Small polymorphisms are a source of ancestral bias in structural variant breakpoint placement

High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to system...

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 34; no. 1; pp. 7 - 19
Main Authors Audano, Peter A., Beck, Christine R.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.01.2024
Subjects
Online AccessGet full text
ISSN1088-9051
1549-5469
1549-5469
DOI10.1101/gr.278203.123

Cover

Abstract High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2×–16×. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ∼5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features.
AbstractList High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2×–16×. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ∼5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features.
High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥ 50 bp) has improved to near basepair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2-16⨉. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ~5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features.
High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2×-16×. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ∼5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features.High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2×-16×. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ∼5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features.
Author Audano, Peter A.
Beck, Christine R.
AuthorAffiliation 2 Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
1 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
AuthorAffiliation_xml – name: 1 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
– name: 2 Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
Author_xml – sequence: 1
  givenname: Peter A.
  orcidid: 0000-0002-5187-0415
  surname: Audano
  fullname: Audano, Peter A.
– sequence: 2
  givenname: Christine R.
  orcidid: 0000-0001-7821-8489
  surname: Beck
  fullname: Beck, Christine R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38176712$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAUtFAR_YAjV2SJC5csfraTdU4IVfRDqsQBOCLr2XG2Lokd7KTV_vt6tW0FleDk5-eZ0cz4mByEGBwhb4GtABh83KQVXyvOxAq4eEGOoJZtVcumPSgzU6pqWQ2H5DjnG8aYkEq9IodCwbpZAz8iP7-NOAx0isN2jGm69nnMFJOjSHNcknU09hSDdXlOOFDjMVMfaLktdl52q1tMHsNMTXL4a4q-jNOA1o0uzK_Jyx6H7N48nCfkx9mX76cX1dXX88vTz1eVldDMVQ9SQNMbowSgNKo3jWkFr1tQvO6k6juspTUSm0bVXcljnbWdMC3yFgxYcUJWe90lTLi9K4n0lPyIaauB6V1PepP0viddeiqET3vCtJjRdbZ4LVmeSBG9_vsl-Gu9ibdFrmWSARSFDw8KKf5eSj169Nm6YcDg4pJ1cSZ5zWrVFOj7Z9CbUm0ohRQUV0JwYOuCevenpScvj39VAGIPsCnmnFyvrZ9x9nHn0A__TFo9Y_2_mXtcHrdu
CitedBy_id crossref_primary_10_1038_s41587_024_02225_z
crossref_primary_10_1111_mec_17631
Cites_doi 10.1038/s41587-022-01261-x
10.1038/s41592-019-0686-2
10.1038/s41586-019-1913-9
10.1101/2023.03.07.531415
10.1038/s41588-021-00865-4
10.1093/bioinformatics/btq033
10.1038/ng.944
10.1038/s41586-020-2493-4
10.1038/s41576-020-0236-x
10.1101/gr.261941.120
10.1038/s41586-020-2308-7
10.1038/s41586-021-03205-y
10.1038/s41592-018-0001-7
10.1093/bioinformatics/bty191
10.1371/journal.pbio.1000594
10.1093/nar/gkaa1087
10.1126/science.aao6266
10.1038/s41587-020-0711-0
10.1093/bioinformatics/btz041
10.1093/bioinformatics/btab705
10.1016/j.mrgentox.2015.07.001
10.1093/bioinformatics/btaa435
10.1038/s41586-020-2649-2
10.1038/s41587-023-01793-w
10.1038/35057062
10.1093/bioinformatics/btz305
10.1186/s13059-023-02972-3
10.1093/nar/gkaa829
10.1016/j.cell.2017.08.047
10.1038/s41586-023-05896-x
10.1086/504600
10.1016/j.xgen.2023.100281
10.1101/gr.229102. Article published online before print in May 2002
10.1016/j.cell.2023.02.018
10.1006/jmbi.1990.9999
10.1186/gb-2014-15-6-r80
10.1038/nbt.1600
10.1016/j.cell.2022.04.017
10.1038/nature01140
10.1126/science.1072047
10.1093/bioinformatics/btaa1034
10.1038/s41592-022-01753-3
10.1038/s41587-023-01662-6
10.1038/nature11247
10.1038/s41586-023-06425-6
10.1002/gcc.10111
10.1038/nature20098
10.1038/s41586-022-04601-8
10.1186/s13059-022-02840-6
10.1371/journal.pgen.1005050
10.1038/s41586-020-2486-3
10.1093/nar/27.2.573
10.1016/j.xgen.2023.100291
10.1093/bioinformatics/btaa440
10.1038/s41586-021-03451-0
10.1534/g3.114.015784
10.1038/nature15394
10.1038/nature01262
10.1093/nar/gkv1189
10.1073/pnas.1912175116
10.1038/ng.2768
10.1038/s41586-020-2371-0
10.1016/j.cell.2007.11.037
10.1093/gigascience/giac022
10.1038/nature15393
10.1038/s41467-022-34810-8
10.1073/pnas.1520010113
10.1371/journal.pgen.1005016
10.1073/pnas.0807866105
10.1038/s41586-020-1969-6
10.1038/s41587-019-0217-9
10.1038/ncomms12065
10.1101/2023.04.05.535718
10.1016/j.ajhg.2009.01.024
10.1093/bioinformatics/btp579
10.1038/nature13907
10.1016/j.cell.2018.12.019
10.1038/s41467-018-08148-z
10.1126/science.abf7117
10.1016/j.ajhg.2022.02.014
10.1146/annurev-genom-120219-080406
10.1038/s41586-020-2287-8
10.1038/s41592-018-0054-7
10.1038/nrg2958
10.1101/gr.231100.117
10.1101/gr.213611.116
10.1093/bioinformatics/btv710
10.1084/jem.20210444
10.1016/j.cell.2019.01.045
10.1016/j.cell.2020.05.021
10.1093/molbev/msw046
10.1101/2023.05.30.542849
10.1093/nar/gkz1173
10.1038/nrg.2015.25
10.1016/j.cell.2022.08.004
10.1038/nature06258
10.1101/gr.277372.122
10.1038/s41588-022-01043-w
10.1371/journal.pgen.1000327
10.1038/nature24477
10.1038/ng0598-19
10.1038/s41586-021-03519-x
10.1126/science.abj6987
ContentType Journal Article
Copyright Published by Cold Spring Harbor Laboratory Press.
Copyright Cold Spring Harbor Laboratory Press Jan 2024
2024 Audano and Beck; Published by Cold Spring Harbor Laboratory Press.
2024
Copyright_xml – notice: Published by Cold Spring Harbor Laboratory Press.
– notice: Copyright Cold Spring Harbor Laboratory Press Jan 2024
– notice: 2024 Audano and Beck; Published by Cold Spring Harbor Laboratory Press.
– notice: 2024
DBID AAYXX
CITATION
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1101/gr.278203.123
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Audano and Beck
EISSN 1549-5469
EndPage 19
ExternalDocumentID 10.1101/gr.278203.123
PMC10904011
38176712
10_1101_gr_278203_123
Genre Journal Article
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
AEILP
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c416t-f14316fbb831a4b8fb6b932591825d48fda54cb4a6685d051ceccd3b9a291b1c3
IEDL.DBID UNPAY
ISSN 1088-9051
1549-5469
IngestDate Sun Sep 07 11:29:57 EDT 2025
Thu Aug 21 18:35:14 EDT 2025
Fri Sep 05 14:01:37 EDT 2025
Sun Jun 29 16:39:35 EDT 2025
Mon Jul 21 06:02:38 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Wed Oct 01 03:01:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Published by Cold Spring Harbor Laboratory Press.
This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
False
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-f14316fbb831a4b8fb6b932591825d48fda54cb4a6685d051ceccd3b9a291b1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5187-0415
0000-0001-7821-8489
OpenAccessLink https://proxy.k.utb.cz/login?url=https://genome.cshlp.org/content/early/2024/01/03/gr.278203.123.full.pdf
PMID 38176712
PQID 2928332107
PQPubID 2049132
PageCount 13
ParticipantIDs unpaywall_primary_10_1101_gr_278203_123
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10904011
proquest_miscellaneous_2914250586
proquest_journals_2928332107
pubmed_primary_38176712
crossref_citationtrail_10_1101_gr_278203_123
crossref_primary_10_1101_gr_278203_123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2024032012150794000_34.1.7.40
2024032012150794000_34.1.7.41
2024032012150794000_34.1.7.44
2024032012150794000_34.1.7.45
2024032012150794000_34.1.7.42
2024032012150794000_34.1.7.43
2024032012150794000_34.1.7.48
2024032012150794000_34.1.7.49
2024032012150794000_34.1.7.46
2024032012150794000_34.1.7.47
2024032012150794000_34.1.7.39
2024032012150794000_34.1.7.30
2024032012150794000_34.1.7.33
2024032012150794000_34.1.7.34
2024032012150794000_34.1.7.31
2024032012150794000_34.1.7.32
2024032012150794000_34.1.7.37
2024032012150794000_34.1.7.38
2024032012150794000_34.1.7.35
2024032012150794000_34.1.7.36
2024032012150794000_34.1.7.62
2024032012150794000_34.1.7.63
2024032012150794000_34.1.7.60
2024032012150794000_34.1.7.61
2024032012150794000_34.1.7.66
2024032012150794000_34.1.7.67
2024032012150794000_34.1.7.64
2024032012150794000_34.1.7.65
2024032012150794000_34.1.7.68
2024032012150794000_34.1.7.69
2024032012150794000_34.1.7.51
2024032012150794000_34.1.7.52
2024032012150794000_34.1.7.50
2024032012150794000_34.1.7.55
2024032012150794000_34.1.7.56
2024032012150794000_34.1.7.53
2024032012150794000_34.1.7.54
2024032012150794000_34.1.7.59
2024032012150794000_34.1.7.57
2024032012150794000_34.1.7.58
2024032012150794000_34.1.7.2
2024032012150794000_34.1.7.80
2024032012150794000_34.1.7.3
2024032012150794000_34.1.7.81
2024032012150794000_34.1.7.100
2024032012150794000_34.1.7.4
2024032012150794000_34.1.7.5
2024032012150794000_34.1.7.6
2024032012150794000_34.1.7.84
2024032012150794000_34.1.7.7
2024032012150794000_34.1.7.85
2024032012150794000_34.1.7.8
2024032012150794000_34.1.7.82
2024032012150794000_34.1.7.9
2024032012150794000_34.1.7.83
2024032012150794000_34.1.7.88
2024032012150794000_34.1.7.89
2024032012150794000_34.1.7.86
2024032012150794000_34.1.7.87
2024032012150794000_34.1.7.103
2024032012150794000_34.1.7.104
2024032012150794000_34.1.7.101
2024032012150794000_34.1.7.1
2024032012150794000_34.1.7.102
2024032012150794000_34.1.7.70
2024032012150794000_34.1.7.73
2024032012150794000_34.1.7.74
2024032012150794000_34.1.7.71
2024032012150794000_34.1.7.72
2024032012150794000_34.1.7.77
2024032012150794000_34.1.7.78
2024032012150794000_34.1.7.75
2024032012150794000_34.1.7.76
2024032012150794000_34.1.7.79
2024032012150794000_34.1.7.28
2024032012150794000_34.1.7.29
2024032012150794000_34.1.7.22
2024032012150794000_34.1.7.23
2024032012150794000_34.1.7.20
2024032012150794000_34.1.7.21
2024032012150794000_34.1.7.26
2024032012150794000_34.1.7.27
2024032012150794000_34.1.7.24
2024032012150794000_34.1.7.25
2024032012150794000_34.1.7.19
2024032012150794000_34.1.7.17
2024032012150794000_34.1.7.18
2024032012150794000_34.1.7.91
2024032012150794000_34.1.7.92
2024032012150794000_34.1.7.90
2024032012150794000_34.1.7.95
2024032012150794000_34.1.7.96
2024032012150794000_34.1.7.93
2024032012150794000_34.1.7.94
2024032012150794000_34.1.7.11
2024032012150794000_34.1.7.99
2024032012150794000_34.1.7.12
2024032012150794000_34.1.7.97
2024032012150794000_34.1.7.10
2024032012150794000_34.1.7.98
2024032012150794000_34.1.7.15
2024032012150794000_34.1.7.16
2024032012150794000_34.1.7.13
2024032012150794000_34.1.7.14
References_xml – ident: 2024032012150794000_34.1.7.22
  doi: 10.1038/s41587-022-01261-x
– ident: 2024032012150794000_34.1.7.98
  doi: 10.1038/s41592-019-0686-2
– ident: 2024032012150794000_34.1.7.62
  doi: 10.1038/s41586-019-1913-9
– ident: 2024032012150794000_34.1.7.68
  doi: 10.1101/2023.03.07.531415
– ident: 2024032012150794000_34.1.7.13
  doi: 10.1038/s41588-021-00865-4
– ident: 2024032012150794000_34.1.7.79
  doi: 10.1093/bioinformatics/btq033
– ident: 2024032012150794000_34.1.7.17
  doi: 10.1038/ng.944
– ident: 2024032012150794000_34.1.7.30
  doi: 10.1038/s41586-020-2493-4
– ident: 2024032012150794000_34.1.7.65
  doi: 10.1038/s41576-020-0236-x
– ident: 2024032012150794000_34.1.7.86
  doi: 10.1101/gr.261941.120
– ident: 2024032012150794000_34.1.7.50
  doi: 10.1038/s41586-020-2308-7
– ident: 2024032012150794000_34.1.7.96
  doi: 10.1038/s41586-021-03205-y
– ident: 2024032012150794000_34.1.7.89
  doi: 10.1038/s41592-018-0001-7
– ident: 2024032012150794000_34.1.7.59
  doi: 10.1093/bioinformatics/bty191
– ident: 2024032012150794000_34.1.7.24
  doi: 10.1371/journal.pbio.1000594
– ident: 2024032012150794000_34.1.7.33
  doi: 10.1093/nar/gkaa1087
– ident: 2024032012150794000_34.1.7.87
  doi: 10.1126/science.aao6266
– ident: 2024032012150794000_34.1.7.34
  doi: 10.1038/s41587-020-0711-0
– ident: 2024032012150794000_34.1.7.40
  doi: 10.1093/bioinformatics/btz041
– ident: 2024032012150794000_34.1.7.60
  doi: 10.1093/bioinformatics/btab705
– ident: 2024032012150794000_34.1.7.45
  doi: 10.1016/j.mrgentox.2015.07.001
– ident: 2024032012150794000_34.1.7.48
  doi: 10.1093/bioinformatics/btaa435
– ident: 2024032012150794000_34.1.7.38
  doi: 10.1038/s41586-020-2649-2
– ident: 2024032012150794000_34.1.7.42
  doi: 10.1038/s41587-023-01793-w
– ident: 2024032012150794000_34.1.7.47
  doi: 10.1038/35057062
– ident: 2024032012150794000_34.1.7.56
  doi: 10.1093/bioinformatics/btz305
– ident: 2024032012150794000_34.1.7.85
  doi: 10.1186/s13059-023-02972-3
– ident: 2024032012150794000_34.1.7.78
  doi: 10.1093/nar/gkaa829
– ident: 2024032012150794000_34.1.7.97
  doi: 10.1016/j.cell.2017.08.047
– ident: 2024032012150794000_34.1.7.64
  doi: 10.1038/s41586-023-05896-x
– ident: 2024032012150794000_34.1.7.90
  doi: 10.1086/504600
– ident: 2024032012150794000_34.1.7.80
  doi: 10.1016/j.xgen.2023.100281
– ident: 2024032012150794000_34.1.7.93
– ident: 2024032012150794000_34.1.7.52
  doi: 10.1101/gr.229102. Article published online before print in May 2002
– ident: 2024032012150794000_34.1.7.83
  doi: 10.1016/j.cell.2023.02.018
– ident: 2024032012150794000_34.1.7.5
  doi: 10.1006/jmbi.1990.9999
– ident: 2024032012150794000_34.1.7.99
  doi: 10.1186/gb-2014-15-6-r80
– ident: 2024032012150794000_34.1.7.57
  doi: 10.1038/nbt.1600
– ident: 2024032012150794000_34.1.7.77
  doi: 10.1016/j.cell.2022.04.017
– ident: 2024032012150794000_34.1.7.84
  doi: 10.1038/nature01140
– ident: 2024032012150794000_34.1.7.8
  doi: 10.1126/science.1072047
– ident: 2024032012150794000_34.1.7.41
  doi: 10.1093/bioinformatics/btaa1034
– ident: 2024032012150794000_34.1.7.54
  doi: 10.1038/s41592-022-01753-3
– ident: 2024032012150794000_34.1.7.81
  doi: 10.1038/s41587-023-01662-6
– ident: 2024032012150794000_34.1.7.29
  doi: 10.1038/nature11247
– ident: 2024032012150794000_34.1.7.36
  doi: 10.1038/s41586-023-06425-6
– ident: 2024032012150794000_34.1.7.55
  doi: 10.1002/gcc.10111
– ident: 2024032012150794000_34.1.7.91
  doi: 10.1038/nature20098
– ident: 2024032012150794000_34.1.7.101
  doi: 10.1038/s41586-022-04601-8
– ident: 2024032012150794000_34.1.7.31
  doi: 10.1186/s13059-022-02840-6
– ident: 2024032012150794000_34.1.7.10
  doi: 10.1371/journal.pgen.1005050
– ident: 2024032012150794000_34.1.7.49
  doi: 10.1038/s41586-020-2486-3
– ident: 2024032012150794000_34.1.7.12
  doi: 10.1093/nar/27.2.573
– ident: 2024032012150794000_34.1.7.32
  doi: 10.1016/j.xgen.2023.100291
– ident: 2024032012150794000_34.1.7.70
  doi: 10.1093/bioinformatics/btaa440
– ident: 2024032012150794000_34.1.7.82
  doi: 10.1038/s41586-021-03451-0
– ident: 2024032012150794000_34.1.7.14
  doi: 10.1534/g3.114.015784
– ident: 2024032012150794000_34.1.7.94
  doi: 10.1038/nature15394
– ident: 2024032012150794000_34.1.7.72
  doi: 10.1038/nature01262
– ident: 2024032012150794000_34.1.7.76
  doi: 10.1093/nar/gkv1189
– ident: 2024032012150794000_34.1.7.95
  doi: 10.1073/pnas.1912175116
– ident: 2024032012150794000_34.1.7.18
  doi: 10.1038/ng.2768
– ident: 2024032012150794000_34.1.7.2
  doi: 10.1038/s41586-020-2371-0
– ident: 2024032012150794000_34.1.7.58
  doi: 10.1016/j.cell.2007.11.037
– ident: 2024032012150794000_34.1.7.53
  doi: 10.1093/gigascience/giac022
– ident: 2024032012150794000_34.1.7.1
  doi: 10.1038/nature15393
– ident: 2024032012150794000_34.1.7.9
  doi: 10.1038/s41467-022-34810-8
– ident: 2024032012150794000_34.1.7.69
  doi: 10.1073/pnas.1520010113
– ident: 2024032012150794000_34.1.7.71
  doi: 10.1371/journal.pgen.1005016
– ident: 2024032012150794000_34.1.7.37
  doi: 10.1073/pnas.0807866105
– ident: 2024032012150794000_34.1.7.44
  doi: 10.1038/s41586-020-1969-6
– ident: 2024032012150794000_34.1.7.102
  doi: 10.1038/s41587-019-0217-9
– ident: 2024032012150794000_34.1.7.92
  doi: 10.1038/ncomms12065
– ident: 2024032012150794000_34.1.7.35
  doi: 10.1101/2023.04.05.535718
– ident: 2024032012150794000_34.1.7.6
  doi: 10.1016/j.ajhg.2009.01.024
– ident: 2024032012150794000_34.1.7.25
  doi: 10.1093/bioinformatics/btp579
– ident: 2024032012150794000_34.1.7.19
  doi: 10.1038/nature13907
– ident: 2024032012150794000_34.1.7.7
  doi: 10.1016/j.cell.2018.12.019
– ident: 2024032012150794000_34.1.7.20
  doi: 10.1038/s41467-018-08148-z
– ident: 2024032012150794000_34.1.7.26
  doi: 10.1126/science.abf7117
– ident: 2024032012150794000_34.1.7.74
  doi: 10.1016/j.ajhg.2022.02.014
– ident: 2024032012150794000_34.1.7.28
  doi: 10.1146/annurev-genom-120219-080406
– ident: 2024032012150794000_34.1.7.23
  doi: 10.1038/s41586-020-2287-8
– ident: 2024032012150794000_34.1.7.61
  doi: 10.1038/s41592-018-0054-7
– ident: 2024032012150794000_34.1.7.3
  doi: 10.1038/nrg2958
– ident: 2024032012150794000_34.1.7.73
  doi: 10.1101/gr.231100.117
– ident: 2024032012150794000_34.1.7.88
  doi: 10.1101/gr.213611.116
– ident: 2024032012150794000_34.1.7.21
  doi: 10.1093/bioinformatics/btv710
– ident: 2024032012150794000_34.1.7.100
  doi: 10.1084/jem.20210444
– ident: 2024032012150794000_34.1.7.11
  doi: 10.1016/j.cell.2019.01.045
– ident: 2024032012150794000_34.1.7.4
  doi: 10.1016/j.cell.2020.05.021
– ident: 2024032012150794000_34.1.7.43
  doi: 10.1093/molbev/msw046
– ident: 2024032012150794000_34.1.7.66
  doi: 10.1101/2023.05.30.542849
– ident: 2024032012150794000_34.1.7.104
  doi: 10.1093/nar/gkz1173
– ident: 2024032012150794000_34.1.7.16
  doi: 10.1038/nrg.2015.25
– ident: 2024032012150794000_34.1.7.15
  doi: 10.1016/j.cell.2022.08.004
– ident: 2024032012150794000_34.1.7.46
  doi: 10.1038/nature06258
– ident: 2024032012150794000_34.1.7.63
  doi: 10.1101/gr.277372.122
– ident: 2024032012150794000_34.1.7.27
  doi: 10.1038/s41588-022-01043-w
– ident: 2024032012150794000_34.1.7.39
  doi: 10.1371/journal.pgen.1000327
– ident: 2024032012150794000_34.1.7.103
  doi: 10.1038/nature24477
– ident: 2024032012150794000_34.1.7.51
  doi: 10.1038/ng0598-19
– ident: 2024032012150794000_34.1.7.67
  doi: 10.1038/s41586-021-03519-x
– ident: 2024032012150794000_34.1.7.75
  doi: 10.1126/science.abj6987
SSID ssj0003488
Score 2.4750388
Snippet High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7
SubjectTerms Accuracy
Algorithms
Breakpoints
Genomes
Haplotypes
Homology
Single-nucleotide polymorphism
Title Small polymorphisms are a source of ancestral bias in structural variant breakpoint placement
URI https://www.ncbi.nlm.nih.gov/pubmed/38176712
https://www.proquest.com/docview/2928332107
https://www.proquest.com/docview/2914250586
https://pubmed.ncbi.nlm.nih.gov/PMC10904011
https://genome.cshlp.org/content/early/2024/01/03/gr.278203.123.full.pdf
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1549-5469
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003488
  issn: 1088-9051
  databaseCode: KQ8
  dateStart: 19910801
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1549-5469
  dateEnd: 20250403
  omitProxy: true
  ssIdentifier: ssj0003488
  issn: 1088-9051
  databaseCode: DIK
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1549-5469
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003488
  issn: 1088-9051
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1549-5469
  dateEnd: 20250403
  omitProxy: true
  ssIdentifier: ssj0003488
  issn: 1088-9051
  databaseCode: RPM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB61W6Fy4dFSCJTKSKhcSDbeJN7kuFRUK5AqEKxUDiiyHaeNmpf2AVp-PTPJJmKpQBy4Rcoklu3P9nzj8WeAl55OcZk2FLkXxvaNK22l0JHjSiVRyrmWqkmQvRDTmf_uMrjcgWl3FoaUSQvj6MV1Xjcb-ZSxjdPv0JDeL1F1f-jyoesNr-bOiMTePAcnX4eC1U6dpLuwJ2iraQB7s4sPky9tfj2OaTdopVP9yA6QEvZym3z7R9vL0y2f83bq5P6qrOX6u8zzX9al8_uQdTVq01FunNVSOfrHb2KP_6PKD-DexnllkxZtD2HHlAdwOCmRuBdrdsqadNImTn8Ad950T_tn3aVyh_D1U4F1YHWVr4sKuzhbFAsm54ZJ1m4jsCplBMQmAsNUJhcsK1mrcksKIewbkntEA0MqL2_qKsPHJq-MopyPYHb-9vPZ1N7c8GBrdASXdsrpJH6K6PC49FWYKqHQoQwiZD1B4odpIgNfK18KEQYJdqFGxCWeiuQo4opr7wgGZVWaJ8CMmwqhEmN8DznrWCsPvxQm1NJwFSRjC153HRvrjfw53cKRxw0Ncnl8NY_b1o2xdS047c3rVvfjT4bHHUrizfBfxKMIvTY6HYXFvuhfY1PTbowsTbUiG-6T_xkKCx63oOpLItlEMeYjC8ItuPUGJAq-_abMrhtxcEq0Rc7MLXjVI_PvNXj6z5bP4C6hsY1AHcMA-948R59sqU5g9_3H8GQz6H4CArs1BA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrVC58GgpLBRkJFQuJBtvEm9yXCqqFYcKCVYqBxTZjtNGzUubXdDy65nJSywViAO3SJnEsv3Znm88_gzw2tUJLtOGIvfCWJ5xpKUUOnJcqThMONdSNQmyF2Kx9D5c-pd7sOjPwpAyaW5sXV9nVbORTxnbOP1ODOn9ElX3Jg6fOO7kamVPSezNtXHytSlYbVdxcgf2BW01jWB_efFx_qXNr8cx7fitdKoXWj5SwkFuk-_-aHd5uuVz3k6dPNgUldx-l1n2y7p0_gDSvkZtOsqNvVkrW__4Tezxf1T5IdzvnFc2b9H2CPZMcQhH8wKJe75lp6xJJ23i9Idw913_dHDWXyp3BF8_5VgHVpXZNi-xi9M6r5lcGSZZu43AyoQREJsIDFOprFlasFbllhRC2Dck94gGhlRe3lRlio9NXhlFOR_D8vz957OF1d3wYGl0BNdWwukkfoLocLn0VJAoodCh9ENkPX7sBUksfU8rTwoR-DF2oUbExa4K5TTkimv3GEZFWZinwIyTCKFiYzwXOetMKxe_FCbQ0nDlx7MxvO07NtKd_DndwpFFDQ1yeHS1itrWjbB1x3A6mFet7sefDE96lETd8K-jaYheG52OwmJfDa-xqWk3Rham3JAN98j_DMQYnrSgGkoi2UQx49MxBDtwGwxIFHz3TZFeN-LglGiLnJmP4c2AzL_X4Nk_Wz6He4TGNgJ1AiPse_MCfbK1etkNt5_KQDQP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+polymorphisms+are+a+source+of+ancestral+bias+in+structural+variant+breakpoint+placement&rft.jtitle=Genome+research&rft.au=Audano%2C+Peter+A&rft.au=Beck%2C+Christine+R&rft.date=2024-01-01&rft.issn=1549-5469&rft.eissn=1549-5469&rft.volume=34&rft.issue=1&rft.spage=7&rft_id=info:doi/10.1101%2Fgr.278203.123&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon