Tissue Electrical Property Mapping From Zero Echo-Time Magnetic Resonance Imaging

The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 34; no. 2; pp. 541 - 550
Main Authors Lee, Seung-Kyun, Bulumulla, Selaka, Wiesinger, Florian, Sacolick, Laura, Sun, Wei, Hancu, Ileana
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2015
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2014.2361810

Cover

Abstract The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B 1 + ) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B 1 + mapping.
AbstractList The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B(1)(+)) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B(1)(+) mapping.
The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B(1)(+)) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B(1)(+) mapping.The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B(1)(+)) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B(1)(+) mapping.
The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B1+) from acquired MR images, the proposed method has such advantages as: (i) reduced theoretical error, (ii) higher acquisition speed, and (iii) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in-vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in-vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B1+ mapping.
Author Sun, Wei
Wiesinger, Florian
Lee, Seung-Kyun
Sacolick, Laura
Hancu, Ileana
Bulumulla, Selaka
Author_xml – sequence: 1
  givenname: Seung-Kyun
  surname: Lee
  fullname: Lee, Seung-Kyun
  email: lsk@ge.com
  organization: GE Global Research, Niskayuna, NY, USA
– sequence: 2
  givenname: Selaka
  surname: Bulumulla
  fullname: Bulumulla, Selaka
  email: bulumull@ge.com
  organization: GE Global Research, Niskayuna, NY, USA
– sequence: 3
  givenname: Florian
  surname: Wiesinger
  fullname: Wiesinger, Florian
  email: florian.wiesinger@research.ge.com
  organization: GE Global Research, Munich, Germany
– sequence: 4
  givenname: Laura
  surname: Sacolick
  fullname: Sacolick, Laura
  email: sacolick@ge.com
  organization: GE Healthcare, Munich, Germany
– sequence: 5
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
  email: Wei.Sun@geahk.ge.com
  organization: GE Healthcare, Waukesha, WI, USA
– sequence: 6
  givenname: Ileana
  surname: Hancu
  fullname: Hancu, Ileana
  email: hancu@ge.com
  organization: GE Global Research, Niskayuna, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25312919$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1rFDEYDlKx2-pdEGSOXmabNx8zk4sgZVsXWqyygngJ2cw728hMMiYzyv77zrJrqy0IgRyeT573hBz54JGQ10DnAFSdra6Xc0ZBzBkvoAL6jMxAyipnUnw7IjPKyiqntGDH5CSlH3RiSqpekGMmOTAFakY-r1xKI2aLFu0QnTVtdhNDj3HYZtem753fZBcxdNl3jCFb2NuQr1yHE7bxODibfcEUvPEWs2VnNhP9JXnemDbhq8N_Sr5eLFbnH_OrT5fL8w9XuRVQDDnWqEralAJqxiVHYRjUFVi6bmpeqWr3qtKywjZ8XVim6kZaJTgvS6lKBfyUwN539L3Z_jZtq_voOhO3GqjezaOHzundPPowz6R5v9f047rD2qIfonnQBeP0v4h3t3oTfmkhpFRUTAbvDgYx_BwxDbpzyWLbGo9hTBoKyUQBSvGJ-vbvrPuQP9tPBLon2BhSitg86T-d93H_4pHEusEMLuzauvZ_wjd7oUPE-5xCQSUn9A6z5q_1
CODEN ITMID4
CitedBy_id crossref_primary_10_1002_nbm_4273
crossref_primary_10_3390_diagnostics11020176
crossref_primary_10_1002_hbm_26421
crossref_primary_10_1109_TMI_2015_2427236
crossref_primary_10_1002_nbm_3522
crossref_primary_10_1002_mrm_27376
crossref_primary_10_1002_mrm_27453
crossref_primary_10_3390_tomography9010034
crossref_primary_10_1109_TBME_2020_2991399
crossref_primary_10_1002_mrm_30009
crossref_primary_10_1109_TBME_2017_2725140
crossref_primary_10_1186_s12894_019_0532_y
crossref_primary_10_1155_2022_2842861
crossref_primary_10_1002_mrm_27958
crossref_primary_10_1002_nbm_3729
crossref_primary_10_1007_s10548_019_00710_2
crossref_primary_10_1109_TMI_2017_2684194
crossref_primary_10_1038_s41598_024_67014_9
crossref_primary_10_1016_j_pnmrs_2021_03_002
crossref_primary_10_5213_inj_1734878_439
crossref_primary_10_1109_TBME_2019_2907442
crossref_primary_10_1016_j_mri_2020_12_020
crossref_primary_10_1002_mrm_27004
crossref_primary_10_1002_mrm_27446
crossref_primary_10_1002_mrm_28458
crossref_primary_10_1016_j_pnmrs_2019_07_001
crossref_primary_10_1088_1361_6560_ab3259
crossref_primary_10_3390_app11073237
crossref_primary_10_1002_mrm_27528
crossref_primary_10_1002_mrm_25869
crossref_primary_10_1002_mrm_28619
Cites_doi 10.2463/mrms.11.129
10.1002/mrm.1910320614
10.1088/0031-9155/52/20/002
10.1002/jmri.22544
10.1002/mrm.22995
10.1109/TMI.2009.2036843
10.1002/mrm.25399
10.1002/mrm.24637
10.1109/10.1374
10.1109/TMI.2011.2171000
10.1088/0031-9155/55/20/008
10.1002/mrm.22832
10.1109/TMI.2006.891486
10.1155/2013/546562
10.1002/mrm.21120
10.1002/mrm.23075
10.1118/1.597312
10.1088/0031-9155/36/6/002
10.1002/cmr.b.21204
10.1088/0266-5611/28/8/084002
10.1002/mrm.1910340407
10.1002/mrm.22357
10.1002/mrm.23322
10.1002/mrm.24158
10.1109/42.730409
10.1002/nbm.2844
10.1109/TMI.2009.2015757
10.1088/0031-9155/41/11/003
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/TMI.2014.2361810
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 550
ExternalDocumentID oai:pubmedcentral.nih.gov:4455904
PMC4455904
25312919
10_1109_TMI_2014_2361810
6918510
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Cancer Institute; National Cancer Institute
  grantid: R01CA154433
  funderid: 10.13039/100000054
– fundername: NCI NIH HHS
  grantid: R01CA154433
– fundername: NCI NIH HHS
  grantid: R01 CA154433
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c416t-ede970f741d2353e4a21d81c0bfd3898898887c26cf3b6c29df5c943377597913
IEDL.DBID UNPAY
ISSN 0278-0062
1558-254X
IngestDate Wed Oct 29 12:04:31 EDT 2025
Tue Sep 30 16:55:36 EDT 2025
Sat Sep 27 20:31:20 EDT 2025
Thu Apr 03 07:08:21 EDT 2025
Wed Oct 01 03:55:24 EDT 2025
Thu Apr 24 22:52:55 EDT 2025
Wed Aug 27 08:33:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-ede970f741d2353e4a21d81c0bfd3898898887c26cf3b6c29df5c943377597913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1109/TMI.2014.2361810
PMID 25312919
PQID 1652461993
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4455904
unpaywall_primary_10_1109_tmi_2014_2361810
proquest_miscellaneous_1652461993
crossref_primary_10_1109_TMI_2014_2361810
crossref_citationtrail_10_1109_TMI_2014_2361810
pubmed_primary_25312919
ieee_primary_6918510
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref34
wiesinger (ref11) 2006
ref12
shin (ref25) 2013
ref37
bulumulla (ref23) 2013
ref31
ref30
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
setsompop (ref33) 2007
nehrke (ref7) 2012; 68
ref24
ref26
seo (ref36) 2012; 31
ref22
ref21
stehning (ref14) 2011
bulumulla (ref13) 2009
huang (ref28) 2014
schweser (ref15) 2013
ref29
ref8
bernstein (ref39) 2004
ref9
ref4
ref6
ref5
ref40
lee (ref20) 2010
chaudhary (ref3) 1984; 21
katscher (ref27) 2012
9845320 - IEEE Trans Med Imaging. 1998 Aug;17(4):653-62
17921574 - Phys Med Biol. 2007 Oct 21;52(20):6093-115
23401276 - Magn Reson Med. 2014 Jan;71(1):354-63
20876970 - Phys Med Biol. 2010 Oct 21;55(20):6157-74
21773985 - Magn Reson Med. 2011 Aug;66(2):456-66
20129847 - IEEE Trans Med Imaging. 2010 Feb;29(2):474-81
25099920 - Magn Reson Med. 2014 Aug 5;:null
8058021 - Med Phys. 1994 Apr;21(4):547-50
20432302 - Magn Reson Med. 2010 May;63(5):1315-22
19369153 - IEEE Trans Med Imaging. 2009 Sep;28(9):1365-74
23573170 - Comput Math Methods Med. 2013;2013:546562
7869901 - Magn Reson Med. 1994 Dec;32(6):778-84
2834285 - IEEE Trans Biomed Eng. 1988 Apr;35(4):257-63
21710613 - Magn Reson Med. 2012 Feb;67(2):552-61
21990329 - IEEE Trans Med Imaging. 2012 Feb;31(2):430-7
22213053 - Magn Reson Med. 2012 Oct;68(4):1117-26
8938026 - Phys Med Biol. 1996 Nov;41(11):2271-93
6490065 - Indian J Biochem Biophys. 1984 Feb;21(1):76-9
17354645 - IEEE Trans Med Imaging. 2007 Mar;26(3):405-21
17191242 - Magn Reson Med. 2007 Jan;57(1):192-200
8524019 - Magn Reson Med. 1995 Oct;34(4):525-9
22972684 - NMR Biomed. 2013 Mar;26(3):265-75
22790299 - Magn Reson Med Sci. 2012;11(2):129-35
21509880 - J Magn Reson Imaging. 2011 May;33(5):1209-17
21898582 - Magn Reson Med. 2012 Apr;67(4):991-1003
23599691 - Concepts Magn Reson Part B Magn Reson Eng. 2012 Feb 1;41B(1):13-21
22252850 - Magn Reson Med. 2012 Nov;68(5):1517-26
References_xml – start-page: 3190
  year: 2014
  ident: ref28
  article-title: A Monte Carlo method for overcoming the edge artifacts in MRI-based electrical conductivity mapping
  publication-title: Proceedings of the 20th ISMRM Annual Meeting
– volume: 21
  start-page: 76
  year: 1984
  ident: ref3
  article-title: Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies
  publication-title: Indian J Biochem Biophys
– ident: ref21
  doi: 10.2463/mrms.11.129
– start-page: 54
  year: 2010
  ident: ref20
  article-title: B1+ phase mapping for MR based electrical property measurement of a symmetric phantom
  publication-title: Workshop MR Based Impedance Imag
– start-page: 1687
  year: 2007
  ident: ref33
  article-title: Reduced-voltage RF shimming for adiabatic pulse design in parallel transmission
  publication-title: Proc 15th Annu Meeting ISMRM
– ident: ref31
  doi: 10.1002/mrm.1910320614
– ident: ref2
  doi: 10.1088/0031-9155/52/20/002
– ident: ref1
  doi: 10.1002/jmri.22544
– start-page: 4171
  year: 2013
  ident: ref23
  article-title: Comparison of data approximation methods used in MR-based tissue electrical property mapping?A simulation study
  publication-title: Proc ISMRM 11th Annu Meet
– start-page: 4180
  year: 2013
  ident: ref25
  article-title: Coil combine for conductivity mapping of breast cancer
  publication-title: Proc ISMRM 11th Annu Meet
– ident: ref10
  doi: 10.1002/mrm.22995
– ident: ref34
  doi: 10.1109/TMI.2009.2036843
– start-page: 128
  year: 2011
  ident: ref14
  article-title: Real-time conductivity mapping using balanced SSFP and phase-based reconstruction
  publication-title: Proc 19th Annu Meet ISMRM
– ident: ref19
  doi: 10.1002/mrm.25399
– ident: ref18
  doi: 10.1002/mrm.24637
– ident: ref5
  doi: 10.1109/10.1374
– volume: 31
  start-page: 430
  year: 2012
  ident: ref36
  article-title: Error analysis of nonconstant admittivity for MR-based electric property imaging
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2011.2171000
– ident: ref38
  doi: 10.1088/0031-9155/55/20/008
– year: 2006
  ident: ref11
  article-title: Prospects of absolute B1 calibration. Unsolved problems and unmet needs in magnetic resonance
  publication-title: 14th Annu Meet ISMRM
– ident: ref16
  doi: 10.1002/mrm.22832
– ident: ref26
  doi: 10.1109/TMI.2006.891486
– ident: ref17
  doi: 10.1155/2013/546562
– ident: ref9
  doi: 10.1002/mrm.21120
– ident: ref30
  doi: 10.1002/mrm.23075
– ident: ref4
  doi: 10.1118/1.597312
– ident: ref6
  doi: 10.1088/0031-9155/36/6/002
– start-page: 4190
  year: 2013
  ident: ref15
  article-title: Conductivity mapping using ultrashort echo time (UTE) imaging
  publication-title: Proc ISMRM 11th Annu Meet
– ident: ref32
  doi: 10.1002/cmr.b.21204
– ident: ref22
  doi: 10.1088/0266-5611/28/8/084002
– start-page: 3043
  year: 2009
  ident: ref13
  article-title: Direct calculation of tissue electrical parameters from B1 maps
  publication-title: Proc 15th Annu Meeting ISMRM
– ident: ref29
  doi: 10.1002/mrm.1910340407
– ident: ref8
  doi: 10.1002/mrm.22357
– ident: ref40
  doi: 10.1002/mrm.23322
– volume: 68
  start-page: 1517
  year: 2012
  ident: ref7
  article-title: DREAM?A novel approach for robust, ultrafast, multislice B(1) mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24158
– ident: ref24
  doi: 10.1109/42.730409
– ident: ref37
  doi: 10.1002/nbm.2844
– start-page: 3482
  year: 2012
  ident: ref27
  article-title: Estimation of breast tumor conductivity using parabolic phase fitting
  publication-title: Proc 19th Annu Meet ISMRM
– ident: ref12
  doi: 10.1109/TMI.2009.2015757
– year: 2004
  ident: ref39
  publication-title: Handbook of MRI Pulse Sequences
– ident: ref35
  doi: 10.1088/0031-9155/41/11/003
– reference: 22252850 - Magn Reson Med. 2012 Nov;68(5):1517-26
– reference: 25099920 - Magn Reson Med. 2014 Aug 5;:null
– reference: 21773985 - Magn Reson Med. 2011 Aug;66(2):456-66
– reference: 22972684 - NMR Biomed. 2013 Mar;26(3):265-75
– reference: 21710613 - Magn Reson Med. 2012 Feb;67(2):552-61
– reference: 20876970 - Phys Med Biol. 2010 Oct 21;55(20):6157-74
– reference: 8058021 - Med Phys. 1994 Apr;21(4):547-50
– reference: 17191242 - Magn Reson Med. 2007 Jan;57(1):192-200
– reference: 23401276 - Magn Reson Med. 2014 Jan;71(1):354-63
– reference: 21898582 - Magn Reson Med. 2012 Apr;67(4):991-1003
– reference: 6490065 - Indian J Biochem Biophys. 1984 Feb;21(1):76-9
– reference: 21509880 - J Magn Reson Imaging. 2011 May;33(5):1209-17
– reference: 9845320 - IEEE Trans Med Imaging. 1998 Aug;17(4):653-62
– reference: 19369153 - IEEE Trans Med Imaging. 2009 Sep;28(9):1365-74
– reference: 23599691 - Concepts Magn Reson Part B Magn Reson Eng. 2012 Feb 1;41B(1):13-21
– reference: 23573170 - Comput Math Methods Med. 2013;2013:546562
– reference: 22213053 - Magn Reson Med. 2012 Oct;68(4):1117-26
– reference: 17921574 - Phys Med Biol. 2007 Oct 21;52(20):6093-115
– reference: 22790299 - Magn Reson Med Sci. 2012;11(2):129-35
– reference: 7869901 - Magn Reson Med. 1994 Dec;32(6):778-84
– reference: 20129847 - IEEE Trans Med Imaging. 2010 Feb;29(2):474-81
– reference: 8524019 - Magn Reson Med. 1995 Oct;34(4):525-9
– reference: 20432302 - Magn Reson Med. 2010 May;63(5):1315-22
– reference: 21990329 - IEEE Trans Med Imaging. 2012 Feb;31(2):430-7
– reference: 2834285 - IEEE Trans Biomed Eng. 1988 Apr;35(4):257-63
– reference: 8938026 - Phys Med Biol. 1996 Nov;41(11):2271-93
– reference: 17354645 - IEEE Trans Med Imaging. 2007 Mar;26(3):405-21
SSID ssj0014509
Score 2.332516
Snippet The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 541
SubjectTerms Brain - anatomy & histology
Brain - physiology
Coils
Conductivity
Electric Conductivity
Electrical properties
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
MR-based electrical properties tomography (MREPT)
Permittivity
Phantoms
Phantoms, Imaging
Radio frequency
zero-echo-time (ZTE)
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9wwEB7SPPR46JH0cC9U6EtLvWvLkmw9lrJLUtjSwgZCX4wuJ6G7dtjalPTXV-OL3SaUgh8MGsFIM5JGmplvAN5qaljKRRFqlfGQuSwJleUmTJ0w2lBldYb5zosv4uiEfT7lp3vwYcyFcc61wWdugr-tL99WpsGnsqmQ_nTBfKpbaSa6XK3RY8B4F85BETE2EnRwSUZyulwcYwwXmyDQSBZj8TfqVY9KhNfZOo3a8io3WZrXAybvNOWluvqlVqut02j-ABbDOLoglB-TptYT8_sviMf_HehDuN-bpeRjp0ePYM-VB3BvC6zwAG4vejf8IXxbtuIis7aGDoqZfMVH_U19RRYKER_OyHxTrcl3t6nIzO-wIaaa-LazEpMmCToNEOnDkeN1WybpMZzMZ8tPR2FfmyE03oSrQ2edTKPC2yOWJjxxTNHYZrGJdGG9DZThl6WGClMkWhgqbcGNZEmSpv4KI-PkCeyXVemeAaGR5dz6nSC1MbNaSR1Jm6lECIde1yKA6SCj3PTA5Vg_Y5W3F5hI5l7AOQo47wUcwLuxx2UH2vEP2kOc_5Gun_oA3gxqkPsFh14UVbqq-ZnHgiMGn7frAnjaqcXYeVCrANIdhRkJEMx7t6W8OG9BvRnzd7uIBfB-VK1rvNfrix3en9_M-wu466l4F1v-EvbrTeNeedOp1q_bNfMHphwSWg
  priority: 102
  providerName: IEEE
Title Tissue Electrical Property Mapping From Zero Echo-Time Magnetic Resonance Imaging
URI https://ieeexplore.ieee.org/document/6918510
https://www.ncbi.nlm.nih.gov/pubmed/25312919
https://www.proquest.com/docview/1652461993
https://pubmed.ncbi.nlm.nih.gov/PMC4455904
http://doi.org/10.1109/TMI.2014.2361810
UnpaywallVersion submittedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYjhV0e1q3dxVtXNNjLBk59kWTrsZSEdJDSQQLZXoxubssSp2QOo_v1O8d23JiMjYFfbF2QdY6kTzo63yHkg44MS7jIfa1S7jOXxr6y3PiJE0abSFmdor_z-EKMpuzzjM_uSZK2zfdhIE8m43O8fsX6yBGSoivVnuAAuntkb3pxefq1OkFBjtigCh0KiyPInbPZxiAJVZSLm04VnQWoiqjyJ3C5e0fy0bq4VXc_1Xy-tQAN98lo48ZT3zv53l-Xum9-7bI6_uvfnpGnDQilp7XWPCcPXHFAnmxREx6Qh-PG6H5Ivkwq4dBBFTEHhUov8Qh_Vd7RsUJ-hys6XC0X9JtbLekA5lMfHUsg7apAF0mKJgLk9XD0fFEFRXpBpsPB5GzkN5EYfAOArfSddTIJckAfNop57JiKQpuGJtC5BcST4pMmJhImj7UwkbQ5N5LFcZLAhkWG8UvSK5aFe01oFFjOLYz7xIbMaiV1IG2qYiEc2lhzj5xsxJOZhqYco2XMs2q7EsgM-i3DfsuafvPIx7bEbU3R8Ze8hyjxNp-QgFfw8_uNBmQwvNBmogq3XP_IQsGRcQ9QnEde1RrRFo5g_opkKD2SdHSlzYDU3d2U4ua6ovBmDHZyAfPIp1ardtoOittp-5v_yfyWPIZXXt8vPyK9crV27wA-lfq48nE8bgbQb5VKD68
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED9KB-v6sI923bxPDfayMSe2LMnW4xgJyVaXDVIoezG2JHeliV0ym9H99dP5i2QtY-AHgySQdD9JJ93d7wDeZlSxkIvczdKIu8xEgZtqrtzQCJUpmuoswnjn-ETMTtnnM362Ax-GWBhjTON8Zkb429jydalqfCobC2lPF4ynusMZY7yN1hpsBoy3Dh0UOWM9QXujpCfHi3iOXlxshFQjkY_p36gFH5VIsLNxHjUJVm7TNW-6TO7VxVV6_StdLjfOo-kDiPuRtG4ol6O6ykbq918kj_871Idwv1NMyccWSY9gxxQHsL9BV3gAd-POEH8I3xaNwMikyaKDgiZf8Vl_XV2TOEXOh3MyXZcr8t2sSzKxe6yLwSa27LzAsEmCZgPk-jBkvmoSJT2G0-lk8WnmdtkZXGWVuMo12sjQy61GomnAA8NS6uvIV16Wa6sFRfhFoaJC5UEmFJU650qyIAhDe4mRfnAEu0VZmKdAqKc513YvCLXPdJbKzJM6SgMhDNpdcwfGvYwS1VGXYwaNZdJcYTyZWAEnKOCkE7AD74YWVy1txz_qHuL8D_W6qXfgTQ-DxC45tKOkhSnrn4kvOLLwWc3OgSctLIbGPawcCLcAM1RAOu_tkuLiR0PrbRHNpccceD9A60bfq9XFVt-f3d7317A3W8THyfH85MtzuGdb8NbT_AXsVuvavLSKVJW9atbPHyNEFac
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYjhW196LZ2W91d0GAvGzj1RZKtxzIS0kFKBwlkezG6uStLnJI5jPbX9xzb8WIyNgZ-sXVB1jmSPunofIeQ9zoyLOEi97VKuc9cGvvKcuMnThhtImV1iv7O4wsxmrLPMz77TZK0bb4PA3k6GZ_j9SvWR46QFF2p9gQH0N0je9OLy7Ov1QkKcsQGVehQWBxB7pzNNgZJqKJcXHeq6CxAVUSVP4HL3TuSj9bFjbr9pebzrQVo-ISMNm489b2TH_11qfvmbpfV8V__9pQcNCCUntVa84w8cMUh2d-iJjwkD8eN0f2IfJlUwqGDKmIOCpVe4hH-qrylY4X8Dld0uFou6De3WtIBzKc-OpZA2lWBLpIUTQTI6-Ho-aIKivScTIeDyaeR30Ri8A0AttJ31skkyAF92CjmsWMqCm0amkDnFhBPik-amEiYPNbCRNLm3EgWx0kCGxYZxi9Ir1gW7pjQKLCcWxj3iQ2Z1UrqQNpUxUI4tLHmHjndiCczDU05RsuYZ9V2JZAZ9FuG_ZY1_eaRD22Jm5qi4y95j1DibT4hAa_g53cbDchgeKHNRBVuuf6ZhYIj4x6gOI-8rDWiLRzB_BXJUHok6ehKmwGpu7spxfX3isKbMdjJBcwjH1ut2mk7KG6n7Sf_k_kVeQyvvL5f_pr0ytXavQH4VOq3zdC5BzzBDq4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tissue+electrical+property+mapping+from+zero+echo-time+magnetic+resonance+imaging&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Lee%2C+Seung-Kyun&rft.au=Bulumulla%2C+Selaka&rft.au=Wiesinger%2C+Florian&rft.au=Sacolick%2C+Laura&rft.date=2015-02-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=34&rft.issue=2&rft.spage=541&rft_id=info:doi/10.1109%2FTMI.2014.2361810&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon