Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode
We report on a highly conductive CNT micro-spherical network for high-rate silicon anode materials prepared by one-pot spray drying for lithium-ion batteries. The anode material contains silicon nanoparticles bound to CNTs through a small amount of sucrose-derived carbon. The first charge and discha...
Saved in:
Published in | Journal of power sources Vol. 394; pp. 94 - 101 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-7753 1873-2755 |
DOI | 10.1016/j.jpowsour.2018.04.112 |
Cover
Abstract | We report on a highly conductive CNT micro-spherical network for high-rate silicon anode materials prepared by one-pot spray drying for lithium-ion batteries. The anode material contains silicon nanoparticles bound to CNTs through a small amount of sucrose-derived carbon. The first charge and discharge capacities of the Si/CNT/C microsphere electrode are measured to be 3152 and 2302 mA h g−1 of the composite, respectively, at 0.1 A g−1. The Si/CNT/C microsphere electrode exhibits an initial capacity of 1989 mA h g−1 at current density of 1.0 A g−1 and retains ∼70% of the initial capacity after 100 cycles. Even at a high current density of 10 A g−1, the Si/CNT/C microsphere electrode exhibits a capacity of 784 mA h g−1 with a stable charge/discharge behavior. The superior rate capability of the Si/CNT/C microsphere composites can be attributable to the unhindered Li-ion transport through the highly conductive CNT buffer matrix, to which Si NPs are strongly bound by the sucrose-derived carbon. These salient results give further impetus to the study of CNTs for use as a buffer matrix to improve the rate capability of high-capacity electrode materials with large volume changes during charge storage.
•Si NPs are bound to CNT network through a very tiny amount of sucrose-derived carbon.•The Si/CNT/C microsphere has an interconnected pore facilitating Li-ion transport.•The Si/CNT/C microsphere exhibited superior rate capability with high capacity. |
---|---|
AbstractList | We report on a highly conductive CNT micro-spherical network for high-rate silicon anode materials prepared by one-pot spray drying for lithium-ion batteries. The anode material contains silicon nanoparticles bound to CNTs through a small amount of sucrose-derived carbon. The first charge and discharge capacities of the Si/CNT/C microsphere electrode are measured to be 3152 and 2302 mA h g−1 of the composite, respectively, at 0.1 A g−1. The Si/CNT/C microsphere electrode exhibits an initial capacity of 1989 mA h g−1 at current density of 1.0 A g−1 and retains ∼70% of the initial capacity after 100 cycles. Even at a high current density of 10 A g−1, the Si/CNT/C microsphere electrode exhibits a capacity of 784 mA h g−1 with a stable charge/discharge behavior. The superior rate capability of the Si/CNT/C microsphere composites can be attributable to the unhindered Li-ion transport through the highly conductive CNT buffer matrix, to which Si NPs are strongly bound by the sucrose-derived carbon. These salient results give further impetus to the study of CNTs for use as a buffer matrix to improve the rate capability of high-capacity electrode materials with large volume changes during charge storage.
•Si NPs are bound to CNT network through a very tiny amount of sucrose-derived carbon.•The Si/CNT/C microsphere has an interconnected pore facilitating Li-ion transport.•The Si/CNT/C microsphere exhibited superior rate capability with high capacity. |
Author | Park, Byung Hoon Roh, Kwang Chul Kim, Kwang-Bum Lee, Geon-Woo Jeong, Jun Hui Kim, Young-Hwan |
Author_xml | – sequence: 1 givenname: Byung Hoon surname: Park fullname: Park, Byung Hoon organization: Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea – sequence: 2 givenname: Jun Hui surname: Jeong fullname: Jeong, Jun Hui organization: Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea – sequence: 3 givenname: Geon-Woo surname: Lee fullname: Lee, Geon-Woo organization: Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea – sequence: 4 givenname: Young-Hwan surname: Kim fullname: Kim, Young-Hwan organization: Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea – sequence: 5 givenname: Kwang Chul orcidid: 0000-0002-1618-791X surname: Roh fullname: Roh, Kwang Chul email: rkc@kicet.re.kr organization: Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, 101 Soho-ro, Jinju-si, Gyeongsangnam-do, 52851, Republic of Korea – sequence: 6 givenname: Kwang-Bum orcidid: 0000-0002-2184-6617 surname: Kim fullname: Kim, Kwang-Bum email: kbkim@yonsei.ac.kr organization: Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea |
BookMark | eNqFkM1OwzAQBi0EEi3wCsgvkOB1mjiVOIAq_iQkLnC2nPWGugS7st1WfXtSARcunPY0o29nyo598MTYJYgSBDRXq3K1DrsUNrGUAtpSzEoAecQm0KqqkKquj9lEVKotlKqrUzZNaSWEAFBiwt4e3fty2HMM3m4wuy1xNLELnnvjQ950xD8dxlCk9ZKiQzNwT3kX4gfvQ-TLkS6iycSTG9wo4SNl6Zyd9GZIdPFzz9jb_d3r4rF4fnl4Wtw-FzgDlQvZYm0aBb2tqepFp0ha2wnbNCiRAGxTizm0vWi6OaIEUVcdyHZWdxLmFWJ1xq6_vePClCL1Gl022QWfo3GDBqEPifRK_ybSh0RazPSYaMSbP_g6uk8T9_-DN98gjc9tHUWd0JFHsi4SZm2D-0_xBdYzid4 |
CitedBy_id | crossref_primary_10_1002_smll_202403938 crossref_primary_10_1016_j_pnsc_2023_02_001 crossref_primary_10_1016_j_jechem_2023_04_043 crossref_primary_10_1016_j_apsusc_2022_152549 crossref_primary_10_1016_j_jpowsour_2019_05_043 crossref_primary_10_1021_acs_nanolett_2c00341 crossref_primary_10_1016_j_jallcom_2019_02_186 crossref_primary_10_1016_j_jallcom_2020_158487 crossref_primary_10_1016_j_susmat_2022_e00410 crossref_primary_10_1016_j_ijhydene_2022_05_225 crossref_primary_10_1021_acs_langmuir_9b03424 crossref_primary_10_1016_j_jallcom_2019_06_023 crossref_primary_10_1021_acsami_1c07572 crossref_primary_10_1016_j_jpowsour_2024_234617 crossref_primary_10_1007_s11708_020_0810_0 crossref_primary_10_1016_j_cej_2023_146504 crossref_primary_10_1088_1361_6528_abc114 crossref_primary_10_1016_j_jallcom_2023_169846 crossref_primary_10_1016_j_jpowsour_2019_226909 crossref_primary_10_1016_j_jcis_2020_04_082 crossref_primary_10_1002_app_49688 crossref_primary_10_14356_kona_2023006 crossref_primary_10_1016_j_cej_2022_140820 crossref_primary_10_1002_chem_202100842 crossref_primary_10_1016_j_jpowsour_2019_226759 crossref_primary_10_1016_j_jallcom_2020_156437 crossref_primary_10_1002_cey2_643 crossref_primary_10_1021_acsami_1c06413 crossref_primary_10_1016_j_cej_2019_123984 crossref_primary_10_1016_j_carbon_2020_06_053 crossref_primary_10_1016_j_cej_2018_07_054 crossref_primary_10_1002_adfm_202408285 crossref_primary_10_1016_j_jpowsour_2019_227001 crossref_primary_10_1016_j_electacta_2025_145804 crossref_primary_10_1016_j_scriptamat_2021_113840 crossref_primary_10_1039_D2TA06478B crossref_primary_10_1016_j_jallcom_2022_167850 crossref_primary_10_1016_j_jallcom_2023_168743 crossref_primary_10_1021_acsomega_9b00045 crossref_primary_10_1007_s12613_021_2335_x crossref_primary_10_1007_s11581_023_05099_4 crossref_primary_10_1002_app_48303 crossref_primary_10_1016_j_jallcom_2019_03_354 crossref_primary_10_15407_hftp12_03_226 crossref_primary_10_1007_s12598_023_02565_w crossref_primary_10_1016_j_ensm_2024_103901 crossref_primary_10_26599_NRE_2022_9120037 crossref_primary_10_1007_s10854_024_13140_z crossref_primary_10_1021_acsami_3c16533 crossref_primary_10_1016_j_jcis_2022_09_087 crossref_primary_10_1515_ntrev_2021_0114 crossref_primary_10_1016_j_cej_2018_11_166 crossref_primary_10_1002_cssc_202100687 crossref_primary_10_1007_s41918_018_00028_w crossref_primary_10_1016_j_carbon_2021_11_059 crossref_primary_10_1016_j_est_2024_110483 crossref_primary_10_3390_ma15124264 crossref_primary_10_1021_acsami_1c23356 crossref_primary_10_1007_s11426_021_1023_4 crossref_primary_10_1016_j_mtcomm_2022_103158 crossref_primary_10_1021_acsanm_3c00942 crossref_primary_10_1007_s11664_019_07895_z crossref_primary_10_1016_j_jmst_2023_07_026 crossref_primary_10_1002_celc_202001388 crossref_primary_10_1016_j_apenergy_2019_113452 |
Cites_doi | 10.1038/451652a 10.1002/adfm.201503777 10.1016/j.jpowsour.2006.09.084 10.1039/C5TA04681E 10.1038/nmat2749 10.1039/C4NR03948C 10.1016/j.electacta.2013.12.048 10.1039/c0ee00428f 10.1002/aenm.201600904 10.1039/C7TA03294C 10.1002/chem.201402359 10.1002/adma.201402813 10.1002/aenm.201300882 10.1021/am405725u 10.1039/C5TA03861H 10.1038/35104644 10.1039/b921979j 10.1016/j.jpowsour.2014.05.096 10.1002/anie.200804355 10.1039/C6TA04398D 10.1039/C5TA00961H 10.1016/S0378-7753(02)00533-5 10.1016/j.jpowsour.2016.11.015 10.1021/nl020297u 10.1149/1.3247598 10.1038/nnano.2007.411 10.1002/aenm.201100519 10.1016/j.jpowsour.2015.11.079 10.1002/ppsc.201300231 10.1016/j.jpowsour.2010.08.114 10.1021/nl203967r 10.1021/nl3014814 10.1016/j.jpowsour.2013.07.065 10.1002/anie.201310412 10.1016/j.electacta.2015.07.173 10.1016/j.carbon.2016.12.022 10.1021/jp804413a 10.1016/j.nanoen.2016.11.013 10.1021/jz3006892 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2018.04.112 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
EndPage | 101 |
ExternalDocumentID | 10_1016_j_jpowsour_2018_04_112 S0378775318304555 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c417t-28c5a671fd5e3f0b7e2ddb0d66c2ce11d650918f06b9cc21053b12845b2193cc3 |
IEDL.DBID | AIKHN |
ISSN | 0378-7753 |
IngestDate | Tue Jul 01 01:40:09 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 Fri Feb 23 02:28:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Spray dry High-rate Si anode Silicon/CNT microsphere |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-28c5a671fd5e3f0b7e2ddb0d66c2ce11d650918f06b9cc21053b12845b2193cc3 |
ORCID | 0000-0002-2184-6617 0000-0002-1618-791X |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2018_04_112 crossref_primary_10_1016_j_jpowsour_2018_04_112 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2018_04_112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of power sources |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Armand, Tarascon (bib2) 2008; 451 Ulvestad, Andersen, Maehlen, Prytz, Kirkengen (bib42) 2017; 7 Zhang, Wang, Ren, Tan, Chen, Li, Zhong, Su (bib18) 2014; 53 Feng, Yang, Bie, Wang, Nuli, Lu (bib24) 2014; 6 Yan, Zhou, Li, Wang, Zhong, Wang, Chen (bib38) 2013; 3 Kasavajjula, Wang, Appleby (bib3) 2007; 163 Chan, Peng, Liu, McIlwrath, Zhang, Huggins, Cui (bib9) 2008; 3 Agyeman, Song, Lee, Park, Kang (bib23) 2016; 6 Zhang, Du, Li, Shen, Yang, Guo, Liu, Elzatahry, Zhao (bib17) 2014; 26 Wada, Yamada, Kato (bib5) 2016; 306 Zhang, Rajagopalan, Guo, Hu, Dou, Liu (bib26) 2016; 26 Tarascon, Armand (bib1) 2001; 414 Kim, Oh, Chae, Yeom, Choi, Kim, Oh, Lee (bib22) 2015; 3 Dimov, Fukuda, Umeno, Kugino, Yoshio (bib28) 2003; 114 Jeong, Kim, Kim, Roh, Kim (bib32) 2016; 336 Epur, Hanumantha, Datta, Hong, Gattu, Kumta (bib6) 2015; 3 Li, Lu, Zhang (bib35) 2014; 120 Kim, Han, Choo, Cho (bib16) 2008; 47 Xu, Yin, Ma, Zuo, Cheng (bib34) 2010; 20 Du, Gao, Yin, Chen, Wang (bib10) 2011; 4 Liang, Liu, Xu (bib11) 2014; 267 Park, Ahn, Choi, Roh, Kim (bib27) 2015; 3 Kim, Lee, Kim, Wi, Lee, Nam, Kim, Kim, Park (bib31) 2017; 114 Liu, Wu, McDowell, Yao, Wang, Cui (bib8) 2012; 12 Su, Wu, Li, Xiao, Lott, Lu, Sheldon, Wu (bib12) 2014; 4 Li, Cho, Li, Zhang, Williams, Dayeh, Picraux (bib41) 2012; 2 Luo, Zhao, Wu, Jang, Kung, Huang (bib20) 2012; 3 Wu, Yang, Zhou, Zhang, Ren, Nie (bib19) 2016; 4 Bom, Andrews, Jacques, Anthony, Chen, Meier, Selegue (bib36) 2002; 2 Terranova, Orlanducci, Tamburri, Guglielmotti, Rossi (bib14) 2014; 246 Kundu, Wang, Xia, Muhler (bib37) 2008; 112 Yamada, Iriyama, Abe, Ogumi (bib43) 2010; 157 Xu, Li, Sun, Yin, Wan, Guo (bib33) 2017; 7 Choi, Ko, Jung, Kang (bib30) 2014; 20 Zhang (bib40) 2011; 196 Wu, Zheng, Liu, Carney, Yang, Cui (bib7) 2012; 12 Wu, Wang, Tang, Zhou, Lu (bib21) 2014; 6 Nitta, Yushin (bib39) 2014; 31 Shen, Xia, Xie, Yao, Zhong, Zhan, Wang, Wu, Wang, Tu (bib15) 2017; 5 Zuo, Zhu, Muller-Buschbaum, Cheng (bib13) 2017; 31 Liu, Xun, Vukmirovic, Song, Olalde-Velasco, Zheng, Battaglia, Wang, Yang (bib4) 2011; 23 Bie, Yu, Yang, Lu, Nuli, Wang (bib25) 2015; 178 Magasinski, Dixon, Hertzberg, Kvit, Ayala, Yushin (bib29) 2010; 9 Kim (10.1016/j.jpowsour.2018.04.112_bib16) 2008; 47 Wu (10.1016/j.jpowsour.2018.04.112_bib19) 2016; 4 Wada (10.1016/j.jpowsour.2018.04.112_bib5) 2016; 306 Armand (10.1016/j.jpowsour.2018.04.112_bib2) 2008; 451 Chan (10.1016/j.jpowsour.2018.04.112_bib9) 2008; 3 Wu (10.1016/j.jpowsour.2018.04.112_bib7) 2012; 12 Liang (10.1016/j.jpowsour.2018.04.112_bib11) 2014; 267 Luo (10.1016/j.jpowsour.2018.04.112_bib20) 2012; 3 Du (10.1016/j.jpowsour.2018.04.112_bib10) 2011; 4 Tarascon (10.1016/j.jpowsour.2018.04.112_bib1) 2001; 414 Zhang (10.1016/j.jpowsour.2018.04.112_bib17) 2014; 26 Choi (10.1016/j.jpowsour.2018.04.112_bib30) 2014; 20 Kim (10.1016/j.jpowsour.2018.04.112_bib22) 2015; 3 Wu (10.1016/j.jpowsour.2018.04.112_bib21) 2014; 6 Shen (10.1016/j.jpowsour.2018.04.112_bib15) 2017; 5 Nitta (10.1016/j.jpowsour.2018.04.112_bib39) 2014; 31 Zhang (10.1016/j.jpowsour.2018.04.112_bib40) 2011; 196 Agyeman (10.1016/j.jpowsour.2018.04.112_bib23) 2016; 6 Li (10.1016/j.jpowsour.2018.04.112_bib35) 2014; 120 Zhang (10.1016/j.jpowsour.2018.04.112_bib26) 2016; 26 Yamada (10.1016/j.jpowsour.2018.04.112_bib43) 2010; 157 Jeong (10.1016/j.jpowsour.2018.04.112_bib32) 2016; 336 Feng (10.1016/j.jpowsour.2018.04.112_bib24) 2014; 6 Dimov (10.1016/j.jpowsour.2018.04.112_bib28) 2003; 114 Terranova (10.1016/j.jpowsour.2018.04.112_bib14) 2014; 246 Zhang (10.1016/j.jpowsour.2018.04.112_bib18) 2014; 53 Bie (10.1016/j.jpowsour.2018.04.112_bib25) 2015; 178 Kundu (10.1016/j.jpowsour.2018.04.112_bib37) 2008; 112 Kasavajjula (10.1016/j.jpowsour.2018.04.112_bib3) 2007; 163 Zuo (10.1016/j.jpowsour.2018.04.112_bib13) 2017; 31 Magasinski (10.1016/j.jpowsour.2018.04.112_bib29) 2010; 9 Kim (10.1016/j.jpowsour.2018.04.112_bib31) 2017; 114 Bom (10.1016/j.jpowsour.2018.04.112_bib36) 2002; 2 Xu (10.1016/j.jpowsour.2018.04.112_bib34) 2010; 20 Liu (10.1016/j.jpowsour.2018.04.112_bib4) 2011; 23 Su (10.1016/j.jpowsour.2018.04.112_bib12) 2014; 4 Yan (10.1016/j.jpowsour.2018.04.112_bib38) 2013; 3 Park (10.1016/j.jpowsour.2018.04.112_bib27) 2015; 3 Ulvestad (10.1016/j.jpowsour.2018.04.112_bib42) 2017; 7 Epur (10.1016/j.jpowsour.2018.04.112_bib6) 2015; 3 Liu (10.1016/j.jpowsour.2018.04.112_bib8) 2012; 12 Xu (10.1016/j.jpowsour.2018.04.112_bib33) 2017; 7 Li (10.1016/j.jpowsour.2018.04.112_bib41) 2012; 2 |
References_xml | – volume: 23 year: 2011 ident: bib4 publication-title: Adv. Mater. – volume: 306 start-page: 8 year: 2016 end-page: 16 ident: bib5 publication-title: J. Power Sources – volume: 336 start-page: 376 year: 2016 end-page: 384 ident: bib32 publication-title: J. Power Sources – volume: 163 start-page: 1003 year: 2007 end-page: 1039 ident: bib3 publication-title: J. Power Sources – volume: 12 start-page: 3315 year: 2012 end-page: 3321 ident: bib8 publication-title: Nano Lett. – volume: 4 year: 2014 ident: bib12 publication-title: Adv Energy Mater – volume: 3 year: 2013 ident: bib38 publication-title: Sci. Rep.-Uk – volume: 6 start-page: 12532 year: 2014 end-page: 12539 ident: bib24 publication-title: Nanoscale – volume: 20 start-page: 11078 year: 2014 end-page: 11083 ident: bib30 publication-title: Chem. Eur J. – volume: 3 start-page: 20935 year: 2015 end-page: 20943 ident: bib27 publication-title: J. Mater. Chem. – volume: 112 start-page: 16869 year: 2008 end-page: 16878 ident: bib37 publication-title: J. Phys. Chem. C – volume: 6 year: 2016 ident: bib23 publication-title: Adv. Energy Mater. – volume: 3 start-page: 31 year: 2008 end-page: 35 ident: bib9 publication-title: Nat. Nanotechnol. – volume: 4 start-page: 1037 year: 2011 end-page: 1042 ident: bib10 publication-title: Energy Environ. Sci. – volume: 3 start-page: 11117 year: 2015 end-page: 11129 ident: bib6 publication-title: J. Mater. Chem. – volume: 114 start-page: 88 year: 2003 end-page: 95 ident: bib28 publication-title: J. Power Sources – volume: 2 start-page: 615 year: 2002 end-page: 619 ident: bib36 publication-title: Nano Lett. – volume: 31 start-page: 317 year: 2014 end-page: 336 ident: bib39 publication-title: Part. Part. Syst. Char. – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: bib2 publication-title: Nature – volume: 9 start-page: 461 year: 2010 ident: bib29 publication-title: Nat. Mater. – volume: 47 start-page: 10151 year: 2008 end-page: 10154 ident: bib16 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1824 year: 2012 end-page: 1829 ident: bib20 publication-title: J. Phys. Chem. Lett. – volume: 267 start-page: 469 year: 2014 end-page: 490 ident: bib11 publication-title: J. Power Sources – volume: 53 start-page: 5165 year: 2014 end-page: 5169 ident: bib18 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 11381 year: 2016 end-page: 11387 ident: bib19 publication-title: J. Mater. Chem. – volume: 3 start-page: 18684 year: 2015 end-page: 18695 ident: bib22 publication-title: J. Mater. Chem. – volume: 120 start-page: 96 year: 2014 end-page: 101 ident: bib35 publication-title: Electrochim. Acta – volume: 178 start-page: 65 year: 2015 end-page: 73 ident: bib25 publication-title: Electrochim. Acta – volume: 157 start-page: A26 year: 2010 end-page: A30 ident: bib43 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 3546 year: 2014 end-page: 3552 ident: bib21 publication-title: Acs Appl. Mater. Inter. – volume: 7 year: 2017 ident: bib33 publication-title: Adv. Energy Mater. – volume: 7 year: 2017 ident: bib42 publication-title: Sci. Rep.-Uk – volume: 246 start-page: 167 year: 2014 end-page: 177 ident: bib14 publication-title: J. Power Sources – volume: 5 start-page: 11197 year: 2017 end-page: 11203 ident: bib15 publication-title: J. Mater. Chem. – volume: 26 start-page: 6749 year: 2014 end-page: 6755 ident: bib17 publication-title: Adv. Mater. – volume: 2 start-page: 87 year: 2012 end-page: 93 ident: bib41 publication-title: Adv. Energy Mater. – volume: 31 start-page: 113 year: 2017 end-page: 143 ident: bib13 publication-title: Nanomater. Energy – volume: 414 start-page: 359 year: 2001 end-page: 367 ident: bib1 publication-title: Nature – volume: 26 start-page: 440 year: 2016 end-page: 446 ident: bib26 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 904 year: 2012 end-page: 909 ident: bib7 publication-title: Nano Lett. – volume: 114 start-page: 275 year: 2017 end-page: 283 ident: bib31 publication-title: Carbon – volume: 20 start-page: 3216 year: 2010 end-page: 3220 ident: bib34 publication-title: J. Mater. Chem. – volume: 196 start-page: 877 year: 2011 end-page: 885 ident: bib40 publication-title: J. Power Sources – volume: 451 start-page: 652 year: 2008 ident: 10.1016/j.jpowsour.2018.04.112_bib2 publication-title: Nature doi: 10.1038/451652a – volume: 26 start-page: 440 year: 2016 ident: 10.1016/j.jpowsour.2018.04.112_bib26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503777 – volume: 163 start-page: 1003 year: 2007 ident: 10.1016/j.jpowsour.2018.04.112_bib3 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.09.084 – volume: 3 start-page: 18684 year: 2015 ident: 10.1016/j.jpowsour.2018.04.112_bib22 publication-title: J. Mater. Chem. doi: 10.1039/C5TA04681E – volume: 9 start-page: 461 year: 2010 ident: 10.1016/j.jpowsour.2018.04.112_bib29 publication-title: Nat. Mater. doi: 10.1038/nmat2749 – volume: 6 start-page: 12532 year: 2014 ident: 10.1016/j.jpowsour.2018.04.112_bib24 publication-title: Nanoscale doi: 10.1039/C4NR03948C – volume: 120 start-page: 96 year: 2014 ident: 10.1016/j.jpowsour.2018.04.112_bib35 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.12.048 – volume: 23 year: 2011 ident: 10.1016/j.jpowsour.2018.04.112_bib4 publication-title: Adv. Mater. – volume: 4 start-page: 1037 year: 2011 ident: 10.1016/j.jpowsour.2018.04.112_bib10 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00428f – volume: 3 year: 2013 ident: 10.1016/j.jpowsour.2018.04.112_bib38 publication-title: Sci. Rep.-Uk – volume: 6 year: 2016 ident: 10.1016/j.jpowsour.2018.04.112_bib23 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600904 – volume: 5 start-page: 11197 year: 2017 ident: 10.1016/j.jpowsour.2018.04.112_bib15 publication-title: J. Mater. Chem. doi: 10.1039/C7TA03294C – volume: 20 start-page: 11078 year: 2014 ident: 10.1016/j.jpowsour.2018.04.112_bib30 publication-title: Chem. Eur J. doi: 10.1002/chem.201402359 – volume: 26 start-page: 6749 year: 2014 ident: 10.1016/j.jpowsour.2018.04.112_bib17 publication-title: Adv. Mater. doi: 10.1002/adma.201402813 – volume: 4 year: 2014 ident: 10.1016/j.jpowsour.2018.04.112_bib12 publication-title: Adv Energy Mater doi: 10.1002/aenm.201300882 – volume: 6 start-page: 3546 year: 2014 ident: 10.1016/j.jpowsour.2018.04.112_bib21 publication-title: Acs Appl. Mater. Inter. doi: 10.1021/am405725u – volume: 3 start-page: 20935 year: 2015 ident: 10.1016/j.jpowsour.2018.04.112_bib27 publication-title: J. Mater. Chem. doi: 10.1039/C5TA03861H – volume: 414 start-page: 359 year: 2001 ident: 10.1016/j.jpowsour.2018.04.112_bib1 publication-title: Nature doi: 10.1038/35104644 – volume: 20 start-page: 3216 year: 2010 ident: 10.1016/j.jpowsour.2018.04.112_bib34 publication-title: J. Mater. Chem. doi: 10.1039/b921979j – volume: 267 start-page: 469 year: 2014 ident: 10.1016/j.jpowsour.2018.04.112_bib11 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.05.096 – volume: 47 start-page: 10151 year: 2008 ident: 10.1016/j.jpowsour.2018.04.112_bib16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200804355 – volume: 4 start-page: 11381 year: 2016 ident: 10.1016/j.jpowsour.2018.04.112_bib19 publication-title: J. Mater. Chem. doi: 10.1039/C6TA04398D – volume: 3 start-page: 11117 year: 2015 ident: 10.1016/j.jpowsour.2018.04.112_bib6 publication-title: J. Mater. Chem. doi: 10.1039/C5TA00961H – volume: 114 start-page: 88 year: 2003 ident: 10.1016/j.jpowsour.2018.04.112_bib28 publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00533-5 – volume: 336 start-page: 376 year: 2016 ident: 10.1016/j.jpowsour.2018.04.112_bib32 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.11.015 – volume: 7 year: 2017 ident: 10.1016/j.jpowsour.2018.04.112_bib33 publication-title: Adv. Energy Mater. – volume: 2 start-page: 615 year: 2002 ident: 10.1016/j.jpowsour.2018.04.112_bib36 publication-title: Nano Lett. doi: 10.1021/nl020297u – volume: 157 start-page: A26 year: 2010 ident: 10.1016/j.jpowsour.2018.04.112_bib43 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3247598 – volume: 3 start-page: 31 year: 2008 ident: 10.1016/j.jpowsour.2018.04.112_bib9 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.411 – volume: 2 start-page: 87 year: 2012 ident: 10.1016/j.jpowsour.2018.04.112_bib41 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100519 – volume: 306 start-page: 8 year: 2016 ident: 10.1016/j.jpowsour.2018.04.112_bib5 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.11.079 – volume: 31 start-page: 317 year: 2014 ident: 10.1016/j.jpowsour.2018.04.112_bib39 publication-title: Part. Part. Syst. Char. doi: 10.1002/ppsc.201300231 – volume: 196 start-page: 877 year: 2011 ident: 10.1016/j.jpowsour.2018.04.112_bib40 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.08.114 – volume: 7 year: 2017 ident: 10.1016/j.jpowsour.2018.04.112_bib42 publication-title: Sci. Rep.-Uk – volume: 12 start-page: 904 year: 2012 ident: 10.1016/j.jpowsour.2018.04.112_bib7 publication-title: Nano Lett. doi: 10.1021/nl203967r – volume: 12 start-page: 3315 year: 2012 ident: 10.1016/j.jpowsour.2018.04.112_bib8 publication-title: Nano Lett. doi: 10.1021/nl3014814 – volume: 246 start-page: 167 year: 2014 ident: 10.1016/j.jpowsour.2018.04.112_bib14 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.07.065 – volume: 53 start-page: 5165 year: 2014 ident: 10.1016/j.jpowsour.2018.04.112_bib18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201310412 – volume: 178 start-page: 65 year: 2015 ident: 10.1016/j.jpowsour.2018.04.112_bib25 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.07.173 – volume: 114 start-page: 275 year: 2017 ident: 10.1016/j.jpowsour.2018.04.112_bib31 publication-title: Carbon doi: 10.1016/j.carbon.2016.12.022 – volume: 112 start-page: 16869 year: 2008 ident: 10.1016/j.jpowsour.2018.04.112_bib37 publication-title: J. Phys. Chem. C doi: 10.1021/jp804413a – volume: 31 start-page: 113 year: 2017 ident: 10.1016/j.jpowsour.2018.04.112_bib13 publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2016.11.013 – volume: 3 start-page: 1824 year: 2012 ident: 10.1016/j.jpowsour.2018.04.112_bib20 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3006892 |
SSID | ssj0001170 |
Score | 2.5179172 |
Snippet | We report on a highly conductive CNT micro-spherical network for high-rate silicon anode materials prepared by one-pot spray drying for lithium-ion batteries.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 94 |
SubjectTerms | High-rate Si anode Lithium-ion batteries Silicon/CNT microsphere Spray dry |
Title | Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode |
URI | https://dx.doi.org/10.1016/j.jpowsour.2018.04.112 |
Volume | 394 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20XvQgfuI3e_C6NpvdbNOjFKUqetGCt5Cd3UBLTUutiBd_uzMmKRUEDx4TGAiT2TczyZs3AOdGu7gINpV5pLw0mGrZdcrKoG3HWyw0xjyNfP9g-wNz-5w8r0CvmYVhWmWN_RWmf6N1fadde7M9HQ7bj5GmYKNqm4KS6pIkWYW1mLJ92oK1y5u7_sMCkHm5yvfPBGqY2GBpUHh0MZpO3vk7ObO8UlY9VSr-PUct5Z3rLdisC0ZxWT3TNqyEcgc2lmQEd2HAZI3xh6DWltVbCb8E5jM3KUWZl5P5mwvihXl38pU1BPitiLJifwsqWQUrFktWjBCvwzEFRinIyoc9GFxfPfX6sl6XINGozlzGKSa57ajCJ0EXkeuE2HsXeWsxxqCUZ7E8lRaRdV1EavUS7Tg7JY5QSyPqfWiVkzIcgDA5Ol-4vOBDrXOTOtRosIuaCkRvzSEkjYMyrLXEeaXFOGtIY6OscWzGjs0iQ71GfAjthd20UtP406Lb-D_7ERcZQf4ftkf_sD2Gdb6qqH4n0JrP3sIplR9zdwarF5_qrA6yL4rw3Zw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSD-MS3e_C6NpvdbNKjiKW-erGF3kJ2dgMtNS22Rfz37phEKgg9eE0YCJPZb2aSb74BuFbShLnTCc8CYbnCRPKWEZo7qWOrMZcY0jTyS1d3-upxEA3W4K6ehSFaZYX9JaZ_o3V1pVl5szkdDpuvgfTB5qttH5S-LomiddhQtNS6ARu3D0-d7g8g03KV758JvmEig6VB4dHNaDr5oO_kxPJKSPVUiPDvHLWUd9q7sFMVjOy2fKY9WHPFPmwvyQgeQJ_IGuNP5ltbUm_1-MUwezeTghVZMZkvjGNvxLvjM9IQoLfCipL9zXzJykixmJNiBJsNxz4wCuatrDuEfvu-d9fh1boEjkrEcx4mGGU6FrmNnMwDE7vQWhNYrTFEJ4QlsTyR5IE2LUTf6kXSUHaKjEctiSiPoFFMCncMTGVobG6ynA61zFRiUKLCFkpfIFqtTiCqHZRipSVOKy3GaU0aG6W1Y1NybBoo32uEJ9D8sZuWahorLVq1_9NfcZF6yF9he_oP2yvY7PRentPnh-7TGWzRnZL2dw6N-fvCXfhSZG4uq1D7AsbR34I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+conductive+carbon+nanotube+micro-spherical+network+for+high-rate+silicon+anode&rft.jtitle=Journal+of+power+sources&rft.au=Park%2C+Byung+Hoon&rft.au=Jeong%2C+Jun+Hui&rft.au=Lee%2C+Geon-Woo&rft.au=Kim%2C+Young-Hwan&rft.date=2018-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=394&rft.spage=94&rft.epage=101&rft_id=info:doi/10.1016%2Fj.jpowsour.2018.04.112&rft.externalDocID=S0378775318304555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |