A Novel Pruning Algorithm for Smoothing Feedforward Neural Networks Based on Group Lasso Method

In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two mai...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 5; pp. 2012 - 2024
Main Authors Wang, Jian, Xu, Chen, Yang, Xifeng, Zurada, Jacek M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2017.2748585

Cover

Abstract In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two main drawbacks when the Group Lasso penalty has been directly employed during network training. They are numerical oscillations and theoretical challenges in computing the gradients at the origin. To overcome these obstacles, smoothing functions have then been introduced by approximating the Group Lasso penalty. Numerical experiments for classification and regression problems demonstrate that the proposed algorithms perform better than the other three classical penalization methods, Weight Decay, Weight Elimination, and Approximate Smoother , on both generalization and pruning efficiency. In addition, detailed simulations based on a specific data set have been performed to compare with some other common pruning strategies, which verify the advantages of the proposed algorithm. The pruning abilities of the proposed strategy have been investigated in detail for a relatively large data set, MNIST, in terms of various smoothing approximation cases.
AbstractList In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two main drawbacks when the Group Lasso penalty has been directly employed during network training. They are numerical oscillations and theoretical challenges in computing the gradients at the origin. To overcome these obstacles, smoothing functions have then been introduced by approximating the Group Lasso penalty. Numerical experiments for classification and regression problems demonstrate that the proposed algorithms perform better than the other three classical penalization methods, Weight Decay, Weight Elimination, and Approximate Smoother, on both generalization and pruning efficiency. In addition, detailed simulations based on a specific data set have been performed to compare with some other common pruning strategies, which verify the advantages of the proposed algorithm. The pruning abilities of the proposed strategy have been investigated in detail for a relatively large data set, MNIST, in terms of various smoothing approximation cases.
In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two main drawbacks when the Group Lasso penalty has been directly employed during network training. They are numerical oscillations and theoretical challenges in computing the gradients at the origin. To overcome these obstacles, smoothing functions have then been introduced by approximating the Group Lasso penalty. Numerical experiments for classification and regression problems demonstrate that the proposed algorithms perform better than the other three classical penalization methods, Weight Decay, Weight Elimination, and Approximate Smoother, on both generalization and pruning efficiency. In addition, detailed simulations based on a specific data set have been performed to compare with some other common pruning strategies, which verify the advantages of the proposed algorithm. The pruning abilities of the proposed strategy have been investigated in detail for a relatively large data set, MNIST, in terms of various smoothing approximation cases.In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two main drawbacks when the Group Lasso penalty has been directly employed during network training. They are numerical oscillations and theoretical challenges in computing the gradients at the origin. To overcome these obstacles, smoothing functions have then been introduced by approximating the Group Lasso penalty. Numerical experiments for classification and regression problems demonstrate that the proposed algorithms perform better than the other three classical penalization methods, Weight Decay, Weight Elimination, and Approximate Smoother, on both generalization and pruning efficiency. In addition, detailed simulations based on a specific data set have been performed to compare with some other common pruning strategies, which verify the advantages of the proposed algorithm. The pruning abilities of the proposed strategy have been investigated in detail for a relatively large data set, MNIST, in terms of various smoothing approximation cases.
Author Yang, Xifeng
Wang, Jian
Zurada, Jacek M.
Xu, Chen
Author_xml – sequence: 1
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  email: wangjiannl@upc.edu.cn
  organization: College of Science, China University of Petroleum, Qingdao, China
– sequence: 2
  givenname: Chen
  surname: Xu
  fullname: Xu, Chen
  email: cx3@uottawa.ca
  organization: Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
– sequence: 3
  givenname: Xifeng
  surname: Yang
  fullname: Yang, Xifeng
  email: yangxf@upc.edu.cn
  organization: College of Science, China University of Petroleum, Qingdao, China
– sequence: 4
  givenname: Jacek M.
  orcidid: 0000-0001-6622-534X
  surname: Zurada
  fullname: Zurada, Jacek M.
  email: jacek.zurada@louisville.edu
  organization: Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28961129$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAQhi1UREvpC4CELHHhsos9iR37uFS0IC0LUlupN8uJJ92UJN7aDlXfvl5220MP-OCxRt83Gvl_Sw5GPyIh7zmbc870l8vVankxB8arOVSlEkq8IkfAJcygUOrg-V1dH5KTGG9ZPpIJWeo35BCUlpyDPiJmQVf-L_b0d5jGbryhi_7Ghy6tB9r6QC8G79N62z9DdLlzb4OjK5yC7XNJ9z78ifSrjeioH-l58NOGLm2Mnv7EtPbuHXnd2j7iyb4ek6uzb5en32fLX-c_ThfLWVPyKs24ENBIQKukdlrUkmvGBDjRsgZkXSNY5-q6Zi02vJUCNSrHi9ZWCEWJujgmn3dzN8HfTRiTGbrYYN_bEf0UDdelgHwVPKOfXqC3fgpj3s4AA80zAyJTH_fUVA_ozCZ0gw0P5unrMqB2QBN8jAFb03TJps6PKdiuN5yZbVDmX1BmG5TZB5VVeKE-Tf-v9GEndYj4LCgmOEhZPAJGV53G
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s00180_021_01190_4
crossref_primary_10_1007_s11045_019_00686_z
crossref_primary_10_1002_adts_202300545
crossref_primary_10_1186_s40537_020_00371_0
crossref_primary_10_1007_s10462_022_10362_7
crossref_primary_10_1016_j_conengprac_2024_106127
crossref_primary_10_1016_j_neucom_2018_08_023
crossref_primary_10_1109_TNNLS_2022_3149332
crossref_primary_10_1016_j_asoc_2019_105674
crossref_primary_10_1109_TKDE_2019_2893266
crossref_primary_10_3390_en12040709
crossref_primary_10_1109_TCSVT_2022_3156588
crossref_primary_10_1007_s10586_024_04631_z
crossref_primary_10_1016_j_neunet_2022_03_004
crossref_primary_10_1016_j_neucom_2020_02_029
crossref_primary_10_1063_5_0169688
crossref_primary_10_1109_TNNLS_2021_3084856
crossref_primary_10_1109_TNNLS_2020_2980383
crossref_primary_10_1016_j_fuel_2019_04_075
crossref_primary_10_1109_TETCI_2023_3268713
crossref_primary_10_1016_j_rinp_2021_103908
crossref_primary_10_1007_s10479_023_05715_6
crossref_primary_10_1109_ACCESS_2024_3515481
crossref_primary_10_3390_math10244730
crossref_primary_10_1109_TNNLS_2023_3319989
crossref_primary_10_1109_TVT_2024_3414437
crossref_primary_10_3233_JIFS_211348
crossref_primary_10_1016_j_neunet_2023_09_002
crossref_primary_10_1109_TNNLS_2019_2906563
crossref_primary_10_1166_jctn_2020_9187
crossref_primary_10_1016_j_dss_2023_114015
crossref_primary_10_1109_TCSI_2021_3097765
crossref_primary_10_1016_j_jpi_2022_100114
crossref_primary_10_1016_j_jrras_2022_05_010
crossref_primary_10_1016_j_neucom_2023_126279
crossref_primary_10_1016_j_ymssp_2023_110338
crossref_primary_10_1016_j_petrol_2020_107824
crossref_primary_10_1007_s13748_022_00285_3
crossref_primary_10_1016_j_neucom_2024_128596
crossref_primary_10_1016_j_neunet_2019_10_001
crossref_primary_10_1109_TCSII_2019_2908729
crossref_primary_10_1155_2019_7272387
crossref_primary_10_1016_j_knosys_2023_111327
crossref_primary_10_1109_TNNLS_2023_3289798
crossref_primary_10_3390_s19071553
crossref_primary_10_3390_s20072025
crossref_primary_10_1109_OJCAS_2023_3292109
crossref_primary_10_1109_TNNLS_2021_3131406
crossref_primary_10_1007_s10489_022_03229_5
crossref_primary_10_1016_j_ins_2024_120860
crossref_primary_10_3390_rs15092293
crossref_primary_10_1109_ACCESS_2018_2888852
crossref_primary_10_1109_TNNLS_2019_2933665
crossref_primary_10_1016_j_ins_2022_08_113
crossref_primary_10_1109_ACCESS_2020_3013940
crossref_primary_10_1007_s00521_022_06963_6
crossref_primary_10_1016_j_ins_2022_05_121
crossref_primary_10_1109_TCYB_2019_2950105
crossref_primary_10_1007_s40747_021_00452_4
crossref_primary_10_1016_j_eswa_2021_114782
crossref_primary_10_1109_TPAMI_2020_3020300
crossref_primary_10_1007_s11063_022_10956_w
crossref_primary_10_1109_TCSVT_2020_3013170
crossref_primary_10_1109_TNNLS_2020_3007259
crossref_primary_10_1016_j_petrol_2019_106633
crossref_primary_10_1109_ACCESS_2020_3045071
Cites_doi 10.1007/11550907_9
10.1109/ICNN.1997.614194
10.1162/neco.1989.1.1.143
10.1109/72.97911
10.1111/j.1467-9868.2005.00532.x
10.1016/0893-6080(89)90020-8
10.1109/5.726791
10.14738/tmlai.22.138
10.1162/neco.1995.7.2.219
10.1016/j.asoc.2008.01.013
10.1007/s11770-016-0561-1
10.1109/CCMB.2013.6609169
10.1109/21.97458
10.1109/72.248452
10.1109/HIS.2008.134
10.1111/j.1467-9868.2007.00627.x
10.1109/ISCCSP.2004.1296579
10.1109/72.839013
10.14569/IJACSA.2013.040621
10.1109/TNNLS.2011.2181867
10.1007/978-3-540-39964-3_62
10.1109/72.737502
10.1109/TNNLS.2012.2210243
10.1162/neco.1995.7.1.117
10.1016/S0925-2312(96)00031-8
10.1080/10618600.2012.681250
10.1109/78.650102
10.1109/5.58346
10.1162/089976602760805296
10.1109/TNN.2004.836241
10.1016/j.neucom.2007.09.016
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.neunet.2012.04.013
10.1117/12.280797
10.1109/TNNLS.2011.2178477
10.1162/neco.2007.19.12.3356
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2017.2748585
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2024
ExternalDocumentID 28961129
10_1109_TNNLS_2017_2748585
8051266
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China
  grantid: 20130133120014
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 15CX05053A; 15CX08011A; 15CX02064A
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2016-05024
  funderid: 10.13039/501100000038
– fundername: National Natural Science Foundation of China
  grantid: 61305075; 11401185
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2013FQ004; ZR2015AL014
  funderid: 10.13039/501100007129
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-1552c62ea869d95b6190052d5f0c26bbe2addbbb0fec1f65e9e8d13fa7e234e93
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 22:17:17 EDT 2025
Sun Oct 05 00:28:59 EDT 2025
Mon Jul 21 05:48:02 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Wed Oct 01 00:44:44 EDT 2025
Wed Aug 27 02:50:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-1552c62ea869d95b6190052d5f0c26bbe2addbbb0fec1f65e9e8d13fa7e234e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6622-534X
PMID 28961129
PQID 2029143125
PQPubID 85436
PageCount 13
ParticipantIDs ieee_primary_8051266
proquest_miscellaneous_1945219431
crossref_citationtrail_10_1109_TNNLS_2017_2748585
crossref_primary_10_1109_TNNLS_2017_2748585
proquest_journals_2029143125
pubmed_primary_28961129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
sharma (ref5) 2010; 2
wang (ref24) 2002
ref11
ref10
sridhar (ref7) 2011; 3
landgrebe (ref33) 1991; 21
fahlman (ref12) 1989
ref17
ref16
moody (ref42) 1997
attik (ref18) 2005; 3697
ref50
ref46
ref45
ref48
ref41
hassibi (ref14) 1993
ref44
lecun (ref13) 1989
ref43
lecun (ref51) 0
goodfellow (ref35) 2016
ref8
ref9
ref4
ref3
augasta (ref21) 2013; 3
ref6
ciregan (ref52) 2012; 157
qiao (ref19) 2008; 205
ref40
noah (ref47) 2013; 22
ref37
weigend (ref2) 1991
ref36
ref31
ref32
ref39
ref38
bartlett (ref34) 1997; 9
haykin (ref1) 1999
ref23
ref25
ref20
lichman (ref49) 2013
ref22
ref28
ref27
ref29
julier (ref26) 1997; 3068
guo (ref30) 2004; 2888
References_xml – volume: 2
  start-page: 7847
  year: 2010
  ident: ref5
  article-title: Constructive neural networks: A review
  publication-title: Int J Eng Sci Technol
– volume: 3697
  start-page: 53
  year: 2005
  ident: ref18
  article-title: Neural network topology optimization
  publication-title: Proc 5th Int Conf Lecture Notes Comput Sci (ICANN)
  doi: 10.1007/11550907_9
– ident: ref23
  doi: 10.1109/ICNN.1997.614194
– volume: 205
  start-page: 662
  year: 2008
  ident: ref19
  article-title: Fast unit pruning algorithm for feed-forward neural network design
  publication-title: Appl Math Comput
– ident: ref36
  doi: 10.1162/neco.1989.1.1.143
– ident: ref32
  doi: 10.1109/72.97911
– start-page: 837
  year: 1991
  ident: ref2
  article-title: Generalization by weight-elimination applied to currency exchange rate prediction
  publication-title: Proc Adv Neural Inf Process Syst
– year: 0
  ident: ref51
  publication-title: The MNIST Database of Handwritten Digits
– ident: ref45
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 3
  start-page: 105
  year: 2013
  ident: ref21
  article-title: Pruning algorithms of neural networks-A comparative study
  publication-title: Central Eur J Comput Sci
– ident: ref3
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref50
  doi: 10.1109/5.726791
– ident: ref41
  doi: 10.14738/tmlai.22.138
– ident: ref15
  doi: 10.1162/neco.1995.7.2.219
– year: 2013
  ident: ref49
  article-title: UCI machine learning repository
– ident: ref9
  doi: 10.1016/j.asoc.2008.01.013
– ident: ref22
  doi: 10.1007/s11770-016-0561-1
– start-page: 164
  year: 1993
  ident: ref14
  article-title: Second order derivatives for network pruning: Optimal brain surgeon
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref10
  doi: 10.1109/CCMB.2013.6609169
– year: 1999
  ident: ref1
  publication-title: Neural Networks A Comprehensive Foundation
– volume: 21
  start-page: 660
  year: 1991
  ident: ref33
  article-title: A survey of decision tree classifier methodology
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.97458
– ident: ref4
  doi: 10.1109/72.248452
– ident: ref29
  doi: 10.1109/HIS.2008.134
– ident: ref46
  doi: 10.1111/j.1467-9868.2007.00627.x
– year: 2016
  ident: ref35
  publication-title: Deep Learning
– ident: ref20
  doi: 10.1109/ISCCSP.2004.1296579
– ident: ref6
  doi: 10.1109/72.839013
– ident: ref40
  doi: 10.14569/IJACSA.2013.040621
– ident: ref48
  doi: 10.1109/TNNLS.2011.2181867
– volume: 2888
  start-page: 986
  year: 2004
  ident: ref30
  article-title: KNN model-based approach in classification
  publication-title: Move to Meaningful Internet System CoopIS DOA and ODBASE
  doi: 10.1007/978-3-540-39964-3_62
– ident: ref25
  doi: 10.1109/72.737502
– start-page: 585
  year: 1997
  ident: ref42
  article-title: Smoothing regularizers for projective basis function networks
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 157
  start-page: 3642
  year: 2012
  ident: ref52
  article-title: Multi-column deep neural networks for image classification
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref37
  doi: 10.1109/TNNLS.2012.2210243
– ident: ref16
  doi: 10.1162/neco.1995.7.1.117
– ident: ref8
  doi: 10.1016/S0925-2312(96)00031-8
– volume: 22
  start-page: 231
  year: 2013
  ident: ref47
  article-title: A sparse-group lasso
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2012.681250
– ident: ref28
  doi: 10.1109/78.650102
– ident: ref31
  doi: 10.1109/5.58346
– start-page: 636
  year: 2002
  ident: ref24
  article-title: Optimal feed-forward neural networks based on the combination of constructing and pruning by genetic algorithms
  publication-title: Proc Int Joint Conf Neural Netw (IJCNN)
– ident: ref43
  doi: 10.1162/089976602760805296
– start-page: 524
  year: 1989
  ident: ref12
  article-title: The cascade-correlation learning architecture
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref27
  doi: 10.1109/TNN.2004.836241
– ident: ref17
  doi: 10.1016/j.neucom.2007.09.016
– volume: 3
  start-page: 1793
  year: 2011
  ident: ref7
  article-title: Improved adaptive learning algorithm for constructive neural networks
  publication-title: Int J Comput Elec Eng
– volume: 9
  start-page: 134
  year: 1997
  ident: ref34
  article-title: For valid generalization the size of the weights is more important than the size of the network
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref44
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref39
  doi: 10.1016/j.neunet.2012.04.013
– volume: 3068
  start-page: 182
  year: 1997
  ident: ref26
  article-title: New extension of the Kalman filter to nonlinear systems
  publication-title: Proc SPIE
  doi: 10.1117/12.280797
– start-page: 598
  year: 1989
  ident: ref13
  article-title: Optimal brain damage
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref38
  doi: 10.1109/TNNLS.2011.2178477
– ident: ref11
  doi: 10.1162/neco.2007.19.12.3356
SSID ssj0000605649
Score 2.55477
Snippet In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2012
SubjectTerms Algorithms
Approximation
Approximation algorithms
Artificial neural networks
Back propagation
Backpropagation
Biological neural networks
Computer simulation
Feedforward neural networks
generalization
group lasso
Mathematical analysis
Neural networks
Neurons
Oscillations
penalty
Pruning
Smoothing
smoothing approximation
Smoothing methods
Training
Title A Novel Pruning Algorithm for Smoothing Feedforward Neural Networks Based on Group Lasso Method
URI https://ieeexplore.ieee.org/document/8051266
https://www.ncbi.nlm.nih.gov/pubmed/28961129
https://www.proquest.com/docview/2029143125
https://www.proquest.com/docview/1945219431
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhhfIIFGQkbpBt4iROfFwQqwp1I6S20t6i2JkAYpug3aQHfj0zzkMCAeIWObbjaMaebx6eAXidVUpnZWJ8lAH6sU2kb-JK-TZl7TlSAbrybetcXdzEHzfJ5gDezndhENEFn-GCH50vv2ptz6ay84w4iATKIRymmRruas32lIBwuXJoV4ZK-jJKN9MdmUCfX-f55RUHcqULUsPYF8ZZgDOtGG78IpJcjZW_w00ndlbHsJ4WPESbfFv0nVnYH7_lcvzfPzqB-yP-FMuBYR7AATYP4Xiq7SDGrX4KxVLk7R1uxaddz6YTsdx-bndfuy-3gmCuuLpticTcviLxRy0cfCs40wdNng-h5XvxjkRkJdpGOAuXuCSg3oq1q1n9CG5WH67fX_hjMQbfxmHa-ZyqzSqJZaZ0pRNDiheblKukDqxUxqCkk9IYE9Row1olqDGrwqguU5RRjDp6DEdN2-BTEFhJW5q6xlqx0zM0JZ0CZaRqE6E2VnoQTvQo7JipnAtmbAunsQS6cOQsmJzFSE4P3sxjvg95Ov7Z-5RpMfccyeDB2UT2YtzKexonNYFKAoIevJpf0yZkz0rZYNvvi1DHBIM09fLgycAu89wTlz378zefwz1aWTbEUJ7BUbfr8QXhnM68dAz-ExAV9u8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tywEuLLA8AgsYiRukmziOEx8LoirQRkjblXqLYmcCiG6C2oQDv56x85BAgLhFju04mrHnm4dnAF6kpVRpEWsfeYC-MDH3tSilbxKrPUcyQFe-bZ3J5aV4v423R_BquguDiC74DGf20fnyy8Z01lR2nhIHkUC5BtdjIUTc39aaLCoBIXPp8C4PJfd5lGzHWzKBOt9k2erChnIlM1LErDfM5gFOlbSA4xeh5Kqs_B1wOsGzOIH1uOQ-3uTrrGv1zPz4LZvj__7Tbbg1IFA271nmDhxhfRdOxuoObNjsp5DPWdZ8xx37uO-s8YTNd5-a_Zf28xUjoMsurhoism1fkACkFht-y2yuD5o864PLD-w1CcmSNTVzNi62IqjesLWrWn0PLhdvN2-W_lCOwTciTFrfJmszkmORSlWqWJPqZY3KZVwFhkutkdNZqbUOKjRhJWNUmJZhVBUJ8kigiu7Dcd3U-BAYltwUuqqwktbtGeqCzoEikpWOUGnDPQhHeuRmyFVuS2bscqezBCp35MwtOfOBnB68nMZ86zN1_LP3qaXF1HMggwdnI9nzYTMfaBxXBCsJCnrwfHpN29D6Vooam-6Qh0oQEFLUy4MHPbtMc49c9ujP33wGN5ab9Spfvcs-PIabtMq0j6g8g-N23-ETQj2tfuqY_Sch1Po8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Pruning+Algorithm+for+Smoothing+Feedforward+Neural+Networks+Based+on+Group+Lasso+Method&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Jian&rft.au=Xu%2C+Chen&rft.au=Yang%2C+Xifeng&rft.au=Zurada%2C+Jacek+M.&rft.date=2018-05-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=5&rft.spage=2012&rft.epage=2024&rft_id=info:doi/10.1109%2FTNNLS.2017.2748585&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2017_2748585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon