Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode

We report on a highly conductive CNT micro-spherical network for high-rate silicon anode materials prepared by one-pot spray drying for lithium-ion batteries. The anode material contains silicon nanoparticles bound to CNTs through a small amount of sucrose-derived carbon. The first charge and discha...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 394; pp. 94 - 101
Main Authors Park, Byung Hoon, Jeong, Jun Hui, Lee, Geon-Woo, Kim, Young-Hwan, Roh, Kwang Chul, Kim, Kwang-Bum
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2018
Subjects
Online AccessGet full text
ISSN0378-7753
1873-2755
DOI10.1016/j.jpowsour.2018.04.112

Cover

Abstract We report on a highly conductive CNT micro-spherical network for high-rate silicon anode materials prepared by one-pot spray drying for lithium-ion batteries. The anode material contains silicon nanoparticles bound to CNTs through a small amount of sucrose-derived carbon. The first charge and discharge capacities of the Si/CNT/C microsphere electrode are measured to be 3152 and 2302 mA h g−1 of the composite, respectively, at 0.1 A g−1. The Si/CNT/C microsphere electrode exhibits an initial capacity of 1989 mA h g−1 at current density of 1.0 A g−1 and retains ∼70% of the initial capacity after 100 cycles. Even at a high current density of 10 A g−1, the Si/CNT/C microsphere electrode exhibits a capacity of 784 mA h g−1 with a stable charge/discharge behavior. The superior rate capability of the Si/CNT/C microsphere composites can be attributable to the unhindered Li-ion transport through the highly conductive CNT buffer matrix, to which Si NPs are strongly bound by the sucrose-derived carbon. These salient results give further impetus to the study of CNTs for use as a buffer matrix to improve the rate capability of high-capacity electrode materials with large volume changes during charge storage. •Si NPs are bound to CNT network through a very tiny amount of sucrose-derived carbon.•The Si/CNT/C microsphere has an interconnected pore facilitating Li-ion transport.•The Si/CNT/C microsphere exhibited superior rate capability with high capacity.
AbstractList We report on a highly conductive CNT micro-spherical network for high-rate silicon anode materials prepared by one-pot spray drying for lithium-ion batteries. The anode material contains silicon nanoparticles bound to CNTs through a small amount of sucrose-derived carbon. The first charge and discharge capacities of the Si/CNT/C microsphere electrode are measured to be 3152 and 2302 mA h g−1 of the composite, respectively, at 0.1 A g−1. The Si/CNT/C microsphere electrode exhibits an initial capacity of 1989 mA h g−1 at current density of 1.0 A g−1 and retains ∼70% of the initial capacity after 100 cycles. Even at a high current density of 10 A g−1, the Si/CNT/C microsphere electrode exhibits a capacity of 784 mA h g−1 with a stable charge/discharge behavior. The superior rate capability of the Si/CNT/C microsphere composites can be attributable to the unhindered Li-ion transport through the highly conductive CNT buffer matrix, to which Si NPs are strongly bound by the sucrose-derived carbon. These salient results give further impetus to the study of CNTs for use as a buffer matrix to improve the rate capability of high-capacity electrode materials with large volume changes during charge storage. •Si NPs are bound to CNT network through a very tiny amount of sucrose-derived carbon.•The Si/CNT/C microsphere has an interconnected pore facilitating Li-ion transport.•The Si/CNT/C microsphere exhibited superior rate capability with high capacity.
Author Park, Byung Hoon
Roh, Kwang Chul
Kim, Kwang-Bum
Lee, Geon-Woo
Jeong, Jun Hui
Kim, Young-Hwan
Author_xml – sequence: 1
  givenname: Byung Hoon
  surname: Park
  fullname: Park, Byung Hoon
  organization: Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea
– sequence: 2
  givenname: Jun Hui
  surname: Jeong
  fullname: Jeong, Jun Hui
  organization: Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea
– sequence: 3
  givenname: Geon-Woo
  surname: Lee
  fullname: Lee, Geon-Woo
  organization: Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea
– sequence: 4
  givenname: Young-Hwan
  surname: Kim
  fullname: Kim, Young-Hwan
  organization: Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea
– sequence: 5
  givenname: Kwang Chul
  orcidid: 0000-0002-1618-791X
  surname: Roh
  fullname: Roh, Kwang Chul
  email: rkc@kicet.re.kr
  organization: Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, 101 Soho-ro, Jinju-si, Gyeongsangnam-do, 52851, Republic of Korea
– sequence: 6
  givenname: Kwang-Bum
  orcidid: 0000-0002-2184-6617
  surname: Kim
  fullname: Kim, Kwang-Bum
  email: kbkim@yonsei.ac.kr
  organization: Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea
BookMark eNqFkM1OwzAQBi0EEi3wCsgvkOB1mjiVOIAq_iQkLnC2nPWGugS7st1WfXtSARcunPY0o29nyo598MTYJYgSBDRXq3K1DrsUNrGUAtpSzEoAecQm0KqqkKquj9lEVKotlKqrUzZNaSWEAFBiwt4e3fty2HMM3m4wuy1xNLELnnvjQ950xD8dxlCk9ZKiQzNwT3kX4gfvQ-TLkS6iycSTG9wo4SNl6Zyd9GZIdPFzz9jb_d3r4rF4fnl4Wtw-FzgDlQvZYm0aBb2tqepFp0ha2wnbNCiRAGxTizm0vWi6OaIEUVcdyHZWdxLmFWJ1xq6_vePClCL1Gl022QWfo3GDBqEPifRK_ybSh0RazPSYaMSbP_g6uk8T9_-DN98gjc9tHUWd0JFHsi4SZm2D-0_xBdYzid4
CitedBy_id crossref_primary_10_1002_smll_202403938
crossref_primary_10_1016_j_pnsc_2023_02_001
crossref_primary_10_1016_j_jechem_2023_04_043
crossref_primary_10_1016_j_apsusc_2022_152549
crossref_primary_10_1016_j_jpowsour_2019_05_043
crossref_primary_10_1021_acs_nanolett_2c00341
crossref_primary_10_1016_j_jallcom_2019_02_186
crossref_primary_10_1016_j_jallcom_2020_158487
crossref_primary_10_1016_j_susmat_2022_e00410
crossref_primary_10_1016_j_ijhydene_2022_05_225
crossref_primary_10_1021_acs_langmuir_9b03424
crossref_primary_10_1016_j_jallcom_2019_06_023
crossref_primary_10_1021_acsami_1c07572
crossref_primary_10_1016_j_jpowsour_2024_234617
crossref_primary_10_1007_s11708_020_0810_0
crossref_primary_10_1016_j_cej_2023_146504
crossref_primary_10_1088_1361_6528_abc114
crossref_primary_10_1016_j_jallcom_2023_169846
crossref_primary_10_1016_j_jpowsour_2019_226909
crossref_primary_10_1016_j_jcis_2020_04_082
crossref_primary_10_1002_app_49688
crossref_primary_10_14356_kona_2023006
crossref_primary_10_1016_j_cej_2022_140820
crossref_primary_10_1002_chem_202100842
crossref_primary_10_1016_j_jpowsour_2019_226759
crossref_primary_10_1016_j_jallcom_2020_156437
crossref_primary_10_1002_cey2_643
crossref_primary_10_1021_acsami_1c06413
crossref_primary_10_1016_j_cej_2019_123984
crossref_primary_10_1016_j_carbon_2020_06_053
crossref_primary_10_1016_j_cej_2018_07_054
crossref_primary_10_1002_adfm_202408285
crossref_primary_10_1016_j_jpowsour_2019_227001
crossref_primary_10_1016_j_electacta_2025_145804
crossref_primary_10_1016_j_scriptamat_2021_113840
crossref_primary_10_1039_D2TA06478B
crossref_primary_10_1016_j_jallcom_2022_167850
crossref_primary_10_1016_j_jallcom_2023_168743
crossref_primary_10_1021_acsomega_9b00045
crossref_primary_10_1007_s12613_021_2335_x
crossref_primary_10_1007_s11581_023_05099_4
crossref_primary_10_1002_app_48303
crossref_primary_10_1016_j_jallcom_2019_03_354
crossref_primary_10_15407_hftp12_03_226
crossref_primary_10_1007_s12598_023_02565_w
crossref_primary_10_1016_j_ensm_2024_103901
crossref_primary_10_26599_NRE_2022_9120037
crossref_primary_10_1007_s10854_024_13140_z
crossref_primary_10_1021_acsami_3c16533
crossref_primary_10_1016_j_jcis_2022_09_087
crossref_primary_10_1515_ntrev_2021_0114
crossref_primary_10_1016_j_cej_2018_11_166
crossref_primary_10_1002_cssc_202100687
crossref_primary_10_1007_s41918_018_00028_w
crossref_primary_10_1016_j_carbon_2021_11_059
crossref_primary_10_1016_j_est_2024_110483
crossref_primary_10_3390_ma15124264
crossref_primary_10_1021_acsami_1c23356
crossref_primary_10_1007_s11426_021_1023_4
crossref_primary_10_1016_j_mtcomm_2022_103158
crossref_primary_10_1021_acsanm_3c00942
crossref_primary_10_1007_s11664_019_07895_z
crossref_primary_10_1016_j_jmst_2023_07_026
crossref_primary_10_1002_celc_202001388
crossref_primary_10_1016_j_apenergy_2019_113452
Cites_doi 10.1038/451652a
10.1002/adfm.201503777
10.1016/j.jpowsour.2006.09.084
10.1039/C5TA04681E
10.1038/nmat2749
10.1039/C4NR03948C
10.1016/j.electacta.2013.12.048
10.1039/c0ee00428f
10.1002/aenm.201600904
10.1039/C7TA03294C
10.1002/chem.201402359
10.1002/adma.201402813
10.1002/aenm.201300882
10.1021/am405725u
10.1039/C5TA03861H
10.1038/35104644
10.1039/b921979j
10.1016/j.jpowsour.2014.05.096
10.1002/anie.200804355
10.1039/C6TA04398D
10.1039/C5TA00961H
10.1016/S0378-7753(02)00533-5
10.1016/j.jpowsour.2016.11.015
10.1021/nl020297u
10.1149/1.3247598
10.1038/nnano.2007.411
10.1002/aenm.201100519
10.1016/j.jpowsour.2015.11.079
10.1002/ppsc.201300231
10.1016/j.jpowsour.2010.08.114
10.1021/nl203967r
10.1021/nl3014814
10.1016/j.jpowsour.2013.07.065
10.1002/anie.201310412
10.1016/j.electacta.2015.07.173
10.1016/j.carbon.2016.12.022
10.1021/jp804413a
10.1016/j.nanoen.2016.11.013
10.1021/jz3006892
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2018.04.112
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 101
ExternalDocumentID 10_1016_j_jpowsour_2018_04_112
S0378775318304555
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c417t-28c5a671fd5e3f0b7e2ddb0d66c2ce11d650918f06b9cc21053b12845b2193cc3
IEDL.DBID AIKHN
ISSN 0378-7753
IngestDate Tue Jul 01 01:40:09 EDT 2025
Thu Apr 24 23:02:17 EDT 2025
Fri Feb 23 02:28:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Spray dry
High-rate Si anode
Silicon/CNT microsphere
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-28c5a671fd5e3f0b7e2ddb0d66c2ce11d650918f06b9cc21053b12845b2193cc3
ORCID 0000-0002-2184-6617
0000-0002-1618-791X
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2018_04_112
crossref_primary_10_1016_j_jpowsour_2018_04_112
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2018_04_112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Armand, Tarascon (bib2) 2008; 451
Ulvestad, Andersen, Maehlen, Prytz, Kirkengen (bib42) 2017; 7
Zhang, Wang, Ren, Tan, Chen, Li, Zhong, Su (bib18) 2014; 53
Feng, Yang, Bie, Wang, Nuli, Lu (bib24) 2014; 6
Yan, Zhou, Li, Wang, Zhong, Wang, Chen (bib38) 2013; 3
Kasavajjula, Wang, Appleby (bib3) 2007; 163
Chan, Peng, Liu, McIlwrath, Zhang, Huggins, Cui (bib9) 2008; 3
Agyeman, Song, Lee, Park, Kang (bib23) 2016; 6
Zhang, Du, Li, Shen, Yang, Guo, Liu, Elzatahry, Zhao (bib17) 2014; 26
Wada, Yamada, Kato (bib5) 2016; 306
Zhang, Rajagopalan, Guo, Hu, Dou, Liu (bib26) 2016; 26
Tarascon, Armand (bib1) 2001; 414
Kim, Oh, Chae, Yeom, Choi, Kim, Oh, Lee (bib22) 2015; 3
Dimov, Fukuda, Umeno, Kugino, Yoshio (bib28) 2003; 114
Jeong, Kim, Kim, Roh, Kim (bib32) 2016; 336
Epur, Hanumantha, Datta, Hong, Gattu, Kumta (bib6) 2015; 3
Li, Lu, Zhang (bib35) 2014; 120
Kim, Han, Choo, Cho (bib16) 2008; 47
Xu, Yin, Ma, Zuo, Cheng (bib34) 2010; 20
Du, Gao, Yin, Chen, Wang (bib10) 2011; 4
Liang, Liu, Xu (bib11) 2014; 267
Park, Ahn, Choi, Roh, Kim (bib27) 2015; 3
Kim, Lee, Kim, Wi, Lee, Nam, Kim, Kim, Park (bib31) 2017; 114
Liu, Wu, McDowell, Yao, Wang, Cui (bib8) 2012; 12
Su, Wu, Li, Xiao, Lott, Lu, Sheldon, Wu (bib12) 2014; 4
Li, Cho, Li, Zhang, Williams, Dayeh, Picraux (bib41) 2012; 2
Luo, Zhao, Wu, Jang, Kung, Huang (bib20) 2012; 3
Wu, Yang, Zhou, Zhang, Ren, Nie (bib19) 2016; 4
Bom, Andrews, Jacques, Anthony, Chen, Meier, Selegue (bib36) 2002; 2
Terranova, Orlanducci, Tamburri, Guglielmotti, Rossi (bib14) 2014; 246
Kundu, Wang, Xia, Muhler (bib37) 2008; 112
Yamada, Iriyama, Abe, Ogumi (bib43) 2010; 157
Xu, Li, Sun, Yin, Wan, Guo (bib33) 2017; 7
Choi, Ko, Jung, Kang (bib30) 2014; 20
Zhang (bib40) 2011; 196
Wu, Zheng, Liu, Carney, Yang, Cui (bib7) 2012; 12
Wu, Wang, Tang, Zhou, Lu (bib21) 2014; 6
Nitta, Yushin (bib39) 2014; 31
Shen, Xia, Xie, Yao, Zhong, Zhan, Wang, Wu, Wang, Tu (bib15) 2017; 5
Zuo, Zhu, Muller-Buschbaum, Cheng (bib13) 2017; 31
Liu, Xun, Vukmirovic, Song, Olalde-Velasco, Zheng, Battaglia, Wang, Yang (bib4) 2011; 23
Bie, Yu, Yang, Lu, Nuli, Wang (bib25) 2015; 178
Magasinski, Dixon, Hertzberg, Kvit, Ayala, Yushin (bib29) 2010; 9
Kim (10.1016/j.jpowsour.2018.04.112_bib16) 2008; 47
Wu (10.1016/j.jpowsour.2018.04.112_bib19) 2016; 4
Wada (10.1016/j.jpowsour.2018.04.112_bib5) 2016; 306
Armand (10.1016/j.jpowsour.2018.04.112_bib2) 2008; 451
Chan (10.1016/j.jpowsour.2018.04.112_bib9) 2008; 3
Wu (10.1016/j.jpowsour.2018.04.112_bib7) 2012; 12
Liang (10.1016/j.jpowsour.2018.04.112_bib11) 2014; 267
Luo (10.1016/j.jpowsour.2018.04.112_bib20) 2012; 3
Du (10.1016/j.jpowsour.2018.04.112_bib10) 2011; 4
Tarascon (10.1016/j.jpowsour.2018.04.112_bib1) 2001; 414
Zhang (10.1016/j.jpowsour.2018.04.112_bib17) 2014; 26
Choi (10.1016/j.jpowsour.2018.04.112_bib30) 2014; 20
Kim (10.1016/j.jpowsour.2018.04.112_bib22) 2015; 3
Wu (10.1016/j.jpowsour.2018.04.112_bib21) 2014; 6
Shen (10.1016/j.jpowsour.2018.04.112_bib15) 2017; 5
Nitta (10.1016/j.jpowsour.2018.04.112_bib39) 2014; 31
Zhang (10.1016/j.jpowsour.2018.04.112_bib40) 2011; 196
Agyeman (10.1016/j.jpowsour.2018.04.112_bib23) 2016; 6
Li (10.1016/j.jpowsour.2018.04.112_bib35) 2014; 120
Zhang (10.1016/j.jpowsour.2018.04.112_bib26) 2016; 26
Yamada (10.1016/j.jpowsour.2018.04.112_bib43) 2010; 157
Jeong (10.1016/j.jpowsour.2018.04.112_bib32) 2016; 336
Feng (10.1016/j.jpowsour.2018.04.112_bib24) 2014; 6
Dimov (10.1016/j.jpowsour.2018.04.112_bib28) 2003; 114
Terranova (10.1016/j.jpowsour.2018.04.112_bib14) 2014; 246
Zhang (10.1016/j.jpowsour.2018.04.112_bib18) 2014; 53
Bie (10.1016/j.jpowsour.2018.04.112_bib25) 2015; 178
Kundu (10.1016/j.jpowsour.2018.04.112_bib37) 2008; 112
Kasavajjula (10.1016/j.jpowsour.2018.04.112_bib3) 2007; 163
Zuo (10.1016/j.jpowsour.2018.04.112_bib13) 2017; 31
Magasinski (10.1016/j.jpowsour.2018.04.112_bib29) 2010; 9
Kim (10.1016/j.jpowsour.2018.04.112_bib31) 2017; 114
Bom (10.1016/j.jpowsour.2018.04.112_bib36) 2002; 2
Xu (10.1016/j.jpowsour.2018.04.112_bib34) 2010; 20
Liu (10.1016/j.jpowsour.2018.04.112_bib4) 2011; 23
Su (10.1016/j.jpowsour.2018.04.112_bib12) 2014; 4
Yan (10.1016/j.jpowsour.2018.04.112_bib38) 2013; 3
Park (10.1016/j.jpowsour.2018.04.112_bib27) 2015; 3
Ulvestad (10.1016/j.jpowsour.2018.04.112_bib42) 2017; 7
Epur (10.1016/j.jpowsour.2018.04.112_bib6) 2015; 3
Liu (10.1016/j.jpowsour.2018.04.112_bib8) 2012; 12
Xu (10.1016/j.jpowsour.2018.04.112_bib33) 2017; 7
Li (10.1016/j.jpowsour.2018.04.112_bib41) 2012; 2
References_xml – volume: 23
  year: 2011
  ident: bib4
  publication-title: Adv. Mater.
– volume: 306
  start-page: 8
  year: 2016
  end-page: 16
  ident: bib5
  publication-title: J. Power Sources
– volume: 336
  start-page: 376
  year: 2016
  end-page: 384
  ident: bib32
  publication-title: J. Power Sources
– volume: 163
  start-page: 1003
  year: 2007
  end-page: 1039
  ident: bib3
  publication-title: J. Power Sources
– volume: 12
  start-page: 3315
  year: 2012
  end-page: 3321
  ident: bib8
  publication-title: Nano Lett.
– volume: 4
  year: 2014
  ident: bib12
  publication-title: Adv Energy Mater
– volume: 3
  year: 2013
  ident: bib38
  publication-title: Sci. Rep.-Uk
– volume: 6
  start-page: 12532
  year: 2014
  end-page: 12539
  ident: bib24
  publication-title: Nanoscale
– volume: 20
  start-page: 11078
  year: 2014
  end-page: 11083
  ident: bib30
  publication-title: Chem. Eur J.
– volume: 3
  start-page: 20935
  year: 2015
  end-page: 20943
  ident: bib27
  publication-title: J. Mater. Chem.
– volume: 112
  start-page: 16869
  year: 2008
  end-page: 16878
  ident: bib37
  publication-title: J. Phys. Chem. C
– volume: 6
  year: 2016
  ident: bib23
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 31
  year: 2008
  end-page: 35
  ident: bib9
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 1037
  year: 2011
  end-page: 1042
  ident: bib10
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 11117
  year: 2015
  end-page: 11129
  ident: bib6
  publication-title: J. Mater. Chem.
– volume: 114
  start-page: 88
  year: 2003
  end-page: 95
  ident: bib28
  publication-title: J. Power Sources
– volume: 2
  start-page: 615
  year: 2002
  end-page: 619
  ident: bib36
  publication-title: Nano Lett.
– volume: 31
  start-page: 317
  year: 2014
  end-page: 336
  ident: bib39
  publication-title: Part. Part. Syst. Char.
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  ident: bib2
  publication-title: Nature
– volume: 9
  start-page: 461
  year: 2010
  ident: bib29
  publication-title: Nat. Mater.
– volume: 47
  start-page: 10151
  year: 2008
  end-page: 10154
  ident: bib16
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1824
  year: 2012
  end-page: 1829
  ident: bib20
  publication-title: J. Phys. Chem. Lett.
– volume: 267
  start-page: 469
  year: 2014
  end-page: 490
  ident: bib11
  publication-title: J. Power Sources
– volume: 53
  start-page: 5165
  year: 2014
  end-page: 5169
  ident: bib18
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 11381
  year: 2016
  end-page: 11387
  ident: bib19
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 18684
  year: 2015
  end-page: 18695
  ident: bib22
  publication-title: J. Mater. Chem.
– volume: 120
  start-page: 96
  year: 2014
  end-page: 101
  ident: bib35
  publication-title: Electrochim. Acta
– volume: 178
  start-page: 65
  year: 2015
  end-page: 73
  ident: bib25
  publication-title: Electrochim. Acta
– volume: 157
  start-page: A26
  year: 2010
  end-page: A30
  ident: bib43
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 3546
  year: 2014
  end-page: 3552
  ident: bib21
  publication-title: Acs Appl. Mater. Inter.
– volume: 7
  year: 2017
  ident: bib33
  publication-title: Adv. Energy Mater.
– volume: 7
  year: 2017
  ident: bib42
  publication-title: Sci. Rep.-Uk
– volume: 246
  start-page: 167
  year: 2014
  end-page: 177
  ident: bib14
  publication-title: J. Power Sources
– volume: 5
  start-page: 11197
  year: 2017
  end-page: 11203
  ident: bib15
  publication-title: J. Mater. Chem.
– volume: 26
  start-page: 6749
  year: 2014
  end-page: 6755
  ident: bib17
  publication-title: Adv. Mater.
– volume: 2
  start-page: 87
  year: 2012
  end-page: 93
  ident: bib41
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 113
  year: 2017
  end-page: 143
  ident: bib13
  publication-title: Nanomater. Energy
– volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  ident: bib1
  publication-title: Nature
– volume: 26
  start-page: 440
  year: 2016
  end-page: 446
  ident: bib26
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 904
  year: 2012
  end-page: 909
  ident: bib7
  publication-title: Nano Lett.
– volume: 114
  start-page: 275
  year: 2017
  end-page: 283
  ident: bib31
  publication-title: Carbon
– volume: 20
  start-page: 3216
  year: 2010
  end-page: 3220
  ident: bib34
  publication-title: J. Mater. Chem.
– volume: 196
  start-page: 877
  year: 2011
  end-page: 885
  ident: bib40
  publication-title: J. Power Sources
– volume: 451
  start-page: 652
  year: 2008
  ident: 10.1016/j.jpowsour.2018.04.112_bib2
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 26
  start-page: 440
  year: 2016
  ident: 10.1016/j.jpowsour.2018.04.112_bib26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503777
– volume: 163
  start-page: 1003
  year: 2007
  ident: 10.1016/j.jpowsour.2018.04.112_bib3
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.09.084
– volume: 3
  start-page: 18684
  year: 2015
  ident: 10.1016/j.jpowsour.2018.04.112_bib22
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA04681E
– volume: 9
  start-page: 461
  year: 2010
  ident: 10.1016/j.jpowsour.2018.04.112_bib29
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2749
– volume: 6
  start-page: 12532
  year: 2014
  ident: 10.1016/j.jpowsour.2018.04.112_bib24
  publication-title: Nanoscale
  doi: 10.1039/C4NR03948C
– volume: 120
  start-page: 96
  year: 2014
  ident: 10.1016/j.jpowsour.2018.04.112_bib35
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.12.048
– volume: 23
  year: 2011
  ident: 10.1016/j.jpowsour.2018.04.112_bib4
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1037
  year: 2011
  ident: 10.1016/j.jpowsour.2018.04.112_bib10
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00428f
– volume: 3
  year: 2013
  ident: 10.1016/j.jpowsour.2018.04.112_bib38
  publication-title: Sci. Rep.-Uk
– volume: 6
  year: 2016
  ident: 10.1016/j.jpowsour.2018.04.112_bib23
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600904
– volume: 5
  start-page: 11197
  year: 2017
  ident: 10.1016/j.jpowsour.2018.04.112_bib15
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA03294C
– volume: 20
  start-page: 11078
  year: 2014
  ident: 10.1016/j.jpowsour.2018.04.112_bib30
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201402359
– volume: 26
  start-page: 6749
  year: 2014
  ident: 10.1016/j.jpowsour.2018.04.112_bib17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402813
– volume: 4
  year: 2014
  ident: 10.1016/j.jpowsour.2018.04.112_bib12
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201300882
– volume: 6
  start-page: 3546
  year: 2014
  ident: 10.1016/j.jpowsour.2018.04.112_bib21
  publication-title: Acs Appl. Mater. Inter.
  doi: 10.1021/am405725u
– volume: 3
  start-page: 20935
  year: 2015
  ident: 10.1016/j.jpowsour.2018.04.112_bib27
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA03861H
– volume: 414
  start-page: 359
  year: 2001
  ident: 10.1016/j.jpowsour.2018.04.112_bib1
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 20
  start-page: 3216
  year: 2010
  ident: 10.1016/j.jpowsour.2018.04.112_bib34
  publication-title: J. Mater. Chem.
  doi: 10.1039/b921979j
– volume: 267
  start-page: 469
  year: 2014
  ident: 10.1016/j.jpowsour.2018.04.112_bib11
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.05.096
– volume: 47
  start-page: 10151
  year: 2008
  ident: 10.1016/j.jpowsour.2018.04.112_bib16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200804355
– volume: 4
  start-page: 11381
  year: 2016
  ident: 10.1016/j.jpowsour.2018.04.112_bib19
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA04398D
– volume: 3
  start-page: 11117
  year: 2015
  ident: 10.1016/j.jpowsour.2018.04.112_bib6
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA00961H
– volume: 114
  start-page: 88
  year: 2003
  ident: 10.1016/j.jpowsour.2018.04.112_bib28
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00533-5
– volume: 336
  start-page: 376
  year: 2016
  ident: 10.1016/j.jpowsour.2018.04.112_bib32
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.11.015
– volume: 7
  year: 2017
  ident: 10.1016/j.jpowsour.2018.04.112_bib33
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 615
  year: 2002
  ident: 10.1016/j.jpowsour.2018.04.112_bib36
  publication-title: Nano Lett.
  doi: 10.1021/nl020297u
– volume: 157
  start-page: A26
  year: 2010
  ident: 10.1016/j.jpowsour.2018.04.112_bib43
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3247598
– volume: 3
  start-page: 31
  year: 2008
  ident: 10.1016/j.jpowsour.2018.04.112_bib9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.411
– volume: 2
  start-page: 87
  year: 2012
  ident: 10.1016/j.jpowsour.2018.04.112_bib41
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100519
– volume: 306
  start-page: 8
  year: 2016
  ident: 10.1016/j.jpowsour.2018.04.112_bib5
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.079
– volume: 31
  start-page: 317
  year: 2014
  ident: 10.1016/j.jpowsour.2018.04.112_bib39
  publication-title: Part. Part. Syst. Char.
  doi: 10.1002/ppsc.201300231
– volume: 196
  start-page: 877
  year: 2011
  ident: 10.1016/j.jpowsour.2018.04.112_bib40
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.08.114
– volume: 7
  year: 2017
  ident: 10.1016/j.jpowsour.2018.04.112_bib42
  publication-title: Sci. Rep.-Uk
– volume: 12
  start-page: 904
  year: 2012
  ident: 10.1016/j.jpowsour.2018.04.112_bib7
  publication-title: Nano Lett.
  doi: 10.1021/nl203967r
– volume: 12
  start-page: 3315
  year: 2012
  ident: 10.1016/j.jpowsour.2018.04.112_bib8
  publication-title: Nano Lett.
  doi: 10.1021/nl3014814
– volume: 246
  start-page: 167
  year: 2014
  ident: 10.1016/j.jpowsour.2018.04.112_bib14
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.07.065
– volume: 53
  start-page: 5165
  year: 2014
  ident: 10.1016/j.jpowsour.2018.04.112_bib18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201310412
– volume: 178
  start-page: 65
  year: 2015
  ident: 10.1016/j.jpowsour.2018.04.112_bib25
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.07.173
– volume: 114
  start-page: 275
  year: 2017
  ident: 10.1016/j.jpowsour.2018.04.112_bib31
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.022
– volume: 112
  start-page: 16869
  year: 2008
  ident: 10.1016/j.jpowsour.2018.04.112_bib37
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp804413a
– volume: 31
  start-page: 113
  year: 2017
  ident: 10.1016/j.jpowsour.2018.04.112_bib13
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2016.11.013
– volume: 3
  start-page: 1824
  year: 2012
  ident: 10.1016/j.jpowsour.2018.04.112_bib20
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3006892
SSID ssj0001170
Score 2.5179172
Snippet We report on a highly conductive CNT micro-spherical network for high-rate silicon anode materials prepared by one-pot spray drying for lithium-ion batteries....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 94
SubjectTerms High-rate Si anode
Lithium-ion batteries
Silicon/CNT microsphere
Spray dry
Title Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode
URI https://dx.doi.org/10.1016/j.jpowsour.2018.04.112
Volume 394
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20XvQgfuI3e_C6NpvdbNOjFKUqetGCt5Cd3UBLTUutiBd_uzMmKRUEDx4TGAiT2TczyZs3AOdGu7gINpV5pLw0mGrZdcrKoG3HWyw0xjyNfP9g-wNz-5w8r0CvmYVhWmWN_RWmf6N1fadde7M9HQ7bj5GmYKNqm4KS6pIkWYW1mLJ92oK1y5u7_sMCkHm5yvfPBGqY2GBpUHh0MZpO3vk7ObO8UlY9VSr-PUct5Z3rLdisC0ZxWT3TNqyEcgc2lmQEd2HAZI3xh6DWltVbCb8E5jM3KUWZl5P5mwvihXl38pU1BPitiLJifwsqWQUrFktWjBCvwzEFRinIyoc9GFxfPfX6sl6XINGozlzGKSa57ajCJ0EXkeuE2HsXeWsxxqCUZ7E8lRaRdV1EavUS7Tg7JY5QSyPqfWiVkzIcgDA5Ol-4vOBDrXOTOtRosIuaCkRvzSEkjYMyrLXEeaXFOGtIY6OscWzGjs0iQ71GfAjthd20UtP406Lb-D_7ERcZQf4ftkf_sD2Gdb6qqH4n0JrP3sIplR9zdwarF5_qrA6yL4rw3Zw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSD-MS3e_C6NpvdbNKjiKW-erGF3kJ2dgMtNS22Rfz37phEKgg9eE0YCJPZb2aSb74BuFbShLnTCc8CYbnCRPKWEZo7qWOrMZcY0jTyS1d3-upxEA3W4K6ehSFaZYX9JaZ_o3V1pVl5szkdDpuvgfTB5qttH5S-LomiddhQtNS6ARu3D0-d7g8g03KV758JvmEig6VB4dHNaDr5oO_kxPJKSPVUiPDvHLWUd9q7sFMVjOy2fKY9WHPFPmwvyQgeQJ_IGuNP5ltbUm_1-MUwezeTghVZMZkvjGNvxLvjM9IQoLfCipL9zXzJykixmJNiBJsNxz4wCuatrDuEfvu-d9fh1boEjkrEcx4mGGU6FrmNnMwDE7vQWhNYrTFEJ4QlsTyR5IE2LUTf6kXSUHaKjEctiSiPoFFMCncMTGVobG6ynA61zFRiUKLCFkpfIFqtTiCqHZRipSVOKy3GaU0aG6W1Y1NybBoo32uEJ9D8sZuWahorLVq1_9NfcZF6yF9he_oP2yvY7PRentPnh-7TGWzRnZL2dw6N-fvCXfhSZG4uq1D7AsbR34I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+conductive+carbon+nanotube+micro-spherical+network+for+high-rate+silicon+anode&rft.jtitle=Journal+of+power+sources&rft.au=Park%2C+Byung+Hoon&rft.au=Jeong%2C+Jun+Hui&rft.au=Lee%2C+Geon-Woo&rft.au=Kim%2C+Young-Hwan&rft.date=2018-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=394&rft.spage=94&rft.epage=101&rft_id=info:doi/10.1016%2Fj.jpowsour.2018.04.112&rft.externalDocID=S0378775318304555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon