Adeno-Associated Virus Type 2 Wild-Type and Vector-Mediated Genomic Integration Profiles of Human Diploid Fibroblasts Analyzed by Third-Generation PacBio DNA Sequencing

Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep -deficient A...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 88; no. 19; pp. 11253 - 11263
Main Authors Hüser, Daniela, Gogol-Döring, Andreas, Chen, Wei, Heilbronn, Regine
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.10.2014
Subjects
Online AccessGet full text
ISSN0022-538X
1098-5514
1098-5514
DOI10.1128/JVI.01356-14

Cover

Abstract Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep -deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy.
AbstractList Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats.UNLABELLEDGenome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats.Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy.IMPORTANCEAdeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy.
Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy.
Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep -deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy.
Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy.
Author Chen, Wei
Heilbronn, Regine
Gogol-Döring, Andreas
Hüser, Daniela
Author_xml – sequence: 1
  givenname: Daniela
  surname: Hüser
  fullname: Hüser, Daniela
  organization: Institute of Virology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
– sequence: 2
  givenname: Andreas
  surname: Gogol-Döring
  fullname: Gogol-Döring, Andreas
  organization: Laboratory for Novel Sequencing Technology, Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany, German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Germany, Institute of Computer Science, Martin Luther University, Halle-Wittenberg, Germany
– sequence: 3
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Laboratory for Novel Sequencing Technology, Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
– sequence: 4
  givenname: Regine
  surname: Heilbronn
  fullname: Heilbronn, Regine
  organization: Institute of Virology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25031342$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPCjTPykQNbPLbXu7kghZa2QeVDIhRuluOdTY127WDvIoVfxM_ETRoECInTWJpnHr-y54gc-OCRkMfATgB4_fz19fyEgShVAfIemQCb1kVZgjwgE8Y4L0pRfz4kRyl9YQykVPIBOeQlEyAkn5AfswZ9KGYpBevMgA29dnFMdLFZI-X0k-uaYns2PrfQDiEWb7DZoRd5tHeWzv2Aq2gGFzx9H0PrOkw0tPRy7I2nZ27dBdfQc7eMYdmZNCQ686bbfM-K5YYublxsiuzCvcLYly7Qs7cz-gG_juit86uH5H5ruoSP7uox-Xj-anF6WVy9u5ifzq4KK6EaCqF4I1kjcFqKcmlKUJWaTqvSSqVq1irDZAXSyJZhA7ytAOpcUVS1MYAI4pi82HnX47LHxqIfoun0OrrexI0Oxuk_O97d6FX4pvP1dTVVWfD0ThBDDp8G3btkseuMxzAmDYpzxURVyf-jpQIQrBYio09-j_Urz_4nM8B3gI0hpYittm7YvmdO6ToNTN-ui87rorfrouE2wLO_hvbef-I_AVmPwY4
CitedBy_id crossref_primary_10_1172_JCI79213
crossref_primary_10_1016_j_virol_2017_08_011
crossref_primary_10_1371_journal_pone_0161454
crossref_primary_10_1089_humc_2015_052
crossref_primary_10_1016_j_coviro_2016_07_004
crossref_primary_10_1038_s41587_023_01974_7
crossref_primary_10_1038_mt_2016_52
crossref_primary_10_1051_medsci_20163202010
crossref_primary_10_1371_journal_pone_0233373
crossref_primary_10_1099_vir_0_000034
crossref_primary_10_3389_fcvm_2022_952755
crossref_primary_10_1089_hgtb_2016_158
crossref_primary_10_1073_pnas_1721883115
crossref_primary_10_1093_hmg_ddab300
crossref_primary_10_1128_JVI_02750_15
crossref_primary_10_1136_gutjnl_2019_318281
crossref_primary_10_1093_nargab_lqaa074
crossref_primary_10_1016_j_omtm_2023_04_009
crossref_primary_10_1128_JVI_02137_16
crossref_primary_10_1128_JVI_00426_15
crossref_primary_10_1016_j_ymthe_2022_06_004
crossref_primary_10_1089_hum_2015_052
crossref_primary_10_3390_v11010038
crossref_primary_10_3389_fmed_2023_1106085
crossref_primary_10_1128_JVI_00171_15
crossref_primary_10_1016_j_jtha_2024_07_012
crossref_primary_10_1371_journal_pone_0200841
crossref_primary_10_1038_mt_2016_48
Cites_doi 10.1128/JVI.77.8.4881-4887.2003
10.1002/j.1460-2075.1992.tb05614.x
10.1073/pnas.93.15.7966
10.1038/nmeth.1923
10.1093/emboj/16.19.5943
10.1002/j.1460-2075.1991.tb04964.x
10.1038/nm.3230
10.1128/jvi.69.11.7334-7338.1995
10.1128/JVI.76.15.7554-7559.2002
10.1128/JVI.74.16.7671-7677.2000
10.1128/jvi.67.10.6096-6104.1993
10.1073/pnas.91.13.5808
10.1186/gb-2009-10-3-r25
10.1128/JVI.79.17.11434-11442.2005
10.1128/jvi.68.8.4988-4997.1994
10.1038/nature12064
10.1128/jvi.64.6.3012-3018.1990
10.1038/nature11247
10.1016/0022-2836(70)90057-4
10.1073/pnas.0504583102
10.1128/JVI.01135-13
10.1128/jvi.65.5.2476-2483.1991
10.1073/pnas.87.6.2211
10.1146/annurev.genet.37.110801.143717
10.1016/0092-8674(90)90526-K
10.1534/g3.113.005777
10.1128/JVI.74.13.6213-6216.2000
10.1128/JVI.00779-06
10.1038/nbt.1562
10.1186/1743-422X-11-15
10.1038/ng.154
10.1371/journal.ppat.1000985
10.1016/j.cell.2007.05.009
10.1099/vir.0.18726-0
10.1038/gt.2008.84
10.1016/j.ymthe.2004.07.003
10.1089/hum.2013.184
10.1089/hum.2007.056
ContentType Journal Article
Copyright Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
Copyright_xml – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7U9
8FD
FR3
H94
P64
RC3
5PM
DOI 10.1128/JVI.01356-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 11263
ExternalDocumentID PMC4178796
25031342
10_1128_JVI_01356_14
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RHF
UCJ
7X8
7TM
7U9
8FD
FR3
H94
P64
RC3
5PM
ID FETCH-LOGICAL-c417t-362d40d3e9535ba516769975c46680f6a04714a4f0ed12f7118d12e378aa1ee13
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 14:06:05 EDT 2025
Fri Sep 05 12:22:55 EDT 2025
Fri Sep 05 13:36:51 EDT 2025
Wed Feb 19 02:15:52 EST 2025
Tue Jul 01 01:02:33 EDT 2025
Thu Apr 24 23:05:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Copyright © 2014, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-362d40d3e9535ba516769975c46680f6a04714a4f0ed12f7118d12e378aa1ee13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
D.H. and A.G.-D. contributed equally to this article.
OpenAccessLink https://jvi.asm.org/content/jvi/88/19/11253.full.pdf
PMID 25031342
PQID 1561130833
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4178796
proquest_miscellaneous_1622603774
proquest_miscellaneous_1561130833
pubmed_primary_25031342
crossref_citationtrail_10_1128_JVI_01356_14
crossref_primary_10_1128_JVI_01356_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2014
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
Macville M (e_1_3_2_22_2) 1999; 59
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
Muzyczka N (e_1_3_2_2_2) 2001
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_14_2
e_1_3_2_35_2
8016070 - Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5808-12
2156265 - Proc Natl Acad Sci U S A. 1990 Mar;87(6):2211-5
23720718 - J Virol. 2013 Aug;87(15):8559-68
15568995 - Annu Rev Genet. 2004;38:819-45
9312052 - EMBO J. 1997 Oct 1;16(19):5943-54
1850024 - J Virol. 1991 May;65(5):2476-83
1657596 - EMBO J. 1991 Dec;10(12):3941-50
2159559 - J Virol. 1990 Jun;64(6):3012-8
19680244 - Nat Biotechnol. 2009 Sep;27(9):851-7
8396670 - J Virol. 1993 Oct;67(10):6096-104
23925245 - Nature. 2013 Aug 8;500(7461):207-11
5420325 - J Mol Biol. 1970 Mar;48(3):443-53
16157891 - Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13634-9
16987973 - J Virol. 2006 Dec;80(23):11699-709
17760515 - Hum Gene Ther. 2007 Sep;18(9):787-97
10906224 - J Virol. 2000 Aug;74(16):7671-7
12663794 - J Virol. 2003 Apr;77(8):4881-7
12533709 - J Gen Virol. 2003 Jan;84(Pt 1):133-7
12097568 - J Virol. 2002 Aug;76(15):7554-9
2159383 - Cell. 1990 May 4;61(3):447-57
23550136 - G3 (Bethesda). 2013 Aug;3(8):1213-24
16103194 - J Virol. 2005 Sep;79(17):11434-42
1334463 - EMBO J. 1992 Dec;11(13):5071-8
10846109 - J Virol. 2000 Jul;74(13):6213-6
17512414 - Cell. 2007 May 18;129(4):823-37
18552846 - Nat Genet. 2008 Jul;40(7):897-903
19261174 - Genome Biol. 2009;10(3):R25
22955616 - Nature. 2012 Sep 6;489(7414):57-74
8035498 - J Virol. 1994 Aug;68(8):4988-97
9892199 - Cancer Res. 1999 Jan 1;59(1):141-50
18496574 - Gene Ther. 2008 Oct;15(20):1372-83
15451450 - Mol Ther. 2004 Oct;10(4):660-70
23770691 - Nat Med. 2013 Jul;19(7):889-91
24468291 - Virol J. 2014;11:15
7474165 - J Virol. 1995 Nov;69(11):7334-8
22388286 - Nat Methods. 2012 Apr;9(4):357-9
20628575 - PLoS Pathog. 2010;6(7):e1000985
24299301 - Hum Gene Ther. 2014 Mar;25(3):212-22
8755586 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7966-72
References_xml – ident: e_1_3_2_26_2
  doi: 10.1128/JVI.77.8.4881-4887.2003
– ident: e_1_3_2_8_2
  doi: 10.1002/j.1460-2075.1992.tb05614.x
– ident: e_1_3_2_4_2
  doi: 10.1073/pnas.93.15.7966
– ident: e_1_3_2_30_2
  doi: 10.1038/nmeth.1923
– ident: e_1_3_2_35_2
  doi: 10.1093/emboj/16.19.5943
– ident: e_1_3_2_7_2
  doi: 10.1002/j.1460-2075.1991.tb04964.x
– ident: e_1_3_2_15_2
  doi: 10.1038/nm.3230
– ident: e_1_3_2_40_2
  doi: 10.1128/jvi.69.11.7334-7338.1995
– ident: e_1_3_2_11_2
  doi: 10.1128/JVI.76.15.7554-7559.2002
– ident: e_1_3_2_41_2
  doi: 10.1128/JVI.74.16.7671-7677.2000
– ident: e_1_3_2_5_2
  doi: 10.1128/jvi.67.10.6096-6104.1993
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.91.13.5808
– volume: 59
  start-page: 141
  year: 1999
  ident: e_1_3_2_22_2
  article-title: Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping
  publication-title: Cancer Res.
– ident: e_1_3_2_32_2
  doi: 10.1186/gb-2009-10-3-r25
– ident: e_1_3_2_14_2
  doi: 10.1128/JVI.79.17.11434-11442.2005
– ident: e_1_3_2_39_2
  doi: 10.1128/jvi.68.8.4988-4997.1994
– ident: e_1_3_2_23_2
  doi: 10.1038/nature12064
– start-page: 2327
  volume-title: Fields virology
  year: 2001
  ident: e_1_3_2_2_2
– ident: e_1_3_2_25_2
  doi: 10.1128/jvi.64.6.3012-3018.1990
– ident: e_1_3_2_36_2
  doi: 10.1038/nature11247
– ident: e_1_3_2_31_2
  doi: 10.1016/0022-2836(70)90057-4
– ident: e_1_3_2_34_2
  doi: 10.1073/pnas.0504583102
– ident: e_1_3_2_21_2
  doi: 10.1128/JVI.01135-13
– ident: e_1_3_2_29_2
– ident: e_1_3_2_28_2
  doi: 10.1128/jvi.65.5.2476-2483.1991
– ident: e_1_3_2_3_2
  doi: 10.1073/pnas.87.6.2211
– ident: e_1_3_2_13_2
  doi: 10.1146/annurev.genet.37.110801.143717
– ident: e_1_3_2_6_2
  doi: 10.1016/0092-8674(90)90526-K
– ident: e_1_3_2_24_2
  doi: 10.1534/g3.113.005777
– ident: e_1_3_2_10_2
  doi: 10.1128/JVI.74.13.6213-6216.2000
– ident: e_1_3_2_18_2
  doi: 10.1128/JVI.00779-06
– ident: e_1_3_2_42_2
  doi: 10.1038/nbt.1562
– ident: e_1_3_2_33_2
  doi: 10.1186/1743-422X-11-15
– ident: e_1_3_2_38_2
  doi: 10.1038/ng.154
– ident: e_1_3_2_20_2
  doi: 10.1371/journal.ppat.1000985
– ident: e_1_3_2_37_2
  doi: 10.1016/j.cell.2007.05.009
– ident: e_1_3_2_12_2
  doi: 10.1099/vir.0.18726-0
– ident: e_1_3_2_19_2
  doi: 10.1038/gt.2008.84
– ident: e_1_3_2_16_2
  doi: 10.1016/j.ymthe.2004.07.003
– ident: e_1_3_2_27_2
  doi: 10.1089/hum.2013.184
– ident: e_1_3_2_17_2
  doi: 10.1089/hum.2007.056
– reference: 9892199 - Cancer Res. 1999 Jan 1;59(1):141-50
– reference: 23550136 - G3 (Bethesda). 2013 Aug;3(8):1213-24
– reference: 12533709 - J Gen Virol. 2003 Jan;84(Pt 1):133-7
– reference: 17760515 - Hum Gene Ther. 2007 Sep;18(9):787-97
– reference: 12097568 - J Virol. 2002 Aug;76(15):7554-9
– reference: 23770691 - Nat Med. 2013 Jul;19(7):889-91
– reference: 16157891 - Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13634-9
– reference: 2159383 - Cell. 1990 May 4;61(3):447-57
– reference: 1850024 - J Virol. 1991 May;65(5):2476-83
– reference: 5420325 - J Mol Biol. 1970 Mar;48(3):443-53
– reference: 24468291 - Virol J. 2014;11:15
– reference: 24299301 - Hum Gene Ther. 2014 Mar;25(3):212-22
– reference: 16103194 - J Virol. 2005 Sep;79(17):11434-42
– reference: 10846109 - J Virol. 2000 Jul;74(13):6213-6
– reference: 8016070 - Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5808-12
– reference: 2156265 - Proc Natl Acad Sci U S A. 1990 Mar;87(6):2211-5
– reference: 8396670 - J Virol. 1993 Oct;67(10):6096-104
– reference: 19680244 - Nat Biotechnol. 2009 Sep;27(9):851-7
– reference: 18496574 - Gene Ther. 2008 Oct;15(20):1372-83
– reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74
– reference: 8035498 - J Virol. 1994 Aug;68(8):4988-97
– reference: 12663794 - J Virol. 2003 Apr;77(8):4881-7
– reference: 18552846 - Nat Genet. 2008 Jul;40(7):897-903
– reference: 23925245 - Nature. 2013 Aug 8;500(7461):207-11
– reference: 15568995 - Annu Rev Genet. 2004;38:819-45
– reference: 7474165 - J Virol. 1995 Nov;69(11):7334-8
– reference: 16987973 - J Virol. 2006 Dec;80(23):11699-709
– reference: 1334463 - EMBO J. 1992 Dec;11(13):5071-8
– reference: 23720718 - J Virol. 2013 Aug;87(15):8559-68
– reference: 9312052 - EMBO J. 1997 Oct 1;16(19):5943-54
– reference: 17512414 - Cell. 2007 May 18;129(4):823-37
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 22388286 - Nat Methods. 2012 Apr;9(4):357-9
– reference: 1657596 - EMBO J. 1991 Dec;10(12):3941-50
– reference: 8755586 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7966-72
– reference: 2159559 - J Virol. 1990 Jun;64(6):3012-8
– reference: 15451450 - Mol Ther. 2004 Oct;10(4):660-70
– reference: 20628575 - PLoS Pathog. 2010;6(7):e1000985
– reference: 10906224 - J Virol. 2000 Aug;74(16):7671-7
SSID ssj0014464
Score 2.3149526
Snippet Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 11253
SubjectTerms Adeno-associated virus
Adeno-associated virus 2
Chromatin - chemistry
Chromatin - metabolism
Dependovirus - genetics
Dependovirus - metabolism
Diploidy
Fetus
Fibroblasts - cytology
Fibroblasts - metabolism
Fibroblasts - virology
Genetic Vectors
HeLa Cells
High-Throughput Nucleotide Sequencing
Humans
Lung - cytology
Lung - metabolism
Lung - virology
Molecular Sequence Data
Nucleotide Motifs
Organ Specificity
Recombination, Genetic
Virus Integration
Virus-Cell Interactions
Title Adeno-Associated Virus Type 2 Wild-Type and Vector-Mediated Genomic Integration Profiles of Human Diploid Fibroblasts Analyzed by Third-Generation PacBio DNA Sequencing
URI https://www.ncbi.nlm.nih.gov/pubmed/25031342
https://www.proquest.com/docview/1561130833
https://www.proquest.com/docview/1622603774
https://pubmed.ncbi.nlm.nih.gov/PMC4178796
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIiReULmHAlokeIq2eO317TFNgbSICqEW-mbtetetpRBHuVRKv4hP4POYvdhxEoqAF8eyJ3bkOZk9M54LQq-pVLnKC0pSJUMCVjIiSUoVEUUouC9EGBU6oP_pJBqesePz8LzT-dnKWlrMxX5-_du6kv_RKhwDveoq2X_QbHNROAD7oF_YgoZh-1c67oPRqAh3Txio41U5XczqsCqwYEnMvg6OX5nwPDGVIlpUN2fVefF1vwgNAzfA22R32OF9spyMqlL2CvCqKwFMe657OvPR8tox18tyKsmF6V1tLvGZ5wdl1Ts86fdclna9Nm4zYF1i1w7qD_Vb-4PBzKLIFr83q8aH6qIakUMjEk3dJBaTjskbt2DgSk2-qXIV4y1H8NMtS_-ip1CodqCDsiZlDtYpa5x171PN8NrWO0naKE1bthiYpO1DvL1K-Lry4fjr0T4QYN2HkbXFQMeT7wYxQA8DGtjuXxtduetTt9BtPwbWpun40cfm_RU42awus_CTt-1b6fbT7svrXGjLwdnM020Rn9NddM_pC_ct_O6jjho_QHfsDNPlQ_RjE4TYgBBr4GEfNyDEAEK8AULsQIhbIMQ1CHFVYANC7ECIWyDENQixWOJNEGILQgwgxCsQPkJn79-dDobEjf8gOaPxnAC1ksyTgUrDAAxHSHU2dhqHOYuixCsi7gGxYpwVnpLUL2JwleFTBXHCOVWKBo_Rzrgaq6cIB15e-BKWH-HHTEZMMB7kgoUhD6WgedJFvVoRWe564-sRLaPM-Mh-koEGM6NB8JW76E0jPbE9YW6Qe1XrNAOjrd_E8bGqFrOMgtcC5DEJgj_IROAZeQG4Z130xOKguVsNoC6K1xDSCOim8etnxuWlaR4PjzaJ0-jZjdfcQ3dX_77naGc-XagXQLzn4qXB-C9jpt_2
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adeno-associated+virus+type+2+wild-type+and+vector-mediated+genomic+integration+profiles+of+human+diploid+fibroblasts+analyzed+by+third-generation+PacBio+DNA+sequencing&rft.jtitle=Journal+of+virology&rft.au=H%C3%BCser%2C+Daniela&rft.au=Gogol-D%C3%B6ring%2C+Andreas&rft.au=Chen%2C+Wei&rft.au=Heilbronn%2C+Regine&rft.date=2014-10-01&rft.eissn=1098-5514&rft.volume=88&rft.issue=19&rft.spage=11253&rft_id=info:doi/10.1128%2FJVI.01356-14&rft_id=info%3Apmid%2F25031342&rft.externalDocID=25031342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon