Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework

Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers fo...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal. Supplement series Vol. 274; no. 2; pp. 29 - 52
Main Authors Cui, Kaiming, Armstrong, D. J., Feng, Fabo
Format Journal Article
LanguageEnglish
Published Saskatoon The American Astronomical Society 01.10.2024
IOP Publishing
Subjects
Online AccessGet full text
ISSN0067-0049
1538-4365
1538-4365
DOI10.3847/1538-4365/ad62fd

Cover

Abstract Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers for various astronomical objects. We present a novel deep-learning framework for classifying light curves using a weakly supervised object detection model. Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data. This allows for automatic feature extraction from both time and frequency domains, enabling our model to handle data across different scales and sampling intervals. We train our model on data sets obtained from Kepler, TESS, and Zwicky Transient Facility multiband observations of variable stars and transients. We achieve an accuracy of 87% for combined variable and transient events, which is comparable to the performance of previous feature-based models. Our trained model can be utilized directly for other missions, such as the All-sky Automated Survey for Supernovae, without requiring any retraining or fine-tuning. To address known issues with miscalibrated predictive probabilities, we apply conformal prediction to generate robust predictive sets that guarantee true-label coverage with a given probability. Additionally, we incorporate various anomaly detection algorithms to empower our model with the ability to identify out-of-distribution objects. Our framework is implemented in the Deep-LC toolkit, which is an open-source Python package hosted on Github ( https://github.com/ckm3/Deep-LC ) and PyPI.
AbstractList Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers for various astronomical objects. We present a novel deep-learning framework for classifying light curves using a weakly supervised object detection model. Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data. This allows for automatic feature extraction from both time and frequency domains, enabling our model to handle data across different scales and sampling intervals. We train our model on data sets obtained from Kepler, TESS, and Zwicky Transient Facility multiband observations of variable stars and transients. We achieve an accuracy of 87% for combined variable and transient events, which is comparable to the performance of previous feature-based models. Our trained model can be utilized directly for other missions, such as the All-sky Automated Survey for Supernovae, without requiring any retraining or fine-tuning. To address known issues with miscalibrated predictive probabilities, we apply conformal prediction to generate robust predictive sets that guarantee true-label coverage with a given probability. Additionally, we incorporate various anomaly detection algorithms to empower our model with the ability to identify out-of-distribution objects. Our framework is implemented in the Deep-LC toolkit, which is an open-source Python package hosted on Github ( https://github.com/ckm3/Deep-LC ) and PyPI.
Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers for various astronomical objects. We present a novel deep-learning framework for classifying light curves using a weakly supervised object detection model. Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data. This allows for automatic feature extraction from both time and frequency domains, enabling our model to handle data across different scales and sampling intervals. We train our model on data sets obtained from Kepler, TESS, and Zwicky Transient Facility multiband observations of variable stars and transients. We achieve an accuracy of 87% for combined variable and transient events, which is comparable to the performance of previous feature-based models. Our trained model can be utilized directly for other missions, such as the All-sky Automated Survey for Supernovae, without requiring any retraining or fine-tuning. To address known issues with miscalibrated predictive probabilities, we apply conformal prediction to generate robust predictive sets that guarantee true-label coverage with a given probability. Additionally, we incorporate various anomaly detection algorithms to empower our model with the ability to identify out-of-distribution objects. Our framework is implemented in the Deep-LC toolkit, which is an open-source Python package hosted on Github ( http://github.com/ckm3/Deep-LC ) and PyPI.
Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers for various astronomical objects. We present a novel deep-learning framework for classifying light curves using a weakly supervised object detection model. Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data. This allows for automatic feature extraction from both time and frequency domains, enabling our model to handle data across different scales and sampling intervals. We train our model on data sets obtained from Kepler, TESS, and Zwicky Transient Facility multiband observations of variable stars and transients. We achieve an accuracy of 87% for combined variable and transient events, which is comparable to the performance of previous feature-based models. Our trained model can be utilized directly for other missions, such as the All-sky Automated Survey for Supernovae, without requiring any retraining or fine-tuning. To address known issues with miscalibrated predictive probabilities, we apply conformal prediction to generate robust predictive sets that guarantee true-label coverage with a given probability. Additionally, we incorporate various anomaly detection algorithms to empower our model with the ability to identify out-of-distribution objects. Our framework is implemented in the Deep-LC toolkit, which is an open-source Python package hosted on Github (https://github.com/ckm3/Deep-LC) and PyPI.
Author Feng, Fabo
Cui, Kaiming
Armstrong, D. J.
Author_xml – sequence: 1
  givenname: Kaiming
  orcidid: 0000-0003-1535-5587
  surname: Cui
  fullname: Cui, Kaiming
  organization: University of Warwick Centre for Exoplanets and Habitability, Gibbet Hill Road, Coventry, CV4 7AL, UK
– sequence: 2
  givenname: D. J.
  orcidid: 0000-0002-5080-4117
  surname: Armstrong
  fullname: Armstrong, D. J.
  organization: University of Warwick Centre for Exoplanets and Habitability, Gibbet Hill Road, Coventry, CV4 7AL, UK
– sequence: 3
  givenname: Fabo
  orcidid: 0000-0001-6039-0555
  surname: Feng
  fullname: Feng, Fabo
  organization: Shanghai Jiao Tong University Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai 201210, People's Republic of China
BookMark eNqNkU-P0zAQxSO0SHQX7hwtcSVd_0ni5FgVdolUaQ_A2Rrb465LGgfHpepH4FuTNmgRSCBOI82835vRvOvsqg89ZtlrRpeiLuQtK0WdF6Iqb8FW3Nln2eKpdZUtKK1kTmnRvMiux3FHKZWlaBbZ99Zin7w7-X5LNn77mHJziN-QfPTbHrqRHH16JEDeIQ55hxD7SZhrGNGSB71Dk6ZRmooPPVl12xAn_X5J2nZJVuQee4zQ_Wa87mAcvfMGLsxdhD0eQ_zyMnvupoX46me9yT7fvf-0_pBvHu7b9WqTm4JVKdcWdOnQcV4a2Wjt6oZrYQV1nNbAhEQqecmxxqay3FJnuWCUU80NqyVwcZO1s68NsFND9HuIJxXAq0sjxK2CmLzpUAlaAaO20GiqorSNRiENoLTA6hpkMXmx2evQD3A6Qtc9GTKqzrmocwjqHIKac5mYNzMzxPD1gGNSu3CI51-r6VDJioaVbFLRWWViGMeI7n-Mqz8Q49PlySmC7_4Fvp1BH4Zfx_xV_gN627_c
CitedBy_id crossref_primary_10_3847_1538_4357_ad6869
crossref_primary_10_1093_rasti_rzae050
Cites_doi 10.1086/676406
10.3847/1538-3881/ac9ab4
10.3847/2041-8213/aa603d
10.3847/1538-4357/ac498f
10.1109/MCG.1987.276986
10.1088/1538-3873/ab26f1
10.1109/MCSE.2007.55
10.3847/0004-6256/151/4/101
10.3847/1538-4357/ac6f5a
10.1007/BF00648343
10.1093/mnras/stw218
10.1088/1538-3873/aaef12
10.3847/1538-4357/ac4399
10.3847/2041-8213/ab9ca4
10.3847/1538-3881/aa9e09
10.1051/0004-6361/201525889
10.1093/mnras/staa2736
10.3847/1538-3881/abd5c1
10.1086/160554
10.1051/0004-6361/202243928
10.17909/t9-nmc8-f686
10.3847/1538-4357/ab418c
10.1051/0004-6361/201833366
10.3847/1538-3881/abe9bc
10.3847/1538-4357/aabfdb
10.1093/mnras/stae068
10.5281/zenodo.11580730
10.1088/0004-6256/141/3/83
10.1093/mnras/stz2362
10.1117/1.JATIS.1.1.014003
10.3847/1538-3881/ab21d6
10.1051/0004-6361/201833304
10.1093/mnras/sty483
10.1093/rasti/rzad046
10.1590/0001-3765202120200628
10.1086/667697
10.1109/SSCI.2017.8280984
10.3847/1538-3881/aabc4f
10.1111/j.1365-2966.2008.12689.x
10.1051/0004-6361/202346077
10.1051/0004-6361/201834473
10.1093/mnras/stz3312
10.1093/mnras/stv2836
10.1093/mnras/staa350
10.3847/1538-3881/ac166a
10.1088/0004-637X/812/1/18
10.1038/s41586-020-2649-2
10.5281/zenodo.11580656
10.3847/1538-4365/aba8ff
10.1117/12.2233418
10.1093/mnras/stab316
10.1088/1538-3873/aaecbe
10.1051/0004-6361/201322068
10.3847/1538-3881/ac3482
10.1038/s41550-017-0321-z
10.1111/j.1365-2966.2011.19301.x
10.1051/0004-6361/201935821
10.5281/zenodo.4603214
10.3847/1538-4365/ac0893
10.1093/mnras/stac1515
10.17909/T9488N
10.1134/S1063772917010085
10.1088/1538-3873/ab1609
10.3847/1538-3881/aac16d
10.1088/1538-3873/aab694
10.3847/1538-4357/ac7c74
10.1109/5.58325
10.1126/science.1185402
10.1088/0004-637X/788/1/48
10.1109/TPAMI.2021.3074313
10.1093/mnras/stac3801
10.5281/zenodo.4279623
10.1093/mnras/stz2432
10.1093/mnras/stab2588
10.1016/j.cviu.2017.05.007
ContentType Journal Article
Copyright 2024. The Author(s). Published by the American Astronomical Society.
2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s). Published by the American Astronomical Society.
– notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
ADTOC
UNPAY
DOA
DOI 10.3847/1538-4365/ad62fd
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4365
ExternalDocumentID oai_doaj_org_article_306a10d4bec645d9be37cae7da188a74
10.3847/1538-4365/ad62fd
10_3847_1538_4365_ad62fd
apjsad62fd
GrantInformation_xml – fundername: National Natural Science Foundation of China (General Program)
  grantid: 12473066
– fundername: National Natural Science Foundation of China (Key Program)
  grantid: 11933004
– fundername: Chinese Academy of Sciences (CAS)
  grantid: XDB41000000
  funderid: https://doi.org/10.13039/501100002367
– fundername: China Postdoctoral Science Foundation (China Postdoctoral Foundation Project)
  grantid: 2022M712083
  funderid: https://doi.org/10.13039/501100002858
GroupedDBID -~X
123
1JI
23N
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABCQX
ABHWH
ACGFO
ACGFS
ACHIP
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
E3Z
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
L7B
M~E
N5L
O3W
O43
OK1
P2P
PJBAE
RIN
RNP
RNS
ROL
SY9
T37
TSCCA
UPT
AAYXX
AEINN
CITATION
7TG
8FD
H8D
KL.
L7M
2WC
6TJ
ADIYS
ADTOC
AI.
EJD
MVM
OHT
UNPAY
VH1
VOH
ID FETCH-LOGICAL-c416t-bdab5fef225c79bbf892b3d30f208a137e07252e8e96d2d0fd231020b2c187a23
IEDL.DBID DOA
ISSN 0067-0049
1538-4365
IngestDate Fri Oct 03 12:51:21 EDT 2025
Sun Sep 07 11:23:12 EDT 2025
Wed Aug 13 06:49:39 EDT 2025
Wed Oct 01 00:29:45 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Wed Sep 25 08:11:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-bdab5fef225c79bbf892b3d30f208a137e07252e8e96d2d0fd231020b2c187a23
Notes AAS50930
Laboratory Astrophysics, Instrumentation, Software, and Data
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6039-0555
0000-0002-5080-4117
0000-0003-1535-5587
OpenAccessLink https://doaj.org/article/306a10d4bec645d9be37cae7da188a74
PQID 3107149151
PQPubID 4562442
PageCount 24
ParticipantIDs crossref_primary_10_3847_1538_4365_ad62fd
crossref_citationtrail_10_3847_1538_4365_ad62fd
unpaywall_primary_10_3847_1538_4365_ad62fd
doaj_primary_oai_doaj_org_article_306a10d4bec645d9be37cae7da188a74
proquest_journals_3107149151
iop_journals_10_3847_1538_4365_ad62fd
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Saskatoon
PublicationPlace_xml – name: Saskatoon
PublicationTitle The Astrophysical journal. Supplement series
PublicationTitleAbbrev APJS
PublicationTitleAlternate Astrophys. J. Suppl
PublicationYear 2024
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Armstrong (apjsad62fdbib4) 2015; 579
Hon (apjsad62fdbib42) 2018a; 476
Kessler (apjsad62fdbib48) 2019; 131
Pimentel (apjsad62fdbib76) 2022; 165
Samus (apjsad62fdbib81) 2017; 61
García-Jara (apjsad62fdbib34) 2022; 935
MAST Team (apjsad62fdbib60) 2021
Sun (apjsad62fdbib90) 2022
Hendrycks (apjsad62fdbib40) 2016
Martínez-Galarza (apjsad62fdbib59) 2021; 508
Barentsen (apjsad62fdbib12) 2021
Guo (apjsad62fdbib37) 2017
Feng (apjsad62fdbib30) 2024
Gaia Collaboration (apjsad62fdbib32) 2019; 623
Sánchez-Sáez (apjsad62fdbib93) 2020
Mishkin (apjsad62fdbib63) 2017; 161
Lightkurve Collaboration (apjsad62fdbib52) 2018
Paszke (apjsad62fdbib75) 2019
Howell (apjsad62fdbib44) 2014; 126
Shappee (apjsad62fdbib87) 2014; 788
Ouyang (apjsad62fdbib72) 2022
Twicken (apjsad62fdbib97) 2018; 130
Sánchez-Sáez (apjsad62fdbib82) 2021; 161
Claytor (apjsad62fdbib22) 2022; 927
Cui (apjsad62fdbib25) 2022; 163
The Astropy Collaboration (apjsad62fdbib96) 2022; 935
Scargle (apjsad62fdbib84) 1982; 263
STScI (apjsad62fdbib89) 2016
Lomb (apjsad62fdbib56) 1976; 39
Yu (apjsad62fdbib107) 2019; 158
Villar (apjsad62fdbib102) 2019; 884
Angelopoulos (apjsad62fdbib3) 2021
Balona (apjsad62fdbib8) 2022
Niculescu-Mizil (apjsad62fdbib70) 2005
Abdul-Masih (apjsad62fdbib1) 2016; 151
Hon (apjsad62fdbib43) 2018b; 859
OpenAI (apjsad62fdbib71) 2023
Prša (apjsad62fdbib77) 2011; 141
Boyajian (apjsad62fdbib17) 2016; 457
Bresenham (apjsad62fdbib18) 1987; 7
Gaulme (apjsad62fdbib35) 2019; 630
Yang (apjsad62fdbib106) 2018
Yang (apjsad62fdbib105) 2021
Mahabal (apjsad62fdbib57) 2017
Vovk (apjsad62fdbib103) 1999
Zeng (apjsad62fdbib109) 2022
Naul (apjsad62fdbib68) 2018; 2
Sun (apjsad62fdbib91) 2022
Liu (apjsad62fdbib54) 2021; 93
Charnock (apjsad62fdbib20) 2017; 837
Zhang (apjsad62fdbib110) 2021; 44
Shallue (apjsad62fdbib85) 2018; 155
Du (apjsad62fdbib28) 2022
The Astropy Collaboration (apjsad62fdbib94) 2013; 558
Hunter (apjsad62fdbib45) 2007; 9
Sánchez-Sáez (apjsad62fdbib83) 2023; 675
Cui (apjsad62fdbib23) 2024a
Cui (apjsad62fdbib24) 2024b
Jamal (apjsad62fdbib46) 2020; 250
Audenaert (apjsad62fdbib7) 2021; 162
Bellm (apjsad62fdbib15) 2018; 131
Lin (apjsad62fdbib53) 2017
Gao (apjsad62fdbib33) 2018
Barbara (apjsad62fdbib11) 2022; 514
Szklenár (apjsad62fdbib92) 2020; 897
Valizadegan (apjsad62fdbib98) 2022; 926
Muthukrishna (apjsad62fdbib66) 2019; 131
Naeini (apjsad62fdbib67) 2015
Arnett (apjsad62fdbib6) 2008
Giles (apjsad62fdbib36) 2020; 499
Pan (apjsad62fdbib73) 2024; 528
Allam (apjsad62fdbib2) 2023; 3
Armstrong (apjsad62fdbib5) 2016; 456
The Astropy Collaboration (apjsad62fdbib95) 2018; 156
Malanchev (apjsad62fdbib58) 2021; 502
McInnes (apjsad62fdbib61) 2018
Liang (apjsad62fdbib51) 2018
Smith (apjsad62fdbib88) 2012; 124
Kohonen (apjsad62fdbib50) 1990; 78
Villar (apjsad62fdbib101) 2021; 255
Möller (apjsad62fdbib64) 2020; 491
Liu (apjsad62fdbib55) 2020
Shao (apjsad62fdbib86) 2021
Hinners (apjsad62fdbib41) 2018; 156
Microsoft Corporation (apjsad62fdbib62) 2023
Harris (apjsad62fdbib38) 2020; 585
Jenkins (apjsad62fdbib47) 2016; 9913
Becker (apjsad62fdbib13) 2020; 493
Bellm (apjsad62fdbib14) 2014
Balona (apjsad62fdbib9) 2011; 417
Mowlavi (apjsad62fdbib65) 2018; 618
Borucki (apjsad62fdbib16) 2010; 327
Ren (apjsad62fdbib79) 2015
Baluev (apjsad62fdbib10) 2008; 385
Christy (apjsad62fdbib21) 2023; 519
He (apjsad62fdbib39) 2015
Neubeck (apjsad62fdbib69) 2006
Elor (apjsad62fdbib29) 2022
Pasquet (apjsad62fdbib74) 2019; 627
Kluyver (apjsad62fdbib49) 2016
Pruzhinskaya (apjsad62fdbib78) 2019; 489
Wang (apjsad62fdbib104) 2022
van der Maaten (apjsad62fdbib99) 2008; 9
Ricker (apjsad62fdbib80) 2014; 1
Carrasco-Davis (apjsad62fdbib19) 2019; 131
Donoso-Oliva (apjsad62fdbib27) 2023; 670
Zeiler (apjsad62fdbib108) 2014
Förster (apjsad62fdbib31) 2021; 161
Cui (apjsad62fdbib26) 2019; 489
VanderPlas (apjsad62fdbib100) 2015; 812
References_xml – volume: 126
  start-page: 398
  year: 2014
  ident: apjsad62fdbib44
  publication-title: PASP
  doi: 10.1086/676406
– volume: 165
  start-page: 18
  year: 2022
  ident: apjsad62fdbib76
  publication-title: AJ
  doi: 10.3847/1538-3881/ac9ab4
– volume: 837
  start-page: L28
  year: 2017
  ident: apjsad62fdbib20
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa603d
– volume: 927
  start-page: 219
  year: 2022
  ident: apjsad62fdbib22
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac498f
– volume: 7
  start-page: 31
  year: 1987
  ident: apjsad62fdbib18
  publication-title: ICGA
  doi: 10.1109/MCG.1987.276986
– volume: 131
  start-page: 094501
  year: 2019
  ident: apjsad62fdbib48
  publication-title: PASP
  doi: 10.1088/1538-3873/ab26f1
– volume: 9
  start-page: 90
  year: 2007
  ident: apjsad62fdbib45
  publication-title: CSE
  doi: 10.1109/MCSE.2007.55
– volume: 151
  start-page: 101
  year: 2016
  ident: apjsad62fdbib1
  publication-title: AJ
  doi: 10.3847/0004-6256/151/4/101
– start-page: 691
  year: 2022
  ident: apjsad62fdbib91
– volume: 935
  start-page: 23
  year: 2022
  ident: apjsad62fdbib34
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac6f5a
– volume: 39
  start-page: 447
  year: 1976
  ident: apjsad62fdbib56
  publication-title: Ap&SS
  doi: 10.1007/BF00648343
– start-page: 87
  year: 2016
  ident: apjsad62fdbib49
– year: 2022
  ident: apjsad62fdbib109
– volume: 457
  start-page: 3988
  year: 2016
  ident: apjsad62fdbib17
  publication-title: MNRAS
  doi: 10.1093/mnras/stw218
– year: 2024
  ident: apjsad62fdbib30
– volume: 131
  start-page: 108006
  year: 2019
  ident: apjsad62fdbib19
  publication-title: PASP
  doi: 10.1088/1538-3873/aaef12
– year: 2018
  ident: apjsad62fdbib61
– volume: 926
  start-page: 120
  year: 2022
  ident: apjsad62fdbib98
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac4399
– volume: 897
  start-page: L12
  year: 2020
  ident: apjsad62fdbib92
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab9ca4
– volume: 155
  start-page: 94
  year: 2018
  ident: apjsad62fdbib85
  publication-title: AJ
  doi: 10.3847/1538-3881/aa9e09
– volume: 579
  start-page: A19
  year: 2015
  ident: apjsad62fdbib4
  publication-title: A&A
  doi: 10.1051/0004-6361/201525889
– start-page: 818
  year: 2014
  ident: apjsad62fdbib108
– year: 2021
  ident: apjsad62fdbib86
– volume: 499
  start-page: 524
  year: 2020
  ident: apjsad62fdbib36
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2736
– year: 2019
  ident: apjsad62fdbib75
– volume: 161
  start-page: 141
  year: 2021
  ident: apjsad62fdbib82
  publication-title: AJ
  doi: 10.3847/1538-3881/abd5c1
– volume: 263
  start-page: 835
  year: 1982
  ident: apjsad62fdbib84
  publication-title: ApJ
  doi: 10.1086/160554
– volume: 670
  start-page: A54
  year: 2023
  ident: apjsad62fdbib27
  publication-title: A&A
  doi: 10.1051/0004-6361/202243928
– year: 2021
  ident: apjsad62fdbib60
  article-title: TESS Light Curves—All Sectors
  doi: 10.17909/t9-nmc8-f686
– year: 2021
  ident: apjsad62fdbib105
– volume: 9
  start-page: 2579
  year: 2008
  ident: apjsad62fdbib99
  publication-title: JMLR
– volume: 884
  start-page: 83
  year: 2019
  ident: apjsad62fdbib102
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab418c
– volume: 618
  start-page: A58
  year: 2018
  ident: apjsad62fdbib65
  publication-title: A&A
  doi: 10.1051/0004-6361/201833366
– start-page: 237
  year: 2008
  ident: apjsad62fdbib6
– volume: 161
  start-page: 242
  year: 2021
  ident: apjsad62fdbib31
  publication-title: AJ
  doi: 10.3847/1538-3881/abe9bc
– volume: 859
  start-page: 64
  year: 2018b
  ident: apjsad62fdbib43
  publication-title: ApJ
  doi: 10.3847/1538-4357/aabfdb
– volume: 528
  start-page: 5890
  year: 2024
  ident: apjsad62fdbib73
  publication-title: MNRAS
  doi: 10.1093/mnras/stae068
– year: 2024b
  ident: apjsad62fdbib24
  doi: 10.5281/zenodo.11580730
– year: 2022
  ident: apjsad62fdbib72
– volume: 141
  start-page: 83
  year: 2011
  ident: apjsad62fdbib77
  publication-title: AJ
  doi: 10.1088/0004-6256/141/3/83
– volume: 489
  start-page: 3591
  year: 2019
  ident: apjsad62fdbib78
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2362
– volume: 1
  start-page: 014003
  year: 2014
  ident: apjsad62fdbib80
  publication-title: JATIS
  doi: 10.1117/1.JATIS.1.1.014003
– volume: 158
  start-page: 25
  year: 2019
  ident: apjsad62fdbib107
  publication-title: AJ
  doi: 10.3847/1538-3881/ab21d6
– volume: 623
  start-page: A110
  year: 2019
  ident: apjsad62fdbib32
  publication-title: A&A
  doi: 10.1051/0004-6361/201833304
– volume: 476
  start-page: 3233
  year: 2018a
  ident: apjsad62fdbib42
  publication-title: MNRAS
  doi: 10.1093/mnras/sty483
– volume: 3
  start-page: 209
  year: 2023
  ident: apjsad62fdbib2
  publication-title: RASTI
  doi: 10.1093/rasti/rzad046
– volume: 93
  start-page: 20200628
  year: 2021
  ident: apjsad62fdbib54
  publication-title: AnABC
  doi: 10.1590/0001-3765202120200628
– volume: 124
  start-page: 1000
  year: 2012
  ident: apjsad62fdbib88
  publication-title: PASP
  doi: 10.1086/667697
– year: 2022
  ident: apjsad62fdbib8
– year: 2017
  ident: apjsad62fdbib57
  doi: 10.1109/SSCI.2017.8280984
– volume: 156
  start-page: 123
  year: 2018
  ident: apjsad62fdbib95
  publication-title: AJ
  doi: 10.3847/1538-3881/aabc4f
– volume: 385
  start-page: 1279
  year: 2008
  ident: apjsad62fdbib10
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.12689.x
– year: 2023
  ident: apjsad62fdbib71
– start-page: 27
  year: 2014
  ident: apjsad62fdbib14
– volume: 675
  start-page: A195
  year: 2023
  ident: apjsad62fdbib83
  publication-title: A&A
  doi: 10.1051/0004-6361/202346077
– year: 2022
  ident: apjsad62fdbib28
– volume: 627
  start-page: A21
  year: 2019
  ident: apjsad62fdbib74
  publication-title: A&A
  doi: 10.1051/0004-6361/201834473
– year: 2020
  ident: apjsad62fdbib55
– start-page: 936
  year: 2017
  ident: apjsad62fdbib53
– volume: 491
  start-page: 4277
  year: 2020
  ident: apjsad62fdbib64
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3312
– start-page: 4911
  year: 2022
  ident: apjsad62fdbib104
– volume: 456
  start-page: 2260
  year: 2016
  ident: apjsad62fdbib5
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2836
– volume: 493
  start-page: 2981
  year: 2020
  ident: apjsad62fdbib13
  publication-title: MNRAS
  doi: 10.1093/mnras/staa350
– start-page: 1321
  year: 2017
  ident: apjsad62fdbib37
– volume: 162
  start-page: 209
  year: 2021
  ident: apjsad62fdbib7
  publication-title: AJ
  doi: 10.3847/1538-3881/ac166a
– year: 2022
  ident: apjsad62fdbib90
– volume: 812
  start-page: 18
  year: 2015
  ident: apjsad62fdbib100
  publication-title: ApJ
  doi: 10.1088/0004-637X/812/1/18
– volume: 585
  start-page: 357
  year: 2020
  ident: apjsad62fdbib38
  publication-title: Natur
  doi: 10.1038/s41586-020-2649-2
– year: 2024a
  ident: apjsad62fdbib23
  doi: 10.5281/zenodo.11580656
– year: 2018
  ident: apjsad62fdbib51
– year: 2018
  ident: apjsad62fdbib52
– start-page: 6926
  year: 2018
  ident: apjsad62fdbib33
– start-page: 438
  year: 2018
  ident: apjsad62fdbib106
– year: 2016
  ident: apjsad62fdbib40
– volume: 250
  start-page: 30
  year: 2020
  ident: apjsad62fdbib46
  publication-title: ApJS
  doi: 10.3847/1538-4365/aba8ff
– volume: 9913
  start-page: 99133E
  year: 2016
  ident: apjsad62fdbib47
  publication-title: Proc. SPIE
  doi: 10.1117/12.2233418
– year: 2021
  ident: apjsad62fdbib3
– volume: 502
  start-page: 5147
  year: 2021
  ident: apjsad62fdbib58
  publication-title: MNRAS
  doi: 10.1093/mnras/stab316
– volume: 131
  start-page: 018002
  year: 2018
  ident: apjsad62fdbib15
  publication-title: PASP
  doi: 10.1088/1538-3873/aaecbe
– start-page: 625
  year: 2005
  ident: apjsad62fdbib70
– volume: 558
  start-page: A33
  year: 2013
  ident: apjsad62fdbib94
  publication-title: A&A
  doi: 10.1051/0004-6361/201322068
– volume: 163
  start-page: 23
  year: 2022
  ident: apjsad62fdbib25
  publication-title: AJ
  doi: 10.3847/1538-3881/ac3482
– volume: 2
  start-page: 151
  year: 2018
  ident: apjsad62fdbib68
  publication-title: NatAs
  doi: 10.1038/s41550-017-0321-z
– volume: 417
  start-page: 591
  year: 2011
  ident: apjsad62fdbib9
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19301.x
– start-page: 770
  year: 2015
  ident: apjsad62fdbib39
– year: 2015
  ident: apjsad62fdbib79
– volume: 630
  start-page: A106
  year: 2019
  ident: apjsad62fdbib35
  publication-title: A&A
  doi: 10.1051/0004-6361/201935821
– year: 2021
  ident: apjsad62fdbib12
  doi: 10.5281/zenodo.4603214
– start-page: 850
  year: 2006
  ident: apjsad62fdbib69
– volume: 255
  start-page: 24
  year: 2021
  ident: apjsad62fdbib101
  publication-title: ApJS
  doi: 10.3847/1538-4365/ac0893
– volume: 514
  start-page: 2793
  year: 2022
  ident: apjsad62fdbib11
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1515
– year: 2016
  ident: apjsad62fdbib89
  doi: 10.17909/T9488N
– volume: 61
  start-page: 80
  year: 2017
  ident: apjsad62fdbib81
  publication-title: ARep
  doi: 10.1134/S1063772917010085
– volume: 131
  start-page: 118002
  year: 2019
  ident: apjsad62fdbib66
  publication-title: PASP
  doi: 10.1088/1538-3873/ab1609
– volume: 156
  start-page: 7
  year: 2018
  ident: apjsad62fdbib41
  publication-title: AJ
  doi: 10.3847/1538-3881/aac16d
– volume: 130
  start-page: 064502
  year: 2018
  ident: apjsad62fdbib97
  publication-title: PASP
  doi: 10.1088/1538-3873/aab694
– volume: 935
  start-page: 167
  year: 2022
  ident: apjsad62fdbib96
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7c74
– volume: 78
  start-page: 1464
  year: 1990
  ident: apjsad62fdbib50
  publication-title: IEEEP
  doi: 10.1109/5.58325
– volume: 327
  start-page: 977
  year: 2010
  ident: apjsad62fdbib16
  publication-title: Sci
  doi: 10.1126/science.1185402
– year: 2023
  ident: apjsad62fdbib62
– start-page: 2901
  year: 2015
  ident: apjsad62fdbib67
– year: 2022
  ident: apjsad62fdbib29
– volume: 788
  start-page: 48
  year: 2014
  ident: apjsad62fdbib87
  publication-title: ApJ
  doi: 10.1088/0004-637X/788/1/48
– volume: 44
  start-page: 5866
  year: 2021
  ident: apjsad62fdbib110
  publication-title: ITPAM
  doi: 10.1109/TPAMI.2021.3074313
– volume: 519
  start-page: 5271
  year: 2023
  ident: apjsad62fdbib21
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3801
– year: 2020
  ident: apjsad62fdbib93
  doi: 10.5281/zenodo.4279623
– volume: 489
  start-page: 5513
  year: 2019
  ident: apjsad62fdbib26
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2432
– start-page: 444
  year: 1999
  ident: apjsad62fdbib103
– volume: 508
  start-page: 5734
  year: 2021
  ident: apjsad62fdbib59
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2588
– volume: 161
  start-page: 11
  year: 2017
  ident: apjsad62fdbib63
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.05.007
SSID ssj0007539
Score 2.501717
Snippet Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object...
SourceID doaj
unpaywall
proquest
crossref
iop
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms Algorithms
Anomalies
Astronomy data analysis
Celestial bodies
Classification
Convolutional neural networks
Deep learning
Feature extraction
Light curve
Light curve classification
Machine learning
Object recognition
Power spectra
Predictions
Sky surveys (astronomy)
Space missions
Transient detection
Transients (astronomy)
Variable stars
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFD6sK6Ivoquyo6vkQQWFzrRJm6T4NF6GXRFX0MV9K7kOwmxnmIuyP8F_7UnSqQ7I6lto0ybkXPLl5OQLwFMqjauMF5mttMIFisuzmnEUiM-ld5pL7iLb50d-fFa-P6_O9-BVfxZmvuhc_xCLiSg4DWGwb4a-dBRttGS8GinLqbfX4HrY3QrE-afsa--GEYcn7IueIODgtEf51z_szEmRuh9nGmx-B3Xe3LQLdflDzWZ_TECTO3C7Q45knPp5F_ZcewCH41WIZc8vLslzEsspVLE6gBufUuke_EynceOJJvIhMoeYzfK7I5-_TQN9MgnBWKLIW-cWWXeNxDQL85slpzoEavDVOuZstWQ8m86XWP9iSE5OhmRMOuLqnR_HqzZDElKUO5lsM8Duw9nk3Zc3x1l3BUNmEKmtM22VrrzzaPVG1Fp7WVPNLMs9zaUqmHC5oBV10tXcUpt7G_AizTU1hRSKsgew385bdwikoFRzWyvOrSqtMFpRX9bWSqUclbwcwGgrhMZ0_OThmoxZg-uUILYmiK0JYmuS2Abwov9ikbg5rqj7Osi1rxdYteMD1LCm07AGl0-qyG2Jes3LytbaMWGUE1YVUiqBXXyGWtF0Vr66orGjrd78rozjInA5ighrAC97Xfpnxx_-Z5uP4BZFvJXyDI9gf73cuMeIl9b6SbSLX-gPDtM
  priority: 102
  providerName: IOP Publishing
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagE4IXLoNphYH8AEggpU2cxHYew6XaEBqToNJ4inytJrq0alPQ-Af8a44vLStCA96i5MRxjs-xPx8ff0boKeHKlMqyRJdSwATFpEmVU2gQm3JrJOXUeLbPY3o4Lt6dlqcx3uH2wlxav8-h4xx6hyxyWg6FpsTq62iHloC6e2hnfHxSf_YdLfh6RLob8bAi-ccitkYgT9QP48rZbL6FMW-u2rm4-Cam00vDzehO4D5aepZCl2XyZbDq5EB9_43D8V_-5C66HTEnroOR3EPXTLuL9uuli4LPzi_wc-yvQ5BjuYtunISr--hH2Mfr90Lh955zRK0WXw3-eDZxxMvYhXGxwG-MmSfxAIpJ4kZGjT9IF-KBR53P9mpxPZ3MFiB_PsBHRwNc40h5vVWwP6TTpS95i8Gjde7YAzQevf30-jCJhzckCjBel0gtZGmNhf5CsUpKyysic52nlqRcZDkzKSMlMdxUVBOdWu2QJkklURlnguR7qNfOWrOPcEaIpLoSlGpRaKakILaotOZCGMJp0UfDdYM2KjKbuwM2pg3McJzuG6f7xum-CbrvoxebN-aB1eMK2VfORjZyjo_b34DGbaJ7NzDxElmqC_AIWpS6kiZnShimRca5YFDFZ2BhTewflld87GBtg7-EQS8MJrKAzfro5cYu_1rxh_8j_AjdIgDXQpriAep1i5V5DHCrk0-ip_0ExY8h0w
  priority: 102
  providerName: Unpaywall
Title Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework
URI https://iopscience.iop.org/article/10.3847/1538-4365/ad62fd
https://www.proquest.com/docview/3107149151
https://doi.org/10.3847/1538-4365/ad62fd
https://doaj.org/article/306a10d4bec645d9be37cae7da188a74
UnpaywallVersion publishedVersion
Volume 274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1538-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007539
  issn: 1538-4365
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1538-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007539
  issn: 1538-4365
  databaseCode: O3W
  dateStart: 19961201
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1538-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007539
  issn: 1538-4365
  databaseCode: IOP
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1538-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007539
  issn: 1538-4365
  databaseCode: M~E
  dateStart: 19540101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQEIILYgO0jjH5AEggZU3sxHaOYaNaEVorQcU4Rf6sJnVp1Y9N-xP4r3m20269bBcukZW8xJbfe_bPzvPvIfSBCG0L7XhiCiVhgWLTpKQMFOJS4axigtnA9nnOzkb594vi4l6qLx8TFumBY8d1AdLKLDU51MXywpTKUq6l5UZmQkgemEBTUa4XU-0YDCA8Al8YBjwIjj8oKQzF3eDiOWVFVxpGnNmakAJvP0wzl9PZFuR8vmpm8vZGTib3Zp_eK_SyhY24is3dRU9ss4f2q4XfyJ5e3eJPOJTjPsViDz0bxtJr9DcexQ3HmfCPQBuiV_Nri39ejj13MvY7sVjiU2tnSZtDYpz4yc3ggfK7NPBoGQK2GlxNxtM5yF8d437_GFe4Za3e-nDIs-kjkILScW8d_vUGjXrffp2cJW3-hUQDTFsmykhVOOvA5TUvlXKiJIoamjrocZlRblNOCmKFLZkhJnXGg0WSKqIzwSWhb9FOM23sPsIZIYqZUjJmZG64VpK4vDRGSGmJYHkHdddKqHVLTu5zZExqWKR4tdVebbVXWx3V1kGfN2_MIjHHA7JfvV43cp5SO9wAQ6tbQ6sfM7QO-ghWUbcuvnigssO13dwJQ79wWIsCvOqgLxtberThB_-j4e_QCwJILEYgHqKd5Xxl3wOSWqqj4DRw7Q-GcB3Q30fo6eh8WP35B9YyHS8
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgiMsLlwFaYYAfAAmkpImT2M5jYVQrTFslmLS34Gs1rUujNgWNf8C_5thOC0VoIPFmJSeOc3x8_Nk5_g5CzwlXplCWRbqQAhYoJonKjEKH2IRbIymnxrN9HtL94_z9SXHS5Tn1Z2FmTef6YygGouCgQje-M_ClfT9G84wWfaEpsbrfaHsVXfM8Je4E39F47YoBiwf8C97AYeHwn_KPtWzMS56-H2YbaMIG8ry5rBtx8VVMp79MQsM76POq-SH25CxetjJW335jdvyP77uLbncAFQ-C-D10xdTbaGewcFvms_ML_BL7ctgRWWyj6-NQuo--h0O__uAUPvAEJWo5_2Lwx9OJY2nGbs8XC7xnTBN12SomkZtGNT6Sbj8IbrU-NKzGg-lkNgf58xiPRjEe4I4fe6Nin9HTxTp588LDVaDZA3Q8fPfp7X7UZXqIFADCNpJayMIaC85FsVJKy0siM50lliRcpBkzCSMFMdyUVBOdWO1gKUkkUSlngmQP0VY9q80OwikhkupSUKpFrpmSgti81JoLYQineQ_1V_1cqY4G3WXjmFawHHL6r5z-K6f_Kui_h16tn2gCBcglsm-c6azlHHm3vwAdXXUdXcEqTaSJzmH40LzQpTQZU8IwLVLOBYMmvgDbqDpnsrjkZbsr0_wpDHphsOoFINdDr9fm-teGP_rHdz5DN8Z7w-pgdPjhMbpFAOGFyMZdtNXOl-YJILRWPvWj8AdT0zOm
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagE4IXLoNphYH8AEggpU2cxHYew6XaEBqToNJ4inytJrq0alPQ-Af8a44vLStCA96i5MRxjs-xPx8ff0boKeHKlMqyRJdSwATFpEmVU2gQm3JrJOXUeLbPY3o4Lt6dlqcx3uH2wlxav8-h4xx6hyxyWg6FpsTq62iHloC6e2hnfHxSf_YdLfh6RLob8bAi-ccitkYgT9QP48rZbL6FMW-u2rm4-Cam00vDzehO4D5aepZCl2XyZbDq5EB9_43D8V_-5C66HTEnroOR3EPXTLuL9uuli4LPzi_wc-yvQ5BjuYtunISr--hH2Mfr90Lh955zRK0WXw3-eDZxxMvYhXGxwG-MmSfxAIpJ4kZGjT9IF-KBR53P9mpxPZ3MFiB_PsBHRwNc40h5vVWwP6TTpS95i8Gjde7YAzQevf30-jCJhzckCjBel0gtZGmNhf5CsUpKyysic52nlqRcZDkzKSMlMdxUVBOdWu2QJkklURlnguR7qNfOWrOPcEaIpLoSlGpRaKakILaotOZCGMJp0UfDdYM2KjKbuwM2pg3McJzuG6f7xum-CbrvoxebN-aB1eMK2VfORjZyjo_b34DGbaJ7NzDxElmqC_AIWpS6kiZnShimRca5YFDFZ2BhTewflld87GBtg7-EQS8MJrKAzfro5cYu_1rxh_8j_AjdIgDXQpriAep1i5V5DHCrk0-ip_0ExY8h0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Light-curve+Signals+with+a+Deep-learning-based+Object+Detection+Algorithm.+II.+A+General+Light-curve+Classification+Framework&rft.jtitle=The+Astrophysical+journal.+Supplement+series&rft.au=Kaiming+Cui&rft.au=D.+J.+Armstrong&rft.au=Fabo+Feng&rft.date=2024-10-01&rft.pub=IOP+Publishing&rft.issn=0067-0049&rft.volume=274&rft.issue=2&rft.spage=29&rft_id=info:doi/10.3847%2F1538-4365%2Fad62fd&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_306a10d4bec645d9be37cae7da188a74
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0067-0049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0067-0049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0067-0049&client=summon