.8919222 10.1109/BIOCAS.2018.8584678 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
| DOI | 10.1109/TBCAS.2019.2957087 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Biotechnology Research Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1940-9990 |
| EndPage | 220 |
| ExternalDocumentID | 31796417 10_1109_TBCAS_2019_2957087 8918409 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
| ID | FETCH-LOGICAL-c417t-44dc0fc52ba1f08ced94de06975a90f9f8f441bdbe0a19fda2bb8385aa75eaf63 |
| IEDL.DBID | RIE |
| ISSN | 1932-4545 1940-9990 |
| IngestDate | Sun Sep 28 06:06:38 EDT 2025 Mon Jun 30 08:32:38 EDT 2025 Thu Apr 03 07:04:23 EDT 2025 Wed Oct 01 04:05:59 EDT 2025 Thu Apr 24 23:11:43 EDT 2025 Wed Aug 27 06:29:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-44dc0fc52ba1f08ced94de06975a90f9f8f441bdbe0a19fda2bb8385aa75eaf63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2067-7575 |
| PMID | 31796417 |
| PQID | 2384315355 |
| PQPubID | 85510 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TBCAS_2019_2957087 pubmed_primary_31796417 ieee_primary_8918409 proquest_miscellaneous_2321662298 crossref_primary_10_1109_TBCAS_2019_2957087 proquest_journals_2384315355 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical circuits and systems |
| PublicationTitleAbbrev | TBCAS |
| PublicationTitleAlternate | IEEE Trans Biomed Circuits Syst |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref11 ref32 ref10 goodfellow (ref19) 2016 ref1 ref17 ref16 kingma (ref24) 2014 (ref33) 0 hoffman (ref29) 2013; 14 krizhevsky (ref21) 2012 ref26 ref20 ref22 ioffe (ref27) 0 ref28 ref8 ref7 (ref2) 2006 ref9 ref4 ref3 bengio (ref18) 1995 ref6 ref5 baldi (ref23) 2012 van der maaten (ref25) 2008; 9 |
| References_xml | – ident: ref14 doi: 10.1109/CSPA.2018.8368709 – start-page: 37 year: 2012 ident: ref23 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: Proc ICML Workshop Unsupervised Transfer Learn – volume: 9 start-page: 2579 year: 2008 ident: ref25 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: ref26 doi: 10.1038/35016072 – ident: ref1 doi: 10.1111/epi.12550 – ident: ref5 doi: 10.1109/MLSP.2015.7324317 – year: 1995 ident: ref18 article-title: Convolutional networks for images, speech, and time-series publication-title: The Handbook of Brain Theory and Neural Networks – year: 2006 ident: ref2 article-title: Neurological disorders: Public health challenges – ident: ref34 doi: 10.1109/ICCIC.2016.7919650 – ident: ref17 doi: 10.1103/PhysRevE.64.061907 – ident: ref3 doi: 10.1103/PhysRevE.86.046206 – year: 0 ident: ref33 article-title: Kruskal-Wallis H test in SPSS statistics | procedure, output and interpretation of the output using a relevant example – ident: ref28 doi: 10.1080/01621459.2017.1285773 – start-page: 448 year: 0 ident: ref27 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proceedings of the 32nd Intl Conf on Machine Learning – ident: ref13 doi: 10.1109/ASICON.2017.8252525 – ident: ref8 doi: 10.1109/APSIPA.2017.8282255 – ident: ref10 doi: 10.23919/APSIPA.2018.8659747 – ident: ref32 doi: 10.1016/j.eswa.2012.02.040 – ident: ref4 doi: 10.3390/e17085218 – ident: ref16 doi: 10.1109/TBCAS.2019.2929053 – ident: ref9 doi: 10.3390/e17020669 – ident: ref30 doi: 10.1016/0377-0427(87)90125-7 – volume: 14 start-page: 1303 year: 2013 ident: ref29 article-title: Stochastic variational inference publication-title: J Mach Learn Res – start-page: 1097 year: 2012 ident: ref21 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Advances Neural Inf Process Syst – ident: ref11 doi: 10.1109/ICDSP.2018.8631885 – year: 2016 ident: ref19 publication-title: Deep Learning – year: 2014 ident: ref24 article-title: Auto-encoding variational Bayes publication-title: arXiv 1312 6114 – ident: ref31 doi: 10.1063/1.4824993 – ident: ref6 doi: 10.1016/j.artmed.2011.07.003 – ident: ref20 doi: 10.1007/978-3-642-15567-3_11 – ident: ref7 doi: 10.1109/TNSRE.2016.2604393 – ident: ref12 doi: 10.1109/PICC.2018.8384747 – ident: ref22 doi: 10.1109/BIOCAS.2019.8919222 – ident: ref15 doi: 10.1109/BIOCAS.2018.8584678 |
| SSID | ssj0056292 |
| Score | 2.427607 |
| Snippet | The task of epileptic focus localization receives great attention due to its role in an effective epileptic surgery. The clinicians highly depend on the... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 209 |
| SubjectTerms | Algorithms Brain modeling Classification Clustering Coders Convolution convolutional autoen-coder Decision making Deep Learning EEG Electroencephalography Electroencephalography - methods Epilepsy Epilepsy - diagnosis epileptic focus localization Feature extraction Humans Localization Machine learning Multilayers Seizures Seizures - diagnosis Signal Processing, Computer-Assisted Surgery Temporal variations Training Unsupervised Machine Learning variational autoencoder |
| Title | Deep Learning Approach for Epileptic Focus Localization |
| URI | https://ieeexplore.ieee.org/document/8918409 https://www.ncbi.nlm.nih.gov/pubmed/31796417 https://www.proquest.com/docview/2384315355 https://www.proquest.com/docview/2321662298 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1940-9990 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056292 issn: 1932-4545 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3roA_rYFlAq9UazJMbx47ilrBAqvQASt2jsjHtotbsqu5f--o4dJ0JVW3GLFMdxZmzPN_HMNwAfBCKbLTSlR2dLtrd1iWR9GRQ656QkiTFR-OqruriVl3fN3RZ8HHNhiCgFn9E0Xqaz_G7pN_FX2YmxyR_Zhm1tVJ-rNey6bMZTAeSIRyKPdzMkyFT25ObT2ew6RnHZqbCNrmL43AMjlKqq_BtgJkMzfwZXwxD7-JLv083aTf2vP9gbH_sNz-FpRpzFrJ8iL2CLFnvw5AEP4T7oz0SrIlOtfitmmWe8YEBbnK943-B9xRdz7vy--BKNX07efAm38_Obs4syV1Qovaz1mnXR-Sr4RjisQ2U8dVZ2VCmrG7RVsMEEVpfrHFVY29ChcM6cmgZRN4RBnb6CncVyQW-gwBB9Ga9sTVpadEajNF5IHYO0gjcTqAcRtz7TjceqFz_a5HZUtk1qaaNa2qyWCRyPz6x6so3_tt6P4h1bZslO4GDQZJvX433LwISRUsPgagLvx9u8kuLxCC5ouYltRK2UEJbH_rqfAWPfjLKsYhG-_fs738GuiH54iug5gJ31zw0dMlhZu6M0S38DfxDkew |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoAe-CqUhQJB4gbZJq6d2MeldLXAbi9spd6isTPmANpd0d0Lv56x40QVAsQtUhzHmbE9b-KZNwBvBCKbLdS5Q2tytrdljmRc7iu01kpJEkOi8OKiml3KT1fqag_eDbkwRBSDz2gcLuNZfrt2u_Cr7ESb6I_cgttKSqm6bK1-32VDHksgB0QSmLxVnyJTmJPl-7PJlxDHZcbCqLoIAXQ3zFCsq_J3iBlNzfQ-LPpBdhEm38a7rR27n7_xN_7vVzyAewlzZpNukjyEPVo9goMbTISHUH8g2mSJbPVrNklM4xlD2ux8wzsH7ywum3Ln19k8mL-UvvkYLqfny7NZnmoq5E6W9Za10brCOyUslr7QjlojWyoqUys0hTdee1aYbS0VWBrforBWn2qFWCtCX50-gf3VekVPIUMfvBlXmZJqadDqGqV2QtYhTMs7PYKyF3HjEuF4qHvxvYmOR2GaqJYmqKVJahnB2-GZTUe38c_Wh0G8Q8sk2REc95ps0oq8bhiaMFZSDK9G8Hq4zWspHJDgita70EaUVSWE4bEfdTNg6JtxlqlYhM_-_M5XcGe2XMyb-ceLz8_hrgheeYzvOYb97Y8dvWDosrUv44z9BZ9P58g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approach+for+Epileptic+Focus+Localization&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Daoud%2C+Hisham&rft.au=Bayoumi%2C+Magdy&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=1932-4545&rft.volume=14&rft.issue=2&rft.spage=209&rft.epage=220&rft_id=info:doi/10.1109%2FTBCAS.2019.2957087&rft.externalDocID=8918409 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |