Small polymorphisms are a source of ancestral bias in structural variant breakpoint placement
High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to system...
Saved in:
Published in | Genome research Vol. 34; no. 1; pp. 7 - 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1088-9051 1549-5469 1549-5469 |
DOI | 10.1101/gr.278203.123 |
Cover
Abstract | High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2×–16×. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ∼5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features. |
---|---|
AbstractList | High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2×–16×. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ∼5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features. High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥ 50 bp) has improved to near basepair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2-16⨉. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ~5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features. High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2×-16×. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ∼5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features.High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2×-16×. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ∼5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features. |
Author | Audano, Peter A. Beck, Christine R. |
AuthorAffiliation | 2 Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA 1 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA |
AuthorAffiliation_xml | – name: 1 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA – name: 2 Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA |
Author_xml | – sequence: 1 givenname: Peter A. orcidid: 0000-0002-5187-0415 surname: Audano fullname: Audano, Peter A. – sequence: 2 givenname: Christine R. orcidid: 0000-0001-7821-8489 surname: Beck fullname: Beck, Christine R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38176712$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAUtFAR_YAjV2SJC5csfraTdU4IVfRDqsQBOCLr2XG2Lokd7KTV_vt6tW0FleDk5-eZ0cz4mByEGBwhb4GtABh83KQVXyvOxAq4eEGOoJZtVcumPSgzU6pqWQ2H5DjnG8aYkEq9IodCwbpZAz8iP7-NOAx0isN2jGm69nnMFJOjSHNcknU09hSDdXlOOFDjMVMfaLktdl52q1tMHsNMTXL4a4q-jNOA1o0uzK_Jyx6H7N48nCfkx9mX76cX1dXX88vTz1eVldDMVQ9SQNMbowSgNKo3jWkFr1tQvO6k6juspTUSm0bVXcljnbWdMC3yFgxYcUJWe90lTLi9K4n0lPyIaauB6V1PepP0viddeiqET3vCtJjRdbZ4LVmeSBG9_vsl-Gu9ibdFrmWSARSFDw8KKf5eSj169Nm6YcDg4pJ1cSZ5zWrVFOj7Z9CbUm0ohRQUV0JwYOuCevenpScvj39VAGIPsCnmnFyvrZ9x9nHn0A__TFo9Y_2_mXtcHrdu |
CitedBy_id | crossref_primary_10_1038_s41587_024_02225_z crossref_primary_10_1111_mec_17631 |
Cites_doi | 10.1038/s41587-022-01261-x 10.1038/s41592-019-0686-2 10.1038/s41586-019-1913-9 10.1101/2023.03.07.531415 10.1038/s41588-021-00865-4 10.1093/bioinformatics/btq033 10.1038/ng.944 10.1038/s41586-020-2493-4 10.1038/s41576-020-0236-x 10.1101/gr.261941.120 10.1038/s41586-020-2308-7 10.1038/s41586-021-03205-y 10.1038/s41592-018-0001-7 10.1093/bioinformatics/bty191 10.1371/journal.pbio.1000594 10.1093/nar/gkaa1087 10.1126/science.aao6266 10.1038/s41587-020-0711-0 10.1093/bioinformatics/btz041 10.1093/bioinformatics/btab705 10.1016/j.mrgentox.2015.07.001 10.1093/bioinformatics/btaa435 10.1038/s41586-020-2649-2 10.1038/s41587-023-01793-w 10.1038/35057062 10.1093/bioinformatics/btz305 10.1186/s13059-023-02972-3 10.1093/nar/gkaa829 10.1016/j.cell.2017.08.047 10.1038/s41586-023-05896-x 10.1086/504600 10.1016/j.xgen.2023.100281 10.1101/gr.229102. Article published online before print in May 2002 10.1016/j.cell.2023.02.018 10.1006/jmbi.1990.9999 10.1186/gb-2014-15-6-r80 10.1038/nbt.1600 10.1016/j.cell.2022.04.017 10.1038/nature01140 10.1126/science.1072047 10.1093/bioinformatics/btaa1034 10.1038/s41592-022-01753-3 10.1038/s41587-023-01662-6 10.1038/nature11247 10.1038/s41586-023-06425-6 10.1002/gcc.10111 10.1038/nature20098 10.1038/s41586-022-04601-8 10.1186/s13059-022-02840-6 10.1371/journal.pgen.1005050 10.1038/s41586-020-2486-3 10.1093/nar/27.2.573 10.1016/j.xgen.2023.100291 10.1093/bioinformatics/btaa440 10.1038/s41586-021-03451-0 10.1534/g3.114.015784 10.1038/nature15394 10.1038/nature01262 10.1093/nar/gkv1189 10.1073/pnas.1912175116 10.1038/ng.2768 10.1038/s41586-020-2371-0 10.1016/j.cell.2007.11.037 10.1093/gigascience/giac022 10.1038/nature15393 10.1038/s41467-022-34810-8 10.1073/pnas.1520010113 10.1371/journal.pgen.1005016 10.1073/pnas.0807866105 10.1038/s41586-020-1969-6 10.1038/s41587-019-0217-9 10.1038/ncomms12065 10.1101/2023.04.05.535718 10.1016/j.ajhg.2009.01.024 10.1093/bioinformatics/btp579 10.1038/nature13907 10.1016/j.cell.2018.12.019 10.1038/s41467-018-08148-z 10.1126/science.abf7117 10.1016/j.ajhg.2022.02.014 10.1146/annurev-genom-120219-080406 10.1038/s41586-020-2287-8 10.1038/s41592-018-0054-7 10.1038/nrg2958 10.1101/gr.231100.117 10.1101/gr.213611.116 10.1093/bioinformatics/btv710 10.1084/jem.20210444 10.1016/j.cell.2019.01.045 10.1016/j.cell.2020.05.021 10.1093/molbev/msw046 10.1101/2023.05.30.542849 10.1093/nar/gkz1173 10.1038/nrg.2015.25 10.1016/j.cell.2022.08.004 10.1038/nature06258 10.1101/gr.277372.122 10.1038/s41588-022-01043-w 10.1371/journal.pgen.1000327 10.1038/nature24477 10.1038/ng0598-19 10.1038/s41586-021-03519-x 10.1126/science.abj6987 |
ContentType | Journal Article |
Copyright | Published by Cold Spring Harbor Laboratory Press. Copyright Cold Spring Harbor Laboratory Press Jan 2024 2024 Audano and Beck; Published by Cold Spring Harbor Laboratory Press. 2024 |
Copyright_xml | – notice: Published by Cold Spring Harbor Laboratory Press. – notice: Copyright Cold Spring Harbor Laboratory Press Jan 2024 – notice: 2024 Audano and Beck; Published by Cold Spring Harbor Laboratory Press. – notice: 2024 |
DBID | AAYXX CITATION NPM 7TM 8FD FR3 P64 RC3 7X8 5PM ADTOC UNPAY |
DOI | 10.1101/gr.278203.123 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Audano and Beck |
EISSN | 1549-5469 |
EndPage | 19 |
ExternalDocumentID | 10.1101/gr.278203.123 PMC10904011 38176712 10_1101_gr_278203_123 |
Genre | Journal Article |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP AEILP NPM 7TM 8FD FR3 P64 RC3 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c416t-f14316fbb831a4b8fb6b932591825d48fda54cb4a6685d051ceccd3b9a291b1c3 |
IEDL.DBID | UNPAY |
ISSN | 1088-9051 1549-5469 |
IngestDate | Sun Sep 07 11:29:57 EDT 2025 Thu Aug 21 18:35:14 EDT 2025 Fri Sep 05 14:01:37 EDT 2025 Sun Jun 29 16:39:35 EDT 2025 Mon Jul 21 06:02:38 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Wed Oct 01 03:01:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Published by Cold Spring Harbor Laboratory Press. This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. False |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-f14316fbb831a4b8fb6b932591825d48fda54cb4a6685d051ceccd3b9a291b1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5187-0415 0000-0001-7821-8489 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://genome.cshlp.org/content/early/2024/01/03/gr.278203.123.full.pdf |
PMID | 38176712 |
PQID | 2928332107 |
PQPubID | 2049132 |
PageCount | 13 |
ParticipantIDs | unpaywall_primary_10_1101_gr_278203_123 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10904011 proquest_miscellaneous_2914250586 proquest_journals_2928332107 pubmed_primary_38176712 crossref_citationtrail_10_1101_gr_278203_123 crossref_primary_10_1101_gr_278203_123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Genome research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2024 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2024032012150794000_34.1.7.40 2024032012150794000_34.1.7.41 2024032012150794000_34.1.7.44 2024032012150794000_34.1.7.45 2024032012150794000_34.1.7.42 2024032012150794000_34.1.7.43 2024032012150794000_34.1.7.48 2024032012150794000_34.1.7.49 2024032012150794000_34.1.7.46 2024032012150794000_34.1.7.47 2024032012150794000_34.1.7.39 2024032012150794000_34.1.7.30 2024032012150794000_34.1.7.33 2024032012150794000_34.1.7.34 2024032012150794000_34.1.7.31 2024032012150794000_34.1.7.32 2024032012150794000_34.1.7.37 2024032012150794000_34.1.7.38 2024032012150794000_34.1.7.35 2024032012150794000_34.1.7.36 2024032012150794000_34.1.7.62 2024032012150794000_34.1.7.63 2024032012150794000_34.1.7.60 2024032012150794000_34.1.7.61 2024032012150794000_34.1.7.66 2024032012150794000_34.1.7.67 2024032012150794000_34.1.7.64 2024032012150794000_34.1.7.65 2024032012150794000_34.1.7.68 2024032012150794000_34.1.7.69 2024032012150794000_34.1.7.51 2024032012150794000_34.1.7.52 2024032012150794000_34.1.7.50 2024032012150794000_34.1.7.55 2024032012150794000_34.1.7.56 2024032012150794000_34.1.7.53 2024032012150794000_34.1.7.54 2024032012150794000_34.1.7.59 2024032012150794000_34.1.7.57 2024032012150794000_34.1.7.58 2024032012150794000_34.1.7.2 2024032012150794000_34.1.7.80 2024032012150794000_34.1.7.3 2024032012150794000_34.1.7.81 2024032012150794000_34.1.7.100 2024032012150794000_34.1.7.4 2024032012150794000_34.1.7.5 2024032012150794000_34.1.7.6 2024032012150794000_34.1.7.84 2024032012150794000_34.1.7.7 2024032012150794000_34.1.7.85 2024032012150794000_34.1.7.8 2024032012150794000_34.1.7.82 2024032012150794000_34.1.7.9 2024032012150794000_34.1.7.83 2024032012150794000_34.1.7.88 2024032012150794000_34.1.7.89 2024032012150794000_34.1.7.86 2024032012150794000_34.1.7.87 2024032012150794000_34.1.7.103 2024032012150794000_34.1.7.104 2024032012150794000_34.1.7.101 2024032012150794000_34.1.7.1 2024032012150794000_34.1.7.102 2024032012150794000_34.1.7.70 2024032012150794000_34.1.7.73 2024032012150794000_34.1.7.74 2024032012150794000_34.1.7.71 2024032012150794000_34.1.7.72 2024032012150794000_34.1.7.77 2024032012150794000_34.1.7.78 2024032012150794000_34.1.7.75 2024032012150794000_34.1.7.76 2024032012150794000_34.1.7.79 2024032012150794000_34.1.7.28 2024032012150794000_34.1.7.29 2024032012150794000_34.1.7.22 2024032012150794000_34.1.7.23 2024032012150794000_34.1.7.20 2024032012150794000_34.1.7.21 2024032012150794000_34.1.7.26 2024032012150794000_34.1.7.27 2024032012150794000_34.1.7.24 2024032012150794000_34.1.7.25 2024032012150794000_34.1.7.19 2024032012150794000_34.1.7.17 2024032012150794000_34.1.7.18 2024032012150794000_34.1.7.91 2024032012150794000_34.1.7.92 2024032012150794000_34.1.7.90 2024032012150794000_34.1.7.95 2024032012150794000_34.1.7.96 2024032012150794000_34.1.7.93 2024032012150794000_34.1.7.94 2024032012150794000_34.1.7.11 2024032012150794000_34.1.7.99 2024032012150794000_34.1.7.12 2024032012150794000_34.1.7.97 2024032012150794000_34.1.7.10 2024032012150794000_34.1.7.98 2024032012150794000_34.1.7.15 2024032012150794000_34.1.7.16 2024032012150794000_34.1.7.13 2024032012150794000_34.1.7.14 |
References_xml | – ident: 2024032012150794000_34.1.7.22 doi: 10.1038/s41587-022-01261-x – ident: 2024032012150794000_34.1.7.98 doi: 10.1038/s41592-019-0686-2 – ident: 2024032012150794000_34.1.7.62 doi: 10.1038/s41586-019-1913-9 – ident: 2024032012150794000_34.1.7.68 doi: 10.1101/2023.03.07.531415 – ident: 2024032012150794000_34.1.7.13 doi: 10.1038/s41588-021-00865-4 – ident: 2024032012150794000_34.1.7.79 doi: 10.1093/bioinformatics/btq033 – ident: 2024032012150794000_34.1.7.17 doi: 10.1038/ng.944 – ident: 2024032012150794000_34.1.7.30 doi: 10.1038/s41586-020-2493-4 – ident: 2024032012150794000_34.1.7.65 doi: 10.1038/s41576-020-0236-x – ident: 2024032012150794000_34.1.7.86 doi: 10.1101/gr.261941.120 – ident: 2024032012150794000_34.1.7.50 doi: 10.1038/s41586-020-2308-7 – ident: 2024032012150794000_34.1.7.96 doi: 10.1038/s41586-021-03205-y – ident: 2024032012150794000_34.1.7.89 doi: 10.1038/s41592-018-0001-7 – ident: 2024032012150794000_34.1.7.59 doi: 10.1093/bioinformatics/bty191 – ident: 2024032012150794000_34.1.7.24 doi: 10.1371/journal.pbio.1000594 – ident: 2024032012150794000_34.1.7.33 doi: 10.1093/nar/gkaa1087 – ident: 2024032012150794000_34.1.7.87 doi: 10.1126/science.aao6266 – ident: 2024032012150794000_34.1.7.34 doi: 10.1038/s41587-020-0711-0 – ident: 2024032012150794000_34.1.7.40 doi: 10.1093/bioinformatics/btz041 – ident: 2024032012150794000_34.1.7.60 doi: 10.1093/bioinformatics/btab705 – ident: 2024032012150794000_34.1.7.45 doi: 10.1016/j.mrgentox.2015.07.001 – ident: 2024032012150794000_34.1.7.48 doi: 10.1093/bioinformatics/btaa435 – ident: 2024032012150794000_34.1.7.38 doi: 10.1038/s41586-020-2649-2 – ident: 2024032012150794000_34.1.7.42 doi: 10.1038/s41587-023-01793-w – ident: 2024032012150794000_34.1.7.47 doi: 10.1038/35057062 – ident: 2024032012150794000_34.1.7.56 doi: 10.1093/bioinformatics/btz305 – ident: 2024032012150794000_34.1.7.85 doi: 10.1186/s13059-023-02972-3 – ident: 2024032012150794000_34.1.7.78 doi: 10.1093/nar/gkaa829 – ident: 2024032012150794000_34.1.7.97 doi: 10.1016/j.cell.2017.08.047 – ident: 2024032012150794000_34.1.7.64 doi: 10.1038/s41586-023-05896-x – ident: 2024032012150794000_34.1.7.90 doi: 10.1086/504600 – ident: 2024032012150794000_34.1.7.80 doi: 10.1016/j.xgen.2023.100281 – ident: 2024032012150794000_34.1.7.93 – ident: 2024032012150794000_34.1.7.52 doi: 10.1101/gr.229102. Article published online before print in May 2002 – ident: 2024032012150794000_34.1.7.83 doi: 10.1016/j.cell.2023.02.018 – ident: 2024032012150794000_34.1.7.5 doi: 10.1006/jmbi.1990.9999 – ident: 2024032012150794000_34.1.7.99 doi: 10.1186/gb-2014-15-6-r80 – ident: 2024032012150794000_34.1.7.57 doi: 10.1038/nbt.1600 – ident: 2024032012150794000_34.1.7.77 doi: 10.1016/j.cell.2022.04.017 – ident: 2024032012150794000_34.1.7.84 doi: 10.1038/nature01140 – ident: 2024032012150794000_34.1.7.8 doi: 10.1126/science.1072047 – ident: 2024032012150794000_34.1.7.41 doi: 10.1093/bioinformatics/btaa1034 – ident: 2024032012150794000_34.1.7.54 doi: 10.1038/s41592-022-01753-3 – ident: 2024032012150794000_34.1.7.81 doi: 10.1038/s41587-023-01662-6 – ident: 2024032012150794000_34.1.7.29 doi: 10.1038/nature11247 – ident: 2024032012150794000_34.1.7.36 doi: 10.1038/s41586-023-06425-6 – ident: 2024032012150794000_34.1.7.55 doi: 10.1002/gcc.10111 – ident: 2024032012150794000_34.1.7.91 doi: 10.1038/nature20098 – ident: 2024032012150794000_34.1.7.101 doi: 10.1038/s41586-022-04601-8 – ident: 2024032012150794000_34.1.7.31 doi: 10.1186/s13059-022-02840-6 – ident: 2024032012150794000_34.1.7.10 doi: 10.1371/journal.pgen.1005050 – ident: 2024032012150794000_34.1.7.49 doi: 10.1038/s41586-020-2486-3 – ident: 2024032012150794000_34.1.7.12 doi: 10.1093/nar/27.2.573 – ident: 2024032012150794000_34.1.7.32 doi: 10.1016/j.xgen.2023.100291 – ident: 2024032012150794000_34.1.7.70 doi: 10.1093/bioinformatics/btaa440 – ident: 2024032012150794000_34.1.7.82 doi: 10.1038/s41586-021-03451-0 – ident: 2024032012150794000_34.1.7.14 doi: 10.1534/g3.114.015784 – ident: 2024032012150794000_34.1.7.94 doi: 10.1038/nature15394 – ident: 2024032012150794000_34.1.7.72 doi: 10.1038/nature01262 – ident: 2024032012150794000_34.1.7.76 doi: 10.1093/nar/gkv1189 – ident: 2024032012150794000_34.1.7.95 doi: 10.1073/pnas.1912175116 – ident: 2024032012150794000_34.1.7.18 doi: 10.1038/ng.2768 – ident: 2024032012150794000_34.1.7.2 doi: 10.1038/s41586-020-2371-0 – ident: 2024032012150794000_34.1.7.58 doi: 10.1016/j.cell.2007.11.037 – ident: 2024032012150794000_34.1.7.53 doi: 10.1093/gigascience/giac022 – ident: 2024032012150794000_34.1.7.1 doi: 10.1038/nature15393 – ident: 2024032012150794000_34.1.7.9 doi: 10.1038/s41467-022-34810-8 – ident: 2024032012150794000_34.1.7.69 doi: 10.1073/pnas.1520010113 – ident: 2024032012150794000_34.1.7.71 doi: 10.1371/journal.pgen.1005016 – ident: 2024032012150794000_34.1.7.37 doi: 10.1073/pnas.0807866105 – ident: 2024032012150794000_34.1.7.44 doi: 10.1038/s41586-020-1969-6 – ident: 2024032012150794000_34.1.7.102 doi: 10.1038/s41587-019-0217-9 – ident: 2024032012150794000_34.1.7.92 doi: 10.1038/ncomms12065 – ident: 2024032012150794000_34.1.7.35 doi: 10.1101/2023.04.05.535718 – ident: 2024032012150794000_34.1.7.6 doi: 10.1016/j.ajhg.2009.01.024 – ident: 2024032012150794000_34.1.7.25 doi: 10.1093/bioinformatics/btp579 – ident: 2024032012150794000_34.1.7.19 doi: 10.1038/nature13907 – ident: 2024032012150794000_34.1.7.7 doi: 10.1016/j.cell.2018.12.019 – ident: 2024032012150794000_34.1.7.20 doi: 10.1038/s41467-018-08148-z – ident: 2024032012150794000_34.1.7.26 doi: 10.1126/science.abf7117 – ident: 2024032012150794000_34.1.7.74 doi: 10.1016/j.ajhg.2022.02.014 – ident: 2024032012150794000_34.1.7.28 doi: 10.1146/annurev-genom-120219-080406 – ident: 2024032012150794000_34.1.7.23 doi: 10.1038/s41586-020-2287-8 – ident: 2024032012150794000_34.1.7.61 doi: 10.1038/s41592-018-0054-7 – ident: 2024032012150794000_34.1.7.3 doi: 10.1038/nrg2958 – ident: 2024032012150794000_34.1.7.73 doi: 10.1101/gr.231100.117 – ident: 2024032012150794000_34.1.7.88 doi: 10.1101/gr.213611.116 – ident: 2024032012150794000_34.1.7.21 doi: 10.1093/bioinformatics/btv710 – ident: 2024032012150794000_34.1.7.100 doi: 10.1084/jem.20210444 – ident: 2024032012150794000_34.1.7.11 doi: 10.1016/j.cell.2019.01.045 – ident: 2024032012150794000_34.1.7.4 doi: 10.1016/j.cell.2020.05.021 – ident: 2024032012150794000_34.1.7.43 doi: 10.1093/molbev/msw046 – ident: 2024032012150794000_34.1.7.66 doi: 10.1101/2023.05.30.542849 – ident: 2024032012150794000_34.1.7.104 doi: 10.1093/nar/gkz1173 – ident: 2024032012150794000_34.1.7.16 doi: 10.1038/nrg.2015.25 – ident: 2024032012150794000_34.1.7.15 doi: 10.1016/j.cell.2022.08.004 – ident: 2024032012150794000_34.1.7.46 doi: 10.1038/nature06258 – ident: 2024032012150794000_34.1.7.63 doi: 10.1101/gr.277372.122 – ident: 2024032012150794000_34.1.7.27 doi: 10.1038/s41588-022-01043-w – ident: 2024032012150794000_34.1.7.39 doi: 10.1371/journal.pgen.1000327 – ident: 2024032012150794000_34.1.7.103 doi: 10.1038/nature24477 – ident: 2024032012150794000_34.1.7.51 doi: 10.1038/ng0598-19 – ident: 2024032012150794000_34.1.7.67 doi: 10.1038/s41586-021-03519-x – ident: 2024032012150794000_34.1.7.75 doi: 10.1126/science.abj6987 |
SSID | ssj0003488 |
Score | 2.4750388 |
Snippet | High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7 |
SubjectTerms | Accuracy Algorithms Breakpoints Genomes Haplotypes Homology Single-nucleotide polymorphism |
Title | Small polymorphisms are a source of ancestral bias in structural variant breakpoint placement |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38176712 https://www.proquest.com/docview/2928332107 https://www.proquest.com/docview/2914250586 https://pubmed.ncbi.nlm.nih.gov/PMC10904011 https://genome.cshlp.org/content/early/2024/01/03/gr.278203.123.full.pdf |
UnpaywallVersion | publishedVersion |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1549-5469 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003488 issn: 1088-9051 databaseCode: KQ8 dateStart: 19910801 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1549-5469 dateEnd: 20250403 omitProxy: true ssIdentifier: ssj0003488 issn: 1088-9051 databaseCode: DIK dateStart: 19910101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1549-5469 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003488 issn: 1088-9051 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1549-5469 dateEnd: 20250403 omitProxy: true ssIdentifier: ssj0003488 issn: 1088-9051 databaseCode: RPM dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB61W6Fy4dFSCJTKSKhcSDbeJN7kuFRUK5AqEKxUDiiyHaeNmpf2AVp-PTPJJmKpQBy4Rcoklu3P9nzj8WeAl55OcZk2FLkXxvaNK22l0JHjSiVRyrmWqkmQvRDTmf_uMrjcgWl3FoaUSQvj6MV1Xjcb-ZSxjdPv0JDeL1F1f-jyoesNr-bOiMTePAcnX4eC1U6dpLuwJ2iraQB7s4sPky9tfj2OaTdopVP9yA6QEvZym3z7R9vL0y2f83bq5P6qrOX6u8zzX9al8_uQdTVq01FunNVSOfrHb2KP_6PKD-DexnllkxZtD2HHlAdwOCmRuBdrdsqadNImTn8Ad950T_tn3aVyh_D1U4F1YHWVr4sKuzhbFAsm54ZJ1m4jsCplBMQmAsNUJhcsK1mrcksKIewbkntEA0MqL2_qKsPHJq-MopyPYHb-9vPZ1N7c8GBrdASXdsrpJH6K6PC49FWYKqHQoQwiZD1B4odpIgNfK18KEQYJdqFGxCWeiuQo4opr7wgGZVWaJ8CMmwqhEmN8DznrWCsPvxQm1NJwFSRjC153HRvrjfw53cKRxw0Ncnl8NY_b1o2xdS047c3rVvfjT4bHHUrizfBfxKMIvTY6HYXFvuhfY1PTbowsTbUiG-6T_xkKCx63oOpLItlEMeYjC8ItuPUGJAq-_abMrhtxcEq0Rc7MLXjVI_PvNXj6z5bP4C6hsY1AHcMA-948R59sqU5g9_3H8GQz6H4CArs1BA |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrVC58GgpLBRkJFQuJBtvEm9yXCqqFYcKCVYqBxTZjtNGzUubXdDy65nJSywViAO3SJnEsv3Znm88_gzw2tUJLtOGIvfCWJ5xpKUUOnJcqThMONdSNQmyF2Kx9D5c-pd7sOjPwpAyaW5sXV9nVbORTxnbOP1ODOn9ElX3Jg6fOO7kamVPSezNtXHytSlYbVdxcgf2BW01jWB_efFx_qXNr8cx7fitdKoXWj5SwkFuk-_-aHd5uuVz3k6dPNgUldx-l1n2y7p0_gDSvkZtOsqNvVkrW__4Tezxf1T5IdzvnFc2b9H2CPZMcQhH8wKJe75lp6xJJ23i9Idw913_dHDWXyp3BF8_5VgHVpXZNi-xi9M6r5lcGSZZu43AyoQREJsIDFOprFlasFbllhRC2Dck94gGhlRe3lRlio9NXhlFOR_D8vz957OF1d3wYGl0BNdWwukkfoLocLn0VJAoodCh9ENkPX7sBUksfU8rTwoR-DF2oUbExa4K5TTkimv3GEZFWZinwIyTCKFiYzwXOetMKxe_FCbQ0nDlx7MxvO07NtKd_DndwpFFDQ1yeHS1itrWjbB1x3A6mFet7sefDE96lETd8K-jaYheG52OwmJfDa-xqWk3Rham3JAN98j_DMQYnrSgGkoi2UQx49MxBDtwGwxIFHz3TZFeN-LglGiLnJmP4c2AzL_X4Nk_Wz6He4TGNgJ1AiPse_MCfbK1etkNt5_KQDQP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+polymorphisms+are+a+source+of+ancestral+bias+in+structural+variant+breakpoint+placement&rft.jtitle=Genome+research&rft.au=Audano%2C+Peter+A&rft.au=Beck%2C+Christine+R&rft.date=2024-01-01&rft.issn=1549-5469&rft.eissn=1549-5469&rft.volume=34&rft.issue=1&rft.spage=7&rft_id=info:doi/10.1101%2Fgr.278203.123&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |