Tissue Electrical Property Mapping From Zero Echo-Time Magnetic Resonance Imaging
The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on...
        Saved in:
      
    
          | Published in | IEEE transactions on medical imaging Vol. 34; no. 2; pp. 541 - 550 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.02.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0278-0062 1558-254X 1558-254X  | 
| DOI | 10.1109/TMI.2014.2361810 | 
Cover
| Abstract | The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B 1 + ) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B 1 + mapping. | 
    
|---|---|
| AbstractList | The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B(1)(+)) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B(1)(+) mapping. The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B(1)(+)) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B(1)(+) mapping.The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B(1)(+)) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B(1)(+) mapping. The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B1+) from acquired MR images, the proposed method has such advantages as: (i) reduced theoretical error, (ii) higher acquisition speed, and (iii) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in-vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in-vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B1+ mapping.  | 
    
| Author | Sun, Wei Wiesinger, Florian Lee, Seung-Kyun Sacolick, Laura Hancu, Ileana Bulumulla, Selaka  | 
    
| Author_xml | – sequence: 1 givenname: Seung-Kyun surname: Lee fullname: Lee, Seung-Kyun email: lsk@ge.com organization: GE Global Research, Niskayuna, NY, USA – sequence: 2 givenname: Selaka surname: Bulumulla fullname: Bulumulla, Selaka email: bulumull@ge.com organization: GE Global Research, Niskayuna, NY, USA – sequence: 3 givenname: Florian surname: Wiesinger fullname: Wiesinger, Florian email: florian.wiesinger@research.ge.com organization: GE Global Research, Munich, Germany – sequence: 4 givenname: Laura surname: Sacolick fullname: Sacolick, Laura email: sacolick@ge.com organization: GE Healthcare, Munich, Germany – sequence: 5 givenname: Wei surname: Sun fullname: Sun, Wei email: Wei.Sun@geahk.ge.com organization: GE Healthcare, Waukesha, WI, USA – sequence: 6 givenname: Ileana surname: Hancu fullname: Hancu, Ileana email: hancu@ge.com organization: GE Global Research, Niskayuna, NY, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25312919$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9UU1rFDEYDlKx2-pdEGSOXmabNx8zk4sgZVsXWqyygngJ2cw728hMMiYzyv77zrJrqy0IgRyeT573hBz54JGQ10DnAFSdra6Xc0ZBzBkvoAL6jMxAyipnUnw7IjPKyiqntGDH5CSlH3RiSqpekGMmOTAFakY-r1xKI2aLFu0QnTVtdhNDj3HYZtem753fZBcxdNl3jCFb2NuQr1yHE7bxODibfcEUvPEWs2VnNhP9JXnemDbhq8N_Sr5eLFbnH_OrT5fL8w9XuRVQDDnWqEralAJqxiVHYRjUFVi6bmpeqWr3qtKywjZ8XVim6kZaJTgvS6lKBfyUwN539L3Z_jZtq_voOhO3GqjezaOHzundPPowz6R5v9f047rD2qIfonnQBeP0v4h3t3oTfmkhpFRUTAbvDgYx_BwxDbpzyWLbGo9hTBoKyUQBSvGJ-vbvrPuQP9tPBLon2BhSitg86T-d93H_4pHEusEMLuzauvZ_wjd7oUPE-5xCQSUn9A6z5q_1 | 
    
| CODEN | ITMID4 | 
    
| CitedBy_id | crossref_primary_10_1002_nbm_4273 crossref_primary_10_3390_diagnostics11020176 crossref_primary_10_1002_hbm_26421 crossref_primary_10_1109_TMI_2015_2427236 crossref_primary_10_1002_nbm_3522 crossref_primary_10_1002_mrm_27376 crossref_primary_10_1002_mrm_27453 crossref_primary_10_3390_tomography9010034 crossref_primary_10_1109_TBME_2020_2991399 crossref_primary_10_1002_mrm_30009 crossref_primary_10_1109_TBME_2017_2725140 crossref_primary_10_1186_s12894_019_0532_y crossref_primary_10_1155_2022_2842861 crossref_primary_10_1002_mrm_27958 crossref_primary_10_1002_nbm_3729 crossref_primary_10_1007_s10548_019_00710_2 crossref_primary_10_1109_TMI_2017_2684194 crossref_primary_10_1038_s41598_024_67014_9 crossref_primary_10_1016_j_pnmrs_2021_03_002 crossref_primary_10_5213_inj_1734878_439 crossref_primary_10_1109_TBME_2019_2907442 crossref_primary_10_1016_j_mri_2020_12_020 crossref_primary_10_1002_mrm_27004 crossref_primary_10_1002_mrm_27446 crossref_primary_10_1002_mrm_28458 crossref_primary_10_1016_j_pnmrs_2019_07_001 crossref_primary_10_1088_1361_6560_ab3259 crossref_primary_10_3390_app11073237 crossref_primary_10_1002_mrm_27528 crossref_primary_10_1002_mrm_25869 crossref_primary_10_1002_mrm_28619  | 
    
| Cites_doi | 10.2463/mrms.11.129 10.1002/mrm.1910320614 10.1088/0031-9155/52/20/002 10.1002/jmri.22544 10.1002/mrm.22995 10.1109/TMI.2009.2036843 10.1002/mrm.25399 10.1002/mrm.24637 10.1109/10.1374 10.1109/TMI.2011.2171000 10.1088/0031-9155/55/20/008 10.1002/mrm.22832 10.1109/TMI.2006.891486 10.1155/2013/546562 10.1002/mrm.21120 10.1002/mrm.23075 10.1118/1.597312 10.1088/0031-9155/36/6/002 10.1002/cmr.b.21204 10.1088/0266-5611/28/8/084002 10.1002/mrm.1910340407 10.1002/mrm.22357 10.1002/mrm.23322 10.1002/mrm.24158 10.1109/42.730409 10.1002/nbm.2844 10.1109/TMI.2009.2015757 10.1088/0031-9155/41/11/003  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1109/TMI.2014.2361810 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering  | 
    
| EISSN | 1558-254X | 
    
| EndPage | 550 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4455904 PMC4455904 25312919 10_1109_TMI_2014_2361810 6918510  | 
    
| Genre | orig-research Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: National Cancer Institute; National Cancer Institute grantid: R01CA154433 funderid: 10.13039/100000054 – fundername: NCI NIH HHS grantid: R01CA154433 – fundername: NCI NIH HHS grantid: R01 CA154433  | 
    
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM RIG 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c416t-ede970f741d2353e4a21d81c0bfd3898898887c26cf3b6c29df5c943377597913 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0278-0062 1558-254X  | 
    
| IngestDate | Wed Oct 29 12:04:31 EDT 2025 Tue Sep 30 16:55:36 EDT 2025 Sat Sep 27 20:31:20 EDT 2025 Thu Apr 03 07:08:21 EDT 2025 Wed Oct 01 03:55:24 EDT 2025 Thu Apr 24 22:52:55 EDT 2025 Wed Aug 27 08:33:46 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c416t-ede970f741d2353e4a21d81c0bfd3898898887c26cf3b6c29df5c943377597913 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1109/TMI.2014.2361810 | 
    
| PMID | 25312919 | 
    
| PQID | 1652461993 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4455904 unpaywall_primary_10_1109_tmi_2014_2361810 proquest_miscellaneous_1652461993 crossref_primary_10_1109_TMI_2014_2361810 crossref_citationtrail_10_1109_TMI_2014_2361810 pubmed_primary_25312919 ieee_primary_6918510  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-02-01 | 
    
| PublicationDateYYYYMMDD | 2015-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | IEEE transactions on medical imaging | 
    
| PublicationTitleAbbrev | TMI | 
    
| PublicationTitleAlternate | IEEE Trans Med Imaging | 
    
| PublicationYear | 2015 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref35 ref34 wiesinger (ref11) 2006 ref12 shin (ref25) 2013 ref37 bulumulla (ref23) 2013 ref31 ref30 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref18 setsompop (ref33) 2007 nehrke (ref7) 2012; 68 ref24 ref26 seo (ref36) 2012; 31 ref22 ref21 stehning (ref14) 2011 bulumulla (ref13) 2009 huang (ref28) 2014 schweser (ref15) 2013 ref29 ref8 bernstein (ref39) 2004 ref9 ref4 ref6 ref5 ref40 lee (ref20) 2010 chaudhary (ref3) 1984; 21 katscher (ref27) 2012 9845320 - IEEE Trans Med Imaging. 1998 Aug;17(4):653-62 17921574 - Phys Med Biol. 2007 Oct 21;52(20):6093-115 23401276 - Magn Reson Med. 2014 Jan;71(1):354-63 20876970 - Phys Med Biol. 2010 Oct 21;55(20):6157-74 21773985 - Magn Reson Med. 2011 Aug;66(2):456-66 20129847 - IEEE Trans Med Imaging. 2010 Feb;29(2):474-81 25099920 - Magn Reson Med. 2014 Aug 5;:null 8058021 - Med Phys. 1994 Apr;21(4):547-50 20432302 - Magn Reson Med. 2010 May;63(5):1315-22 19369153 - IEEE Trans Med Imaging. 2009 Sep;28(9):1365-74 23573170 - Comput Math Methods Med. 2013;2013:546562 7869901 - Magn Reson Med. 1994 Dec;32(6):778-84 2834285 - IEEE Trans Biomed Eng. 1988 Apr;35(4):257-63 21710613 - Magn Reson Med. 2012 Feb;67(2):552-61 21990329 - IEEE Trans Med Imaging. 2012 Feb;31(2):430-7 22213053 - Magn Reson Med. 2012 Oct;68(4):1117-26 8938026 - Phys Med Biol. 1996 Nov;41(11):2271-93 6490065 - Indian J Biochem Biophys. 1984 Feb;21(1):76-9 17354645 - IEEE Trans Med Imaging. 2007 Mar;26(3):405-21 17191242 - Magn Reson Med. 2007 Jan;57(1):192-200 8524019 - Magn Reson Med. 1995 Oct;34(4):525-9 22972684 - NMR Biomed. 2013 Mar;26(3):265-75 22790299 - Magn Reson Med Sci. 2012;11(2):129-35 21509880 - J Magn Reson Imaging. 2011 May;33(5):1209-17 21898582 - Magn Reson Med. 2012 Apr;67(4):991-1003 23599691 - Concepts Magn Reson Part B Magn Reson Eng. 2012 Feb 1;41B(1):13-21 22252850 - Magn Reson Med. 2012 Nov;68(5):1517-26  | 
    
| References_xml | – start-page: 3190 year: 2014 ident: ref28 article-title: A Monte Carlo method for overcoming the edge artifacts in MRI-based electrical conductivity mapping publication-title: Proceedings of the 20th ISMRM Annual Meeting – volume: 21 start-page: 76 year: 1984 ident: ref3 article-title: Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies publication-title: Indian J Biochem Biophys – ident: ref21 doi: 10.2463/mrms.11.129 – start-page: 54 year: 2010 ident: ref20 article-title: B1+ phase mapping for MR based electrical property measurement of a symmetric phantom publication-title: Workshop MR Based Impedance Imag – start-page: 1687 year: 2007 ident: ref33 article-title: Reduced-voltage RF shimming for adiabatic pulse design in parallel transmission publication-title: Proc 15th Annu Meeting ISMRM – ident: ref31 doi: 10.1002/mrm.1910320614 – ident: ref2 doi: 10.1088/0031-9155/52/20/002 – ident: ref1 doi: 10.1002/jmri.22544 – start-page: 4171 year: 2013 ident: ref23 article-title: Comparison of data approximation methods used in MR-based tissue electrical property mapping?A simulation study publication-title: Proc ISMRM 11th Annu Meet – start-page: 4180 year: 2013 ident: ref25 article-title: Coil combine for conductivity mapping of breast cancer publication-title: Proc ISMRM 11th Annu Meet – ident: ref10 doi: 10.1002/mrm.22995 – ident: ref34 doi: 10.1109/TMI.2009.2036843 – start-page: 128 year: 2011 ident: ref14 article-title: Real-time conductivity mapping using balanced SSFP and phase-based reconstruction publication-title: Proc 19th Annu Meet ISMRM – ident: ref19 doi: 10.1002/mrm.25399 – ident: ref18 doi: 10.1002/mrm.24637 – ident: ref5 doi: 10.1109/10.1374 – volume: 31 start-page: 430 year: 2012 ident: ref36 article-title: Error analysis of nonconstant admittivity for MR-based electric property imaging publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2011.2171000 – ident: ref38 doi: 10.1088/0031-9155/55/20/008 – year: 2006 ident: ref11 article-title: Prospects of absolute B1 calibration. Unsolved problems and unmet needs in magnetic resonance publication-title: 14th Annu Meet ISMRM – ident: ref16 doi: 10.1002/mrm.22832 – ident: ref26 doi: 10.1109/TMI.2006.891486 – ident: ref17 doi: 10.1155/2013/546562 – ident: ref9 doi: 10.1002/mrm.21120 – ident: ref30 doi: 10.1002/mrm.23075 – ident: ref4 doi: 10.1118/1.597312 – ident: ref6 doi: 10.1088/0031-9155/36/6/002 – start-page: 4190 year: 2013 ident: ref15 article-title: Conductivity mapping using ultrashort echo time (UTE) imaging publication-title: Proc ISMRM 11th Annu Meet – ident: ref32 doi: 10.1002/cmr.b.21204 – ident: ref22 doi: 10.1088/0266-5611/28/8/084002 – start-page: 3043 year: 2009 ident: ref13 article-title: Direct calculation of tissue electrical parameters from B1 maps publication-title: Proc 15th Annu Meeting ISMRM – ident: ref29 doi: 10.1002/mrm.1910340407 – ident: ref8 doi: 10.1002/mrm.22357 – ident: ref40 doi: 10.1002/mrm.23322 – volume: 68 start-page: 1517 year: 2012 ident: ref7 article-title: DREAM?A novel approach for robust, ultrafast, multislice B(1) mapping publication-title: Magn Reson Med doi: 10.1002/mrm.24158 – ident: ref24 doi: 10.1109/42.730409 – ident: ref37 doi: 10.1002/nbm.2844 – start-page: 3482 year: 2012 ident: ref27 article-title: Estimation of breast tumor conductivity using parabolic phase fitting publication-title: Proc 19th Annu Meet ISMRM – ident: ref12 doi: 10.1109/TMI.2009.2015757 – year: 2004 ident: ref39 publication-title: Handbook of MRI Pulse Sequences – ident: ref35 doi: 10.1088/0031-9155/41/11/003 – reference: 22252850 - Magn Reson Med. 2012 Nov;68(5):1517-26 – reference: 25099920 - Magn Reson Med. 2014 Aug 5;:null – reference: 21773985 - Magn Reson Med. 2011 Aug;66(2):456-66 – reference: 22972684 - NMR Biomed. 2013 Mar;26(3):265-75 – reference: 21710613 - Magn Reson Med. 2012 Feb;67(2):552-61 – reference: 20876970 - Phys Med Biol. 2010 Oct 21;55(20):6157-74 – reference: 8058021 - Med Phys. 1994 Apr;21(4):547-50 – reference: 17191242 - Magn Reson Med. 2007 Jan;57(1):192-200 – reference: 23401276 - Magn Reson Med. 2014 Jan;71(1):354-63 – reference: 21898582 - Magn Reson Med. 2012 Apr;67(4):991-1003 – reference: 6490065 - Indian J Biochem Biophys. 1984 Feb;21(1):76-9 – reference: 21509880 - J Magn Reson Imaging. 2011 May;33(5):1209-17 – reference: 9845320 - IEEE Trans Med Imaging. 1998 Aug;17(4):653-62 – reference: 19369153 - IEEE Trans Med Imaging. 2009 Sep;28(9):1365-74 – reference: 23599691 - Concepts Magn Reson Part B Magn Reson Eng. 2012 Feb 1;41B(1):13-21 – reference: 23573170 - Comput Math Methods Med. 2013;2013:546562 – reference: 22213053 - Magn Reson Med. 2012 Oct;68(4):1117-26 – reference: 17921574 - Phys Med Biol. 2007 Oct 21;52(20):6093-115 – reference: 22790299 - Magn Reson Med Sci. 2012;11(2):129-35 – reference: 7869901 - Magn Reson Med. 1994 Dec;32(6):778-84 – reference: 20129847 - IEEE Trans Med Imaging. 2010 Feb;29(2):474-81 – reference: 8524019 - Magn Reson Med. 1995 Oct;34(4):525-9 – reference: 20432302 - Magn Reson Med. 2010 May;63(5):1315-22 – reference: 21990329 - IEEE Trans Med Imaging. 2012 Feb;31(2):430-7 – reference: 2834285 - IEEE Trans Biomed Eng. 1988 Apr;35(4):257-63 – reference: 8938026 - Phys Med Biol. 1996 Nov;41(11):2271-93 – reference: 17354645 - IEEE Trans Med Imaging. 2007 Mar;26(3):405-21  | 
    
| SSID | ssj0014509 | 
    
| Score | 2.332516 | 
    
| Snippet | The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 541 | 
    
| SubjectTerms | Brain - anatomy & histology Brain - physiology Coils Conductivity Electric Conductivity Electrical properties Humans Image Processing, Computer-Assisted - methods Image reconstruction Magnetic resonance imaging Magnetic Resonance Imaging - methods MR-based electrical properties tomography (MREPT) Permittivity Phantoms Phantoms, Imaging Radio frequency zero-echo-time (ZTE)  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9wwEB7SPPR46JH0cC9U6EtLvWvLkmw9lrJLUtjSwgZCX4wuJ6G7dtjalPTXV-OL3SaUgh8MGsFIM5JGmplvAN5qaljKRRFqlfGQuSwJleUmTJ0w2lBldYb5zosv4uiEfT7lp3vwYcyFcc61wWdugr-tL99WpsGnsqmQ_nTBfKpbaSa6XK3RY8B4F85BETE2EnRwSUZyulwcYwwXmyDQSBZj8TfqVY9KhNfZOo3a8io3WZrXAybvNOWluvqlVqut02j-ABbDOLoglB-TptYT8_sviMf_HehDuN-bpeRjp0ePYM-VB3BvC6zwAG4vejf8IXxbtuIis7aGDoqZfMVH_U19RRYKER_OyHxTrcl3t6nIzO-wIaaa-LazEpMmCToNEOnDkeN1WybpMZzMZ8tPR2FfmyE03oSrQ2edTKPC2yOWJjxxTNHYZrGJdGG9DZThl6WGClMkWhgqbcGNZEmSpv4KI-PkCeyXVemeAaGR5dz6nSC1MbNaSR1Jm6lECIde1yKA6SCj3PTA5Vg_Y5W3F5hI5l7AOQo47wUcwLuxx2UH2vEP2kOc_5Gun_oA3gxqkPsFh14UVbqq-ZnHgiMGn7frAnjaqcXYeVCrANIdhRkJEMx7t6W8OG9BvRnzd7uIBfB-VK1rvNfrix3en9_M-wu466l4F1v-EvbrTeNeedOp1q_bNfMHphwSWg priority: 102 providerName: IEEE  | 
    
| Title | Tissue Electrical Property Mapping From Zero Echo-Time Magnetic Resonance Imaging | 
    
| URI | https://ieeexplore.ieee.org/document/6918510 https://www.ncbi.nlm.nih.gov/pubmed/25312919 https://www.proquest.com/docview/1652461993 https://pubmed.ncbi.nlm.nih.gov/PMC4455904 http://doi.org/10.1109/TMI.2014.2361810  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 34 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYjhV0e1q3dxVtXNNjLBk59kWTrsZSEdJDSQQLZXoxubssSp2QOo_v1O8d23JiMjYFfbF2QdY6kTzo63yHkg44MS7jIfa1S7jOXxr6y3PiJE0abSFmdor_z-EKMpuzzjM_uSZK2zfdhIE8m43O8fsX6yBGSoivVnuAAuntkb3pxefq1OkFBjtigCh0KiyPInbPZxiAJVZSLm04VnQWoiqjyJ3C5e0fy0bq4VXc_1Xy-tQAN98lo48ZT3zv53l-Xum9-7bI6_uvfnpGnDQilp7XWPCcPXHFAnmxREx6Qh-PG6H5Ivkwq4dBBFTEHhUov8Qh_Vd7RsUJ-hys6XC0X9JtbLekA5lMfHUsg7apAF0mKJgLk9XD0fFEFRXpBpsPB5GzkN5EYfAOArfSddTIJckAfNop57JiKQpuGJtC5BcST4pMmJhImj7UwkbQ5N5LFcZLAhkWG8UvSK5aFe01oFFjOLYz7xIbMaiV1IG2qYiEc2lhzj5xsxJOZhqYco2XMs2q7EsgM-i3DfsuafvPIx7bEbU3R8Ze8hyjxNp-QgFfw8_uNBmQwvNBmogq3XP_IQsGRcQ9QnEde1RrRFo5g_opkKD2SdHSlzYDU3d2U4ua6ovBmDHZyAfPIp1ardtoOittp-5v_yfyWPIZXXt8vPyK9crV27wA-lfq48nE8bgbQb5VKD68 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED9KB-v6sI923bxPDfayMSe2LMnW4xgJyVaXDVIoezG2JHeliV0ym9H99dP5i2QtY-AHgySQdD9JJ93d7wDeZlSxkIvczdKIu8xEgZtqrtzQCJUpmuoswnjn-ETMTtnnM362Ax-GWBhjTON8Zkb429jydalqfCobC2lPF4ynusMZY7yN1hpsBoy3Dh0UOWM9QXujpCfHi3iOXlxshFQjkY_p36gFH5VIsLNxHjUJVm7TNW-6TO7VxVV6_StdLjfOo-kDiPuRtG4ol6O6ykbq918kj_871Idwv1NMyccWSY9gxxQHsL9BV3gAd-POEH8I3xaNwMikyaKDgiZf8Vl_XV2TOEXOh3MyXZcr8t2sSzKxe6yLwSa27LzAsEmCZgPk-jBkvmoSJT2G0-lk8WnmdtkZXGWVuMo12sjQy61GomnAA8NS6uvIV16Wa6sFRfhFoaJC5UEmFJU650qyIAhDe4mRfnAEu0VZmKdAqKc513YvCLXPdJbKzJM6SgMhDNpdcwfGvYwS1VGXYwaNZdJcYTyZWAEnKOCkE7AD74YWVy1txz_qHuL8D_W6qXfgTQ-DxC45tKOkhSnrn4kvOLLwWc3OgSctLIbGPawcCLcAM1RAOu_tkuLiR0PrbRHNpccceD9A60bfq9XFVt-f3d7317A3W8THyfH85MtzuGdb8NbT_AXsVuvavLSKVJW9atbPHyNEFac | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYjhW196LZ2W91d0GAvGzj1RZKtxzIS0kFKBwlkezG6uStLnJI5jPbX9xzb8WIyNgZ-sXVB1jmSPunofIeQ9zoyLOEi97VKuc9cGvvKcuMnThhtImV1iv7O4wsxmrLPMz77TZK0bb4PA3k6GZ_j9SvWR46QFF2p9gQH0N0je9OLy7Ov1QkKcsQGVehQWBxB7pzNNgZJqKJcXHeq6CxAVUSVP4HL3TuSj9bFjbr9pebzrQVo-ISMNm489b2TH_11qfvmbpfV8V__9pQcNCCUntVa84w8cMUh2d-iJjwkD8eN0f2IfJlUwqGDKmIOCpVe4hH-qrylY4X8Dld0uFou6De3WtIBzKc-OpZA2lWBLpIUTQTI6-Ho-aIKivScTIeDyaeR30Ri8A0AttJ31skkyAF92CjmsWMqCm0amkDnFhBPik-amEiYPNbCRNLm3EgWx0kCGxYZxi9Ir1gW7pjQKLCcWxj3iQ2Z1UrqQNpUxUI4tLHmHjndiCczDU05RsuYZ9V2JZAZ9FuG_ZY1_eaRD22Jm5qi4y95j1DibT4hAa_g53cbDchgeKHNRBVuuf6ZhYIj4x6gOI-8rDWiLRzB_BXJUHok6ehKmwGpu7spxfX3isKbMdjJBcwjH1ut2mk7KG6n7Sf_k_kVeQyvvL5f_pr0ytXavQH4VOq3zdC5BzzBDq4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tissue+electrical+property+mapping+from+zero+echo-time+magnetic+resonance+imaging&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Lee%2C+Seung-Kyun&rft.au=Bulumulla%2C+Selaka&rft.au=Wiesinger%2C+Florian&rft.au=Sacolick%2C+Laura&rft.date=2015-02-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=34&rft.issue=2&rft.spage=541&rft_id=info:doi/10.1109%2FTMI.2014.2361810&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |