Moments for positivity: using Drell-Yan data to test positivity bounds and reverse-engineer new physics

A bstract Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2022; no. 10; pp. 107 - 47
Main Authors Li, Xu, Mimasu, Ken, Yamashita, Kimiko, Yang, Chengjie, Zhang, Cen, Zhou, Shuang-Yong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 17.10.2022
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1127-2236
1029-8479
DOI10.1007/JHEP10(2022)107

Cover

Abstract A bstract Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also subject to positivity bounds, when requiring the associated (unknown) UV completion to obey basic principles of quantum field theory. We perform a phenomenological study to quantify the sensitivity of the high-luminosity LHC to this set of operators and, by extension, the positivity bounds. We further extend the angular basis of moments and consider double differential information to improve the ability to disentangle the different operators, leading to a sensitivity to new physics scales up to 3 TeV. We use this information to explore the violation of positivity at the LHC as a way to test the underlying principles of quantum field theory. Finally, we present a case study which combines our results with information from other (current and prospective) experiments, as well as the positivity cone to infer the properties of possible tree-level UV completions. The data lead to robust, model-independent lower bounds on the M / g combination of the particle mass and coupling, for states that couple to right-handed leptons and/or up quarks.
AbstractList A bstract Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also subject to positivity bounds, when requiring the associated (unknown) UV completion to obey basic principles of quantum field theory. We perform a phenomenological study to quantify the sensitivity of the high-luminosity LHC to this set of operators and, by extension, the positivity bounds. We further extend the angular basis of moments and consider double differential information to improve the ability to disentangle the different operators, leading to a sensitivity to new physics scales up to 3 TeV. We use this information to explore the violation of positivity at the LHC as a way to test the underlying principles of quantum field theory. Finally, we present a case study which combines our results with information from other (current and prospective) experiments, as well as the positivity cone to infer the properties of possible tree-level UV completions. The data lead to robust, model-independent lower bounds on the M / g combination of the particle mass and coupling, for states that couple to right-handed leptons and/or up quarks.
Abstract Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also subject to positivity bounds, when requiring the associated (unknown) UV completion to obey basic principles of quantum field theory. We perform a phenomenological study to quantify the sensitivity of the high-luminosity LHC to this set of operators and, by extension, the positivity bounds. We further extend the angular basis of moments and consider double differential information to improve the ability to disentangle the different operators, leading to a sensitivity to new physics scales up to 3 TeV. We use this information to explore the violation of positivity at the LHC as a way to test the underlying principles of quantum field theory. Finally, we present a case study which combines our results with information from other (current and prospective) experiments, as well as the positivity cone to infer the properties of possible tree-level UV completions. The data lead to robust, model-independent lower bounds on the M / g $$ M/\sqrt{g} $$ combination of the particle mass and coupling, for states that couple to right-handed leptons and/or up quarks.
Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also subject to positivity bounds, when requiring the associated (unknown) UV completion to obey basic principles of quantum field theory. We perform a phenomenological study to quantify the sensitivity of the high-luminosity LHC to this set of operators and, by extension, the positivity bounds. We further extend the angular basis of moments and consider double differential information to improve the ability to disentangle the different operators, leading to a sensitivity to new physics scales up to 3 TeV. We use this information to explore the violation of positivity at the LHC as a way to test the underlying principles of quantum field theory. Finally, we present a case study which combines our results with information from other (current and prospective) experiments, as well as the positivity cone to infer the properties of possible tree-level UV completions. The data lead to robust, model-independent lower bounds on the M/g combination of the particle mass and coupling, for states that couple to right-handed leptons and/or up quarks.
Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also subject to positivity bounds, when requiring the associated (unknown) UV completion to obey basic principles of quantum field theory. We perform a phenomenological study to quantify the sensitivity of the high-luminosity LHC to this set of operators and, by extension, the positivity bounds. We further extend the angular basis of moments and consider double differential information to improve the ability to disentangle the different operators, leading to a sensitivity to new physics scales up to 3 TeV. We use this information to explore the violation of positivity at the LHC as a way to test the underlying principles of quantum field theory. Finally, we present a case study which combines our results with information from other (current and prospective) experiments, as well as the positivity cone to infer the properties of possible tree-level UV completions. The data lead to robust, model-independent lower bounds on the $$ M/\sqrt{g} $$ M / g combination of the particle mass and coupling, for states that couple to right-handed leptons and/or up quarks.
ArticleNumber 107
Author Zhang, Cen
Li, Xu
Mimasu, Ken
Yamashita, Kimiko
Yang, Chengjie
Zhou, Shuang-Yong
Author_xml – sequence: 1
  givenname: Xu
  surname: Li
  fullname: Li, Xu
  organization: Institute of High Energy Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Ken
  orcidid: 0000-0001-9976-8113
  surname: Mimasu
  fullname: Mimasu, Ken
  organization: Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s College London
– sequence: 3
  givenname: Kimiko
  orcidid: 0000-0002-5033-5234
  surname: Yamashita
  fullname: Yamashita, Kimiko
  email: kimikoy@cau.ac.kr
  organization: Institute of High Energy Physics, Chinese Academy of Sciences, Department of Physics, Chung-Ang University
– sequence: 4
  givenname: Chengjie
  surname: Yang
  fullname: Yang, Chengjie
  organization: Institute of High Energy Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences
– sequence: 5
  givenname: Cen
  surname: Zhang
  fullname: Zhang, Cen
  organization: Institute of High Energy Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Center for High Energy Physics, Peking University
– sequence: 6
  givenname: Shuang-Yong
  orcidid: 0000-0002-8292-2943
  surname: Zhou
  fullname: Zhou, Shuang-Yong
  organization: Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Peng Huanwu Center for Fundamental Theory
BookMark eNp1kc1v1DAQxS1UJNrCmaslLnAIHTuf5oZKoa2K4AAHTtYkGadepXawnVb735MlVbsq4uTR6L2f38wcsQPnHTH2WsB7AVCfXJ6ffRfwVoKU7wTUz9ihAKmypqjVwV79gh3FuAEQpVBwyIav_oZcitz4wCcfbbK3Nm0_8DlaN_BPgcYx-4WO95iQJ88TxbQn5K2fXR85up4HuqUQKSM3WEcUuKM7Pl1vo-3iS_bc4Bjp1f17zH5-Pvtxep5dfftycfrxKusKUadMtFVVmdw0TV-Vfd73bY5GdbKQhKAAqlwBtYZKCabtRC4aqbCrVW0QcqHq_JhdrNze40ZPwd5g2GqPVv9t-DBoDMl2I-lClBJLEKZq6qLCHKWiQohOYC4Ay2Jhwcqa3YTbOxzHB6AAvVu63lzTtNS7pS-N3fdvVssU_O95WZXe-Dm4ZWIt66opl7hSLqpyVXXBxxjI6M4mTNa7FNCOD_T1pPv0kye-p3n-ddyPEBelGyg85vmf5Q9qjLKK
CitedBy_id crossref_primary_10_1007_JHEP06_2023_124
crossref_primary_10_1007_JHEP05_2024_221
crossref_primary_10_1103_PhysRevD_107_095025
crossref_primary_10_1088_1475_7516_2025_01_102
crossref_primary_10_1007_JHEP11_2022_113
crossref_primary_10_1103_PhysRevD_110_116015
crossref_primary_10_1007_JHEP03_2024_180
crossref_primary_10_1088_1475_7516_2023_11_076
crossref_primary_10_1007_JHEP03_2024_157
crossref_primary_10_1007_JHEP05_2024_183
crossref_primary_10_21468_SciPostPhys_16_1_019
crossref_primary_10_1007_JHEP11_2023_119
crossref_primary_10_1007_JHEP12_2024_046
crossref_primary_10_1007_JHEP06_2023_020
crossref_primary_10_1007_JHEP10_2023_135
crossref_primary_10_1007_JHEP05_2023_001
crossref_primary_10_1007_JHEP02_2025_168
crossref_primary_10_1103_PhysRevD_110_016006
crossref_primary_10_1007_JHEP10_2022_180
crossref_primary_10_1103_PhysRevD_109_033009
Cites_doi 10.12942/lrr-2014-7
10.1007/JHEP04(2021)217
10.1103/PhysRevLett.129.011805
10.1103/PhysRevLett.117.242002
10.1007/JHEP11(2017)020
10.1007/JHEP03(2022)083
10.1103/PhysRevD.101.063518
10.1103/PhysRevD.104.016005
10.1103/PhysRevD.31.3027
10.1103/PhysRevLett.127.121601
10.1103/PhysRevD.96.081702
10.1103/PhysRevLett.126.181601
10.1007/JHEP08(2022)184
10.1007/JHEP08(2022)151
10.1016/j.physletb.2020.135703
10.1103/PhysRevD.100.095003
10.1007/JHEP05(2021)280
10.1007/JHEP05(2021)259
10.1103/PhysRevLett.106.231101
10.1007/JHEP01(2021)095
10.1016/j.nuclphysb.2006.10.014
10.1103/PhysRevD.104.095022
10.1007/JHEP12(2021)036
10.1007/JHEP04(2021)195
10.21468/SciPostPhys.11.1.002
10.1103/PhysRevD.105.036006
10.1007/JHEP07(2021)143
10.1007/JHEP06(2019)137
10.1103/PhysRevD.104.085022
10.1103/PhysRevD.101.021502
10.1140/epjc/s10052-020-08513-7
10.1007/JHEP09(2014)100
10.1007/JHEP11(2020)054
10.1103/PhysRevLett.98.041601
10.1088/1475-7516/2019/11/042
10.1103/PhysRevD.16.2219
10.1007/JHEP12(2021)203
10.1103/PhysRevD.104.015026
10.1103/PhysRevLett.128.051602
10.1088/1475-7516/2022/06/031
10.1103/PhysRevD.104.083502
10.1007/JHEP01(2022)176
10.1088/1126-6708/2006/10/014
10.1103/PhysRevD.103.125020
10.1103/PhysRevD.51.1093
10.1007/JHEP03(2018)011
10.1007/JHEP12(2019)032
10.1103/PhysRevD.93.064076
10.1088/1475-7516/2021/08/018
10.1103/PhysRevD.94.104001
10.1007/JHEP03(2022)159
10.1007/JHEP12(2021)115
10.1103/PhysRevD.98.095021
10.1007/JHEP02(2022)167
10.1103/PhysRevD.102.125023
10.1007/JHEP09(2017)072
10.1007/JHEP12(2017)046
10.1103/PhysRevD.100.025016
10.1007/JHEP06(2019)049
10.1007/JHEP10(2020)174
10.21468/SciPostPhys.5.1.008
10.1103/PhysRevLett.126.211602
10.1088/1475-7516/2021/11/012
10.1007/JHEP03(2020)097
10.1103/RevModPhys.89.025004
10.1007/JHEP03(2019)182
10.1103/PhysRevLett.125.201601
10.1007/JHEP09(2020)170
10.1103/PhysRevLett.125.081601
10.1007/JHEP06(2021)031
10.1088/1126-6708/2007/11/054
10.1007/JHEP08(2017)123
10.1103/PhysRevD.105.L111901
10.1007/JHEP07(2020)214
10.1088/1751-8121/ac0e51
10.1007/JHEP03(2018)109
10.1007/JHEP03(2022)063
10.1103/PhysRevD.77.094019
10.1007/JHEP04(2021)115
10.1103/PhysRevLett.120.161101
10.1007/JHEP07(2021)110
10.1007/JHEP02(2017)034
10.1103/PhysRevD.98.045003
10.1103/PhysRev.123.1053
10.1007/JHEP07(2014)079
10.21468/SciPostPhys.13.3.051
10.1103/PhysRevD.105.L121301
10.1007/JHEP05(2021)255
10.1088/1674-1137/abcd8c
10.1103/PhysRevD.95.065014
10.1103/PhysRevD.104.036006
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.1007/JHEP10(2022)107
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 47
ExternalDocumentID oai_doaj_org_article_4152a501f68746a3a29e411c1a310a54
oai:kclpure.kcl.ac.uk:publications/aca94264-1f7a-40a1-b18e-6d13f5be6d7d
10_1007_JHEP10_2022_107
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYZH
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
ADTOC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
UNPAY
ID FETCH-LOGICAL-c417t-1b666f3f88d65d3ddb3af9c242ea09006390ebfe520fbc131829ac797fa031973
IEDL.DBID C24
ISSN 1029-8479
1126-6708
1127-2236
IngestDate Wed Aug 27 01:28:52 EDT 2025
Thu Aug 28 11:02:42 EDT 2025
Fri Jul 25 23:48:11 EDT 2025
Thu Apr 24 22:57:47 EDT 2025
Wed Oct 01 01:46:38 EDT 2025
Fri Feb 21 02:44:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords SMEFT
Specific BSM Phenomenology
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-1b666f3f88d65d3ddb3af9c242ea09006390ebfe520fbc131829ac797fa031973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9976-8113
0000-0002-8292-2943
0000-0002-5033-5234
OpenAccessLink https://link.springer.com/10.1007/JHEP10(2022)107
PQID 2768582922
PQPubID 2034718
PageCount 47
ParticipantIDs doaj_primary_oai_doaj_org_article_4152a501f68746a3a29e411c1a310a54
unpaywall_primary_10_1007_jhep10_2022_107
proquest_journals_2768582922
crossref_citationtrail_10_1007_JHEP10_2022_107
crossref_primary_10_1007_JHEP10_2022_107
springer_journals_10_1007_JHEP10_2022_107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-17
PublicationDateYYYYMMDD 2022-10-17
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-17
  day: 17
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References GrallTMelvilleSPositivity bounds without boosts: New constraints on low energy effective field theories from the UVPhys. Rev. D2022105L12130110.1103/PhysRevD.105.L121301[arXiv:2102.05683] [INSPIRE]
AdamsAArkani-HamedNDubovskySNicolisARattazziRCausality, analyticity and an IR obstruction to UV completionJHEP20061001410.1088/1126-6708/2006/10/014[hep-th/0602178] [INSPIRE]
BiQZhangCZhouS-YPositivity constraints on aQGC: carving out the physical parameter spaceJHEP20190613710.1007/JHEP06(2019)137[arXiv:1902.08977] [INSPIRE]
MurphyCWDimension-8 operators in the Standard Model Eective Field TheoryJHEP20201017410.1007/JHEP10(2020)174[arXiv:2005.00059] [INSPIRE]
C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field theories, Phys. Rev. D96 (2017) 081702 [arXiv:1702.06134] [INSPIRE].
J. Gu, L.-T. Wang and C. Zhang, Unambiguously Testing Positivity at Lepton Colliders, Phys. Rev. Lett.129 (2022) 011805 [arXiv:2011.03055] [INSPIRE].
D. Traykova, E. Bellini, P.G. Ferreira, C. García-García, J. Noller and M. Zumalacárregui, Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models, Phys. Rev. D104 (2021) 083502 [arXiv:2103.11195] [INSPIRE].
M. Herrero-Valea, R. Santos-Garcia and A. Tokareva, Massless positivity in graviton exchange, Phys. Rev. D104 (2021) 085022 [arXiv:2011.11652] [INSPIRE].
J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying Models of New Physics via WW Scattering, Phys. Rev. Lett.98 (2007) 041601 [hep-ph/0604255] [INSPIRE].
ATLAS collaboration, Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 7 TeV with the ATLAS experiment, Eur. Phys. J. C72 (2012) 2001 [arXiv:1203.2165] [INSPIRE].
de RhamCMelvilleSTolleyAJZhouS-YPositivity Bounds for Massive Spin-1 and Spin-2 FieldsJHEP2019031821414.8115610.1007/JHEP03(2019)182[arXiv:1804.10624] [INSPIRE]
KunduSSwampland conditions for higher derivative couplings from CFTJHEP2022011760760520210.1007/JHEP01(2022)176[arXiv:2104.11238] [INSPIRE]
G.N. Remmen and N.L. Rodd, Flavor Constraints from Unitarity and Analyticity, Phys. Rev. Lett.125 (2020) 081601 [Erratum ibid.127 (2021) 149901] [arXiv:2004.02885] [INSPIRE].
de RhamCMelvilleSTolleyAJZhouS-YUV complete me: Positivity Bounds for Particles with SpinJHEP2018030111388.8126210.1007/JHEP03(2018)011[arXiv:1706.02712] [INSPIRE]
HaldarPSinhaAZahedAQuantum field theory and the Bieberbach conjectureSciPost Phys.20211100210.21468/SciPostPhys.11.1.002[arXiv:2103.12108] [INSPIRE]
C. Zhang, SMEFTs living on the edge: determining the UV theories from positivity and extremality, arXiv:2112.11665 [INSPIRE].
TokudaJAokiKHiranoSGravitational positivity boundsJHEP2020110541456.8303110.1007/JHEP11(2020)054[arXiv:2007.15009] [INSPIRE]
L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Reverse Bootstrapping: IR Lessons for UV Physics, Phys. Rev. Lett.128 (2022) 051602 [arXiv:2111.09226] [INSPIRE].
Caron-HuotSMazacDRastelliLSimmons-DuffinDSharp boundaries for the swamplandJHEP2021071101468.8303110.1007/JHEP07(2021)110[arXiv:2102.08951] [INSPIRE]
M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev.123 (1961) 1053 [INSPIRE].
CMS collaboration, Angular coefficients of Z bosons produced in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 8 TeV and decaying to μ+μ−as a function of transverse momentum and rapidity, Phys. Lett. B750 (2015) 154 [arXiv:1504.03512] [INSPIRE].
Arkani-HamedNHuangT-CHuangY-TThe EFT-HedronJHEP2021052591466.8113210.1007/JHEP05(2021)259[arXiv:2012.15849] [INSPIRE]
L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, Into the EFThedron and UV constraints from IR consistency, JHEP03 (2022) 063 [arXiv:2105.02862] [INSPIRE].
AlbertJRastelliLBootstrapping pions at large NJHEP2022081510763941810.1007/JHEP08(2022)151[arXiv:2203.11950] [INSPIRE]
TrottTCausality, unitarity and symmetry in effective field theoryJHEP20210714310.1007/JHEP07(2021)143[arXiv:2011.10058] [INSPIRE]
L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, (Non)-projective bounds on gravitational EFT, arXiv:2201.07177 [INSPIRE].
B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous ZZ and Zγ processes, Phys. Rev. D98 (2018) 095021 [arXiv:1806.09640] [INSPIRE].
L.-Y. Chiang, Y.-t. Huang, L. Rodina and H.-C. Weng, De-projecting the EFThedron, arXiv:2204.07140 [INSPIRE].
H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D104 (2021) 015026 [arXiv:2005.00008] [INSPIRE].
FrederixRVitosTElectroweak corrections to the angular coefficients in finite-pTZ-boson production and dilepton decayEur. Phys. J. C20208093910.1140/epjc/s10052-020-08513-7[arXiv:2007.08867] [INSPIRE]
A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett.117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].
A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B761 (2007) 1 [hep-ph/0608326] [INSPIRE].
G.N. Remmen and N.L. Rodd, Signs, spin, SMEFT: Sum rules at dimension six, Phys. Rev. D105 (2022) 036006 [arXiv:2010.04723] [INSPIRE].
LHCb collaboration, First measurement of the Z → μ+μ−angular coefficients in the forward region of pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. Lett.129 (2022) 091801 [arXiv:2203.01602] [INSPIRE].
TolleyAJWangZ-YZhouS-YNew positivity bounds from full crossing symmetryJHEP20210525510.1007/JHEP05(2021)255[arXiv:2011.02400] [INSPIRE]
ChowdhurySDGhoshKHaldarPRamanPSinhaACrossing Symmetric Spinning S-matrix Bootstrap: EFT boundsSciPost Phys.20221305110.21468/SciPostPhys.13.3.051[arXiv:2112.11755] [INSPIRE]
RemmenGNRoddNLConsistency of the Standard Model Effective Field TheoryJHEP20191203210.1007/JHEP12(2019)032[arXiv:1908.09845] [INSPIRE]
B. Ananthanarayan, D. Toublan and G. Wanders, Consistency of the chiral pion pion scattering amplitudes with axiomatic constraints, Phys. Rev. D51 (1995) 1093 [hep-ph/9410302] [INSPIRE].
M. Chala and J. Santiago, Positivity bounds in the standard model effective field theory beyond tree level, Phys. Rev. D105 (2022) L111901 [arXiv:2110.01624] [INSPIRE].
WangY-JGuoF-KZhangCZhouS-YGeneralized positivity bounds on chiral perturbation theoryJHEP20200721410.1007/JHEP07(2020)214[arXiv:2004.03992] [INSPIRE]
de RhamCMelvilleSTolleyAJZhouS-YMassive Galileon Positivity BoundsJHEP2017090721382.8500510.1007/JHEP09(2017)072[arXiv:1702.08577] [INSPIRE]
RamanPSinhaAQFT, EFT and GFTJHEP2021122030760204210.1007/JHEP12(2021)203[arXiv:2107.06559] [INSPIRE]
YamashitaKZhangCZhouS-YElastic positivity vs extremal positivity bounds in SMEFT: a case study in transversal electroweak gauge-boson scatteringsJHEP20210109510.1007/JHEP01(2021)095[arXiv:2009.04490] [INSPIRE]
DavighiJMelvilleSYouTNatural selection rules: new positivity bounds for massive spinning particlesJHEP2022021670760816810.1007/JHEP02(2022)167[arXiv:2108.06334] [INSPIRE]
de BlasJCriadoJCPérez-VictoriaMSantiagoJEffective description of general extensions of the Standard Model: the complete tree-level dictionaryJHEP2018031091388.8137710.1007/JHEP03(2018)109[arXiv:1711.10391] [INSPIRE]
Herrero-ValeaMTimiryasovITokarevaATo Positivity and Beyond, where Higgs-Dilaton Inflation has never gone beforeJCAP2019110420750209710.1088/1475-7516/2019/11/042[arXiv:1905.08816] [INSPIRE]
S. Melville and J. Noller, Positivity in the Sky: Constraining dark energy and modified gravity from the UV, Phys. Rev. D101 (2020) 021502 [Erratum ibid.102 (2020) 049902] [arXiv:1904.05874] [INSPIRE].
ZahedAPositivity and geometric function theory constraints on pion scatteringJHEP2021120360760187510.1007/JHEP12(2021)036[arXiv:2108.10355] [INSPIRE]
A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].
T.N. Pham and T.N. Truong, Evaluation of the Derivative Quartic Terms of the Meson Chiral Lagrangian From Forward Dispersion Relation, Phys. Rev. D31 (1985) 3027 [INSPIRE].
BanerjeeSGuptaRSReinessJYSethSSpannowskyMTowards the ultimate differential SMEFT analysisJHEP20200917010.1007/JHEP09(2020)170[arXiv:1912.07628] [INSPIRE]
A.V. Manohar and V. Mateu, Dispersion Relation Bounds for pi pi Scattering, Phys. Rev. D77 (2008) 094019 [arXiv:0801.3222] [INSPIRE].
A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations in Quantum Field Theories, Phys. Rev. Lett.126 (2021) 181601 [arXiv:2012.04877] [INSPIRE].
DavisA-CMelvilleSScalar fields near compact objects: resummation versus UV completionJCAP2021110121487.8305710.1088/1475-7516/2021/11/012[arXiv:2107.00010] [INSPIRE]
BanerjeeSGuptaRSOchoa-ValerianoOSpannowskyMVenturiniEA fully differential SMEFT analysis of the golden channel using the method of momentsJHEP20210603110.1007/JHEP06(2021)031[arXiv:2012.11631] [INSPIRE]
L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, QED positivity bounds, Phys. Rev. D103 (2021) 125020 [arXiv:2012.05798] [INSPIRE].
CollinsJCSoperDEAngular Distribution of Dileptons in High-Energy Hadron CollisionsPhys. Rev. D197716221910.1103/PhysRevD.16.2219[INSPIRE]
F
J Davighi (19469_CR74) 2022; 02
19469_CR91
19469_CR90
19469_CR106
19469_CR10
A Zahed (19469_CR72) 2021; 12
19469_CR98
19469_CR103
Q Bonnefoy (19469_CR41) 2021; 04
19469_CR96
19469_CR105
19469_CR95
R Frederix (19469_CR92) 2020; 80
19469_CR94
AV Manohar (19469_CR97) 2017; 12
19469_CR101
A Adams (19469_CR4) 2006; 10
T Trott (19469_CR36) 2021; 07
19469_CR89
B Bellazzini (19469_CR48) 2017; 02
S Melville (19469_CR77) 2022; 06
J Henriksson (19469_CR79) 2022; 08
P Haldar (19469_CR69) 2021; 11
A-C Davis (19469_CR75) 2021; 11
19469_CR86
19469_CR85
19469_CR84
19469_CR83
19469_CR82
GN Remmen (19469_CR35) 2019; 12
19469_CR78
C de Rham (19469_CR53) 2019; 03
P Raman (19469_CR70) 2021; 12
19469_CR3
19469_CR6
19469_CR5
19469_CR2
19469_CR1
J de Blas (19469_CR102) 2018; 03
19469_CR31
19469_CR30
19469_CR8
19469_CR7
19469_CR9
CW Murphy (19469_CR100) 2020; 10
19469_CR29
19469_CR28
19469_CR27
19469_CR26
C de Rham (19469_CR66) 2021; 08
A Falkowski (19469_CR99) 2017; 08
19469_CR24
J Alwall (19469_CR93) 2014; 07
S Banerjee (19469_CR87) 2020; 09
C de Rham (19469_CR11) 2018; 03
T Grall (19469_CR20) 2022; 105
S Caron-Huot (19469_CR19) 2021; 07
19469_CR22
Z-Z Du (19469_CR23) 2021; 12
19469_CR21
S Kundu (19469_CR73) 2022; 01
19469_CR18
19469_CR17
19469_CR16
19469_CR13
JC Collins (19469_CR81) 1977; 16
19469_CR55
19469_CR54
B Bellazzini (19469_CR44) 2017; 11
19469_CR52
S Banerjee (19469_CR88) 2021; 06
19469_CR50
N Arkani-Hamed (19469_CR12) 2021; 05
C Cheung (19469_CR49) 2016; 04
19469_CR47
19469_CR46
19469_CR45
C de Rham (19469_CR51) 2017; 09
19469_CR43
19469_CR42
19469_CR40
19469_CR39
19469_CR37
B Alvarez (19469_CR76) 2022; 03
19469_CR34
Z-Y Wang (19469_CR63) 2021; 04
J Albert (19469_CR80) 2022; 08
SD Chowdhury (19469_CR25) 2022; 13
S Caron-Huot (19469_CR15) 2021; 05
19469_CR71
C de Rham (19469_CR104) 2014; 17
19469_CR68
19469_CR67
AJ Tolley (19469_CR14) 2021; 05
19469_CR65
L Vecchi (19469_CR38) 2007; 11
19469_CR61
19469_CR60
Q Bi (19469_CR32) 2019; 06
K Yamashita (19469_CR33) 2021; 01
19469_CR59
L Alberte (19469_CR57) 2020; 03
19469_CR56
Y-J Wang (19469_CR64) 2020; 07
J Tokuda (19469_CR62) 2020; 11
M Herrero-Valea (19469_CR58) 2019; 11
References_xml – reference: TrottTCausality, unitarity and symmetry in effective field theoryJHEP20210714310.1007/JHEP07(2021)143[arXiv:2011.10058] [INSPIRE]
– reference: J. Gu, L.-T. Wang and C. Zhang, Unambiguously Testing Positivity at Lepton Colliders, Phys. Rev. Lett.129 (2022) 011805 [arXiv:2011.03055] [INSPIRE].
– reference: C. Zhang, SMEFTs living on the edge: determining the UV theories from positivity and extremality, arXiv:2112.11665 [INSPIRE].
– reference: B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett.120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].
– reference: de RhamCMelvilleSTolleyAJZhouS-YUV complete me: Positivity Bounds for Particles with SpinJHEP2018030111388.8126210.1007/JHEP03(2018)011[arXiv:1706.02712] [INSPIRE]
– reference: A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].
– reference: Z. Bern, D. Kosmopoulos and A. Zhiboedov, Gravitational effective field theory islands, low-spin dominance, and the four-graviton amplitude, J. Phys. A54 (2021) 344002 [arXiv:2103.12728] [INSPIRE].
– reference: X. Li and S. Zhou, Origin of Neutrino Masses on the Convex Cone of Positivity Bounds, arXiv:2202.12907 [INSPIRE].
– reference: ManoharAVNasonPSalamGPZanderighiGThe Photon Content of the ProtonJHEP20171204610.1007/JHEP12(2017)046[arXiv:1708.01256] [INSPIRE]
– reference: R. Boughezal, F. Petriello and D. Wiegand, Disentangling Standard Model EFT operators with future low-energy parity-violating electron scattering experiments, Phys. Rev. D104 (2021) 016005 [arXiv:2104.03979] [INSPIRE].
– reference: B. Bellazzini, C. Cheung and G.N. Remmen, Quantum Gravity Constraints from Unitarity and Analyticity, Phys. Rev. D93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].
– reference: WangZ-YZhangCZhouS-YGeneralized elastic positivity bounds on interacting massive spin-2 theoriesJHEP20210421710.1007/JHEP04(2021)217[arXiv:2011.05190] [INSPIRE]
– reference: DuZ-ZZhangCZhouS-YTriple crossing positivity bounds for multi-field theoriesJHEP2021121150760195410.1007/JHEP12(2021)115[arXiv:2111.01169] [INSPIRE]
– reference: de RhamCMelvilleSNollerJPositivity bounds on dark energy: when matter mattersJCAP20210801810.1088/1475-7516/2021/08/018[arXiv:2103.06855] [INSPIRE]
– reference: FrederixRVitosTElectroweak corrections to the angular coefficients in finite-pTZ-boson production and dilepton decayEur. Phys. J. C20208093910.1140/epjc/s10052-020-08513-7[arXiv:2007.08867] [INSPIRE]
– reference: RamanPSinhaAQFT, EFT and GFTJHEP2021122030760204210.1007/JHEP12(2021)203[arXiv:2107.06559] [INSPIRE]
– reference: de RhamCMelvilleSTolleyAJZhouS-YMassive Galileon Positivity BoundsJHEP2017090721382.8500510.1007/JHEP09(2017)072[arXiv:1702.08577] [INSPIRE]
– reference: VecchiLCausal versus analytic constraints on anomalous quartic gauge couplingsJHEP20071105410.1088/1126-6708/2007/11/054[arXiv:0704.1900] [INSPIRE]
– reference: BellazziniBRivaFSerraJSgarlataFThe other effective fermion compositenessJHEP20171102010.1007/JHEP11(2017)020[arXiv:1706.03070] [INSPIRE]
– reference: C. de Rham, J.T. Deskins, A.J. Tolley and S.-Y. Zhou, Graviton Mass Bounds, Rev. Mod. Phys.89 (2017) 025004 [arXiv:1606.08462] [INSPIRE].
– reference: AlberteLde RhamCMomeniARumbutisJTolleyAJPositivity Constraints on Interacting Spin-2 FieldsJHEP2020030971435.8111310.1007/JHEP03(2020)097[arXiv:1910.11799] [INSPIRE]
– reference: Caron-HuotSMazacDRastelliLSimmons-DuffinDSharp boundaries for the swamplandJHEP2021071101468.8303110.1007/JHEP07(2021)110[arXiv:2102.08951] [INSPIRE]
– reference: TokudaJAokiKHiranoSGravitational positivity boundsJHEP2020110541456.8303110.1007/JHEP11(2020)054[arXiv:2007.15009] [INSPIRE]
– reference: DavighiJMelvilleSYouTNatural selection rules: new positivity bounds for massive spinning particlesJHEP2022021670760816810.1007/JHEP02(2022)167[arXiv:2108.06334] [INSPIRE]
– reference: GrallTMelvilleSPositivity bounds without boosts: New constraints on low energy effective field theories from the UVPhys. Rev. D2022105L12130110.1103/PhysRevD.105.L121301[arXiv:2102.05683] [INSPIRE]
– reference: D. Traykova, E. Bellini, P.G. Ferreira, C. García-García, J. Noller and M. Zumalacárregui, Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models, Phys. Rev. D104 (2021) 083502 [arXiv:2103.11195] [INSPIRE].
– reference: RemmenGNRoddNLConsistency of the Standard Model Effective Field TheoryJHEP20191203210.1007/JHEP12(2019)032[arXiv:1908.09845] [INSPIRE]
– reference: HaldarPSinhaAZahedAQuantum field theory and the Bieberbach conjectureSciPost Phys.20211100210.21468/SciPostPhys.11.1.002[arXiv:2103.12108] [INSPIRE]
– reference: ChowdhurySDGhoshKHaldarPRamanPSinhaACrossing Symmetric Spinning S-matrix Bootstrap: EFT boundsSciPost Phys.20221305110.21468/SciPostPhys.13.3.051[arXiv:2112.11755] [INSPIRE]
– reference: M. Chala and J. Santiago, Positivity bounds in the standard model effective field theory beyond tree level, Phys. Rev. D105 (2022) L111901 [arXiv:2110.01624] [INSPIRE].
– reference: HenrikssonJMcPeakBRussoFVichiABounding violations of the weak gravity conjectureJHEP2022081840763945110.1007/JHEP08(2022)184[arXiv:2203.08164] [INSPIRE]
– reference: B. Bellazzini, L. Martucci and R. Torre, Symmetries, Sum Rules and Constraints on Effective Field Theories, JHEP09 (2014) 100 [arXiv:1405.2960] [INSPIRE].
– reference: AlvarezBBijnensJSjöMNNLO positivity bounds on chiral perturbation theory for a general number of flavoursJHEP20220315910.1007/JHEP03(2022)159[arXiv:2112.04253] [INSPIRE]
– reference: AlwallJFrederixRFrixioneSHirschiVMaltoniFMattelaerOThe automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulationsJHEP2014070791402.8101110.1007/JHEP07(2014)079[arXiv:1405.0301] [INSPIRE]
– reference: B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous ZZ and Zγ processes, Phys. Rev. D98 (2018) 095021 [arXiv:1806.09640] [INSPIRE].
– reference: KunduSSwampland conditions for higher derivative couplings from CFTJHEP2022011760760520210.1007/JHEP01(2022)176[arXiv:2104.11238] [INSPIRE]
– reference: N. Arkani-Hamed, Y.-t. Huang, J.-Y. Liu and G.N. Remmen, Causality, unitarity, and the weak gravity conjecture, JHEP03 (2022) 083 [arXiv:2109.13937] [INSPIRE].
– reference: DavisA-CMelvilleSScalar fields near compact objects: resummation versus UV completionJCAP2021110121487.8305710.1088/1475-7516/2021/11/012[arXiv:2107.00010] [INSPIRE]
– reference: R. Gopakumar, A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations for Mellin Amplitudes, Phys. Rev. Lett.126 (2021) 211602 [arXiv:2101.09017] [INSPIRE].
– reference: A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett.117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].
– reference: C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett.106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].
– reference: CMS collaboration, Measurement of the Polarization of W Bosons with Large Transverse Momenta in W+Jets Events at the LHC, Phys. Rev. Lett.107 (2011) 021802 [arXiv:1104.3829] [INSPIRE].
– reference: K. Häring and A. Zhiboedov, Gravitational Regge bounds, arXiv:2202.08280 [INSPIRE].
– reference: L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, Into the EFThedron and UV constraints from IR consistency, JHEP03 (2022) 063 [arXiv:2105.02862] [INSPIRE].
– reference: ATLAS collaboration, Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 7 TeV with the ATLAS experiment, Eur. Phys. J. C72 (2012) 2001 [arXiv:1203.2165] [INSPIRE].
– reference: BanerjeeSGuptaRSOchoa-ValerianoOSpannowskyMVenturiniEA fully differential SMEFT analysis of the golden channel using the method of momentsJHEP20210603110.1007/JHEP06(2021)031[arXiv:2012.11631] [INSPIRE]
– reference: CollinsJCSoperDEAngular Distribution of Dileptons in High-Energy Hadron CollisionsPhys. Rev. D197716221910.1103/PhysRevD.16.2219[INSPIRE]
– reference: C. de Rham, S. Kundu, M. Reece, A.J. Tolley and S.-Y. Zhou, Snowmass White Paper: UV Constraints on IR Physics, in 2022 Snowmass Summer Study, (2022) [arXiv:2203.06805] [INSPIRE].
– reference: B. Ananthanarayan, D. Toublan and G. Wanders, Consistency of the chiral pion pion scattering amplitudes with axiomatic constraints, Phys. Rev. D51 (1995) 1093 [hep-ph/9410302] [INSPIRE].
– reference: G.N. Remmen and N.L. Rodd, Signs, spin, SMEFT: Sum rules at dimension six, Phys. Rev. D105 (2022) 036006 [arXiv:2010.04723] [INSPIRE].
– reference: A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B761 (2007) 1 [hep-ph/0608326] [INSPIRE].
– reference: CheungCRemmenGNPositive Signs in Massive GravityJHEP2016040021388.83576[arXiv:1601.04068] [INSPIRE]
– reference: M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev.123 (1961) 1053 [INSPIRE].
– reference: S. Pascoli, R. Ruiz and C. Weiland, Heavy neutrinos with dynamic jet vetoes: multilepton searches ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 14, 27, and 100 TeV, JHEP06 (2019) 049 [arXiv:1812.08750] [INSPIRE].
– reference: L. Keltner and A.J. Tolley, UV properties of Galileons: Spectral Densities, arXiv:1502.05706 [INSPIRE].
– reference: C. Zhang and S.-Y. Zhou, Convex Geometry Perspective on the (Standard Model) Effective Field Theory Space, Phys. Rev. Lett.125 (2020) 201601 [arXiv:2005.03047] [INSPIRE].
– reference: A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations in Quantum Field Theories, Phys. Rev. Lett.126 (2021) 181601 [arXiv:2012.04877] [INSPIRE].
– reference: MurphyCWDimension-8 operators in the Standard Model Eective Field TheoryJHEP20201017410.1007/JHEP10(2020)174[arXiv:2005.00059] [INSPIRE]
– reference: Caron-HuotSVan DuongVExtremal Effective Field TheoriesJHEP20210528010.1007/JHEP05(2021)280[arXiv:2011.02957] [INSPIRE]
– reference: AlbertJRastelliLBootstrapping pions at large NJHEP2022081510763941810.1007/JHEP08(2022)151[arXiv:2203.11950] [INSPIRE]
– reference: S. Caron-Huot, Y.-Z. Li, J. Parra-Martinez and D. Simmons-Duffin, Causality constraints on corrections to Einstein gravity, arXiv:2201.06602 [INSPIRE].
– reference: W.-M. Chen, Y.-T. Huang, T. Noumi and C. Wen, Unitarity bounds on charged/neutral state mass ratios, Phys. Rev. D100 (2019) 025016 [arXiv:1901.11480] [INSPIRE].
– reference: BanerjeeSGuptaRSReinessJYSethSSpannowskyMTowards the ultimate differential SMEFT analysisJHEP20200917010.1007/JHEP09(2020)170[arXiv:1912.07628] [INSPIRE]
– reference: S. Alioli, R. Boughezal, E. Mereghetti and F. Petriello, Novel angular dependence in Drell-Yan lepton production via dimension-8 operators, Phys. Lett. B809 (2020) 135703 [arXiv:2003.11615] [INSPIRE].
– reference: R. Boughezal, E. Mereghetti and F. Petriello, Dilepton production in the SMEFT at O(1/Λ4), Phys. Rev. D104 (2021) 095022 [arXiv:2106.05337] [INSPIRE].
– reference: L.-Y. Chiang, Y.-t. Huang, L. Rodina and H.-C. Weng, De-projecting the EFThedron, arXiv:2204.07140 [INSPIRE].
– reference: L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, (Non)-projective bounds on gravitational EFT, arXiv:2201.07177 [INSPIRE].
– reference: L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, QED positivity bounds, Phys. Rev. D103 (2021) 125020 [arXiv:2012.05798] [INSPIRE].
– reference: ZahedAPositivity and geometric function theory constraints on pion scatteringJHEP2021120360760187510.1007/JHEP12(2021)036[arXiv:2108.10355] [INSPIRE]
– reference: LHCb collaboration, First measurement of the Z → μ+μ−angular coefficients in the forward region of pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. Lett.129 (2022) 091801 [arXiv:2203.01602] [INSPIRE].
– reference: B. Bellazzini, J. Elias Miró, R. Rattazzi, M. Riembau and F. Riva, Positive moments for scattering amplitudes, Phys. Rev. D104 (2021) 036006 [arXiv:2011.00037] [INSPIRE].
– reference: T.N. Pham and T.N. Truong, Evaluation of the Derivative Quartic Terms of the Meson Chiral Lagrangian From Forward Dispersion Relation, Phys. Rev. D31 (1985) 3027 [INSPIRE].
– reference: S. Melville and J. Noller, Positivity in the Sky: Constraining dark energy and modified gravity from the UV, Phys. Rev. D101 (2020) 021502 [Erratum ibid.102 (2020) 049902] [arXiv:1904.05874] [INSPIRE].
– reference: C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field theories, Phys. Rev. D96 (2017) 081702 [arXiv:1702.06134] [INSPIRE].
– reference: MelvilleSNollerJPositivity bounds from multiple vacua and their cosmological consequencesJCAP2022060310757916310.1088/1475-7516/2022/06/031[arXiv:2202.01222] [INSPIRE]
– reference: BellazziniBSoftness and amplitudes’ positivity for spinning particlesJHEP2017020341377.8121910.1007/JHEP02(2017)034[arXiv:1605.06111] [INSPIRE]
– reference: H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D104 (2021) 015026 [arXiv:2005.00008] [INSPIRE].
– reference: WangY-JGuoF-KZhangCZhouS-YGeneralized positivity bounds on chiral perturbation theoryJHEP20200721410.1007/JHEP07(2020)214[arXiv:2004.03992] [INSPIRE]
– reference: de RhamCMelvilleSTolleyAJZhouS-YPositivity Bounds for Massive Spin-1 and Spin-2 FieldsJHEP2019031821414.8115610.1007/JHEP03(2019)182[arXiv:1804.10624] [INSPIRE]
– reference: G.N. Remmen and N.L. Rodd, Flavor Constraints from Unitarity and Analyticity, Phys. Rev. Lett.125 (2020) 081601 [Erratum ibid.127 (2021) 149901] [arXiv:2004.02885] [INSPIRE].
– reference: YamashitaKZhangCZhouS-YElastic positivity vs extremal positivity bounds in SMEFT: a case study in transversal electroweak gauge-boson scatteringsJHEP20210109510.1007/JHEP01(2021)095[arXiv:2009.04490] [INSPIRE]
– reference: NNPDF collaboration, Illuminating the photon content of the proton within a global PDF analysis, SciPost Phys.5 (2018) 008 [arXiv:1712.07053] [INSPIRE].
– reference: ATLAS collaboration, Measurement of the angular coefficients in Z-boson events using electron and muon pairs from data taken ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 8 TeV with the ATLAS detector, JHEP08 (2016) 159 [arXiv:1606.00689] [INSPIRE].
– reference: FalkowskiAGonzález-AlonsoMMimouniKCompilation of low-energy constraints on 4-fermion operators in the SMEFTJHEP20170812310.1007/JHEP08(2017)123[arXiv:1706.03783] [INSPIRE]
– reference: J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev. D94 (2016) 104001 [arXiv:1607.06084] [INSPIRE].
– reference: CMS collaboration, Angular coefficients of Z bosons produced in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 8 TeV and decaying to μ+μ−as a function of transverse momentum and rapidity, Phys. Lett. B750 (2015) 154 [arXiv:1504.03512] [INSPIRE].
– reference: J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying Models of New Physics via WW Scattering, Phys. Rev. Lett.98 (2007) 041601 [hep-ph/0604255] [INSPIRE].
– reference: C. Zhang and S.-Y. Zhou, Positivity bounds on vector boson scattering at the LHC, Phys. Rev. D100 (2019) 095003 [arXiv:1808.00010] [INSPIRE].
– reference: BiQZhangCZhouS-YPositivity constraints on aQGC: carving out the physical parameter spaceJHEP20190613710.1007/JHEP06(2019)137[arXiv:1902.08977] [INSPIRE]
– reference: Herrero-ValeaMTimiryasovITokarevaATo Positivity and Beyond, where Higgs-Dilaton Inflation has never gone beforeJCAP2019110420750209710.1088/1475-7516/2019/11/042[arXiv:1905.08816] [INSPIRE]
– reference: M. Herrero-Valea, R. Santos-Garcia and A. Tokareva, Massless positivity in graviton exchange, Phys. Rev. D104 (2021) 085022 [arXiv:2011.11652] [INSPIRE].
– reference: X. Li, H. Xu, C. Yang, C. Zhang and S.-Y. Zhou, Positivity in Multifield Effective Field Theories, Phys. Rev. Lett.127 (2021) 121601 [arXiv:2101.01191] [INSPIRE].
– reference: AdamsAArkani-HamedNDubovskySNicolisARattazziRCausality, analyticity and an IR obstruction to UV completionJHEP20061001410.1088/1126-6708/2006/10/014[hep-th/0602178] [INSPIRE]
– reference: de RhamCMassive GravityLiving Rev. Rel.20141771320.8301810.12942/lrr-2014-7[arXiv:1401.4173] [INSPIRE]
– reference: L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Positivity Bounds and the Massless Spin-2 Pole, Phys. Rev. D102 (2020) 125023 [arXiv:2007.12667] [INSPIRE].
– reference: TolleyAJWangZ-YZhouS-YNew positivity bounds from full crossing symmetryJHEP20210525510.1007/JHEP05(2021)255[arXiv:2011.02400] [INSPIRE]
– reference: BonnefoyQGendyEGrojeanCPositivity bounds on Minimal Flavor ViolationJHEP20210411510.1007/JHEP04(2021)115[arXiv:2011.12855] [INSPIRE]
– reference: A.V. Manohar and V. Mateu, Dispersion Relation Bounds for pi pi Scattering, Phys. Rev. D77 (2008) 094019 [arXiv:0801.3222] [INSPIRE].
– reference: C. de Rham and A.J. Tolley, Speed of gravity, Phys. Rev. D101 (2020) 063518 [arXiv:1909.00881] [INSPIRE].
– reference: B. Bellazzini, M. Riembau and F. Riva, The IR-Side of Positivity Bounds, arXiv:2112.12561 [INSPIRE].
– reference: de BlasJCriadoJCPérez-VictoriaMSantiagoJEffective description of general extensions of the Standard Model: the complete tree-level dictionaryJHEP2018031091388.8137710.1007/JHEP03(2018)109[arXiv:1711.10391] [INSPIRE]
– reference: B. Fuks, Y. Liu, C. Zhang and S.-Y. Zhou, Positivity in electron-positron scattering: testing the axiomatic quantum field theory principles and probing the existence of UV states, Chin. Phys. C45 (2021) 023108 [arXiv:2009.02212] [INSPIRE].
– reference: Arkani-HamedNHuangT-CHuangY-TThe EFT-HedronJHEP2021052591466.8113210.1007/JHEP05(2021)259[arXiv:2012.15849] [INSPIRE]
– reference: L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Reverse Bootstrapping: IR Lessons for UV Physics, Phys. Rev. Lett.128 (2022) 051602 [arXiv:2111.09226] [INSPIRE].
– reference: Y.-t. Huang, J.-Y. Liu, L. Rodina and Y. Wang, Carving out the Space of Open-String S-matrix, JHEP04 (2021) 195 [arXiv:2008.02293] [INSPIRE].
– reference: J. Bonifacio and K. Hinterbichler, Bounds on Amplitudes in Effective Theories with Massive Spinning Particles, Phys. Rev. D98 (2018) 045003 [arXiv:1804.08686] [INSPIRE].
– volume: 17
  start-page: 7
  year: 2014
  ident: 19469_CR104
  publication-title: Living Rev. Rel.
  doi: 10.12942/lrr-2014-7
– volume: 04
  start-page: 217
  year: 2021
  ident: 19469_CR63
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)217
– ident: 19469_CR37
  doi: 10.1103/PhysRevLett.129.011805
– ident: 19469_CR83
– ident: 19469_CR96
  doi: 10.1103/PhysRevLett.117.242002
– volume: 11
  start-page: 020
  year: 2017
  ident: 19469_CR44
  publication-title: JHEP
  doi: 10.1007/JHEP11(2017)020
– ident: 19469_CR68
  doi: 10.1007/JHEP03(2022)083
– ident: 19469_CR56
  doi: 10.1103/PhysRevD.101.063518
– ident: 19469_CR98
  doi: 10.1103/PhysRevD.104.016005
– ident: 19469_CR5
  doi: 10.1103/PhysRevD.31.3027
– ident: 19469_CR9
  doi: 10.1103/PhysRevLett.127.121601
– ident: 19469_CR10
  doi: 10.1103/PhysRevD.96.081702
– ident: 19469_CR16
  doi: 10.1103/PhysRevLett.126.181601
– volume: 08
  start-page: 184
  year: 2022
  ident: 19469_CR79
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)184
– volume: 08
  start-page: 151
  year: 2022
  ident: 19469_CR80
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)151
– ident: 19469_CR2
  doi: 10.1016/j.physletb.2020.135703
– ident: 19469_CR31
  doi: 10.1103/PhysRevD.100.095003
– volume: 05
  start-page: 280
  year: 2021
  ident: 19469_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)280
– volume: 05
  start-page: 259
  year: 2021
  ident: 19469_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)259
– ident: 19469_CR86
– ident: 19469_CR103
  doi: 10.1103/PhysRevLett.106.231101
– ident: 19469_CR28
– volume: 01
  start-page: 095
  year: 2021
  ident: 19469_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)095
– ident: 19469_CR89
  doi: 10.1016/j.nuclphysb.2006.10.014
– ident: 19469_CR90
  doi: 10.1103/PhysRevD.104.095022
– volume: 12
  start-page: 036
  year: 2021
  ident: 19469_CR72
  publication-title: JHEP
  doi: 10.1007/JHEP12(2021)036
– ident: 19469_CR34
– ident: 19469_CR61
  doi: 10.1007/JHEP04(2021)195
– volume: 11
  start-page: 002
  year: 2021
  ident: 19469_CR69
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.11.1.002
– ident: 19469_CR42
  doi: 10.1103/PhysRevD.105.036006
– volume: 07
  start-page: 143
  year: 2021
  ident: 19469_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)143
– volume: 06
  start-page: 137
  year: 2019
  ident: 19469_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP06(2019)137
– ident: 19469_CR85
– ident: 19469_CR65
  doi: 10.1103/PhysRevD.104.085022
– ident: 19469_CR55
  doi: 10.1103/PhysRevD.101.021502
– volume: 80
  start-page: 939
  year: 2020
  ident: 19469_CR92
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08513-7
– ident: 19469_CR30
  doi: 10.1007/JHEP09(2014)100
– volume: 11
  start-page: 054
  year: 2020
  ident: 19469_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)054
– ident: 19469_CR45
  doi: 10.1103/PhysRevLett.98.041601
– volume: 11
  start-page: 042
  year: 2019
  ident: 19469_CR58
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/11/042
– volume: 16
  start-page: 2219
  year: 1977
  ident: 19469_CR81
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.16.2219
– volume: 12
  start-page: 203
  year: 2021
  ident: 19469_CR70
  publication-title: JHEP
  doi: 10.1007/JHEP12(2021)203
– ident: 19469_CR101
  doi: 10.1103/PhysRevD.104.015026
– ident: 19469_CR26
– ident: 19469_CR7
– ident: 19469_CR22
  doi: 10.1103/PhysRevLett.128.051602
– volume: 06
  start-page: 031
  year: 2022
  ident: 19469_CR77
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/06/031
– ident: 19469_CR67
  doi: 10.1103/PhysRevD.104.083502
– volume: 01
  start-page: 176
  year: 2022
  ident: 19469_CR73
  publication-title: JHEP
  doi: 10.1007/JHEP01(2022)176
– volume: 10
  start-page: 014
  year: 2006
  ident: 19469_CR4
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/10/014
– ident: 19469_CR60
  doi: 10.1103/PhysRevD.103.125020
– ident: 19469_CR6
  doi: 10.1103/PhysRevD.51.1093
– volume: 03
  start-page: 011
  year: 2018
  ident: 19469_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)011
– volume: 12
  start-page: 032
  year: 2019
  ident: 19469_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)032
– ident: 19469_CR47
  doi: 10.1103/PhysRevD.93.064076
– volume: 08
  start-page: 018
  year: 2021
  ident: 19469_CR66
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/08/018
– ident: 19469_CR50
  doi: 10.1103/PhysRevD.94.104001
– volume: 03
  start-page: 159
  year: 2022
  ident: 19469_CR76
  publication-title: JHEP
  doi: 10.1007/JHEP03(2022)159
– volume: 12
  start-page: 115
  year: 2021
  ident: 19469_CR23
  publication-title: JHEP
  doi: 10.1007/JHEP12(2021)115
– ident: 19469_CR29
– ident: 19469_CR39
  doi: 10.1103/PhysRevD.98.095021
– volume: 02
  start-page: 167
  year: 2022
  ident: 19469_CR74
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)167
– ident: 19469_CR17
  doi: 10.1103/PhysRevD.102.125023
– volume: 09
  start-page: 072
  year: 2017
  ident: 19469_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)072
– volume: 12
  start-page: 046
  year: 2017
  ident: 19469_CR97
  publication-title: JHEP
  doi: 10.1007/JHEP12(2017)046
– ident: 19469_CR59
  doi: 10.1103/PhysRevD.100.025016
– ident: 19469_CR95
  doi: 10.1007/JHEP06(2019)049
– volume: 10
  start-page: 174
  year: 2020
  ident: 19469_CR100
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)174
– ident: 19469_CR94
  doi: 10.21468/SciPostPhys.5.1.008
– ident: 19469_CR71
  doi: 10.1103/PhysRevLett.126.211602
– ident: 19469_CR24
– volume: 11
  start-page: 012
  year: 2021
  ident: 19469_CR75
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/11/012
– volume: 04
  start-page: 002
  year: 2016
  ident: 19469_CR49
  publication-title: JHEP
– volume: 03
  start-page: 097
  year: 2020
  ident: 19469_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)097
– ident: 19469_CR82
– ident: 19469_CR105
  doi: 10.1103/RevModPhys.89.025004
– volume: 03
  start-page: 182
  year: 2019
  ident: 19469_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP03(2019)182
– ident: 19469_CR8
  doi: 10.1103/PhysRevLett.125.201601
– volume: 09
  start-page: 170
  year: 2020
  ident: 19469_CR87
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)170
– ident: 19469_CR40
  doi: 10.1103/PhysRevLett.125.081601
– volume: 06
  start-page: 031
  year: 2021
  ident: 19469_CR88
  publication-title: JHEP
  doi: 10.1007/JHEP06(2021)031
– volume: 11
  start-page: 054
  year: 2007
  ident: 19469_CR38
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/11/054
– volume: 08
  start-page: 123
  year: 2017
  ident: 19469_CR99
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)123
– ident: 19469_CR43
  doi: 10.1103/PhysRevD.105.L111901
– ident: 19469_CR27
– volume: 07
  start-page: 214
  year: 2020
  ident: 19469_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)214
– ident: 19469_CR21
  doi: 10.1088/1751-8121/ac0e51
– volume: 03
  start-page: 109
  year: 2018
  ident: 19469_CR102
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)109
– ident: 19469_CR18
  doi: 10.1007/JHEP03(2022)063
– ident: 19469_CR78
– ident: 19469_CR46
  doi: 10.1103/PhysRevD.77.094019
– volume: 04
  start-page: 115
  year: 2021
  ident: 19469_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)115
– ident: 19469_CR52
  doi: 10.1103/PhysRevLett.120.161101
– ident: 19469_CR84
– volume: 07
  start-page: 110
  year: 2021
  ident: 19469_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)110
– ident: 19469_CR106
– volume: 02
  start-page: 034
  year: 2017
  ident: 19469_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)034
– ident: 19469_CR54
  doi: 10.1103/PhysRevD.98.045003
– ident: 19469_CR91
  doi: 10.1103/PhysRev.123.1053
– volume: 07
  start-page: 079
  year: 2014
  ident: 19469_CR93
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)079
– volume: 13
  start-page: 051
  year: 2022
  ident: 19469_CR25
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.13.3.051
– volume: 105
  start-page: L121301
  year: 2022
  ident: 19469_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.L121301
– volume: 05
  start-page: 255
  year: 2021
  ident: 19469_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)255
– ident: 19469_CR3
  doi: 10.1088/1674-1137/abcd8c
– ident: 19469_CR1
  doi: 10.1103/PhysRevD.95.065014
– ident: 19469_CR13
  doi: 10.1103/PhysRevD.104.036006
SSID ssj0015190
Score 2.5021656
Snippet A bstract Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of...
Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8,...
Abstract Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107
SubjectTerms Angular distribution
Classical and Quantum Gravitation
Elementary Particles
Fermions
High energy physics
Leptons
Lower bounds
Luminosity
Operators (mathematics)
Particle mass
Physics
Physics and Astronomy
Principles
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quantum theory
Quarks
Regular Article - Theoretical Physics
Relativity Theory
Sensitivity
SMEFT
Specific BSM Phenomenology
Standard model (particle physics)
String Theory
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUNIeQpO2dJsHOuSQPajRy5KdW54sgYQeGkhORrKllGK8y9oh9N93JNtbhxJyyVUe2cNoxHxjjb5B6AD2l0-VK4koM0UkJMrECicJVyn11EmjYm3O9Y2a3cqru-Ru1Oor1IR19MCd4Y5CgDEJZV6lWiojDM-cZKxgBoCJSSITKISxIZnqzw8Al9CByIfqo6vZxQ9GDyHR51MWOseOYlCk6n-GL1dHoh_QxmO9MH-eTFWNos7lR7TZw0V80qm5hdZcvY3exbLNovmEHq7n8YoaBuiJu_qr0AviGIdy9gd8vnRVRe5NjUMhKG7nGIBlOxLENnRVarCpSxy4nJaNI65nKMQAuHH346P5jG4vL36ezUjfOoEUkumWMAtpiRc-TUuVlKIsrTA-KyAeO0OziEuos94lnHpbMNjYPDOFzrQ34VqTFl_Qej2v3VeEOY23XUvqDSSDtsickF5xJix8IFVygr4PxsyLnlc8tLeo8oERubN-HqwPA3qCDlcTFh2lxsuip2F1VmKBCzsOgIfkvYfkr3nIBO0Oa5v3G7TJuQ7E-zzjfIKmw3r_e_yiPtOVQ_yn--9fbjGS_fYWuu-g9-F9IVgyvYvW2-Wj2wMU1Nr96PB_AbV3_qg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCEEPiKdYWpAPHLoHU9tx7KQXxKPLqlIRByqVU-Q49lYoSrabVBX_vh7HSRehcnUmsmV7PN_YM98g9N7rl8ukrUhS5ZII7yiTMrGCcJlRR63QMsTmnH6XyzNxcp6exwu3LoZVjmdiOKir1sAd-SFXwJTOc84_ri8JVI2C19VYQuM-esC430mQKb74Nr0ieHRCRzofqg5Plsc_GD3w7j6fM6gfu2WJAmH_XyhzehjdRY-umrX-c63resv2LJ6iJxE04k_DKj9D92zzHD0MwZume4FWp21IVMMegOIhCgsqQhxhCGpf4a8bW9fkl24whIPivsUeXvZbgriE2kod1k2FgdFp01liI08h9rAbD9cf3Ut0tjj--WVJYgEFYgRTPWGld05c4rKskmmVVFWZaJcbb5WtpnlAJ9SWzqacutIwr94810blymlIblLJK7TTtI19jTCnIee1ok57l7A0uU2Ek5wlpe8gk2KGPoyTWZjILg5FLupi5EUeZr-A2fcNaoYOph_WA7HG3aKfYXUmMWDEDg3tZlVEBSsAiOiUMiczJaRONM-tYMww7QGsTv0A98e1LaKadsXtppqh-bjet5_vHM982hD_jP33hV1vyb75f7d76DFIgjFkah_t9Jsr-9ajnL58F7byDV3e99c
  priority: 102
  providerName: ProQuest
Title Moments for positivity: using Drell-Yan data to test positivity bounds and reverse-engineer new physics
URI https://link.springer.com/article/10.1007/JHEP10(2022)107
https://www.proquest.com/docview/2768582922
https://kclpure.kcl.ac.uk/portal/en/publications/aca94264-1f7a-40a1-b18e-6d13f5be6d7d
https://doaj.org/article/4152a501f68746a3a29e411c1a310a54
UnpaywallVersion submittedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: 8FG
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C6C
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH90LWPbYeyTZeuCDjs0Bw19WbZ3a7NkodBSxgLdyci2lDKME2KXsf9-erKdpZQedjFGfrKFnmT9nvTe7wF88vPLJdqWVJappsobyjSXVlGhE-aYVUYH35yLS71YqvPr6PoA-BALE7zdhyPJ8Kcegt3OF7Mrzk68sS4mHOPHjzz40Ji0YIoBDv3BgS9jA4PP_Up3Fp_A0X8HWO7OQp_Bk9t6Y_78NlW1t9zMX8DzHieS006xL-HA1q_gcfDXLJrXsLpYh9g04jEn6RyvMAnEF4J-7CvydWuriv40NUEPUNKuiUeU7Z4gyTGdUkNMXRIkcdo2ltqempB4pE26HY_mDSznsx_TBe1zJtBC8bilPPf2iJMuSUodlbIsc2lcWviF2BqWBkDCbO5sJJjLC-5ntEhNEaexMxjPFMu3cFiva_sOiGAhzLVkzngrMC9SK5XTgsvcfyDRagSfh87Mip5QHPNaVNlAhdz1foa97wviEZzsKmw6Lo2HRc9QOzsxJMEOBevtKuvnVIbYw0SMO53EShtpRGoV5wU3HrOayDfweNBt1s_MJhMxMu6LVIgRTAZ9_3v8YHsmuwFxr-2_buxmT_b9f7z3AzzFW1wMeXwMh-321n70KKfNx_AomX8bw9HZ7PLq-ziMcrzq6TjsG_jrUpz-BQI1-Gc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEE-xUMAHkLoHU7_iJEgIAe2yfWzFoZXaU7ATexGKkmWTquqf4jfiyauLULn16tixNTP2fLbH3yD0xs8vFymbEZHFiki_USZGWEm4iqijVmrVxObMjtT0RO6fBqdr6Hf_FgbCKvs1sVmoszKFM_JtHgJTOo85_7j4RSBrFNyu9ik0WrM4sJcXfstWfdjb8fp9y_lk9_jLlHRZBUgqWVgTZjxid8JFUaaCTGSZEdrFqXdVVtO4cdnUGmcDTp1Jmbd5Hus0jEOn4cVPKPx_b6HbUggBXP3R5Otwa-HREO3pg2i4vT_d_cboFvducswgX-2K52sSBPyFaoeL2Hto47xY6MsLnecrvm7yAN3vQCr-1FrVQ7Rmi0foThMsmlaP0XxWNg_jsAe8uI36ggwU7zEE0c_xztLmOTnTBYbwU1yX2MPZeqUiNpDLqcK6yDAwSC0rS2zHi4g9zMftcUv1BJ3ciGifovWiLOwzhDlt3thm1Gm_BTVpbIV0ijNhfAeRkiP0rhdmknZs5pBUI096HuZW-glI3xeEI7Q1NFi0RB7XV_0M2hmqAQN3U1Au50k3oRMAPjqgzKkolEoLzWMrGUuZ9oBZB36Am71uk25ZqJIrIx6hca_vq8_Xjmc8GMQ_Y__5wy5W6j7_f7ev0cb0eHaYHO4dHbxAd6EVOGIWbqL1enluX3qEVZtXjVlj9P2m59EfnTk0jA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL0anfh6QHyKwgA_gLQ-mNpOYidIE2K0VbexqkJM2p6Ck9hFKEpK02naX-RXYSdOVoTG214TO7FsX99j-95zAN4a-9IhVxn2sohj32yUceIpHzMeEk2UL3kdm3M849MT__A0ON2C320ujA2rbNfEeqHOytSekQ-ZsEzpLGJsqF1YxHw0-bj8ha2ClL1pbeU0pJNZyPZqujGX5HGkLi_Mdq7aOxiZsX_H2GT87fMUO8UBnPpUrDFNDJrXng7DjAeZl2WJJ3WUGjemJIlqd05UolXAiE5SauyBRTIVkdDSZgMJz3z3FmwLmy_ag-398Wz-tbvTMFiJtORCRAwPp-M5JbvMONEBtWq2G36xlg_4C_N217T34e55sZSXFzLPNzzh5CE8cBAWfWrm3CPYUsVjuF2HkqbVE1gcl3XaHDJwGDUxYVaf4gOyIfYLNFqpPMdnskA2OBWtS2TA7nqjIEqs0lOFZJEhyy-1qhRWjjURmU0Aag5jqqdwciOd-wx6RVmo54AYqTNwM6Kl2aAmaaQ8X3NGvcT8IOR-H963nRmnjuvcSm7kccvS3PR-bHvfPBB92O0qLBuaj-uL7tvR6YpZfu76QblaxM7cYwuLZECo5qHwufQki5RPaUqlgdMyMA3cacc2dotGFV9N8T4M2vG-en1tewbdhPin7T9_qOVG2Rf__-0buGNsKv5yMDt6CfdsJeulqdiB3np1rl4Z-LVOXrt5jeD7TZvSH571P2Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moments+for+positivity%3A+using+Drell-Yan+data+to+test+positivity+bounds+and+reverse-engineer+new+physics&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Li%2C+Xu&rft.au=Mimasu%2C+Ken&rft.au=Yamashita%2C+Kimiko&rft.au=Yang%2C+Chengjie&rft.date=2022-10-17&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2022&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282022%29107&rft.externalDocID=10_1007_JHEP10_2022_107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon