Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework
Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers fo...
Saved in:
| Published in | The Astrophysical journal. Supplement series Vol. 274; no. 2; pp. 29 - 52 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Saskatoon
The American Astronomical Society
01.10.2024
IOP Publishing |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0067-0049 1538-4365 1538-4365 |
| DOI | 10.3847/1538-4365/ad62fd |
Cover
| Abstract | Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers for various astronomical objects. We present a novel deep-learning framework for classifying light curves using a weakly supervised object detection model. Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data. This allows for automatic feature extraction from both time and frequency domains, enabling our model to handle data across different scales and sampling intervals. We train our model on data sets obtained from Kepler, TESS, and Zwicky Transient Facility multiband observations of variable stars and transients. We achieve an accuracy of 87% for combined variable and transient events, which is comparable to the performance of previous feature-based models. Our trained model can be utilized directly for other missions, such as the All-sky Automated Survey for Supernovae, without requiring any retraining or fine-tuning. To address known issues with miscalibrated predictive probabilities, we apply conformal prediction to generate robust predictive sets that guarantee true-label coverage with a given probability. Additionally, we incorporate various anomaly detection algorithms to empower our model with the ability to identify out-of-distribution objects. Our framework is implemented in the
Deep-LC
toolkit, which is an open-source Python package hosted on Github (
https://github.com/ckm3/Deep-LC
) and PyPI. |
|---|---|
| AbstractList | Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers for various astronomical objects. We present a novel deep-learning framework for classifying light curves using a weakly supervised object detection model. Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data. This allows for automatic feature extraction from both time and frequency domains, enabling our model to handle data across different scales and sampling intervals. We train our model on data sets obtained from Kepler, TESS, and Zwicky Transient Facility multiband observations of variable stars and transients. We achieve an accuracy of 87% for combined variable and transient events, which is comparable to the performance of previous feature-based models. Our trained model can be utilized directly for other missions, such as the All-sky Automated Survey for Supernovae, without requiring any retraining or fine-tuning. To address known issues with miscalibrated predictive probabilities, we apply conformal prediction to generate robust predictive sets that guarantee true-label coverage with a given probability. Additionally, we incorporate various anomaly detection algorithms to empower our model with the ability to identify out-of-distribution objects. Our framework is implemented in the
Deep-LC
toolkit, which is an open-source Python package hosted on Github (
https://github.com/ckm3/Deep-LC
) and PyPI. Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers for various astronomical objects. We present a novel deep-learning framework for classifying light curves using a weakly supervised object detection model. Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data. This allows for automatic feature extraction from both time and frequency domains, enabling our model to handle data across different scales and sampling intervals. We train our model on data sets obtained from Kepler, TESS, and Zwicky Transient Facility multiband observations of variable stars and transients. We achieve an accuracy of 87% for combined variable and transient events, which is comparable to the performance of previous feature-based models. Our trained model can be utilized directly for other missions, such as the All-sky Automated Survey for Supernovae, without requiring any retraining or fine-tuning. To address known issues with miscalibrated predictive probabilities, we apply conformal prediction to generate robust predictive sets that guarantee true-label coverage with a given probability. Additionally, we incorporate various anomaly detection algorithms to empower our model with the ability to identify out-of-distribution objects. Our framework is implemented in the Deep-LC toolkit, which is an open-source Python package hosted on Github ( http://github.com/ckm3/Deep-LC ) and PyPI. Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers for various astronomical objects. We present a novel deep-learning framework for classifying light curves using a weakly supervised object detection model. Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data. This allows for automatic feature extraction from both time and frequency domains, enabling our model to handle data across different scales and sampling intervals. We train our model on data sets obtained from Kepler, TESS, and Zwicky Transient Facility multiband observations of variable stars and transients. We achieve an accuracy of 87% for combined variable and transient events, which is comparable to the performance of previous feature-based models. Our trained model can be utilized directly for other missions, such as the All-sky Automated Survey for Supernovae, without requiring any retraining or fine-tuning. To address known issues with miscalibrated predictive probabilities, we apply conformal prediction to generate robust predictive sets that guarantee true-label coverage with a given probability. Additionally, we incorporate various anomaly detection algorithms to empower our model with the ability to identify out-of-distribution objects. Our framework is implemented in the Deep-LC toolkit, which is an open-source Python package hosted on Github (https://github.com/ckm3/Deep-LC) and PyPI. |
| Author | Feng, Fabo Cui, Kaiming Armstrong, D. J. |
| Author_xml | – sequence: 1 givenname: Kaiming orcidid: 0000-0003-1535-5587 surname: Cui fullname: Cui, Kaiming organization: University of Warwick Centre for Exoplanets and Habitability, Gibbet Hill Road, Coventry, CV4 7AL, UK – sequence: 2 givenname: D. J. orcidid: 0000-0002-5080-4117 surname: Armstrong fullname: Armstrong, D. J. organization: University of Warwick Centre for Exoplanets and Habitability, Gibbet Hill Road, Coventry, CV4 7AL, UK – sequence: 3 givenname: Fabo orcidid: 0000-0001-6039-0555 surname: Feng fullname: Feng, Fabo organization: Shanghai Jiao Tong University Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai 201210, People's Republic of China |
| BookMark | eNqNkU-P0zAQxSO0SHQX7hwtcSVd_0ni5FgVdolUaQ_A2Rrb465LGgfHpepH4FuTNmgRSCBOI82835vRvOvsqg89ZtlrRpeiLuQtK0WdF6Iqb8FW3Nln2eKpdZUtKK1kTmnRvMiux3FHKZWlaBbZ99Zin7w7-X5LNn77mHJziN-QfPTbHrqRHH16JEDeIQ55hxD7SZhrGNGSB71Dk6ZRmooPPVl12xAn_X5J2nZJVuQee4zQ_Wa87mAcvfMGLsxdhD0eQ_zyMnvupoX46me9yT7fvf-0_pBvHu7b9WqTm4JVKdcWdOnQcV4a2Wjt6oZrYQV1nNbAhEQqecmxxqay3FJnuWCUU80NqyVwcZO1s68NsFND9HuIJxXAq0sjxK2CmLzpUAlaAaO20GiqorSNRiENoLTA6hpkMXmx2evQD3A6Qtc9GTKqzrmocwjqHIKac5mYNzMzxPD1gGNSu3CI51-r6VDJioaVbFLRWWViGMeI7n-Mqz8Q49PlySmC7_4Fvp1BH4Zfx_xV_gN627_c |
| CitedBy_id | crossref_primary_10_3847_1538_4357_ad6869 crossref_primary_10_1093_rasti_rzae050 |
| Cites_doi | 10.1086/676406 10.3847/1538-3881/ac9ab4 10.3847/2041-8213/aa603d 10.3847/1538-4357/ac498f 10.1109/MCG.1987.276986 10.1088/1538-3873/ab26f1 10.1109/MCSE.2007.55 10.3847/0004-6256/151/4/101 10.3847/1538-4357/ac6f5a 10.1007/BF00648343 10.1093/mnras/stw218 10.1088/1538-3873/aaef12 10.3847/1538-4357/ac4399 10.3847/2041-8213/ab9ca4 10.3847/1538-3881/aa9e09 10.1051/0004-6361/201525889 10.1093/mnras/staa2736 10.3847/1538-3881/abd5c1 10.1086/160554 10.1051/0004-6361/202243928 10.17909/t9-nmc8-f686 10.3847/1538-4357/ab418c 10.1051/0004-6361/201833366 10.3847/1538-3881/abe9bc 10.3847/1538-4357/aabfdb 10.1093/mnras/stae068 10.5281/zenodo.11580730 10.1088/0004-6256/141/3/83 10.1093/mnras/stz2362 10.1117/1.JATIS.1.1.014003 10.3847/1538-3881/ab21d6 10.1051/0004-6361/201833304 10.1093/mnras/sty483 10.1093/rasti/rzad046 10.1590/0001-3765202120200628 10.1086/667697 10.1109/SSCI.2017.8280984 10.3847/1538-3881/aabc4f 10.1111/j.1365-2966.2008.12689.x 10.1051/0004-6361/202346077 10.1051/0004-6361/201834473 10.1093/mnras/stz3312 10.1093/mnras/stv2836 10.1093/mnras/staa350 10.3847/1538-3881/ac166a 10.1088/0004-637X/812/1/18 10.1038/s41586-020-2649-2 10.5281/zenodo.11580656 10.3847/1538-4365/aba8ff 10.1117/12.2233418 10.1093/mnras/stab316 10.1088/1538-3873/aaecbe 10.1051/0004-6361/201322068 10.3847/1538-3881/ac3482 10.1038/s41550-017-0321-z 10.1111/j.1365-2966.2011.19301.x 10.1051/0004-6361/201935821 10.5281/zenodo.4603214 10.3847/1538-4365/ac0893 10.1093/mnras/stac1515 10.17909/T9488N 10.1134/S1063772917010085 10.1088/1538-3873/ab1609 10.3847/1538-3881/aac16d 10.1088/1538-3873/aab694 10.3847/1538-4357/ac7c74 10.1109/5.58325 10.1126/science.1185402 10.1088/0004-637X/788/1/48 10.1109/TPAMI.2021.3074313 10.1093/mnras/stac3801 10.5281/zenodo.4279623 10.1093/mnras/stz2432 10.1093/mnras/stab2588 10.1016/j.cviu.2017.05.007 |
| ContentType | Journal Article |
| Copyright | 2024. The Author(s). Published by the American Astronomical Society. 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. The Author(s). Published by the American Astronomical Society. – notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M ADTOC UNPAY DOA |
| DOI | 10.3847/1538-4365/ad62fd |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Physics |
| EISSN | 1538-4365 |
| ExternalDocumentID | oai_doaj_org_article_306a10d4bec645d9be37cae7da188a74 10.3847/1538-4365/ad62fd 10_3847_1538_4365_ad62fd apjsad62fd |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (General Program) grantid: 12473066 – fundername: National Natural Science Foundation of China (Key Program) grantid: 11933004 – fundername: Chinese Academy of Sciences (CAS) grantid: XDB41000000 funderid: https://doi.org/10.13039/501100002367 – fundername: China Postdoctoral Science Foundation (China Postdoctoral Foundation Project) grantid: 2022M712083 funderid: https://doi.org/10.13039/501100002858 |
| GroupedDBID | -~X 123 1JI 23N 4.4 6J9 85S AAFWJ AAGCD AAJIO ABCQX ABHWH ACGFO ACGFS ACHIP ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU E3Z EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT L7B M~E N5L O3W O43 OK1 P2P PJBAE RIN RNP RNS ROL SY9 T37 TSCCA UPT AAYXX AEINN CITATION 7TG 8FD H8D KL. L7M 2WC 6TJ ADIYS ADTOC AI. EJD MVM OHT UNPAY VH1 VOH |
| ID | FETCH-LOGICAL-c416t-bdab5fef225c79bbf892b3d30f208a137e07252e8e96d2d0fd231020b2c187a23 |
| IEDL.DBID | DOA |
| ISSN | 0067-0049 1538-4365 |
| IngestDate | Fri Oct 03 12:51:21 EDT 2025 Sun Sep 07 11:23:12 EDT 2025 Wed Aug 13 06:49:39 EDT 2025 Wed Oct 01 00:29:45 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Wed Sep 25 08:11:24 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c416t-bdab5fef225c79bbf892b3d30f208a137e07252e8e96d2d0fd231020b2c187a23 |
| Notes | AAS50930 Laboratory Astrophysics, Instrumentation, Software, and Data ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6039-0555 0000-0002-5080-4117 0000-0003-1535-5587 |
| OpenAccessLink | https://doaj.org/article/306a10d4bec645d9be37cae7da188a74 |
| PQID | 3107149151 |
| PQPubID | 4562442 |
| PageCount | 24 |
| ParticipantIDs | crossref_primary_10_3847_1538_4365_ad62fd crossref_citationtrail_10_3847_1538_4365_ad62fd unpaywall_primary_10_3847_1538_4365_ad62fd doaj_primary_oai_doaj_org_article_306a10d4bec645d9be37cae7da188a74 proquest_journals_3107149151 iop_journals_10_3847_1538_4365_ad62fd |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Saskatoon |
| PublicationPlace_xml | – name: Saskatoon |
| PublicationTitle | The Astrophysical journal. Supplement series |
| PublicationTitleAbbrev | APJS |
| PublicationTitleAlternate | Astrophys. J. Suppl |
| PublicationYear | 2024 |
| Publisher | The American Astronomical Society IOP Publishing |
| Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
| References | Armstrong (apjsad62fdbib4) 2015; 579 Hon (apjsad62fdbib42) 2018a; 476 Kessler (apjsad62fdbib48) 2019; 131 Pimentel (apjsad62fdbib76) 2022; 165 Samus (apjsad62fdbib81) 2017; 61 García-Jara (apjsad62fdbib34) 2022; 935 MAST Team (apjsad62fdbib60) 2021 Sun (apjsad62fdbib90) 2022 Hendrycks (apjsad62fdbib40) 2016 Martínez-Galarza (apjsad62fdbib59) 2021; 508 Barentsen (apjsad62fdbib12) 2021 Guo (apjsad62fdbib37) 2017 Feng (apjsad62fdbib30) 2024 Gaia Collaboration (apjsad62fdbib32) 2019; 623 Sánchez-Sáez (apjsad62fdbib93) 2020 Mishkin (apjsad62fdbib63) 2017; 161 Lightkurve Collaboration (apjsad62fdbib52) 2018 Paszke (apjsad62fdbib75) 2019 Howell (apjsad62fdbib44) 2014; 126 Shappee (apjsad62fdbib87) 2014; 788 Ouyang (apjsad62fdbib72) 2022 Twicken (apjsad62fdbib97) 2018; 130 Sánchez-Sáez (apjsad62fdbib82) 2021; 161 Claytor (apjsad62fdbib22) 2022; 927 Cui (apjsad62fdbib25) 2022; 163 The Astropy Collaboration (apjsad62fdbib96) 2022; 935 Scargle (apjsad62fdbib84) 1982; 263 STScI (apjsad62fdbib89) 2016 Lomb (apjsad62fdbib56) 1976; 39 Yu (apjsad62fdbib107) 2019; 158 Villar (apjsad62fdbib102) 2019; 884 Angelopoulos (apjsad62fdbib3) 2021 Balona (apjsad62fdbib8) 2022 Niculescu-Mizil (apjsad62fdbib70) 2005 Abdul-Masih (apjsad62fdbib1) 2016; 151 Hon (apjsad62fdbib43) 2018b; 859 OpenAI (apjsad62fdbib71) 2023 Prša (apjsad62fdbib77) 2011; 141 Boyajian (apjsad62fdbib17) 2016; 457 Bresenham (apjsad62fdbib18) 1987; 7 Gaulme (apjsad62fdbib35) 2019; 630 Yang (apjsad62fdbib106) 2018 Yang (apjsad62fdbib105) 2021 Mahabal (apjsad62fdbib57) 2017 Vovk (apjsad62fdbib103) 1999 Zeng (apjsad62fdbib109) 2022 Naul (apjsad62fdbib68) 2018; 2 Sun (apjsad62fdbib91) 2022 Liu (apjsad62fdbib54) 2021; 93 Charnock (apjsad62fdbib20) 2017; 837 Zhang (apjsad62fdbib110) 2021; 44 Shallue (apjsad62fdbib85) 2018; 155 Du (apjsad62fdbib28) 2022 The Astropy Collaboration (apjsad62fdbib94) 2013; 558 Hunter (apjsad62fdbib45) 2007; 9 Sánchez-Sáez (apjsad62fdbib83) 2023; 675 Cui (apjsad62fdbib23) 2024a Cui (apjsad62fdbib24) 2024b Jamal (apjsad62fdbib46) 2020; 250 Audenaert (apjsad62fdbib7) 2021; 162 Bellm (apjsad62fdbib15) 2018; 131 Lin (apjsad62fdbib53) 2017 Gao (apjsad62fdbib33) 2018 Barbara (apjsad62fdbib11) 2022; 514 Szklenár (apjsad62fdbib92) 2020; 897 Valizadegan (apjsad62fdbib98) 2022; 926 Muthukrishna (apjsad62fdbib66) 2019; 131 Naeini (apjsad62fdbib67) 2015 Arnett (apjsad62fdbib6) 2008 Giles (apjsad62fdbib36) 2020; 499 Pan (apjsad62fdbib73) 2024; 528 Allam (apjsad62fdbib2) 2023; 3 Armstrong (apjsad62fdbib5) 2016; 456 The Astropy Collaboration (apjsad62fdbib95) 2018; 156 Malanchev (apjsad62fdbib58) 2021; 502 McInnes (apjsad62fdbib61) 2018 Liang (apjsad62fdbib51) 2018 Smith (apjsad62fdbib88) 2012; 124 Kohonen (apjsad62fdbib50) 1990; 78 Villar (apjsad62fdbib101) 2021; 255 Möller (apjsad62fdbib64) 2020; 491 Liu (apjsad62fdbib55) 2020 Shao (apjsad62fdbib86) 2021 Hinners (apjsad62fdbib41) 2018; 156 Microsoft Corporation (apjsad62fdbib62) 2023 Harris (apjsad62fdbib38) 2020; 585 Jenkins (apjsad62fdbib47) 2016; 9913 Becker (apjsad62fdbib13) 2020; 493 Bellm (apjsad62fdbib14) 2014 Balona (apjsad62fdbib9) 2011; 417 Mowlavi (apjsad62fdbib65) 2018; 618 Borucki (apjsad62fdbib16) 2010; 327 Ren (apjsad62fdbib79) 2015 Baluev (apjsad62fdbib10) 2008; 385 Christy (apjsad62fdbib21) 2023; 519 He (apjsad62fdbib39) 2015 Neubeck (apjsad62fdbib69) 2006 Elor (apjsad62fdbib29) 2022 Pasquet (apjsad62fdbib74) 2019; 627 Kluyver (apjsad62fdbib49) 2016 Pruzhinskaya (apjsad62fdbib78) 2019; 489 Wang (apjsad62fdbib104) 2022 van der Maaten (apjsad62fdbib99) 2008; 9 Ricker (apjsad62fdbib80) 2014; 1 Carrasco-Davis (apjsad62fdbib19) 2019; 131 Donoso-Oliva (apjsad62fdbib27) 2023; 670 Zeiler (apjsad62fdbib108) 2014 Förster (apjsad62fdbib31) 2021; 161 Cui (apjsad62fdbib26) 2019; 489 VanderPlas (apjsad62fdbib100) 2015; 812 |
| References_xml | – volume: 126 start-page: 398 year: 2014 ident: apjsad62fdbib44 publication-title: PASP doi: 10.1086/676406 – volume: 165 start-page: 18 year: 2022 ident: apjsad62fdbib76 publication-title: AJ doi: 10.3847/1538-3881/ac9ab4 – volume: 837 start-page: L28 year: 2017 ident: apjsad62fdbib20 publication-title: ApJL doi: 10.3847/2041-8213/aa603d – volume: 927 start-page: 219 year: 2022 ident: apjsad62fdbib22 publication-title: ApJ doi: 10.3847/1538-4357/ac498f – volume: 7 start-page: 31 year: 1987 ident: apjsad62fdbib18 publication-title: ICGA doi: 10.1109/MCG.1987.276986 – volume: 131 start-page: 094501 year: 2019 ident: apjsad62fdbib48 publication-title: PASP doi: 10.1088/1538-3873/ab26f1 – volume: 9 start-page: 90 year: 2007 ident: apjsad62fdbib45 publication-title: CSE doi: 10.1109/MCSE.2007.55 – volume: 151 start-page: 101 year: 2016 ident: apjsad62fdbib1 publication-title: AJ doi: 10.3847/0004-6256/151/4/101 – start-page: 691 year: 2022 ident: apjsad62fdbib91 – volume: 935 start-page: 23 year: 2022 ident: apjsad62fdbib34 publication-title: ApJ doi: 10.3847/1538-4357/ac6f5a – volume: 39 start-page: 447 year: 1976 ident: apjsad62fdbib56 publication-title: Ap&SS doi: 10.1007/BF00648343 – start-page: 87 year: 2016 ident: apjsad62fdbib49 – year: 2022 ident: apjsad62fdbib109 – volume: 457 start-page: 3988 year: 2016 ident: apjsad62fdbib17 publication-title: MNRAS doi: 10.1093/mnras/stw218 – year: 2024 ident: apjsad62fdbib30 – volume: 131 start-page: 108006 year: 2019 ident: apjsad62fdbib19 publication-title: PASP doi: 10.1088/1538-3873/aaef12 – year: 2018 ident: apjsad62fdbib61 – volume: 926 start-page: 120 year: 2022 ident: apjsad62fdbib98 publication-title: ApJ doi: 10.3847/1538-4357/ac4399 – volume: 897 start-page: L12 year: 2020 ident: apjsad62fdbib92 publication-title: ApJL doi: 10.3847/2041-8213/ab9ca4 – volume: 155 start-page: 94 year: 2018 ident: apjsad62fdbib85 publication-title: AJ doi: 10.3847/1538-3881/aa9e09 – volume: 579 start-page: A19 year: 2015 ident: apjsad62fdbib4 publication-title: A&A doi: 10.1051/0004-6361/201525889 – start-page: 818 year: 2014 ident: apjsad62fdbib108 – year: 2021 ident: apjsad62fdbib86 – volume: 499 start-page: 524 year: 2020 ident: apjsad62fdbib36 publication-title: MNRAS doi: 10.1093/mnras/staa2736 – year: 2019 ident: apjsad62fdbib75 – volume: 161 start-page: 141 year: 2021 ident: apjsad62fdbib82 publication-title: AJ doi: 10.3847/1538-3881/abd5c1 – volume: 263 start-page: 835 year: 1982 ident: apjsad62fdbib84 publication-title: ApJ doi: 10.1086/160554 – volume: 670 start-page: A54 year: 2023 ident: apjsad62fdbib27 publication-title: A&A doi: 10.1051/0004-6361/202243928 – year: 2021 ident: apjsad62fdbib60 article-title: TESS Light Curves—All Sectors doi: 10.17909/t9-nmc8-f686 – year: 2021 ident: apjsad62fdbib105 – volume: 9 start-page: 2579 year: 2008 ident: apjsad62fdbib99 publication-title: JMLR – volume: 884 start-page: 83 year: 2019 ident: apjsad62fdbib102 publication-title: ApJ doi: 10.3847/1538-4357/ab418c – volume: 618 start-page: A58 year: 2018 ident: apjsad62fdbib65 publication-title: A&A doi: 10.1051/0004-6361/201833366 – start-page: 237 year: 2008 ident: apjsad62fdbib6 – volume: 161 start-page: 242 year: 2021 ident: apjsad62fdbib31 publication-title: AJ doi: 10.3847/1538-3881/abe9bc – volume: 859 start-page: 64 year: 2018b ident: apjsad62fdbib43 publication-title: ApJ doi: 10.3847/1538-4357/aabfdb – volume: 528 start-page: 5890 year: 2024 ident: apjsad62fdbib73 publication-title: MNRAS doi: 10.1093/mnras/stae068 – year: 2024b ident: apjsad62fdbib24 doi: 10.5281/zenodo.11580730 – year: 2022 ident: apjsad62fdbib72 – volume: 141 start-page: 83 year: 2011 ident: apjsad62fdbib77 publication-title: AJ doi: 10.1088/0004-6256/141/3/83 – volume: 489 start-page: 3591 year: 2019 ident: apjsad62fdbib78 publication-title: MNRAS doi: 10.1093/mnras/stz2362 – volume: 1 start-page: 014003 year: 2014 ident: apjsad62fdbib80 publication-title: JATIS doi: 10.1117/1.JATIS.1.1.014003 – volume: 158 start-page: 25 year: 2019 ident: apjsad62fdbib107 publication-title: AJ doi: 10.3847/1538-3881/ab21d6 – volume: 623 start-page: A110 year: 2019 ident: apjsad62fdbib32 publication-title: A&A doi: 10.1051/0004-6361/201833304 – volume: 476 start-page: 3233 year: 2018a ident: apjsad62fdbib42 publication-title: MNRAS doi: 10.1093/mnras/sty483 – volume: 3 start-page: 209 year: 2023 ident: apjsad62fdbib2 publication-title: RASTI doi: 10.1093/rasti/rzad046 – volume: 93 start-page: 20200628 year: 2021 ident: apjsad62fdbib54 publication-title: AnABC doi: 10.1590/0001-3765202120200628 – volume: 124 start-page: 1000 year: 2012 ident: apjsad62fdbib88 publication-title: PASP doi: 10.1086/667697 – year: 2022 ident: apjsad62fdbib8 – year: 2017 ident: apjsad62fdbib57 doi: 10.1109/SSCI.2017.8280984 – volume: 156 start-page: 123 year: 2018 ident: apjsad62fdbib95 publication-title: AJ doi: 10.3847/1538-3881/aabc4f – volume: 385 start-page: 1279 year: 2008 ident: apjsad62fdbib10 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.12689.x – year: 2023 ident: apjsad62fdbib71 – start-page: 27 year: 2014 ident: apjsad62fdbib14 – volume: 675 start-page: A195 year: 2023 ident: apjsad62fdbib83 publication-title: A&A doi: 10.1051/0004-6361/202346077 – year: 2022 ident: apjsad62fdbib28 – volume: 627 start-page: A21 year: 2019 ident: apjsad62fdbib74 publication-title: A&A doi: 10.1051/0004-6361/201834473 – year: 2020 ident: apjsad62fdbib55 – start-page: 936 year: 2017 ident: apjsad62fdbib53 – volume: 491 start-page: 4277 year: 2020 ident: apjsad62fdbib64 publication-title: MNRAS doi: 10.1093/mnras/stz3312 – start-page: 4911 year: 2022 ident: apjsad62fdbib104 – volume: 456 start-page: 2260 year: 2016 ident: apjsad62fdbib5 publication-title: MNRAS doi: 10.1093/mnras/stv2836 – volume: 493 start-page: 2981 year: 2020 ident: apjsad62fdbib13 publication-title: MNRAS doi: 10.1093/mnras/staa350 – start-page: 1321 year: 2017 ident: apjsad62fdbib37 – volume: 162 start-page: 209 year: 2021 ident: apjsad62fdbib7 publication-title: AJ doi: 10.3847/1538-3881/ac166a – year: 2022 ident: apjsad62fdbib90 – volume: 812 start-page: 18 year: 2015 ident: apjsad62fdbib100 publication-title: ApJ doi: 10.1088/0004-637X/812/1/18 – volume: 585 start-page: 357 year: 2020 ident: apjsad62fdbib38 publication-title: Natur doi: 10.1038/s41586-020-2649-2 – year: 2024a ident: apjsad62fdbib23 doi: 10.5281/zenodo.11580656 – year: 2018 ident: apjsad62fdbib51 – year: 2018 ident: apjsad62fdbib52 – start-page: 6926 year: 2018 ident: apjsad62fdbib33 – start-page: 438 year: 2018 ident: apjsad62fdbib106 – year: 2016 ident: apjsad62fdbib40 – volume: 250 start-page: 30 year: 2020 ident: apjsad62fdbib46 publication-title: ApJS doi: 10.3847/1538-4365/aba8ff – volume: 9913 start-page: 99133E year: 2016 ident: apjsad62fdbib47 publication-title: Proc. SPIE doi: 10.1117/12.2233418 – year: 2021 ident: apjsad62fdbib3 – volume: 502 start-page: 5147 year: 2021 ident: apjsad62fdbib58 publication-title: MNRAS doi: 10.1093/mnras/stab316 – volume: 131 start-page: 018002 year: 2018 ident: apjsad62fdbib15 publication-title: PASP doi: 10.1088/1538-3873/aaecbe – start-page: 625 year: 2005 ident: apjsad62fdbib70 – volume: 558 start-page: A33 year: 2013 ident: apjsad62fdbib94 publication-title: A&A doi: 10.1051/0004-6361/201322068 – volume: 163 start-page: 23 year: 2022 ident: apjsad62fdbib25 publication-title: AJ doi: 10.3847/1538-3881/ac3482 – volume: 2 start-page: 151 year: 2018 ident: apjsad62fdbib68 publication-title: NatAs doi: 10.1038/s41550-017-0321-z – volume: 417 start-page: 591 year: 2011 ident: apjsad62fdbib9 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19301.x – start-page: 770 year: 2015 ident: apjsad62fdbib39 – year: 2015 ident: apjsad62fdbib79 – volume: 630 start-page: A106 year: 2019 ident: apjsad62fdbib35 publication-title: A&A doi: 10.1051/0004-6361/201935821 – year: 2021 ident: apjsad62fdbib12 doi: 10.5281/zenodo.4603214 – start-page: 850 year: 2006 ident: apjsad62fdbib69 – volume: 255 start-page: 24 year: 2021 ident: apjsad62fdbib101 publication-title: ApJS doi: 10.3847/1538-4365/ac0893 – volume: 514 start-page: 2793 year: 2022 ident: apjsad62fdbib11 publication-title: MNRAS doi: 10.1093/mnras/stac1515 – year: 2016 ident: apjsad62fdbib89 doi: 10.17909/T9488N – volume: 61 start-page: 80 year: 2017 ident: apjsad62fdbib81 publication-title: ARep doi: 10.1134/S1063772917010085 – volume: 131 start-page: 118002 year: 2019 ident: apjsad62fdbib66 publication-title: PASP doi: 10.1088/1538-3873/ab1609 – volume: 156 start-page: 7 year: 2018 ident: apjsad62fdbib41 publication-title: AJ doi: 10.3847/1538-3881/aac16d – volume: 130 start-page: 064502 year: 2018 ident: apjsad62fdbib97 publication-title: PASP doi: 10.1088/1538-3873/aab694 – volume: 935 start-page: 167 year: 2022 ident: apjsad62fdbib96 publication-title: ApJ doi: 10.3847/1538-4357/ac7c74 – volume: 78 start-page: 1464 year: 1990 ident: apjsad62fdbib50 publication-title: IEEEP doi: 10.1109/5.58325 – volume: 327 start-page: 977 year: 2010 ident: apjsad62fdbib16 publication-title: Sci doi: 10.1126/science.1185402 – year: 2023 ident: apjsad62fdbib62 – start-page: 2901 year: 2015 ident: apjsad62fdbib67 – year: 2022 ident: apjsad62fdbib29 – volume: 788 start-page: 48 year: 2014 ident: apjsad62fdbib87 publication-title: ApJ doi: 10.1088/0004-637X/788/1/48 – volume: 44 start-page: 5866 year: 2021 ident: apjsad62fdbib110 publication-title: ITPAM doi: 10.1109/TPAMI.2021.3074313 – volume: 519 start-page: 5271 year: 2023 ident: apjsad62fdbib21 publication-title: MNRAS doi: 10.1093/mnras/stac3801 – year: 2020 ident: apjsad62fdbib93 doi: 10.5281/zenodo.4279623 – volume: 489 start-page: 5513 year: 2019 ident: apjsad62fdbib26 publication-title: MNRAS doi: 10.1093/mnras/stz2432 – start-page: 444 year: 1999 ident: apjsad62fdbib103 – volume: 508 start-page: 5734 year: 2021 ident: apjsad62fdbib59 publication-title: MNRAS doi: 10.1093/mnras/stab2588 – volume: 161 start-page: 11 year: 2017 ident: apjsad62fdbib63 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2017.05.007 |
| SSID | ssj0007539 |
| Score | 2.501717 |
| Snippet | Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object... |
| SourceID | doaj unpaywall proquest crossref iop |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 29 |
| SubjectTerms | Algorithms Anomalies Astronomy data analysis Celestial bodies Classification Convolutional neural networks Deep learning Feature extraction Light curve Light curve classification Machine learning Object recognition Power spectra Predictions Sky surveys (astronomy) Space missions Transient detection Transients (astronomy) Variable stars |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFD6sK6Ivoquyo6vkQQWFzrRJm6T4NF6GXRFX0MV9K7kOwmxnmIuyP8F_7UnSqQ7I6lto0ybkXPLl5OQLwFMqjauMF5mttMIFisuzmnEUiM-ld5pL7iLb50d-fFa-P6_O9-BVfxZmvuhc_xCLiSg4DWGwb4a-dBRttGS8GinLqbfX4HrY3QrE-afsa--GEYcn7IueIODgtEf51z_szEmRuh9nGmx-B3Xe3LQLdflDzWZ_TECTO3C7Q45knPp5F_ZcewCH41WIZc8vLslzEsspVLE6gBufUuke_EynceOJJvIhMoeYzfK7I5-_TQN9MgnBWKLIW-cWWXeNxDQL85slpzoEavDVOuZstWQ8m86XWP9iSE5OhmRMOuLqnR_HqzZDElKUO5lsM8Duw9nk3Zc3x1l3BUNmEKmtM22VrrzzaPVG1Fp7WVPNLMs9zaUqmHC5oBV10tXcUpt7G_AizTU1hRSKsgew385bdwikoFRzWyvOrSqtMFpRX9bWSqUclbwcwGgrhMZ0_OThmoxZg-uUILYmiK0JYmuS2Abwov9ikbg5rqj7Osi1rxdYteMD1LCm07AGl0-qyG2Jes3LytbaMWGUE1YVUiqBXXyGWtF0Vr66orGjrd78rozjInA5ighrAC97Xfpnxx_-Z5uP4BZFvJXyDI9gf73cuMeIl9b6SbSLX-gPDtM priority: 102 providerName: IOP Publishing – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagE4IXLoNphYH8AEggpU2cxHYew6XaEBqToNJ4inytJrq0alPQ-Af8a44vLStCA96i5MRxjs-xPx8ff0boKeHKlMqyRJdSwATFpEmVU2gQm3JrJOXUeLbPY3o4Lt6dlqcx3uH2wlxav8-h4xx6hyxyWg6FpsTq62iHloC6e2hnfHxSf_YdLfh6RLob8bAi-ccitkYgT9QP48rZbL6FMW-u2rm4-Cam00vDzehO4D5aepZCl2XyZbDq5EB9_43D8V_-5C66HTEnroOR3EPXTLuL9uuli4LPzi_wc-yvQ5BjuYtunISr--hH2Mfr90Lh955zRK0WXw3-eDZxxMvYhXGxwG-MmSfxAIpJ4kZGjT9IF-KBR53P9mpxPZ3MFiB_PsBHRwNc40h5vVWwP6TTpS95i8Gjde7YAzQevf30-jCJhzckCjBel0gtZGmNhf5CsUpKyysic52nlqRcZDkzKSMlMdxUVBOdWu2QJkklURlnguR7qNfOWrOPcEaIpLoSlGpRaKakILaotOZCGMJp0UfDdYM2KjKbuwM2pg3McJzuG6f7xum-CbrvoxebN-aB1eMK2VfORjZyjo_b34DGbaJ7NzDxElmqC_AIWpS6kiZnShimRca5YFDFZ2BhTewflld87GBtg7-EQS8MJrKAzfro5cYu_1rxh_8j_AjdIgDXQpriAep1i5V5DHCrk0-ip_0ExY8h0w priority: 102 providerName: Unpaywall |
| Title | Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework |
| URI | https://iopscience.iop.org/article/10.3847/1538-4365/ad62fd https://www.proquest.com/docview/3107149151 https://doi.org/10.3847/1538-4365/ad62fd https://doaj.org/article/306a10d4bec645d9be37cae7da188a74 |
| UnpaywallVersion | publishedVersion |
| Volume | 274 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1538-4365 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007539 issn: 1538-4365 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1538-4365 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007539 issn: 1538-4365 databaseCode: O3W dateStart: 19961201 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1538-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007539 issn: 1538-4365 databaseCode: IOP dateStart: 19961101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1538-4365 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007539 issn: 1538-4365 databaseCode: M~E dateStart: 19540101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQEIILYgO0jjH5AEggZU3sxHaOYaNaEVorQcU4Rf6sJnVp1Y9N-xP4r3m20269bBcukZW8xJbfe_bPzvPvIfSBCG0L7XhiCiVhgWLTpKQMFOJS4axigtnA9nnOzkb594vi4l6qLx8TFumBY8d1AdLKLDU51MXywpTKUq6l5UZmQkgemEBTUa4XU-0YDCA8Al8YBjwIjj8oKQzF3eDiOWVFVxpGnNmakAJvP0wzl9PZFuR8vmpm8vZGTib3Zp_eK_SyhY24is3dRU9ss4f2q4XfyJ5e3eJPOJTjPsViDz0bxtJr9DcexQ3HmfCPQBuiV_Nri39ejj13MvY7sVjiU2tnSZtDYpz4yc3ggfK7NPBoGQK2GlxNxtM5yF8d437_GFe4Za3e-nDIs-kjkILScW8d_vUGjXrffp2cJW3-hUQDTFsmykhVOOvA5TUvlXKiJIoamjrocZlRblNOCmKFLZkhJnXGg0WSKqIzwSWhb9FOM23sPsIZIYqZUjJmZG64VpK4vDRGSGmJYHkHdddKqHVLTu5zZExqWKR4tdVebbVXWx3V1kGfN2_MIjHHA7JfvV43cp5SO9wAQ6tbQ6sfM7QO-ghWUbcuvnigssO13dwJQ79wWIsCvOqgLxtberThB_-j4e_QCwJILEYgHqKd5Xxl3wOSWqqj4DRw7Q-GcB3Q30fo6eh8WP35B9YyHS8 |
| linkProvider | Directory of Open Access Journals |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgiMsLlwFaYYAfAAmkpImT2M5jYVQrTFslmLS34Gs1rUujNgWNf8C_5thOC0VoIPFmJSeOc3x8_Nk5_g5CzwlXplCWRbqQAhYoJonKjEKH2IRbIymnxrN9HtL94_z9SXHS5Tn1Z2FmTef6YygGouCgQje-M_ClfT9G84wWfaEpsbrfaHsVXfM8Je4E39F47YoBiwf8C97AYeHwn_KPtWzMS56-H2YbaMIG8ry5rBtx8VVMp79MQsM76POq-SH25CxetjJW335jdvyP77uLbncAFQ-C-D10xdTbaGewcFvms_ML_BL7ctgRWWyj6-NQuo--h0O__uAUPvAEJWo5_2Lwx9OJY2nGbs8XC7xnTBN12SomkZtGNT6Sbj8IbrU-NKzGg-lkNgf58xiPRjEe4I4fe6Nin9HTxTp588LDVaDZA3Q8fPfp7X7UZXqIFADCNpJayMIaC85FsVJKy0siM50lliRcpBkzCSMFMdyUVBOdWO1gKUkkUSlngmQP0VY9q80OwikhkupSUKpFrpmSgti81JoLYQineQ_1V_1cqY4G3WXjmFawHHL6r5z-K6f_Kui_h16tn2gCBcglsm-c6azlHHm3vwAdXXUdXcEqTaSJzmH40LzQpTQZU8IwLVLOBYMmvgDbqDpnsrjkZbsr0_wpDHphsOoFINdDr9fm-teGP_rHdz5DN8Z7w-pgdPjhMbpFAOGFyMZdtNXOl-YJILRWPvWj8AdT0zOm |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagE4IXLoNphYH8AEggpU2cxHYew6XaEBqToNJ4inytJrq0alPQ-Af8a44vLStCA96i5MRxjs-xPx8ff0boKeHKlMqyRJdSwATFpEmVU2gQm3JrJOXUeLbPY3o4Lt6dlqcx3uH2wlxav8-h4xx6hyxyWg6FpsTq62iHloC6e2hnfHxSf_YdLfh6RLob8bAi-ccitkYgT9QP48rZbL6FMW-u2rm4-Cam00vDzehO4D5aepZCl2XyZbDq5EB9_43D8V_-5C66HTEnroOR3EPXTLuL9uuli4LPzi_wc-yvQ5BjuYtunISr--hH2Mfr90Lh955zRK0WXw3-eDZxxMvYhXGxwG-MmSfxAIpJ4kZGjT9IF-KBR53P9mpxPZ3MFiB_PsBHRwNc40h5vVWwP6TTpS95i8Gjde7YAzQevf30-jCJhzckCjBel0gtZGmNhf5CsUpKyysic52nlqRcZDkzKSMlMdxUVBOdWu2QJkklURlnguR7qNfOWrOPcEaIpLoSlGpRaKakILaotOZCGMJp0UfDdYM2KjKbuwM2pg3McJzuG6f7xum-CbrvoxebN-aB1eMK2VfORjZyjo_b34DGbaJ7NzDxElmqC_AIWpS6kiZnShimRca5YFDFZ2BhTewflld87GBtg7-EQS8MJrKAzfro5cYu_1rxh_8j_AjdIgDXQpriAep1i5V5DHCrk0-ip_0ExY8h0w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Light-curve+Signals+with+a+Deep-learning-based+Object+Detection+Algorithm.+II.+A+General+Light-curve+Classification+Framework&rft.jtitle=The+Astrophysical+journal.+Supplement+series&rft.au=Kaiming+Cui&rft.au=D.+J.+Armstrong&rft.au=Fabo+Feng&rft.date=2024-10-01&rft.pub=IOP+Publishing&rft.issn=0067-0049&rft.volume=274&rft.issue=2&rft.spage=29&rft_id=info:doi/10.3847%2F1538-4365%2Fad62fd&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_306a10d4bec645d9be37cae7da188a74 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0067-0049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0067-0049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0067-0049&client=summon |