Adeno-Associated Virus Type 2 Wild-Type and Vector-Mediated Genomic Integration Profiles of Human Diploid Fibroblasts Analyzed by Third-Generation PacBio DNA Sequencing
Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep -deficient A...
Saved in:
Published in | Journal of virology Vol. 88; no. 19; pp. 11253 - 11263 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.10.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-538X 1098-5514 1098-5514 |
DOI | 10.1128/JVI.01356-14 |
Cover
Abstract | Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas
rep
-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats.
IMPORTANCE
Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy. |
---|---|
AbstractList | Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats.UNLABELLEDGenome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats.Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy.IMPORTANCEAdeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy. Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy. Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep -deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy. Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy. |
Author | Chen, Wei Heilbronn, Regine Gogol-Döring, Andreas Hüser, Daniela |
Author_xml | – sequence: 1 givenname: Daniela surname: Hüser fullname: Hüser, Daniela organization: Institute of Virology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany – sequence: 2 givenname: Andreas surname: Gogol-Döring fullname: Gogol-Döring, Andreas organization: Laboratory for Novel Sequencing Technology, Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany, German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Germany, Institute of Computer Science, Martin Luther University, Halle-Wittenberg, Germany – sequence: 3 givenname: Wei surname: Chen fullname: Chen, Wei organization: Laboratory for Novel Sequencing Technology, Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany – sequence: 4 givenname: Regine surname: Heilbronn fullname: Heilbronn, Regine organization: Institute of Virology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25031342$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhi1URNPCjTPykQNbPLbXu7kghZa2QeVDIhRuluOdTY127WDvIoVfxM_ETRoECInTWJpnHr-y54gc-OCRkMfATgB4_fz19fyEgShVAfIemQCb1kVZgjwgE8Y4L0pRfz4kRyl9YQykVPIBOeQlEyAkn5AfswZ9KGYpBevMgA29dnFMdLFZI-X0k-uaYns2PrfQDiEWb7DZoRd5tHeWzv2Aq2gGFzx9H0PrOkw0tPRy7I2nZ27dBdfQc7eMYdmZNCQ686bbfM-K5YYublxsiuzCvcLYly7Qs7cz-gG_juit86uH5H5ruoSP7uox-Xj-anF6WVy9u5ifzq4KK6EaCqF4I1kjcFqKcmlKUJWaTqvSSqVq1irDZAXSyJZhA7ytAOpcUVS1MYAI4pi82HnX47LHxqIfoun0OrrexI0Oxuk_O97d6FX4pvP1dTVVWfD0ThBDDp8G3btkseuMxzAmDYpzxURVyf-jpQIQrBYio09-j_Urz_4nM8B3gI0hpYittm7YvmdO6ToNTN-ui87rorfrouE2wLO_hvbef-I_AVmPwY4 |
CitedBy_id | crossref_primary_10_1172_JCI79213 crossref_primary_10_1016_j_virol_2017_08_011 crossref_primary_10_1371_journal_pone_0161454 crossref_primary_10_1089_humc_2015_052 crossref_primary_10_1016_j_coviro_2016_07_004 crossref_primary_10_1038_s41587_023_01974_7 crossref_primary_10_1038_mt_2016_52 crossref_primary_10_1051_medsci_20163202010 crossref_primary_10_1371_journal_pone_0233373 crossref_primary_10_1099_vir_0_000034 crossref_primary_10_3389_fcvm_2022_952755 crossref_primary_10_1089_hgtb_2016_158 crossref_primary_10_1073_pnas_1721883115 crossref_primary_10_1093_hmg_ddab300 crossref_primary_10_1128_JVI_02750_15 crossref_primary_10_1136_gutjnl_2019_318281 crossref_primary_10_1093_nargab_lqaa074 crossref_primary_10_1016_j_omtm_2023_04_009 crossref_primary_10_1128_JVI_02137_16 crossref_primary_10_1128_JVI_00426_15 crossref_primary_10_1016_j_ymthe_2022_06_004 crossref_primary_10_1089_hum_2015_052 crossref_primary_10_3390_v11010038 crossref_primary_10_3389_fmed_2023_1106085 crossref_primary_10_1128_JVI_00171_15 crossref_primary_10_1016_j_jtha_2024_07_012 crossref_primary_10_1371_journal_pone_0200841 crossref_primary_10_1038_mt_2016_48 |
Cites_doi | 10.1128/JVI.77.8.4881-4887.2003 10.1002/j.1460-2075.1992.tb05614.x 10.1073/pnas.93.15.7966 10.1038/nmeth.1923 10.1093/emboj/16.19.5943 10.1002/j.1460-2075.1991.tb04964.x 10.1038/nm.3230 10.1128/jvi.69.11.7334-7338.1995 10.1128/JVI.76.15.7554-7559.2002 10.1128/JVI.74.16.7671-7677.2000 10.1128/jvi.67.10.6096-6104.1993 10.1073/pnas.91.13.5808 10.1186/gb-2009-10-3-r25 10.1128/JVI.79.17.11434-11442.2005 10.1128/jvi.68.8.4988-4997.1994 10.1038/nature12064 10.1128/jvi.64.6.3012-3018.1990 10.1038/nature11247 10.1016/0022-2836(70)90057-4 10.1073/pnas.0504583102 10.1128/JVI.01135-13 10.1128/jvi.65.5.2476-2483.1991 10.1073/pnas.87.6.2211 10.1146/annurev.genet.37.110801.143717 10.1016/0092-8674(90)90526-K 10.1534/g3.113.005777 10.1128/JVI.74.13.6213-6216.2000 10.1128/JVI.00779-06 10.1038/nbt.1562 10.1186/1743-422X-11-15 10.1038/ng.154 10.1371/journal.ppat.1000985 10.1016/j.cell.2007.05.009 10.1099/vir.0.18726-0 10.1038/gt.2008.84 10.1016/j.ymthe.2004.07.003 10.1089/hum.2013.184 10.1089/hum.2007.056 |
ContentType | Journal Article |
Copyright | Copyright © 2014, American Society for Microbiology. All Rights Reserved. Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 7U9 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1128/JVI.01356-14 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
EndPage | 11263 |
ExternalDocumentID | PMC4178796 25031342 10_1128_JVI_01356_14 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ AAYXX ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM CGR CUY CVF ECM EIF NPM PKN RHF UCJ 7X8 7TM 7U9 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c417t-362d40d3e9535ba516769975c46680f6a04714a4f0ed12f7118d12e378aa1ee13 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 14:06:05 EDT 2025 Fri Sep 05 12:22:55 EDT 2025 Fri Sep 05 13:36:51 EDT 2025 Wed Feb 19 02:15:52 EST 2025 Tue Jul 01 01:02:33 EDT 2025 Thu Apr 24 23:05:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | Copyright © 2014, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-362d40d3e9535ba516769975c46680f6a04714a4f0ed12f7118d12e378aa1ee13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 D.H. and A.G.-D. contributed equally to this article. |
OpenAccessLink | https://jvi.asm.org/content/jvi/88/19/11253.full.pdf |
PMID | 25031342 |
PQID | 1561130833 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4178796 proquest_miscellaneous_1622603774 proquest_miscellaneous_1561130833 pubmed_primary_25031342 crossref_citationtrail_10_1128_JVI_01356_14 crossref_primary_10_1128_JVI_01356_14 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2014 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 Macville M (e_1_3_2_22_2) 1999; 59 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 Muzyczka N (e_1_3_2_2_2) 2001 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_14_2 e_1_3_2_35_2 8016070 - Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5808-12 2156265 - Proc Natl Acad Sci U S A. 1990 Mar;87(6):2211-5 23720718 - J Virol. 2013 Aug;87(15):8559-68 15568995 - Annu Rev Genet. 2004;38:819-45 9312052 - EMBO J. 1997 Oct 1;16(19):5943-54 1850024 - J Virol. 1991 May;65(5):2476-83 1657596 - EMBO J. 1991 Dec;10(12):3941-50 2159559 - J Virol. 1990 Jun;64(6):3012-8 19680244 - Nat Biotechnol. 2009 Sep;27(9):851-7 8396670 - J Virol. 1993 Oct;67(10):6096-104 23925245 - Nature. 2013 Aug 8;500(7461):207-11 5420325 - J Mol Biol. 1970 Mar;48(3):443-53 16157891 - Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13634-9 16987973 - J Virol. 2006 Dec;80(23):11699-709 17760515 - Hum Gene Ther. 2007 Sep;18(9):787-97 10906224 - J Virol. 2000 Aug;74(16):7671-7 12663794 - J Virol. 2003 Apr;77(8):4881-7 12533709 - J Gen Virol. 2003 Jan;84(Pt 1):133-7 12097568 - J Virol. 2002 Aug;76(15):7554-9 2159383 - Cell. 1990 May 4;61(3):447-57 23550136 - G3 (Bethesda). 2013 Aug;3(8):1213-24 16103194 - J Virol. 2005 Sep;79(17):11434-42 1334463 - EMBO J. 1992 Dec;11(13):5071-8 10846109 - J Virol. 2000 Jul;74(13):6213-6 17512414 - Cell. 2007 May 18;129(4):823-37 18552846 - Nat Genet. 2008 Jul;40(7):897-903 19261174 - Genome Biol. 2009;10(3):R25 22955616 - Nature. 2012 Sep 6;489(7414):57-74 8035498 - J Virol. 1994 Aug;68(8):4988-97 9892199 - Cancer Res. 1999 Jan 1;59(1):141-50 18496574 - Gene Ther. 2008 Oct;15(20):1372-83 15451450 - Mol Ther. 2004 Oct;10(4):660-70 23770691 - Nat Med. 2013 Jul;19(7):889-91 24468291 - Virol J. 2014;11:15 7474165 - J Virol. 1995 Nov;69(11):7334-8 22388286 - Nat Methods. 2012 Apr;9(4):357-9 20628575 - PLoS Pathog. 2010;6(7):e1000985 24299301 - Hum Gene Ther. 2014 Mar;25(3):212-22 8755586 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7966-72 |
References_xml | – ident: e_1_3_2_26_2 doi: 10.1128/JVI.77.8.4881-4887.2003 – ident: e_1_3_2_8_2 doi: 10.1002/j.1460-2075.1992.tb05614.x – ident: e_1_3_2_4_2 doi: 10.1073/pnas.93.15.7966 – ident: e_1_3_2_30_2 doi: 10.1038/nmeth.1923 – ident: e_1_3_2_35_2 doi: 10.1093/emboj/16.19.5943 – ident: e_1_3_2_7_2 doi: 10.1002/j.1460-2075.1991.tb04964.x – ident: e_1_3_2_15_2 doi: 10.1038/nm.3230 – ident: e_1_3_2_40_2 doi: 10.1128/jvi.69.11.7334-7338.1995 – ident: e_1_3_2_11_2 doi: 10.1128/JVI.76.15.7554-7559.2002 – ident: e_1_3_2_41_2 doi: 10.1128/JVI.74.16.7671-7677.2000 – ident: e_1_3_2_5_2 doi: 10.1128/jvi.67.10.6096-6104.1993 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.91.13.5808 – volume: 59 start-page: 141 year: 1999 ident: e_1_3_2_22_2 article-title: Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping publication-title: Cancer Res. – ident: e_1_3_2_32_2 doi: 10.1186/gb-2009-10-3-r25 – ident: e_1_3_2_14_2 doi: 10.1128/JVI.79.17.11434-11442.2005 – ident: e_1_3_2_39_2 doi: 10.1128/jvi.68.8.4988-4997.1994 – ident: e_1_3_2_23_2 doi: 10.1038/nature12064 – start-page: 2327 volume-title: Fields virology year: 2001 ident: e_1_3_2_2_2 – ident: e_1_3_2_25_2 doi: 10.1128/jvi.64.6.3012-3018.1990 – ident: e_1_3_2_36_2 doi: 10.1038/nature11247 – ident: e_1_3_2_31_2 doi: 10.1016/0022-2836(70)90057-4 – ident: e_1_3_2_34_2 doi: 10.1073/pnas.0504583102 – ident: e_1_3_2_21_2 doi: 10.1128/JVI.01135-13 – ident: e_1_3_2_29_2 – ident: e_1_3_2_28_2 doi: 10.1128/jvi.65.5.2476-2483.1991 – ident: e_1_3_2_3_2 doi: 10.1073/pnas.87.6.2211 – ident: e_1_3_2_13_2 doi: 10.1146/annurev.genet.37.110801.143717 – ident: e_1_3_2_6_2 doi: 10.1016/0092-8674(90)90526-K – ident: e_1_3_2_24_2 doi: 10.1534/g3.113.005777 – ident: e_1_3_2_10_2 doi: 10.1128/JVI.74.13.6213-6216.2000 – ident: e_1_3_2_18_2 doi: 10.1128/JVI.00779-06 – ident: e_1_3_2_42_2 doi: 10.1038/nbt.1562 – ident: e_1_3_2_33_2 doi: 10.1186/1743-422X-11-15 – ident: e_1_3_2_38_2 doi: 10.1038/ng.154 – ident: e_1_3_2_20_2 doi: 10.1371/journal.ppat.1000985 – ident: e_1_3_2_37_2 doi: 10.1016/j.cell.2007.05.009 – ident: e_1_3_2_12_2 doi: 10.1099/vir.0.18726-0 – ident: e_1_3_2_19_2 doi: 10.1038/gt.2008.84 – ident: e_1_3_2_16_2 doi: 10.1016/j.ymthe.2004.07.003 – ident: e_1_3_2_27_2 doi: 10.1089/hum.2013.184 – ident: e_1_3_2_17_2 doi: 10.1089/hum.2007.056 – reference: 9892199 - Cancer Res. 1999 Jan 1;59(1):141-50 – reference: 23550136 - G3 (Bethesda). 2013 Aug;3(8):1213-24 – reference: 12533709 - J Gen Virol. 2003 Jan;84(Pt 1):133-7 – reference: 17760515 - Hum Gene Ther. 2007 Sep;18(9):787-97 – reference: 12097568 - J Virol. 2002 Aug;76(15):7554-9 – reference: 23770691 - Nat Med. 2013 Jul;19(7):889-91 – reference: 16157891 - Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13634-9 – reference: 2159383 - Cell. 1990 May 4;61(3):447-57 – reference: 1850024 - J Virol. 1991 May;65(5):2476-83 – reference: 5420325 - J Mol Biol. 1970 Mar;48(3):443-53 – reference: 24468291 - Virol J. 2014;11:15 – reference: 24299301 - Hum Gene Ther. 2014 Mar;25(3):212-22 – reference: 16103194 - J Virol. 2005 Sep;79(17):11434-42 – reference: 10846109 - J Virol. 2000 Jul;74(13):6213-6 – reference: 8016070 - Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5808-12 – reference: 2156265 - Proc Natl Acad Sci U S A. 1990 Mar;87(6):2211-5 – reference: 8396670 - J Virol. 1993 Oct;67(10):6096-104 – reference: 19680244 - Nat Biotechnol. 2009 Sep;27(9):851-7 – reference: 18496574 - Gene Ther. 2008 Oct;15(20):1372-83 – reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74 – reference: 8035498 - J Virol. 1994 Aug;68(8):4988-97 – reference: 12663794 - J Virol. 2003 Apr;77(8):4881-7 – reference: 18552846 - Nat Genet. 2008 Jul;40(7):897-903 – reference: 23925245 - Nature. 2013 Aug 8;500(7461):207-11 – reference: 15568995 - Annu Rev Genet. 2004;38:819-45 – reference: 7474165 - J Virol. 1995 Nov;69(11):7334-8 – reference: 16987973 - J Virol. 2006 Dec;80(23):11699-709 – reference: 1334463 - EMBO J. 1992 Dec;11(13):5071-8 – reference: 23720718 - J Virol. 2013 Aug;87(15):8559-68 – reference: 9312052 - EMBO J. 1997 Oct 1;16(19):5943-54 – reference: 17512414 - Cell. 2007 May 18;129(4):823-37 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 22388286 - Nat Methods. 2012 Apr;9(4):357-9 – reference: 1657596 - EMBO J. 1991 Dec;10(12):3941-50 – reference: 8755586 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7966-72 – reference: 2159559 - J Virol. 1990 Jun;64(6):3012-8 – reference: 15451450 - Mol Ther. 2004 Oct;10(4):660-70 – reference: 20628575 - PLoS Pathog. 2010;6(7):e1000985 – reference: 10906224 - J Virol. 2000 Aug;74(16):7671-7 |
SSID | ssj0014464 |
Score | 2.3149526 |
Snippet | Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 11253 |
SubjectTerms | Adeno-associated virus Adeno-associated virus 2 Chromatin - chemistry Chromatin - metabolism Dependovirus - genetics Dependovirus - metabolism Diploidy Fetus Fibroblasts - cytology Fibroblasts - metabolism Fibroblasts - virology Genetic Vectors HeLa Cells High-Throughput Nucleotide Sequencing Humans Lung - cytology Lung - metabolism Lung - virology Molecular Sequence Data Nucleotide Motifs Organ Specificity Recombination, Genetic Virus Integration Virus-Cell Interactions |
Title | Adeno-Associated Virus Type 2 Wild-Type and Vector-Mediated Genomic Integration Profiles of Human Diploid Fibroblasts Analyzed by Third-Generation PacBio DNA Sequencing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25031342 https://www.proquest.com/docview/1561130833 https://www.proquest.com/docview/1622603774 https://pubmed.ncbi.nlm.nih.gov/PMC4178796 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIiReULmHAlokeIq2eO317TFNgbSICqEW-mbtetetpRBHuVRKv4hP4POYvdhxEoqAF8eyJ3bkOZk9M54LQq-pVLnKC0pSJUMCVjIiSUoVEUUouC9EGBU6oP_pJBqesePz8LzT-dnKWlrMxX5-_du6kv_RKhwDveoq2X_QbHNROAD7oF_YgoZh-1c67oPRqAh3Txio41U5XczqsCqwYEnMvg6OX5nwPDGVIlpUN2fVefF1vwgNAzfA22R32OF9spyMqlL2CvCqKwFMe657OvPR8tox18tyKsmF6V1tLvGZ5wdl1Ts86fdclna9Nm4zYF1i1w7qD_Vb-4PBzKLIFr83q8aH6qIakUMjEk3dJBaTjskbt2DgSk2-qXIV4y1H8NMtS_-ip1CodqCDsiZlDtYpa5x171PN8NrWO0naKE1bthiYpO1DvL1K-Lry4fjr0T4QYN2HkbXFQMeT7wYxQA8DGtjuXxtduetTt9BtPwbWpun40cfm_RU42awus_CTt-1b6fbT7svrXGjLwdnM020Rn9NddM_pC_ct_O6jjho_QHfsDNPlQ_RjE4TYgBBr4GEfNyDEAEK8AULsQIhbIMQ1CHFVYANC7ECIWyDENQixWOJNEGILQgwgxCsQPkJn79-dDobEjf8gOaPxnAC1ksyTgUrDAAxHSHU2dhqHOYuixCsi7gGxYpwVnpLUL2JwleFTBXHCOVWKBo_Rzrgaq6cIB15e-BKWH-HHTEZMMB7kgoUhD6WgedJFvVoRWe564-sRLaPM-Mh-koEGM6NB8JW76E0jPbE9YW6Qe1XrNAOjrd_E8bGqFrOMgtcC5DEJgj_IROAZeQG4Z130xOKguVsNoC6K1xDSCOim8etnxuWlaR4PjzaJ0-jZjdfcQ3dX_77naGc-XagXQLzn4qXB-C9jpt_2 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adeno-associated+virus+type+2+wild-type+and+vector-mediated+genomic+integration+profiles+of+human+diploid+fibroblasts+analyzed+by+third-generation+PacBio+DNA+sequencing&rft.jtitle=Journal+of+virology&rft.au=H%C3%BCser%2C+Daniela&rft.au=Gogol-D%C3%B6ring%2C+Andreas&rft.au=Chen%2C+Wei&rft.au=Heilbronn%2C+Regine&rft.date=2014-10-01&rft.eissn=1098-5514&rft.volume=88&rft.issue=19&rft.spage=11253&rft_id=info:doi/10.1128%2FJVI.01356-14&rft_id=info%3Apmid%2F25031342&rft.externalDocID=25031342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |