A Novel Pruning Algorithm for Smoothing Feedforward Neural Networks Based on Group Lasso Method
In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two mai...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 5; pp. 2012 - 2024 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2017.2748585 |
Cover
| Abstract | In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two main drawbacks when the Group Lasso penalty has been directly employed during network training. They are numerical oscillations and theoretical challenges in computing the gradients at the origin. To overcome these obstacles, smoothing functions have then been introduced by approximating the Group Lasso penalty. Numerical experiments for classification and regression problems demonstrate that the proposed algorithms perform better than the other three classical penalization methods, Weight Decay, Weight Elimination, and Approximate Smoother , on both generalization and pruning efficiency. In addition, detailed simulations based on a specific data set have been performed to compare with some other common pruning strategies, which verify the advantages of the proposed algorithm. The pruning abilities of the proposed strategy have been investigated in detail for a relatively large data set, MNIST, in terms of various smoothing approximation cases. |
|---|---|
| AbstractList | In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two main drawbacks when the Group Lasso penalty has been directly employed during network training. They are numerical oscillations and theoretical challenges in computing the gradients at the origin. To overcome these obstacles, smoothing functions have then been introduced by approximating the Group Lasso penalty. Numerical experiments for classification and regression problems demonstrate that the proposed algorithms perform better than the other three classical penalization methods, Weight Decay, Weight Elimination, and Approximate Smoother, on both generalization and pruning efficiency. In addition, detailed simulations based on a specific data set have been performed to compare with some other common pruning strategies, which verify the advantages of the proposed algorithm. The pruning abilities of the proposed strategy have been investigated in detail for a relatively large data set, MNIST, in terms of various smoothing approximation cases. In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two main drawbacks when the Group Lasso penalty has been directly employed during network training. They are numerical oscillations and theoretical challenges in computing the gradients at the origin. To overcome these obstacles, smoothing functions have then been introduced by approximating the Group Lasso penalty. Numerical experiments for classification and regression problems demonstrate that the proposed algorithms perform better than the other three classical penalization methods, Weight Decay, Weight Elimination, and Approximate Smoother, on both generalization and pruning efficiency. In addition, detailed simulations based on a specific data set have been performed to compare with some other common pruning strategies, which verify the advantages of the proposed algorithm. The pruning abilities of the proposed strategy have been investigated in detail for a relatively large data set, MNIST, in terms of various smoothing approximation cases.In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two main drawbacks when the Group Lasso penalty has been directly employed during network training. They are numerical oscillations and theoretical challenges in computing the gradients at the origin. To overcome these obstacles, smoothing functions have then been introduced by approximating the Group Lasso penalty. Numerical experiments for classification and regression problems demonstrate that the proposed algorithms perform better than the other three classical penalization methods, Weight Decay, Weight Elimination, and Approximate Smoother, on both generalization and pruning efficiency. In addition, detailed simulations based on a specific data set have been performed to compare with some other common pruning strategies, which verify the advantages of the proposed algorithm. The pruning abilities of the proposed strategy have been investigated in detail for a relatively large data set, MNIST, in terms of various smoothing approximation cases. |
| Author | Yang, Xifeng Wang, Jian Zurada, Jacek M. Xu, Chen |
| Author_xml | – sequence: 1 givenname: Jian surname: Wang fullname: Wang, Jian email: wangjiannl@upc.edu.cn organization: College of Science, China University of Petroleum, Qingdao, China – sequence: 2 givenname: Chen surname: Xu fullname: Xu, Chen email: cx3@uottawa.ca organization: Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada – sequence: 3 givenname: Xifeng surname: Yang fullname: Yang, Xifeng email: yangxf@upc.edu.cn organization: College of Science, China University of Petroleum, Qingdao, China – sequence: 4 givenname: Jacek M. orcidid: 0000-0001-6622-534X surname: Zurada fullname: Zurada, Jacek M. email: jacek.zurada@louisville.edu organization: Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28961129$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcFu1DAQhi1UREvpC4CELHHhsos9iR37uFS0IC0LUlupN8uJJ92UJN7aDlXfvl5220MP-OCxRt83Gvl_Sw5GPyIh7zmbc870l8vVankxB8arOVSlEkq8IkfAJcygUOrg-V1dH5KTGG9ZPpIJWeo35BCUlpyDPiJmQVf-L_b0d5jGbryhi_7Ghy6tB9r6QC8G79N62z9DdLlzb4OjK5yC7XNJ9z78ifSrjeioH-l58NOGLm2Mnv7EtPbuHXnd2j7iyb4ek6uzb5en32fLX-c_ThfLWVPyKs24ENBIQKukdlrUkmvGBDjRsgZkXSNY5-q6Zi02vJUCNSrHi9ZWCEWJujgmn3dzN8HfTRiTGbrYYN_bEf0UDdelgHwVPKOfXqC3fgpj3s4AA80zAyJTH_fUVA_ozCZ0gw0P5unrMqB2QBN8jAFb03TJps6PKdiuN5yZbVDmX1BmG5TZB5VVeKE-Tf-v9GEndYj4LCgmOEhZPAJGV53G |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s00180_021_01190_4 crossref_primary_10_1007_s11045_019_00686_z crossref_primary_10_1002_adts_202300545 crossref_primary_10_1186_s40537_020_00371_0 crossref_primary_10_1007_s10462_022_10362_7 crossref_primary_10_1016_j_conengprac_2024_106127 crossref_primary_10_1016_j_neucom_2018_08_023 crossref_primary_10_1109_TNNLS_2022_3149332 crossref_primary_10_1016_j_asoc_2019_105674 crossref_primary_10_1109_TKDE_2019_2893266 crossref_primary_10_3390_en12040709 crossref_primary_10_1109_TCSVT_2022_3156588 crossref_primary_10_1007_s10586_024_04631_z crossref_primary_10_1016_j_neunet_2022_03_004 crossref_primary_10_1016_j_neucom_2020_02_029 crossref_primary_10_1063_5_0169688 crossref_primary_10_1109_TNNLS_2021_3084856 crossref_primary_10_1109_TNNLS_2020_2980383 crossref_primary_10_1016_j_fuel_2019_04_075 crossref_primary_10_1109_TETCI_2023_3268713 crossref_primary_10_1016_j_rinp_2021_103908 crossref_primary_10_1007_s10479_023_05715_6 crossref_primary_10_1109_ACCESS_2024_3515481 crossref_primary_10_3390_math10244730 crossref_primary_10_1109_TNNLS_2023_3319989 crossref_primary_10_1109_TVT_2024_3414437 crossref_primary_10_3233_JIFS_211348 crossref_primary_10_1016_j_neunet_2023_09_002 crossref_primary_10_1109_TNNLS_2019_2906563 crossref_primary_10_1166_jctn_2020_9187 crossref_primary_10_1016_j_dss_2023_114015 crossref_primary_10_1109_TCSI_2021_3097765 crossref_primary_10_1016_j_jpi_2022_100114 crossref_primary_10_1016_j_jrras_2022_05_010 crossref_primary_10_1016_j_neucom_2023_126279 crossref_primary_10_1016_j_ymssp_2023_110338 crossref_primary_10_1016_j_petrol_2020_107824 crossref_primary_10_1007_s13748_022_00285_3 crossref_primary_10_1016_j_neucom_2024_128596 crossref_primary_10_1016_j_neunet_2019_10_001 crossref_primary_10_1109_TCSII_2019_2908729 crossref_primary_10_1155_2019_7272387 crossref_primary_10_1016_j_knosys_2023_111327 crossref_primary_10_1109_TNNLS_2023_3289798 crossref_primary_10_3390_s19071553 crossref_primary_10_3390_s20072025 crossref_primary_10_1109_OJCAS_2023_3292109 crossref_primary_10_1109_TNNLS_2021_3131406 crossref_primary_10_1007_s10489_022_03229_5 crossref_primary_10_1016_j_ins_2024_120860 crossref_primary_10_3390_rs15092293 crossref_primary_10_1109_ACCESS_2018_2888852 crossref_primary_10_1109_TNNLS_2019_2933665 crossref_primary_10_1016_j_ins_2022_08_113 crossref_primary_10_1109_ACCESS_2020_3013940 crossref_primary_10_1007_s00521_022_06963_6 crossref_primary_10_1016_j_ins_2022_05_121 crossref_primary_10_1109_TCYB_2019_2950105 crossref_primary_10_1007_s40747_021_00452_4 crossref_primary_10_1016_j_eswa_2021_114782 crossref_primary_10_1109_TPAMI_2020_3020300 crossref_primary_10_1007_s11063_022_10956_w crossref_primary_10_1109_TCSVT_2020_3013170 crossref_primary_10_1109_TNNLS_2020_3007259 crossref_primary_10_1016_j_petrol_2019_106633 crossref_primary_10_1109_ACCESS_2020_3045071 |
| Cites_doi | 10.1007/11550907_9 10.1109/ICNN.1997.614194 10.1162/neco.1989.1.1.143 10.1109/72.97911 10.1111/j.1467-9868.2005.00532.x 10.1016/0893-6080(89)90020-8 10.1109/5.726791 10.14738/tmlai.22.138 10.1162/neco.1995.7.2.219 10.1016/j.asoc.2008.01.013 10.1007/s11770-016-0561-1 10.1109/CCMB.2013.6609169 10.1109/21.97458 10.1109/72.248452 10.1109/HIS.2008.134 10.1111/j.1467-9868.2007.00627.x 10.1109/ISCCSP.2004.1296579 10.1109/72.839013 10.14569/IJACSA.2013.040621 10.1109/TNNLS.2011.2181867 10.1007/978-3-540-39964-3_62 10.1109/72.737502 10.1109/TNNLS.2012.2210243 10.1162/neco.1995.7.1.117 10.1016/S0925-2312(96)00031-8 10.1080/10618600.2012.681250 10.1109/78.650102 10.1109/5.58346 10.1162/089976602760805296 10.1109/TNN.2004.836241 10.1016/j.neucom.2007.09.016 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.neunet.2012.04.013 10.1117/12.280797 10.1109/TNNLS.2011.2178477 10.1162/neco.2007.19.12.3356 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2017.2748585 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 2024 |
| ExternalDocumentID | 28961129 10_1109_TNNLS_2017_2748585 8051266 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China grantid: 20130133120014 – fundername: Fundamental Research Funds for the Central Universities grantid: 15CX05053A; 15CX08011A; 15CX02064A – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2016-05024 funderid: 10.13039/501100000038 – fundername: National Natural Science Foundation of China grantid: 61305075; 11401185 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2013FQ004; ZR2015AL014 funderid: 10.13039/501100007129 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c417t-1552c62ea869d95b6190052d5f0c26bbe2addbbb0fec1f65e9e8d13fa7e234e93 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 22:17:17 EDT 2025 Sun Oct 05 00:28:59 EDT 2025 Mon Jul 21 05:48:02 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Wed Oct 01 00:44:44 EDT 2025 Wed Aug 27 02:50:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-1552c62ea869d95b6190052d5f0c26bbe2addbbb0fec1f65e9e8d13fa7e234e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6622-534X |
| PMID | 28961129 |
| PQID | 2029143125 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_8051266 proquest_miscellaneous_1945219431 crossref_citationtrail_10_1109_TNNLS_2017_2748585 crossref_primary_10_1109_TNNLS_2017_2748585 proquest_journals_2029143125 pubmed_primary_28961129 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-01 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref15 sharma (ref5) 2010; 2 wang (ref24) 2002 ref11 ref10 sridhar (ref7) 2011; 3 landgrebe (ref33) 1991; 21 fahlman (ref12) 1989 ref17 ref16 moody (ref42) 1997 attik (ref18) 2005; 3697 ref50 ref46 ref45 ref48 ref41 hassibi (ref14) 1993 ref44 lecun (ref13) 1989 ref43 lecun (ref51) 0 goodfellow (ref35) 2016 ref8 ref9 ref4 ref3 augasta (ref21) 2013; 3 ref6 ciregan (ref52) 2012; 157 qiao (ref19) 2008; 205 ref40 noah (ref47) 2013; 22 ref37 weigend (ref2) 1991 ref36 ref31 ref32 ref39 ref38 bartlett (ref34) 1997; 9 haykin (ref1) 1999 ref23 ref25 ref20 lichman (ref49) 2013 ref22 ref28 ref27 ref29 julier (ref26) 1997; 3068 guo (ref30) 2004; 2888 |
| References_xml | – volume: 2 start-page: 7847 year: 2010 ident: ref5 article-title: Constructive neural networks: A review publication-title: Int J Eng Sci Technol – volume: 3697 start-page: 53 year: 2005 ident: ref18 article-title: Neural network topology optimization publication-title: Proc 5th Int Conf Lecture Notes Comput Sci (ICANN) doi: 10.1007/11550907_9 – ident: ref23 doi: 10.1109/ICNN.1997.614194 – volume: 205 start-page: 662 year: 2008 ident: ref19 article-title: Fast unit pruning algorithm for feed-forward neural network design publication-title: Appl Math Comput – ident: ref36 doi: 10.1162/neco.1989.1.1.143 – ident: ref32 doi: 10.1109/72.97911 – start-page: 837 year: 1991 ident: ref2 article-title: Generalization by weight-elimination applied to currency exchange rate prediction publication-title: Proc Adv Neural Inf Process Syst – year: 0 ident: ref51 publication-title: The MNIST Database of Handwritten Digits – ident: ref45 doi: 10.1111/j.1467-9868.2005.00532.x – volume: 3 start-page: 105 year: 2013 ident: ref21 article-title: Pruning algorithms of neural networks-A comparative study publication-title: Central Eur J Comput Sci – ident: ref3 doi: 10.1016/0893-6080(89)90020-8 – ident: ref50 doi: 10.1109/5.726791 – ident: ref41 doi: 10.14738/tmlai.22.138 – ident: ref15 doi: 10.1162/neco.1995.7.2.219 – year: 2013 ident: ref49 article-title: UCI machine learning repository – ident: ref9 doi: 10.1016/j.asoc.2008.01.013 – ident: ref22 doi: 10.1007/s11770-016-0561-1 – start-page: 164 year: 1993 ident: ref14 article-title: Second order derivatives for network pruning: Optimal brain surgeon publication-title: Proc Adv Neural Inf Process Syst – ident: ref10 doi: 10.1109/CCMB.2013.6609169 – year: 1999 ident: ref1 publication-title: Neural Networks A Comprehensive Foundation – volume: 21 start-page: 660 year: 1991 ident: ref33 article-title: A survey of decision tree classifier methodology publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.97458 – ident: ref4 doi: 10.1109/72.248452 – ident: ref29 doi: 10.1109/HIS.2008.134 – ident: ref46 doi: 10.1111/j.1467-9868.2007.00627.x – year: 2016 ident: ref35 publication-title: Deep Learning – ident: ref20 doi: 10.1109/ISCCSP.2004.1296579 – ident: ref6 doi: 10.1109/72.839013 – ident: ref40 doi: 10.14569/IJACSA.2013.040621 – ident: ref48 doi: 10.1109/TNNLS.2011.2181867 – volume: 2888 start-page: 986 year: 2004 ident: ref30 article-title: KNN model-based approach in classification publication-title: Move to Meaningful Internet System CoopIS DOA and ODBASE doi: 10.1007/978-3-540-39964-3_62 – ident: ref25 doi: 10.1109/72.737502 – start-page: 585 year: 1997 ident: ref42 article-title: Smoothing regularizers for projective basis function networks publication-title: Proc Adv Neural Inf Process Syst – volume: 157 start-page: 3642 year: 2012 ident: ref52 article-title: Multi-column deep neural networks for image classification publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref37 doi: 10.1109/TNNLS.2012.2210243 – ident: ref16 doi: 10.1162/neco.1995.7.1.117 – ident: ref8 doi: 10.1016/S0925-2312(96)00031-8 – volume: 22 start-page: 231 year: 2013 ident: ref47 article-title: A sparse-group lasso publication-title: J Comput Graph Stat doi: 10.1080/10618600.2012.681250 – ident: ref28 doi: 10.1109/78.650102 – ident: ref31 doi: 10.1109/5.58346 – start-page: 636 year: 2002 ident: ref24 article-title: Optimal feed-forward neural networks based on the combination of constructing and pruning by genetic algorithms publication-title: Proc Int Joint Conf Neural Netw (IJCNN) – ident: ref43 doi: 10.1162/089976602760805296 – start-page: 524 year: 1989 ident: ref12 article-title: The cascade-correlation learning architecture publication-title: Proc Adv Neural Inf Process Syst – ident: ref27 doi: 10.1109/TNN.2004.836241 – ident: ref17 doi: 10.1016/j.neucom.2007.09.016 – volume: 3 start-page: 1793 year: 2011 ident: ref7 article-title: Improved adaptive learning algorithm for constructive neural networks publication-title: Int J Comput Elec Eng – volume: 9 start-page: 134 year: 1997 ident: ref34 article-title: For valid generalization the size of the weights is more important than the size of the network publication-title: Proc Adv Neural Inf Process Syst – ident: ref44 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref39 doi: 10.1016/j.neunet.2012.04.013 – volume: 3068 start-page: 182 year: 1997 ident: ref26 article-title: New extension of the Kalman filter to nonlinear systems publication-title: Proc SPIE doi: 10.1117/12.280797 – start-page: 598 year: 1989 ident: ref13 article-title: Optimal brain damage publication-title: Proc Adv Neural Inf Process Syst – ident: ref38 doi: 10.1109/TNNLS.2011.2178477 – ident: ref11 doi: 10.1162/neco.2007.19.12.3356 |
| SSID | ssj0000605649 |
| Score | 2.55477 |
| Snippet | In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2012 |
| SubjectTerms | Algorithms Approximation Approximation algorithms Artificial neural networks Back propagation Backpropagation Biological neural networks Computer simulation Feedforward neural networks generalization group lasso Mathematical analysis Neural networks Neurons Oscillations penalty Pruning Smoothing smoothing approximation Smoothing methods Training |
| Title | A Novel Pruning Algorithm for Smoothing Feedforward Neural Networks Based on Group Lasso Method |
| URI | https://ieeexplore.ieee.org/document/8051266 https://www.ncbi.nlm.nih.gov/pubmed/28961129 https://www.proquest.com/docview/2029143125 https://www.proquest.com/docview/1945219431 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhhfIIFGQkbpBt4iROfFwQqwp1I6S20t6i2JkAYpug3aQHfj0zzkMCAeIWObbjaMaebx6eAXidVUpnZWJ8lAH6sU2kb-JK-TZl7TlSAbrybetcXdzEHzfJ5gDezndhENEFn-GCH50vv2ptz6ay84w4iATKIRymmRruas32lIBwuXJoV4ZK-jJKN9MdmUCfX-f55RUHcqULUsPYF8ZZgDOtGG78IpJcjZW_w00ndlbHsJ4WPESbfFv0nVnYH7_lcvzfPzqB-yP-FMuBYR7AATYP4Xiq7SDGrX4KxVLk7R1uxaddz6YTsdx-bndfuy-3gmCuuLpticTcviLxRy0cfCs40wdNng-h5XvxjkRkJdpGOAuXuCSg3oq1q1n9CG5WH67fX_hjMQbfxmHa-ZyqzSqJZaZ0pRNDiheblKukDqxUxqCkk9IYE9Row1olqDGrwqguU5RRjDp6DEdN2-BTEFhJW5q6xlqx0zM0JZ0CZaRqE6E2VnoQTvQo7JipnAtmbAunsQS6cOQsmJzFSE4P3sxjvg95Ov7Z-5RpMfccyeDB2UT2YtzKexonNYFKAoIevJpf0yZkz0rZYNvvi1DHBIM09fLgycAu89wTlz378zefwz1aWTbEUJ7BUbfr8QXhnM68dAz-ExAV9u8 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tywEuLLA8AgsYiRukmziOEx8LoirQRkjblXqLYmcCiG6C2oQDv56x85BAgLhFju04mrHnm4dnAF6kpVRpEWsfeYC-MDH3tSilbxKrPUcyQFe-bZ3J5aV4v423R_BquguDiC74DGf20fnyy8Z01lR2nhIHkUC5BtdjIUTc39aaLCoBIXPp8C4PJfd5lGzHWzKBOt9k2erChnIlM1LErDfM5gFOlbSA4xeh5Kqs_B1wOsGzOIH1uOQ-3uTrrGv1zPz4LZvj__7Tbbg1IFA271nmDhxhfRdOxuoObNjsp5DPWdZ8xx37uO-s8YTNd5-a_Zf28xUjoMsurhoism1fkACkFht-y2yuD5o864PLD-w1CcmSNTVzNi62IqjesLWrWn0PLhdvN2-W_lCOwTciTFrfJmszkmORSlWqWJPqZY3KZVwFhkutkdNZqbUOKjRhJWNUmJZhVBUJ8kigiu7Dcd3U-BAYltwUuqqwktbtGeqCzoEikpWOUGnDPQhHeuRmyFVuS2bscqezBCp35MwtOfOBnB68nMZ86zN1_LP3qaXF1HMggwdnI9nzYTMfaBxXBCsJCnrwfHpN29D6Vooam-6Qh0oQEFLUy4MHPbtMc49c9ujP33wGN5ab9Spfvcs-PIabtMq0j6g8g-N23-ETQj2tfuqY_Sch1Po8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Pruning+Algorithm+for+Smoothing+Feedforward+Neural+Networks+Based+on+Group+Lasso+Method&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Jian&rft.au=Xu%2C+Chen&rft.au=Yang%2C+Xifeng&rft.au=Zurada%2C+Jacek+M.&rft.date=2018-05-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=5&rft.spage=2012&rft.epage=2024&rft_id=info:doi/10.1109%2FTNNLS.2017.2748585&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2017_2748585 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |