Moments for positivity: using Drell-Yan data to test positivity bounds and reverse-engineer new physics
A bstract Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also...
Saved in:
Published in | The journal of high energy physics Vol. 2022; no. 10; pp. 107 - 47 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
17.10.2022
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-8479 1126-6708 1127-2236 1029-8479 |
DOI | 10.1007/JHEP10(2022)107 |
Cover
Abstract | A
bstract
Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also subject to positivity bounds, when requiring the associated (unknown) UV completion to obey basic principles of quantum field theory. We perform a phenomenological study to quantify the sensitivity of the high-luminosity LHC to this set of operators and, by extension, the positivity bounds. We further extend the angular basis of moments and consider double differential information to improve the ability to disentangle the different operators, leading to a sensitivity to new physics scales up to 3 TeV. We use this information to explore the violation of positivity at the LHC as a way to test the underlying principles of quantum field theory. Finally, we present a case study which combines our results with information from other (current and prospective) experiments, as well as the positivity cone to infer the properties of possible tree-level UV completions. The data lead to robust, model-independent lower bounds on the
M
/
g
combination of the particle mass and coupling, for states that couple to right-handed leptons and/or up quarks. |
---|---|
AbstractList | A
bstract
Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also subject to positivity bounds, when requiring the associated (unknown) UV completion to obey basic principles of quantum field theory. We perform a phenomenological study to quantify the sensitivity of the high-luminosity LHC to this set of operators and, by extension, the positivity bounds. We further extend the angular basis of moments and consider double differential information to improve the ability to disentangle the different operators, leading to a sensitivity to new physics scales up to 3 TeV. We use this information to explore the violation of positivity at the LHC as a way to test the underlying principles of quantum field theory. Finally, we present a case study which combines our results with information from other (current and prospective) experiments, as well as the positivity cone to infer the properties of possible tree-level UV completions. The data lead to robust, model-independent lower bounds on the
M
/
g
combination of the particle mass and coupling, for states that couple to right-handed leptons and/or up quarks. Abstract Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also subject to positivity bounds, when requiring the associated (unknown) UV completion to obey basic principles of quantum field theory. We perform a phenomenological study to quantify the sensitivity of the high-luminosity LHC to this set of operators and, by extension, the positivity bounds. We further extend the angular basis of moments and consider double differential information to improve the ability to disentangle the different operators, leading to a sensitivity to new physics scales up to 3 TeV. We use this information to explore the violation of positivity at the LHC as a way to test the underlying principles of quantum field theory. Finally, we present a case study which combines our results with information from other (current and prospective) experiments, as well as the positivity cone to infer the properties of possible tree-level UV completions. The data lead to robust, model-independent lower bounds on the M / g $$ M/\sqrt{g} $$ combination of the particle mass and coupling, for states that couple to right-handed leptons and/or up quarks. Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also subject to positivity bounds, when requiring the associated (unknown) UV completion to obey basic principles of quantum field theory. We perform a phenomenological study to quantify the sensitivity of the high-luminosity LHC to this set of operators and, by extension, the positivity bounds. We further extend the angular basis of moments and consider double differential information to improve the ability to disentangle the different operators, leading to a sensitivity to new physics scales up to 3 TeV. We use this information to explore the violation of positivity at the LHC as a way to test the underlying principles of quantum field theory. Finally, we present a case study which combines our results with information from other (current and prospective) experiments, as well as the positivity cone to infer the properties of possible tree-level UV completions. The data lead to robust, model-independent lower bounds on the M/g combination of the particle mass and coupling, for states that couple to right-handed leptons and/or up quarks. Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion operators in the Standard Model Effective Field Theory, involving a pair of quarks and leptons. The same operators are also subject to positivity bounds, when requiring the associated (unknown) UV completion to obey basic principles of quantum field theory. We perform a phenomenological study to quantify the sensitivity of the high-luminosity LHC to this set of operators and, by extension, the positivity bounds. We further extend the angular basis of moments and consider double differential information to improve the ability to disentangle the different operators, leading to a sensitivity to new physics scales up to 3 TeV. We use this information to explore the violation of positivity at the LHC as a way to test the underlying principles of quantum field theory. Finally, we present a case study which combines our results with information from other (current and prospective) experiments, as well as the positivity cone to infer the properties of possible tree-level UV completions. The data lead to robust, model-independent lower bounds on the $$ M/\sqrt{g} $$ M / g combination of the particle mass and coupling, for states that couple to right-handed leptons and/or up quarks. |
ArticleNumber | 107 |
Author | Zhang, Cen Li, Xu Mimasu, Ken Yamashita, Kimiko Yang, Chengjie Zhou, Shuang-Yong |
Author_xml | – sequence: 1 givenname: Xu surname: Li fullname: Li, Xu organization: Institute of High Energy Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Ken orcidid: 0000-0001-9976-8113 surname: Mimasu fullname: Mimasu, Ken organization: Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s College London – sequence: 3 givenname: Kimiko orcidid: 0000-0002-5033-5234 surname: Yamashita fullname: Yamashita, Kimiko email: kimikoy@cau.ac.kr organization: Institute of High Energy Physics, Chinese Academy of Sciences, Department of Physics, Chung-Ang University – sequence: 4 givenname: Chengjie surname: Yang fullname: Yang, Chengjie organization: Institute of High Energy Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 5 givenname: Cen surname: Zhang fullname: Zhang, Cen organization: Institute of High Energy Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Center for High Energy Physics, Peking University – sequence: 6 givenname: Shuang-Yong orcidid: 0000-0002-8292-2943 surname: Zhou fullname: Zhou, Shuang-Yong organization: Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Peng Huanwu Center for Fundamental Theory |
BookMark | eNp1kc1v1DAQxS1UJNrCmaslLnAIHTuf5oZKoa2K4AAHTtYkGadepXawnVb735MlVbsq4uTR6L2f38wcsQPnHTH2WsB7AVCfXJ6ffRfwVoKU7wTUz9ihAKmypqjVwV79gh3FuAEQpVBwyIav_oZcitz4wCcfbbK3Nm0_8DlaN_BPgcYx-4WO95iQJ88TxbQn5K2fXR85up4HuqUQKSM3WEcUuKM7Pl1vo-3iS_bc4Bjp1f17zH5-Pvtxep5dfftycfrxKusKUadMtFVVmdw0TV-Vfd73bY5GdbKQhKAAqlwBtYZKCabtRC4aqbCrVW0QcqHq_JhdrNze40ZPwd5g2GqPVv9t-DBoDMl2I-lClBJLEKZq6qLCHKWiQohOYC4Ay2Jhwcqa3YTbOxzHB6AAvVu63lzTtNS7pS-N3fdvVssU_O95WZXe-Dm4ZWIt66opl7hSLqpyVXXBxxjI6M4mTNa7FNCOD_T1pPv0kye-p3n-ddyPEBelGyg85vmf5Q9qjLKK |
CitedBy_id | crossref_primary_10_1007_JHEP06_2023_124 crossref_primary_10_1007_JHEP05_2024_221 crossref_primary_10_1103_PhysRevD_107_095025 crossref_primary_10_1088_1475_7516_2025_01_102 crossref_primary_10_1007_JHEP11_2022_113 crossref_primary_10_1103_PhysRevD_110_116015 crossref_primary_10_1007_JHEP03_2024_180 crossref_primary_10_1088_1475_7516_2023_11_076 crossref_primary_10_1007_JHEP03_2024_157 crossref_primary_10_1007_JHEP05_2024_183 crossref_primary_10_21468_SciPostPhys_16_1_019 crossref_primary_10_1007_JHEP11_2023_119 crossref_primary_10_1007_JHEP12_2024_046 crossref_primary_10_1007_JHEP06_2023_020 crossref_primary_10_1007_JHEP10_2023_135 crossref_primary_10_1007_JHEP05_2023_001 crossref_primary_10_1007_JHEP02_2025_168 crossref_primary_10_1103_PhysRevD_110_016006 crossref_primary_10_1007_JHEP10_2022_180 crossref_primary_10_1103_PhysRevD_109_033009 |
Cites_doi | 10.12942/lrr-2014-7 10.1007/JHEP04(2021)217 10.1103/PhysRevLett.129.011805 10.1103/PhysRevLett.117.242002 10.1007/JHEP11(2017)020 10.1007/JHEP03(2022)083 10.1103/PhysRevD.101.063518 10.1103/PhysRevD.104.016005 10.1103/PhysRevD.31.3027 10.1103/PhysRevLett.127.121601 10.1103/PhysRevD.96.081702 10.1103/PhysRevLett.126.181601 10.1007/JHEP08(2022)184 10.1007/JHEP08(2022)151 10.1016/j.physletb.2020.135703 10.1103/PhysRevD.100.095003 10.1007/JHEP05(2021)280 10.1007/JHEP05(2021)259 10.1103/PhysRevLett.106.231101 10.1007/JHEP01(2021)095 10.1016/j.nuclphysb.2006.10.014 10.1103/PhysRevD.104.095022 10.1007/JHEP12(2021)036 10.1007/JHEP04(2021)195 10.21468/SciPostPhys.11.1.002 10.1103/PhysRevD.105.036006 10.1007/JHEP07(2021)143 10.1007/JHEP06(2019)137 10.1103/PhysRevD.104.085022 10.1103/PhysRevD.101.021502 10.1140/epjc/s10052-020-08513-7 10.1007/JHEP09(2014)100 10.1007/JHEP11(2020)054 10.1103/PhysRevLett.98.041601 10.1088/1475-7516/2019/11/042 10.1103/PhysRevD.16.2219 10.1007/JHEP12(2021)203 10.1103/PhysRevD.104.015026 10.1103/PhysRevLett.128.051602 10.1088/1475-7516/2022/06/031 10.1103/PhysRevD.104.083502 10.1007/JHEP01(2022)176 10.1088/1126-6708/2006/10/014 10.1103/PhysRevD.103.125020 10.1103/PhysRevD.51.1093 10.1007/JHEP03(2018)011 10.1007/JHEP12(2019)032 10.1103/PhysRevD.93.064076 10.1088/1475-7516/2021/08/018 10.1103/PhysRevD.94.104001 10.1007/JHEP03(2022)159 10.1007/JHEP12(2021)115 10.1103/PhysRevD.98.095021 10.1007/JHEP02(2022)167 10.1103/PhysRevD.102.125023 10.1007/JHEP09(2017)072 10.1007/JHEP12(2017)046 10.1103/PhysRevD.100.025016 10.1007/JHEP06(2019)049 10.1007/JHEP10(2020)174 10.21468/SciPostPhys.5.1.008 10.1103/PhysRevLett.126.211602 10.1088/1475-7516/2021/11/012 10.1007/JHEP03(2020)097 10.1103/RevModPhys.89.025004 10.1007/JHEP03(2019)182 10.1103/PhysRevLett.125.201601 10.1007/JHEP09(2020)170 10.1103/PhysRevLett.125.081601 10.1007/JHEP06(2021)031 10.1088/1126-6708/2007/11/054 10.1007/JHEP08(2017)123 10.1103/PhysRevD.105.L111901 10.1007/JHEP07(2020)214 10.1088/1751-8121/ac0e51 10.1007/JHEP03(2018)109 10.1007/JHEP03(2022)063 10.1103/PhysRevD.77.094019 10.1007/JHEP04(2021)115 10.1103/PhysRevLett.120.161101 10.1007/JHEP07(2021)110 10.1007/JHEP02(2017)034 10.1103/PhysRevD.98.045003 10.1103/PhysRev.123.1053 10.1007/JHEP07(2014)079 10.21468/SciPostPhys.13.3.051 10.1103/PhysRevD.105.L121301 10.1007/JHEP05(2021)255 10.1088/1674-1137/abcd8c 10.1103/PhysRevD.95.065014 10.1103/PhysRevD.104.036006 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
DOI | 10.1007/JHEP10(2022)107 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 47 |
ExternalDocumentID | oai_doaj_org_article_4152a501f68746a3a29e411c1a310a54 oai:kclpure.kcl.ac.uk:publications/aca94264-1f7a-40a1-b18e-6d13f5be6d7d 10_1007_JHEP10_2022_107 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT PQGLB PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYZH ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC ADTOC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB ARNYC BAPOH BBWZM BGNMA CAG CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 UNPAY |
ID | FETCH-LOGICAL-c417t-1b666f3f88d65d3ddb3af9c242ea09006390ebfe520fbc131829ac797fa031973 |
IEDL.DBID | C24 |
ISSN | 1029-8479 1126-6708 1127-2236 |
IngestDate | Wed Aug 27 01:28:52 EDT 2025 Thu Aug 28 11:02:42 EDT 2025 Fri Jul 25 23:48:11 EDT 2025 Thu Apr 24 22:57:47 EDT 2025 Wed Oct 01 01:46:38 EDT 2025 Fri Feb 21 02:44:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | SMEFT Specific BSM Phenomenology |
Language | English |
License | other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-1b666f3f88d65d3ddb3af9c242ea09006390ebfe520fbc131829ac797fa031973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9976-8113 0000-0002-8292-2943 0000-0002-5033-5234 |
OpenAccessLink | https://link.springer.com/10.1007/JHEP10(2022)107 |
PQID | 2768582922 |
PQPubID | 2034718 |
PageCount | 47 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4152a501f68746a3a29e411c1a310a54 unpaywall_primary_10_1007_jhep10_2022_107 proquest_journals_2768582922 crossref_citationtrail_10_1007_JHEP10_2022_107 crossref_primary_10_1007_JHEP10_2022_107 springer_journals_10_1007_JHEP10_2022_107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-17 |
PublicationDateYYYYMMDD | 2022-10-17 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | GrallTMelvilleSPositivity bounds without boosts: New constraints on low energy effective field theories from the UVPhys. Rev. D2022105L12130110.1103/PhysRevD.105.L121301[arXiv:2102.05683] [INSPIRE] AdamsAArkani-HamedNDubovskySNicolisARattazziRCausality, analyticity and an IR obstruction to UV completionJHEP20061001410.1088/1126-6708/2006/10/014[hep-th/0602178] [INSPIRE] BiQZhangCZhouS-YPositivity constraints on aQGC: carving out the physical parameter spaceJHEP20190613710.1007/JHEP06(2019)137[arXiv:1902.08977] [INSPIRE] MurphyCWDimension-8 operators in the Standard Model Eective Field TheoryJHEP20201017410.1007/JHEP10(2020)174[arXiv:2005.00059] [INSPIRE] C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field theories, Phys. Rev. D96 (2017) 081702 [arXiv:1702.06134] [INSPIRE]. J. Gu, L.-T. Wang and C. Zhang, Unambiguously Testing Positivity at Lepton Colliders, Phys. Rev. Lett.129 (2022) 011805 [arXiv:2011.03055] [INSPIRE]. D. Traykova, E. Bellini, P.G. Ferreira, C. García-García, J. Noller and M. Zumalacárregui, Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models, Phys. Rev. D104 (2021) 083502 [arXiv:2103.11195] [INSPIRE]. M. Herrero-Valea, R. Santos-Garcia and A. Tokareva, Massless positivity in graviton exchange, Phys. Rev. D104 (2021) 085022 [arXiv:2011.11652] [INSPIRE]. J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying Models of New Physics via WW Scattering, Phys. Rev. Lett.98 (2007) 041601 [hep-ph/0604255] [INSPIRE]. ATLAS collaboration, Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 7 TeV with the ATLAS experiment, Eur. Phys. J. C72 (2012) 2001 [arXiv:1203.2165] [INSPIRE]. de RhamCMelvilleSTolleyAJZhouS-YPositivity Bounds for Massive Spin-1 and Spin-2 FieldsJHEP2019031821414.8115610.1007/JHEP03(2019)182[arXiv:1804.10624] [INSPIRE] KunduSSwampland conditions for higher derivative couplings from CFTJHEP2022011760760520210.1007/JHEP01(2022)176[arXiv:2104.11238] [INSPIRE] G.N. Remmen and N.L. Rodd, Flavor Constraints from Unitarity and Analyticity, Phys. Rev. Lett.125 (2020) 081601 [Erratum ibid.127 (2021) 149901] [arXiv:2004.02885] [INSPIRE]. de RhamCMelvilleSTolleyAJZhouS-YUV complete me: Positivity Bounds for Particles with SpinJHEP2018030111388.8126210.1007/JHEP03(2018)011[arXiv:1706.02712] [INSPIRE] HaldarPSinhaAZahedAQuantum field theory and the Bieberbach conjectureSciPost Phys.20211100210.21468/SciPostPhys.11.1.002[arXiv:2103.12108] [INSPIRE] C. Zhang, SMEFTs living on the edge: determining the UV theories from positivity and extremality, arXiv:2112.11665 [INSPIRE]. TokudaJAokiKHiranoSGravitational positivity boundsJHEP2020110541456.8303110.1007/JHEP11(2020)054[arXiv:2007.15009] [INSPIRE] L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Reverse Bootstrapping: IR Lessons for UV Physics, Phys. Rev. Lett.128 (2022) 051602 [arXiv:2111.09226] [INSPIRE]. Caron-HuotSMazacDRastelliLSimmons-DuffinDSharp boundaries for the swamplandJHEP2021071101468.8303110.1007/JHEP07(2021)110[arXiv:2102.08951] [INSPIRE] M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev.123 (1961) 1053 [INSPIRE]. CMS collaboration, Angular coefficients of Z bosons produced in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 8 TeV and decaying to μ+μ−as a function of transverse momentum and rapidity, Phys. Lett. B750 (2015) 154 [arXiv:1504.03512] [INSPIRE]. Arkani-HamedNHuangT-CHuangY-TThe EFT-HedronJHEP2021052591466.8113210.1007/JHEP05(2021)259[arXiv:2012.15849] [INSPIRE] L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, Into the EFThedron and UV constraints from IR consistency, JHEP03 (2022) 063 [arXiv:2105.02862] [INSPIRE]. AlbertJRastelliLBootstrapping pions at large NJHEP2022081510763941810.1007/JHEP08(2022)151[arXiv:2203.11950] [INSPIRE] TrottTCausality, unitarity and symmetry in effective field theoryJHEP20210714310.1007/JHEP07(2021)143[arXiv:2011.10058] [INSPIRE] L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, (Non)-projective bounds on gravitational EFT, arXiv:2201.07177 [INSPIRE]. B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous ZZ and Zγ processes, Phys. Rev. D98 (2018) 095021 [arXiv:1806.09640] [INSPIRE]. L.-Y. Chiang, Y.-t. Huang, L. Rodina and H.-C. Weng, De-projecting the EFThedron, arXiv:2204.07140 [INSPIRE]. H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D104 (2021) 015026 [arXiv:2005.00008] [INSPIRE]. FrederixRVitosTElectroweak corrections to the angular coefficients in finite-pTZ-boson production and dilepton decayEur. Phys. J. C20208093910.1140/epjc/s10052-020-08513-7[arXiv:2007.08867] [INSPIRE] A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett.117 (2016) 242002 [arXiv:1607.04266] [INSPIRE]. A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B761 (2007) 1 [hep-ph/0608326] [INSPIRE]. G.N. Remmen and N.L. Rodd, Signs, spin, SMEFT: Sum rules at dimension six, Phys. Rev. D105 (2022) 036006 [arXiv:2010.04723] [INSPIRE]. LHCb collaboration, First measurement of the Z → μ+μ−angular coefficients in the forward region of pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. Lett.129 (2022) 091801 [arXiv:2203.01602] [INSPIRE]. TolleyAJWangZ-YZhouS-YNew positivity bounds from full crossing symmetryJHEP20210525510.1007/JHEP05(2021)255[arXiv:2011.02400] [INSPIRE] ChowdhurySDGhoshKHaldarPRamanPSinhaACrossing Symmetric Spinning S-matrix Bootstrap: EFT boundsSciPost Phys.20221305110.21468/SciPostPhys.13.3.051[arXiv:2112.11755] [INSPIRE] RemmenGNRoddNLConsistency of the Standard Model Effective Field TheoryJHEP20191203210.1007/JHEP12(2019)032[arXiv:1908.09845] [INSPIRE] B. Ananthanarayan, D. Toublan and G. Wanders, Consistency of the chiral pion pion scattering amplitudes with axiomatic constraints, Phys. Rev. D51 (1995) 1093 [hep-ph/9410302] [INSPIRE]. M. Chala and J. Santiago, Positivity bounds in the standard model effective field theory beyond tree level, Phys. Rev. D105 (2022) L111901 [arXiv:2110.01624] [INSPIRE]. WangY-JGuoF-KZhangCZhouS-YGeneralized positivity bounds on chiral perturbation theoryJHEP20200721410.1007/JHEP07(2020)214[arXiv:2004.03992] [INSPIRE] de RhamCMelvilleSTolleyAJZhouS-YMassive Galileon Positivity BoundsJHEP2017090721382.8500510.1007/JHEP09(2017)072[arXiv:1702.08577] [INSPIRE] RamanPSinhaAQFT, EFT and GFTJHEP2021122030760204210.1007/JHEP12(2021)203[arXiv:2107.06559] [INSPIRE] YamashitaKZhangCZhouS-YElastic positivity vs extremal positivity bounds in SMEFT: a case study in transversal electroweak gauge-boson scatteringsJHEP20210109510.1007/JHEP01(2021)095[arXiv:2009.04490] [INSPIRE] DavighiJMelvilleSYouTNatural selection rules: new positivity bounds for massive spinning particlesJHEP2022021670760816810.1007/JHEP02(2022)167[arXiv:2108.06334] [INSPIRE] de BlasJCriadoJCPérez-VictoriaMSantiagoJEffective description of general extensions of the Standard Model: the complete tree-level dictionaryJHEP2018031091388.8137710.1007/JHEP03(2018)109[arXiv:1711.10391] [INSPIRE] Herrero-ValeaMTimiryasovITokarevaATo Positivity and Beyond, where Higgs-Dilaton Inflation has never gone beforeJCAP2019110420750209710.1088/1475-7516/2019/11/042[arXiv:1905.08816] [INSPIRE] S. Melville and J. Noller, Positivity in the Sky: Constraining dark energy and modified gravity from the UV, Phys. Rev. D101 (2020) 021502 [Erratum ibid.102 (2020) 049902] [arXiv:1904.05874] [INSPIRE]. ZahedAPositivity and geometric function theory constraints on pion scatteringJHEP2021120360760187510.1007/JHEP12(2021)036[arXiv:2108.10355] [INSPIRE] A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D95 (2017) 065014 [arXiv:1607.05236] [INSPIRE]. T.N. Pham and T.N. Truong, Evaluation of the Derivative Quartic Terms of the Meson Chiral Lagrangian From Forward Dispersion Relation, Phys. Rev. D31 (1985) 3027 [INSPIRE]. BanerjeeSGuptaRSReinessJYSethSSpannowskyMTowards the ultimate differential SMEFT analysisJHEP20200917010.1007/JHEP09(2020)170[arXiv:1912.07628] [INSPIRE] A.V. Manohar and V. Mateu, Dispersion Relation Bounds for pi pi Scattering, Phys. Rev. D77 (2008) 094019 [arXiv:0801.3222] [INSPIRE]. A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations in Quantum Field Theories, Phys. Rev. Lett.126 (2021) 181601 [arXiv:2012.04877] [INSPIRE]. DavisA-CMelvilleSScalar fields near compact objects: resummation versus UV completionJCAP2021110121487.8305710.1088/1475-7516/2021/11/012[arXiv:2107.00010] [INSPIRE] BanerjeeSGuptaRSOchoa-ValerianoOSpannowskyMVenturiniEA fully differential SMEFT analysis of the golden channel using the method of momentsJHEP20210603110.1007/JHEP06(2021)031[arXiv:2012.11631] [INSPIRE] L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, QED positivity bounds, Phys. Rev. D103 (2021) 125020 [arXiv:2012.05798] [INSPIRE]. CollinsJCSoperDEAngular Distribution of Dileptons in High-Energy Hadron CollisionsPhys. Rev. D197716221910.1103/PhysRevD.16.2219[INSPIRE] F J Davighi (19469_CR74) 2022; 02 19469_CR91 19469_CR90 19469_CR106 19469_CR10 A Zahed (19469_CR72) 2021; 12 19469_CR98 19469_CR103 Q Bonnefoy (19469_CR41) 2021; 04 19469_CR96 19469_CR105 19469_CR95 R Frederix (19469_CR92) 2020; 80 19469_CR94 AV Manohar (19469_CR97) 2017; 12 19469_CR101 A Adams (19469_CR4) 2006; 10 T Trott (19469_CR36) 2021; 07 19469_CR89 B Bellazzini (19469_CR48) 2017; 02 S Melville (19469_CR77) 2022; 06 J Henriksson (19469_CR79) 2022; 08 P Haldar (19469_CR69) 2021; 11 A-C Davis (19469_CR75) 2021; 11 19469_CR86 19469_CR85 19469_CR84 19469_CR83 19469_CR82 GN Remmen (19469_CR35) 2019; 12 19469_CR78 C de Rham (19469_CR53) 2019; 03 P Raman (19469_CR70) 2021; 12 19469_CR3 19469_CR6 19469_CR5 19469_CR2 19469_CR1 J de Blas (19469_CR102) 2018; 03 19469_CR31 19469_CR30 19469_CR8 19469_CR7 19469_CR9 CW Murphy (19469_CR100) 2020; 10 19469_CR29 19469_CR28 19469_CR27 19469_CR26 C de Rham (19469_CR66) 2021; 08 A Falkowski (19469_CR99) 2017; 08 19469_CR24 J Alwall (19469_CR93) 2014; 07 S Banerjee (19469_CR87) 2020; 09 C de Rham (19469_CR11) 2018; 03 T Grall (19469_CR20) 2022; 105 S Caron-Huot (19469_CR19) 2021; 07 19469_CR22 Z-Z Du (19469_CR23) 2021; 12 19469_CR21 S Kundu (19469_CR73) 2022; 01 19469_CR18 19469_CR17 19469_CR16 19469_CR13 JC Collins (19469_CR81) 1977; 16 19469_CR55 19469_CR54 B Bellazzini (19469_CR44) 2017; 11 19469_CR52 S Banerjee (19469_CR88) 2021; 06 19469_CR50 N Arkani-Hamed (19469_CR12) 2021; 05 C Cheung (19469_CR49) 2016; 04 19469_CR47 19469_CR46 19469_CR45 C de Rham (19469_CR51) 2017; 09 19469_CR43 19469_CR42 19469_CR40 19469_CR39 19469_CR37 B Alvarez (19469_CR76) 2022; 03 19469_CR34 Z-Y Wang (19469_CR63) 2021; 04 J Albert (19469_CR80) 2022; 08 SD Chowdhury (19469_CR25) 2022; 13 S Caron-Huot (19469_CR15) 2021; 05 19469_CR71 C de Rham (19469_CR104) 2014; 17 19469_CR68 19469_CR67 AJ Tolley (19469_CR14) 2021; 05 19469_CR65 L Vecchi (19469_CR38) 2007; 11 19469_CR61 19469_CR60 Q Bi (19469_CR32) 2019; 06 K Yamashita (19469_CR33) 2021; 01 19469_CR59 L Alberte (19469_CR57) 2020; 03 19469_CR56 Y-J Wang (19469_CR64) 2020; 07 J Tokuda (19469_CR62) 2020; 11 M Herrero-Valea (19469_CR58) 2019; 11 |
References_xml | – reference: TrottTCausality, unitarity and symmetry in effective field theoryJHEP20210714310.1007/JHEP07(2021)143[arXiv:2011.10058] [INSPIRE] – reference: J. Gu, L.-T. Wang and C. Zhang, Unambiguously Testing Positivity at Lepton Colliders, Phys. Rev. Lett.129 (2022) 011805 [arXiv:2011.03055] [INSPIRE]. – reference: C. Zhang, SMEFTs living on the edge: determining the UV theories from positivity and extremality, arXiv:2112.11665 [INSPIRE]. – reference: B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett.120 (2018) 161101 [arXiv:1710.02539] [INSPIRE]. – reference: de RhamCMelvilleSTolleyAJZhouS-YUV complete me: Positivity Bounds for Particles with SpinJHEP2018030111388.8126210.1007/JHEP03(2018)011[arXiv:1706.02712] [INSPIRE] – reference: A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D95 (2017) 065014 [arXiv:1607.05236] [INSPIRE]. – reference: Z. Bern, D. Kosmopoulos and A. Zhiboedov, Gravitational effective field theory islands, low-spin dominance, and the four-graviton amplitude, J. Phys. A54 (2021) 344002 [arXiv:2103.12728] [INSPIRE]. – reference: X. Li and S. Zhou, Origin of Neutrino Masses on the Convex Cone of Positivity Bounds, arXiv:2202.12907 [INSPIRE]. – reference: ManoharAVNasonPSalamGPZanderighiGThe Photon Content of the ProtonJHEP20171204610.1007/JHEP12(2017)046[arXiv:1708.01256] [INSPIRE] – reference: R. Boughezal, F. Petriello and D. Wiegand, Disentangling Standard Model EFT operators with future low-energy parity-violating electron scattering experiments, Phys. Rev. D104 (2021) 016005 [arXiv:2104.03979] [INSPIRE]. – reference: B. Bellazzini, C. Cheung and G.N. Remmen, Quantum Gravity Constraints from Unitarity and Analyticity, Phys. Rev. D93 (2016) 064076 [arXiv:1509.00851] [INSPIRE]. – reference: WangZ-YZhangCZhouS-YGeneralized elastic positivity bounds on interacting massive spin-2 theoriesJHEP20210421710.1007/JHEP04(2021)217[arXiv:2011.05190] [INSPIRE] – reference: DuZ-ZZhangCZhouS-YTriple crossing positivity bounds for multi-field theoriesJHEP2021121150760195410.1007/JHEP12(2021)115[arXiv:2111.01169] [INSPIRE] – reference: de RhamCMelvilleSNollerJPositivity bounds on dark energy: when matter mattersJCAP20210801810.1088/1475-7516/2021/08/018[arXiv:2103.06855] [INSPIRE] – reference: FrederixRVitosTElectroweak corrections to the angular coefficients in finite-pTZ-boson production and dilepton decayEur. Phys. J. C20208093910.1140/epjc/s10052-020-08513-7[arXiv:2007.08867] [INSPIRE] – reference: RamanPSinhaAQFT, EFT and GFTJHEP2021122030760204210.1007/JHEP12(2021)203[arXiv:2107.06559] [INSPIRE] – reference: de RhamCMelvilleSTolleyAJZhouS-YMassive Galileon Positivity BoundsJHEP2017090721382.8500510.1007/JHEP09(2017)072[arXiv:1702.08577] [INSPIRE] – reference: VecchiLCausal versus analytic constraints on anomalous quartic gauge couplingsJHEP20071105410.1088/1126-6708/2007/11/054[arXiv:0704.1900] [INSPIRE] – reference: BellazziniBRivaFSerraJSgarlataFThe other effective fermion compositenessJHEP20171102010.1007/JHEP11(2017)020[arXiv:1706.03070] [INSPIRE] – reference: C. de Rham, J.T. Deskins, A.J. Tolley and S.-Y. Zhou, Graviton Mass Bounds, Rev. Mod. Phys.89 (2017) 025004 [arXiv:1606.08462] [INSPIRE]. – reference: AlberteLde RhamCMomeniARumbutisJTolleyAJPositivity Constraints on Interacting Spin-2 FieldsJHEP2020030971435.8111310.1007/JHEP03(2020)097[arXiv:1910.11799] [INSPIRE] – reference: Caron-HuotSMazacDRastelliLSimmons-DuffinDSharp boundaries for the swamplandJHEP2021071101468.8303110.1007/JHEP07(2021)110[arXiv:2102.08951] [INSPIRE] – reference: TokudaJAokiKHiranoSGravitational positivity boundsJHEP2020110541456.8303110.1007/JHEP11(2020)054[arXiv:2007.15009] [INSPIRE] – reference: DavighiJMelvilleSYouTNatural selection rules: new positivity bounds for massive spinning particlesJHEP2022021670760816810.1007/JHEP02(2022)167[arXiv:2108.06334] [INSPIRE] – reference: GrallTMelvilleSPositivity bounds without boosts: New constraints on low energy effective field theories from the UVPhys. Rev. D2022105L12130110.1103/PhysRevD.105.L121301[arXiv:2102.05683] [INSPIRE] – reference: D. Traykova, E. Bellini, P.G. Ferreira, C. García-García, J. Noller and M. Zumalacárregui, Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models, Phys. Rev. D104 (2021) 083502 [arXiv:2103.11195] [INSPIRE]. – reference: RemmenGNRoddNLConsistency of the Standard Model Effective Field TheoryJHEP20191203210.1007/JHEP12(2019)032[arXiv:1908.09845] [INSPIRE] – reference: HaldarPSinhaAZahedAQuantum field theory and the Bieberbach conjectureSciPost Phys.20211100210.21468/SciPostPhys.11.1.002[arXiv:2103.12108] [INSPIRE] – reference: ChowdhurySDGhoshKHaldarPRamanPSinhaACrossing Symmetric Spinning S-matrix Bootstrap: EFT boundsSciPost Phys.20221305110.21468/SciPostPhys.13.3.051[arXiv:2112.11755] [INSPIRE] – reference: M. Chala and J. Santiago, Positivity bounds in the standard model effective field theory beyond tree level, Phys. Rev. D105 (2022) L111901 [arXiv:2110.01624] [INSPIRE]. – reference: HenrikssonJMcPeakBRussoFVichiABounding violations of the weak gravity conjectureJHEP2022081840763945110.1007/JHEP08(2022)184[arXiv:2203.08164] [INSPIRE] – reference: B. Bellazzini, L. Martucci and R. Torre, Symmetries, Sum Rules and Constraints on Effective Field Theories, JHEP09 (2014) 100 [arXiv:1405.2960] [INSPIRE]. – reference: AlvarezBBijnensJSjöMNNLO positivity bounds on chiral perturbation theory for a general number of flavoursJHEP20220315910.1007/JHEP03(2022)159[arXiv:2112.04253] [INSPIRE] – reference: AlwallJFrederixRFrixioneSHirschiVMaltoniFMattelaerOThe automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulationsJHEP2014070791402.8101110.1007/JHEP07(2014)079[arXiv:1405.0301] [INSPIRE] – reference: B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous ZZ and Zγ processes, Phys. Rev. D98 (2018) 095021 [arXiv:1806.09640] [INSPIRE]. – reference: KunduSSwampland conditions for higher derivative couplings from CFTJHEP2022011760760520210.1007/JHEP01(2022)176[arXiv:2104.11238] [INSPIRE] – reference: N. Arkani-Hamed, Y.-t. Huang, J.-Y. Liu and G.N. Remmen, Causality, unitarity, and the weak gravity conjecture, JHEP03 (2022) 083 [arXiv:2109.13937] [INSPIRE]. – reference: DavisA-CMelvilleSScalar fields near compact objects: resummation versus UV completionJCAP2021110121487.8305710.1088/1475-7516/2021/11/012[arXiv:2107.00010] [INSPIRE] – reference: R. Gopakumar, A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations for Mellin Amplitudes, Phys. Rev. Lett.126 (2021) 211602 [arXiv:2101.09017] [INSPIRE]. – reference: A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett.117 (2016) 242002 [arXiv:1607.04266] [INSPIRE]. – reference: C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett.106 (2011) 231101 [arXiv:1011.1232] [INSPIRE]. – reference: CMS collaboration, Measurement of the Polarization of W Bosons with Large Transverse Momenta in W+Jets Events at the LHC, Phys. Rev. Lett.107 (2011) 021802 [arXiv:1104.3829] [INSPIRE]. – reference: K. Häring and A. Zhiboedov, Gravitational Regge bounds, arXiv:2202.08280 [INSPIRE]. – reference: L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, Into the EFThedron and UV constraints from IR consistency, JHEP03 (2022) 063 [arXiv:2105.02862] [INSPIRE]. – reference: ATLAS collaboration, Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 7 TeV with the ATLAS experiment, Eur. Phys. J. C72 (2012) 2001 [arXiv:1203.2165] [INSPIRE]. – reference: BanerjeeSGuptaRSOchoa-ValerianoOSpannowskyMVenturiniEA fully differential SMEFT analysis of the golden channel using the method of momentsJHEP20210603110.1007/JHEP06(2021)031[arXiv:2012.11631] [INSPIRE] – reference: CollinsJCSoperDEAngular Distribution of Dileptons in High-Energy Hadron CollisionsPhys. Rev. D197716221910.1103/PhysRevD.16.2219[INSPIRE] – reference: C. de Rham, S. Kundu, M. Reece, A.J. Tolley and S.-Y. Zhou, Snowmass White Paper: UV Constraints on IR Physics, in 2022 Snowmass Summer Study, (2022) [arXiv:2203.06805] [INSPIRE]. – reference: B. Ananthanarayan, D. Toublan and G. Wanders, Consistency of the chiral pion pion scattering amplitudes with axiomatic constraints, Phys. Rev. D51 (1995) 1093 [hep-ph/9410302] [INSPIRE]. – reference: G.N. Remmen and N.L. Rodd, Signs, spin, SMEFT: Sum rules at dimension six, Phys. Rev. D105 (2022) 036006 [arXiv:2010.04723] [INSPIRE]. – reference: A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B761 (2007) 1 [hep-ph/0608326] [INSPIRE]. – reference: CheungCRemmenGNPositive Signs in Massive GravityJHEP2016040021388.83576[arXiv:1601.04068] [INSPIRE] – reference: M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev.123 (1961) 1053 [INSPIRE]. – reference: S. Pascoli, R. Ruiz and C. Weiland, Heavy neutrinos with dynamic jet vetoes: multilepton searches ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 14, 27, and 100 TeV, JHEP06 (2019) 049 [arXiv:1812.08750] [INSPIRE]. – reference: L. Keltner and A.J. Tolley, UV properties of Galileons: Spectral Densities, arXiv:1502.05706 [INSPIRE]. – reference: C. Zhang and S.-Y. Zhou, Convex Geometry Perspective on the (Standard Model) Effective Field Theory Space, Phys. Rev. Lett.125 (2020) 201601 [arXiv:2005.03047] [INSPIRE]. – reference: A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations in Quantum Field Theories, Phys. Rev. Lett.126 (2021) 181601 [arXiv:2012.04877] [INSPIRE]. – reference: MurphyCWDimension-8 operators in the Standard Model Eective Field TheoryJHEP20201017410.1007/JHEP10(2020)174[arXiv:2005.00059] [INSPIRE] – reference: Caron-HuotSVan DuongVExtremal Effective Field TheoriesJHEP20210528010.1007/JHEP05(2021)280[arXiv:2011.02957] [INSPIRE] – reference: AlbertJRastelliLBootstrapping pions at large NJHEP2022081510763941810.1007/JHEP08(2022)151[arXiv:2203.11950] [INSPIRE] – reference: S. Caron-Huot, Y.-Z. Li, J. Parra-Martinez and D. Simmons-Duffin, Causality constraints on corrections to Einstein gravity, arXiv:2201.06602 [INSPIRE]. – reference: W.-M. Chen, Y.-T. Huang, T. Noumi and C. Wen, Unitarity bounds on charged/neutral state mass ratios, Phys. Rev. D100 (2019) 025016 [arXiv:1901.11480] [INSPIRE]. – reference: BanerjeeSGuptaRSReinessJYSethSSpannowskyMTowards the ultimate differential SMEFT analysisJHEP20200917010.1007/JHEP09(2020)170[arXiv:1912.07628] [INSPIRE] – reference: S. Alioli, R. Boughezal, E. Mereghetti and F. Petriello, Novel angular dependence in Drell-Yan lepton production via dimension-8 operators, Phys. Lett. B809 (2020) 135703 [arXiv:2003.11615] [INSPIRE]. – reference: R. Boughezal, E. Mereghetti and F. Petriello, Dilepton production in the SMEFT at O(1/Λ4), Phys. Rev. D104 (2021) 095022 [arXiv:2106.05337] [INSPIRE]. – reference: L.-Y. Chiang, Y.-t. Huang, L. Rodina and H.-C. Weng, De-projecting the EFThedron, arXiv:2204.07140 [INSPIRE]. – reference: L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, (Non)-projective bounds on gravitational EFT, arXiv:2201.07177 [INSPIRE]. – reference: L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, QED positivity bounds, Phys. Rev. D103 (2021) 125020 [arXiv:2012.05798] [INSPIRE]. – reference: ZahedAPositivity and geometric function theory constraints on pion scatteringJHEP2021120360760187510.1007/JHEP12(2021)036[arXiv:2108.10355] [INSPIRE] – reference: LHCb collaboration, First measurement of the Z → μ+μ−angular coefficients in the forward region of pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. Lett.129 (2022) 091801 [arXiv:2203.01602] [INSPIRE]. – reference: B. Bellazzini, J. Elias Miró, R. Rattazzi, M. Riembau and F. Riva, Positive moments for scattering amplitudes, Phys. Rev. D104 (2021) 036006 [arXiv:2011.00037] [INSPIRE]. – reference: T.N. Pham and T.N. Truong, Evaluation of the Derivative Quartic Terms of the Meson Chiral Lagrangian From Forward Dispersion Relation, Phys. Rev. D31 (1985) 3027 [INSPIRE]. – reference: S. Melville and J. Noller, Positivity in the Sky: Constraining dark energy and modified gravity from the UV, Phys. Rev. D101 (2020) 021502 [Erratum ibid.102 (2020) 049902] [arXiv:1904.05874] [INSPIRE]. – reference: C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field theories, Phys. Rev. D96 (2017) 081702 [arXiv:1702.06134] [INSPIRE]. – reference: MelvilleSNollerJPositivity bounds from multiple vacua and their cosmological consequencesJCAP2022060310757916310.1088/1475-7516/2022/06/031[arXiv:2202.01222] [INSPIRE] – reference: BellazziniBSoftness and amplitudes’ positivity for spinning particlesJHEP2017020341377.8121910.1007/JHEP02(2017)034[arXiv:1605.06111] [INSPIRE] – reference: H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D104 (2021) 015026 [arXiv:2005.00008] [INSPIRE]. – reference: WangY-JGuoF-KZhangCZhouS-YGeneralized positivity bounds on chiral perturbation theoryJHEP20200721410.1007/JHEP07(2020)214[arXiv:2004.03992] [INSPIRE] – reference: de RhamCMelvilleSTolleyAJZhouS-YPositivity Bounds for Massive Spin-1 and Spin-2 FieldsJHEP2019031821414.8115610.1007/JHEP03(2019)182[arXiv:1804.10624] [INSPIRE] – reference: G.N. Remmen and N.L. Rodd, Flavor Constraints from Unitarity and Analyticity, Phys. Rev. Lett.125 (2020) 081601 [Erratum ibid.127 (2021) 149901] [arXiv:2004.02885] [INSPIRE]. – reference: YamashitaKZhangCZhouS-YElastic positivity vs extremal positivity bounds in SMEFT: a case study in transversal electroweak gauge-boson scatteringsJHEP20210109510.1007/JHEP01(2021)095[arXiv:2009.04490] [INSPIRE] – reference: NNPDF collaboration, Illuminating the photon content of the proton within a global PDF analysis, SciPost Phys.5 (2018) 008 [arXiv:1712.07053] [INSPIRE]. – reference: ATLAS collaboration, Measurement of the angular coefficients in Z-boson events using electron and muon pairs from data taken ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 8 TeV with the ATLAS detector, JHEP08 (2016) 159 [arXiv:1606.00689] [INSPIRE]. – reference: FalkowskiAGonzález-AlonsoMMimouniKCompilation of low-energy constraints on 4-fermion operators in the SMEFTJHEP20170812310.1007/JHEP08(2017)123[arXiv:1706.03783] [INSPIRE] – reference: J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev. D94 (2016) 104001 [arXiv:1607.06084] [INSPIRE]. – reference: CMS collaboration, Angular coefficients of Z bosons produced in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 8 TeV and decaying to μ+μ−as a function of transverse momentum and rapidity, Phys. Lett. B750 (2015) 154 [arXiv:1504.03512] [INSPIRE]. – reference: J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying Models of New Physics via WW Scattering, Phys. Rev. Lett.98 (2007) 041601 [hep-ph/0604255] [INSPIRE]. – reference: C. Zhang and S.-Y. Zhou, Positivity bounds on vector boson scattering at the LHC, Phys. Rev. D100 (2019) 095003 [arXiv:1808.00010] [INSPIRE]. – reference: BiQZhangCZhouS-YPositivity constraints on aQGC: carving out the physical parameter spaceJHEP20190613710.1007/JHEP06(2019)137[arXiv:1902.08977] [INSPIRE] – reference: Herrero-ValeaMTimiryasovITokarevaATo Positivity and Beyond, where Higgs-Dilaton Inflation has never gone beforeJCAP2019110420750209710.1088/1475-7516/2019/11/042[arXiv:1905.08816] [INSPIRE] – reference: M. Herrero-Valea, R. Santos-Garcia and A. Tokareva, Massless positivity in graviton exchange, Phys. Rev. D104 (2021) 085022 [arXiv:2011.11652] [INSPIRE]. – reference: X. Li, H. Xu, C. Yang, C. Zhang and S.-Y. Zhou, Positivity in Multifield Effective Field Theories, Phys. Rev. Lett.127 (2021) 121601 [arXiv:2101.01191] [INSPIRE]. – reference: AdamsAArkani-HamedNDubovskySNicolisARattazziRCausality, analyticity and an IR obstruction to UV completionJHEP20061001410.1088/1126-6708/2006/10/014[hep-th/0602178] [INSPIRE] – reference: de RhamCMassive GravityLiving Rev. Rel.20141771320.8301810.12942/lrr-2014-7[arXiv:1401.4173] [INSPIRE] – reference: L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Positivity Bounds and the Massless Spin-2 Pole, Phys. Rev. D102 (2020) 125023 [arXiv:2007.12667] [INSPIRE]. – reference: TolleyAJWangZ-YZhouS-YNew positivity bounds from full crossing symmetryJHEP20210525510.1007/JHEP05(2021)255[arXiv:2011.02400] [INSPIRE] – reference: BonnefoyQGendyEGrojeanCPositivity bounds on Minimal Flavor ViolationJHEP20210411510.1007/JHEP04(2021)115[arXiv:2011.12855] [INSPIRE] – reference: A.V. Manohar and V. Mateu, Dispersion Relation Bounds for pi pi Scattering, Phys. Rev. D77 (2008) 094019 [arXiv:0801.3222] [INSPIRE]. – reference: C. de Rham and A.J. Tolley, Speed of gravity, Phys. Rev. D101 (2020) 063518 [arXiv:1909.00881] [INSPIRE]. – reference: B. Bellazzini, M. Riembau and F. Riva, The IR-Side of Positivity Bounds, arXiv:2112.12561 [INSPIRE]. – reference: de BlasJCriadoJCPérez-VictoriaMSantiagoJEffective description of general extensions of the Standard Model: the complete tree-level dictionaryJHEP2018031091388.8137710.1007/JHEP03(2018)109[arXiv:1711.10391] [INSPIRE] – reference: B. Fuks, Y. Liu, C. Zhang and S.-Y. Zhou, Positivity in electron-positron scattering: testing the axiomatic quantum field theory principles and probing the existence of UV states, Chin. Phys. C45 (2021) 023108 [arXiv:2009.02212] [INSPIRE]. – reference: Arkani-HamedNHuangT-CHuangY-TThe EFT-HedronJHEP2021052591466.8113210.1007/JHEP05(2021)259[arXiv:2012.15849] [INSPIRE] – reference: L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Reverse Bootstrapping: IR Lessons for UV Physics, Phys. Rev. Lett.128 (2022) 051602 [arXiv:2111.09226] [INSPIRE]. – reference: Y.-t. Huang, J.-Y. Liu, L. Rodina and Y. Wang, Carving out the Space of Open-String S-matrix, JHEP04 (2021) 195 [arXiv:2008.02293] [INSPIRE]. – reference: J. Bonifacio and K. Hinterbichler, Bounds on Amplitudes in Effective Theories with Massive Spinning Particles, Phys. Rev. D98 (2018) 045003 [arXiv:1804.08686] [INSPIRE]. – volume: 17 start-page: 7 year: 2014 ident: 19469_CR104 publication-title: Living Rev. Rel. doi: 10.12942/lrr-2014-7 – volume: 04 start-page: 217 year: 2021 ident: 19469_CR63 publication-title: JHEP doi: 10.1007/JHEP04(2021)217 – ident: 19469_CR37 doi: 10.1103/PhysRevLett.129.011805 – ident: 19469_CR83 – ident: 19469_CR96 doi: 10.1103/PhysRevLett.117.242002 – volume: 11 start-page: 020 year: 2017 ident: 19469_CR44 publication-title: JHEP doi: 10.1007/JHEP11(2017)020 – ident: 19469_CR68 doi: 10.1007/JHEP03(2022)083 – ident: 19469_CR56 doi: 10.1103/PhysRevD.101.063518 – ident: 19469_CR98 doi: 10.1103/PhysRevD.104.016005 – ident: 19469_CR5 doi: 10.1103/PhysRevD.31.3027 – ident: 19469_CR9 doi: 10.1103/PhysRevLett.127.121601 – ident: 19469_CR10 doi: 10.1103/PhysRevD.96.081702 – ident: 19469_CR16 doi: 10.1103/PhysRevLett.126.181601 – volume: 08 start-page: 184 year: 2022 ident: 19469_CR79 publication-title: JHEP doi: 10.1007/JHEP08(2022)184 – volume: 08 start-page: 151 year: 2022 ident: 19469_CR80 publication-title: JHEP doi: 10.1007/JHEP08(2022)151 – ident: 19469_CR2 doi: 10.1016/j.physletb.2020.135703 – ident: 19469_CR31 doi: 10.1103/PhysRevD.100.095003 – volume: 05 start-page: 280 year: 2021 ident: 19469_CR15 publication-title: JHEP doi: 10.1007/JHEP05(2021)280 – volume: 05 start-page: 259 year: 2021 ident: 19469_CR12 publication-title: JHEP doi: 10.1007/JHEP05(2021)259 – ident: 19469_CR86 – ident: 19469_CR103 doi: 10.1103/PhysRevLett.106.231101 – ident: 19469_CR28 – volume: 01 start-page: 095 year: 2021 ident: 19469_CR33 publication-title: JHEP doi: 10.1007/JHEP01(2021)095 – ident: 19469_CR89 doi: 10.1016/j.nuclphysb.2006.10.014 – ident: 19469_CR90 doi: 10.1103/PhysRevD.104.095022 – volume: 12 start-page: 036 year: 2021 ident: 19469_CR72 publication-title: JHEP doi: 10.1007/JHEP12(2021)036 – ident: 19469_CR34 – ident: 19469_CR61 doi: 10.1007/JHEP04(2021)195 – volume: 11 start-page: 002 year: 2021 ident: 19469_CR69 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.11.1.002 – ident: 19469_CR42 doi: 10.1103/PhysRevD.105.036006 – volume: 07 start-page: 143 year: 2021 ident: 19469_CR36 publication-title: JHEP doi: 10.1007/JHEP07(2021)143 – volume: 06 start-page: 137 year: 2019 ident: 19469_CR32 publication-title: JHEP doi: 10.1007/JHEP06(2019)137 – ident: 19469_CR85 – ident: 19469_CR65 doi: 10.1103/PhysRevD.104.085022 – ident: 19469_CR55 doi: 10.1103/PhysRevD.101.021502 – volume: 80 start-page: 939 year: 2020 ident: 19469_CR92 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08513-7 – ident: 19469_CR30 doi: 10.1007/JHEP09(2014)100 – volume: 11 start-page: 054 year: 2020 ident: 19469_CR62 publication-title: JHEP doi: 10.1007/JHEP11(2020)054 – ident: 19469_CR45 doi: 10.1103/PhysRevLett.98.041601 – volume: 11 start-page: 042 year: 2019 ident: 19469_CR58 publication-title: JCAP doi: 10.1088/1475-7516/2019/11/042 – volume: 16 start-page: 2219 year: 1977 ident: 19469_CR81 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.16.2219 – volume: 12 start-page: 203 year: 2021 ident: 19469_CR70 publication-title: JHEP doi: 10.1007/JHEP12(2021)203 – ident: 19469_CR101 doi: 10.1103/PhysRevD.104.015026 – ident: 19469_CR26 – ident: 19469_CR7 – ident: 19469_CR22 doi: 10.1103/PhysRevLett.128.051602 – volume: 06 start-page: 031 year: 2022 ident: 19469_CR77 publication-title: JCAP doi: 10.1088/1475-7516/2022/06/031 – ident: 19469_CR67 doi: 10.1103/PhysRevD.104.083502 – volume: 01 start-page: 176 year: 2022 ident: 19469_CR73 publication-title: JHEP doi: 10.1007/JHEP01(2022)176 – volume: 10 start-page: 014 year: 2006 ident: 19469_CR4 publication-title: JHEP doi: 10.1088/1126-6708/2006/10/014 – ident: 19469_CR60 doi: 10.1103/PhysRevD.103.125020 – ident: 19469_CR6 doi: 10.1103/PhysRevD.51.1093 – volume: 03 start-page: 011 year: 2018 ident: 19469_CR11 publication-title: JHEP doi: 10.1007/JHEP03(2018)011 – volume: 12 start-page: 032 year: 2019 ident: 19469_CR35 publication-title: JHEP doi: 10.1007/JHEP12(2019)032 – ident: 19469_CR47 doi: 10.1103/PhysRevD.93.064076 – volume: 08 start-page: 018 year: 2021 ident: 19469_CR66 publication-title: JCAP doi: 10.1088/1475-7516/2021/08/018 – ident: 19469_CR50 doi: 10.1103/PhysRevD.94.104001 – volume: 03 start-page: 159 year: 2022 ident: 19469_CR76 publication-title: JHEP doi: 10.1007/JHEP03(2022)159 – volume: 12 start-page: 115 year: 2021 ident: 19469_CR23 publication-title: JHEP doi: 10.1007/JHEP12(2021)115 – ident: 19469_CR29 – ident: 19469_CR39 doi: 10.1103/PhysRevD.98.095021 – volume: 02 start-page: 167 year: 2022 ident: 19469_CR74 publication-title: JHEP doi: 10.1007/JHEP02(2022)167 – ident: 19469_CR17 doi: 10.1103/PhysRevD.102.125023 – volume: 09 start-page: 072 year: 2017 ident: 19469_CR51 publication-title: JHEP doi: 10.1007/JHEP09(2017)072 – volume: 12 start-page: 046 year: 2017 ident: 19469_CR97 publication-title: JHEP doi: 10.1007/JHEP12(2017)046 – ident: 19469_CR59 doi: 10.1103/PhysRevD.100.025016 – ident: 19469_CR95 doi: 10.1007/JHEP06(2019)049 – volume: 10 start-page: 174 year: 2020 ident: 19469_CR100 publication-title: JHEP doi: 10.1007/JHEP10(2020)174 – ident: 19469_CR94 doi: 10.21468/SciPostPhys.5.1.008 – ident: 19469_CR71 doi: 10.1103/PhysRevLett.126.211602 – ident: 19469_CR24 – volume: 11 start-page: 012 year: 2021 ident: 19469_CR75 publication-title: JCAP doi: 10.1088/1475-7516/2021/11/012 – volume: 04 start-page: 002 year: 2016 ident: 19469_CR49 publication-title: JHEP – volume: 03 start-page: 097 year: 2020 ident: 19469_CR57 publication-title: JHEP doi: 10.1007/JHEP03(2020)097 – ident: 19469_CR82 – ident: 19469_CR105 doi: 10.1103/RevModPhys.89.025004 – volume: 03 start-page: 182 year: 2019 ident: 19469_CR53 publication-title: JHEP doi: 10.1007/JHEP03(2019)182 – ident: 19469_CR8 doi: 10.1103/PhysRevLett.125.201601 – volume: 09 start-page: 170 year: 2020 ident: 19469_CR87 publication-title: JHEP doi: 10.1007/JHEP09(2020)170 – ident: 19469_CR40 doi: 10.1103/PhysRevLett.125.081601 – volume: 06 start-page: 031 year: 2021 ident: 19469_CR88 publication-title: JHEP doi: 10.1007/JHEP06(2021)031 – volume: 11 start-page: 054 year: 2007 ident: 19469_CR38 publication-title: JHEP doi: 10.1088/1126-6708/2007/11/054 – volume: 08 start-page: 123 year: 2017 ident: 19469_CR99 publication-title: JHEP doi: 10.1007/JHEP08(2017)123 – ident: 19469_CR43 doi: 10.1103/PhysRevD.105.L111901 – ident: 19469_CR27 – volume: 07 start-page: 214 year: 2020 ident: 19469_CR64 publication-title: JHEP doi: 10.1007/JHEP07(2020)214 – ident: 19469_CR21 doi: 10.1088/1751-8121/ac0e51 – volume: 03 start-page: 109 year: 2018 ident: 19469_CR102 publication-title: JHEP doi: 10.1007/JHEP03(2018)109 – ident: 19469_CR18 doi: 10.1007/JHEP03(2022)063 – ident: 19469_CR78 – ident: 19469_CR46 doi: 10.1103/PhysRevD.77.094019 – volume: 04 start-page: 115 year: 2021 ident: 19469_CR41 publication-title: JHEP doi: 10.1007/JHEP04(2021)115 – ident: 19469_CR52 doi: 10.1103/PhysRevLett.120.161101 – ident: 19469_CR84 – volume: 07 start-page: 110 year: 2021 ident: 19469_CR19 publication-title: JHEP doi: 10.1007/JHEP07(2021)110 – ident: 19469_CR106 – volume: 02 start-page: 034 year: 2017 ident: 19469_CR48 publication-title: JHEP doi: 10.1007/JHEP02(2017)034 – ident: 19469_CR54 doi: 10.1103/PhysRevD.98.045003 – ident: 19469_CR91 doi: 10.1103/PhysRev.123.1053 – volume: 07 start-page: 079 year: 2014 ident: 19469_CR93 publication-title: JHEP doi: 10.1007/JHEP07(2014)079 – volume: 13 start-page: 051 year: 2022 ident: 19469_CR25 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.13.3.051 – volume: 105 start-page: L121301 year: 2022 ident: 19469_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.L121301 – volume: 05 start-page: 255 year: 2021 ident: 19469_CR14 publication-title: JHEP doi: 10.1007/JHEP05(2021)255 – ident: 19469_CR3 doi: 10.1088/1674-1137/abcd8c – ident: 19469_CR1 doi: 10.1103/PhysRevD.95.065014 – ident: 19469_CR13 doi: 10.1103/PhysRevD.104.036006 |
SSID | ssj0015190 |
Score | 2.5021656 |
Snippet | A
bstract
Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of... Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of dimension-8,... Abstract Moments of the leptonic angular distribution in the Drell-Yan process have recently been shown to be sensitive probes of a specific class of... |
SourceID | doaj unpaywall proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107 |
SubjectTerms | Angular distribution Classical and Quantum Gravitation Elementary Particles Fermions High energy physics Leptons Lower bounds Luminosity Operators (mathematics) Particle mass Physics Physics and Astronomy Principles Quantum Field Theories Quantum Field Theory Quantum Physics Quantum theory Quarks Regular Article - Theoretical Physics Relativity Theory Sensitivity SMEFT Specific BSM Phenomenology Standard model (particle physics) String Theory |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUNIeQpO2dJsHOuSQPajRy5KdW54sgYQeGkhORrKllGK8y9oh9N93JNtbhxJyyVUe2cNoxHxjjb5B6AD2l0-VK4koM0UkJMrECicJVyn11EmjYm3O9Y2a3cqru-Ru1Oor1IR19MCd4Y5CgDEJZV6lWiojDM-cZKxgBoCJSSITKISxIZnqzw8Al9CByIfqo6vZxQ9GDyHR51MWOseOYlCk6n-GL1dHoh_QxmO9MH-eTFWNos7lR7TZw0V80qm5hdZcvY3exbLNovmEHq7n8YoaBuiJu_qr0AviGIdy9gd8vnRVRe5NjUMhKG7nGIBlOxLENnRVarCpSxy4nJaNI65nKMQAuHH346P5jG4vL36ezUjfOoEUkumWMAtpiRc-TUuVlKIsrTA-KyAeO0OziEuos94lnHpbMNjYPDOFzrQ34VqTFl_Qej2v3VeEOY23XUvqDSSDtsickF5xJix8IFVygr4PxsyLnlc8tLeo8oERubN-HqwPA3qCDlcTFh2lxsuip2F1VmKBCzsOgIfkvYfkr3nIBO0Oa5v3G7TJuQ7E-zzjfIKmw3r_e_yiPtOVQ_yn--9fbjGS_fYWuu-g9-F9IVgyvYvW2-Wj2wMU1Nr96PB_AbV3_qg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCEEPiKdYWpAPHLoHU9tx7KQXxKPLqlIRByqVU-Q49lYoSrabVBX_vh7HSRehcnUmsmV7PN_YM98g9N7rl8ukrUhS5ZII7yiTMrGCcJlRR63QMsTmnH6XyzNxcp6exwu3LoZVjmdiOKir1sAd-SFXwJTOc84_ri8JVI2C19VYQuM-esC430mQKb74Nr0ieHRCRzofqg5Plsc_GD3w7j6fM6gfu2WJAmH_XyhzehjdRY-umrX-c63resv2LJ6iJxE04k_DKj9D92zzHD0MwZume4FWp21IVMMegOIhCgsqQhxhCGpf4a8bW9fkl24whIPivsUeXvZbgriE2kod1k2FgdFp01liI08h9rAbD9cf3Ut0tjj--WVJYgEFYgRTPWGld05c4rKskmmVVFWZaJcbb5WtpnlAJ9SWzqacutIwr94810blymlIblLJK7TTtI19jTCnIee1ok57l7A0uU2Ek5wlpe8gk2KGPoyTWZjILg5FLupi5EUeZr-A2fcNaoYOph_WA7HG3aKfYXUmMWDEDg3tZlVEBSsAiOiUMiczJaRONM-tYMww7QGsTv0A98e1LaKadsXtppqh-bjet5_vHM982hD_jP33hV1vyb75f7d76DFIgjFkah_t9Jsr-9ajnL58F7byDV3e99c priority: 102 providerName: ProQuest |
Title | Moments for positivity: using Drell-Yan data to test positivity bounds and reverse-engineer new physics |
URI | https://link.springer.com/article/10.1007/JHEP10(2022)107 https://www.proquest.com/docview/2768582922 https://kclpure.kcl.ac.uk/portal/en/publications/aca94264-1f7a-40a1-b18e-6d13f5be6d7d https://doaj.org/article/4152a501f68746a3a29e411c1a310a54 |
UnpaywallVersion | submittedVersion |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: 8FG dateStart: 20121201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C6C dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH90LWPbYeyTZeuCDjs0Bw19WbZ3a7NkodBSxgLdyci2lDKME2KXsf9-erKdpZQedjFGfrKFnmT9nvTe7wF88vPLJdqWVJappsobyjSXVlGhE-aYVUYH35yLS71YqvPr6PoA-BALE7zdhyPJ8Kcegt3OF7Mrzk68sS4mHOPHjzz40Ji0YIoBDv3BgS9jA4PP_Up3Fp_A0X8HWO7OQp_Bk9t6Y_78NlW1t9zMX8DzHieS006xL-HA1q_gcfDXLJrXsLpYh9g04jEn6RyvMAnEF4J-7CvydWuriv40NUEPUNKuiUeU7Z4gyTGdUkNMXRIkcdo2ltqempB4pE26HY_mDSznsx_TBe1zJtBC8bilPPf2iJMuSUodlbIsc2lcWviF2BqWBkDCbO5sJJjLC-5ntEhNEaexMxjPFMu3cFiva_sOiGAhzLVkzngrMC9SK5XTgsvcfyDRagSfh87Mip5QHPNaVNlAhdz1foa97wviEZzsKmw6Lo2HRc9QOzsxJMEOBevtKuvnVIbYw0SMO53EShtpRGoV5wU3HrOayDfweNBt1s_MJhMxMu6LVIgRTAZ9_3v8YHsmuwFxr-2_buxmT_b9f7z3AzzFW1wMeXwMh-321n70KKfNx_AomX8bw9HZ7PLq-ziMcrzq6TjsG_jrUpz-BQI1-Gc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEE-xUMAHkLoHU7_iJEgIAe2yfWzFoZXaU7ATexGKkmWTquqf4jfiyauLULn16tixNTP2fLbH3yD0xs8vFymbEZHFiki_USZGWEm4iqijVmrVxObMjtT0RO6fBqdr6Hf_FgbCKvs1sVmoszKFM_JtHgJTOo85_7j4RSBrFNyu9ik0WrM4sJcXfstWfdjb8fp9y_lk9_jLlHRZBUgqWVgTZjxid8JFUaaCTGSZEdrFqXdVVtO4cdnUGmcDTp1Jmbd5Hus0jEOn4cVPKPx_b6HbUggBXP3R5Otwa-HREO3pg2i4vT_d_cboFvducswgX-2K52sSBPyFaoeL2Hto47xY6MsLnecrvm7yAN3vQCr-1FrVQ7Rmi0foThMsmlaP0XxWNg_jsAe8uI36ggwU7zEE0c_xztLmOTnTBYbwU1yX2MPZeqUiNpDLqcK6yDAwSC0rS2zHi4g9zMftcUv1BJ3ciGifovWiLOwzhDlt3thm1Gm_BTVpbIV0ijNhfAeRkiP0rhdmknZs5pBUI096HuZW-glI3xeEI7Q1NFi0RB7XV_0M2hmqAQN3U1Au50k3oRMAPjqgzKkolEoLzWMrGUuZ9oBZB36Am71uk25ZqJIrIx6hca_vq8_Xjmc8GMQ_Y__5wy5W6j7_f7ev0cb0eHaYHO4dHbxAd6EVOGIWbqL1enluX3qEVZtXjVlj9P2m59EfnTk0jA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL0anfh6QHyKwgA_gLQ-mNpOYidIE2K0VbexqkJM2p6Ck9hFKEpK02naX-RXYSdOVoTG214TO7FsX99j-95zAN4a-9IhVxn2sohj32yUceIpHzMeEk2UL3kdm3M849MT__A0ON2C320ujA2rbNfEeqHOytSekQ-ZsEzpLGJsqF1YxHw0-bj8ha2ClL1pbeU0pJNZyPZqujGX5HGkLi_Mdq7aOxiZsX_H2GT87fMUO8UBnPpUrDFNDJrXng7DjAeZl2WJJ3WUGjemJIlqd05UolXAiE5SauyBRTIVkdDSZgMJz3z3FmwLmy_ag-398Wz-tbvTMFiJtORCRAwPp-M5JbvMONEBtWq2G36xlg_4C_N217T34e55sZSXFzLPNzzh5CE8cBAWfWrm3CPYUsVjuF2HkqbVE1gcl3XaHDJwGDUxYVaf4gOyIfYLNFqpPMdnskA2OBWtS2TA7nqjIEqs0lOFZJEhyy-1qhRWjjURmU0Aag5jqqdwciOd-wx6RVmo54AYqTNwM6Kl2aAmaaQ8X3NGvcT8IOR-H963nRmnjuvcSm7kccvS3PR-bHvfPBB92O0qLBuaj-uL7tvR6YpZfu76QblaxM7cYwuLZECo5qHwufQki5RPaUqlgdMyMA3cacc2dotGFV9N8T4M2vG-en1tewbdhPin7T9_qOVG2Rf__-0buGNsKv5yMDt6CfdsJeulqdiB3np1rl4Z-LVOXrt5jeD7TZvSH571P2Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moments+for+positivity%3A+using+Drell-Yan+data+to+test+positivity+bounds+and+reverse-engineer+new+physics&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Li%2C+Xu&rft.au=Mimasu%2C+Ken&rft.au=Yamashita%2C+Kimiko&rft.au=Yang%2C+Chengjie&rft.date=2022-10-17&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2022&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282022%29107&rft.externalDocID=10_1007_JHEP10_2022_107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |