1-D coupled surface flow and transport equations revisited via the physics-informed neural network approach
•Applied physics-informed neural network (PINN) to solve solve coupled shallow water and transport equations.•PINN outperforms the traditional numerical finite difference method.•PINN is suitable for solving inverse problems with sparse and noisy data.•The accuracy of PINN is correlated with the num...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 625; no. Part B; p. 130048 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.10.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-1694 1879-2707 |
DOI | 10.1016/j.jhydrol.2023.130048 |
Cover
Abstract | •Applied physics-informed neural network (PINN) to solve solve coupled shallow water and transport equations.•PINN outperforms the traditional numerical finite difference method.•PINN is suitable for solving inverse problems with sparse and noisy data.•The accuracy of PINN is correlated with the number of hidden parameters and layers.
The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this work, we propose a mesh-free method based on the physics-informed neural network (PINN) to solve the one dimensional (1-D) SVE, ADE, and the coupled SVE and ADE (SVE-ADE) under various initial and boundary conditions. The PINN model extends the architecture of deep neural networks (DNNs) with implementation of loss function, which are additionally subject to constraints imposed by the physical laws of SVE and ADE, along with their initial and boundary conditions. In such a manner, PINNs can be quickly steered to the true solution while obeying the physical laws. The results of PINN model are compared with the analytical and/or numerical solutions under various conditions to investigate its accuracy and efficiency in solving the SVE, ADE, and SVE-ADE. Our results indicate PINN can accurately simulate the shock wave morphology and avoid numerical dissipation in unsteady flow condition. The PINN method outweighed traditional numerical methods in several aspects, including its ability to function with small amounts of data, no grid discretization, and random selection of sampling points, etc. Additionally, the PINN method is also suitable for solving inverse problems with sparse and noisy data. With 1% noise and 2000 initial and boundary condition points (Nu), the errors of the estimated flow rate (v) and diffusion coefficient (D) are 0.003% and 0.105%, respectively, which indicate the accuracy and robustness of the proposed method. Our results indicate the capability and robustness of the proposed PINN methodology for solving multi-physics problems, irrespective of the presence of sparse and noisy data in the training dataset. |
---|---|
AbstractList | The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this work, we propose a mesh-free method based on the physics-informed neural network (PINN) to solve the one dimensional (1-D) SVE, ADE, and the coupled SVE and ADE (SVE-ADE) under various initial and boundary conditions. The PINN model extends the architecture of deep neural networks (DNNs) with implementation of loss function, which are additionally subject to constraints imposed by the physical laws of SVE and ADE, along with their initial and boundary conditions. In such a manner, PINNs can be quickly steered to the true solution while obeying the physical laws. The results of PINN model are compared with the analytical and/or numerical solutions under various conditions to investigate its accuracy and efficiency in solving the SVE, ADE, and SVE-ADE. Our results indicate PINN can accurately simulate the shock wave morphology and avoid numerical dissipation in unsteady flow condition. The PINN method outweighed traditional numerical methods in several aspects, including its ability to function with small amounts of data, no grid discretization, and random selection of sampling points, etc. Additionally, the PINN method is also suitable for solving inverse problems with sparse and noisy data. With 1% noise and 2000 initial and boundary condition points (Nᵤ), the errors of the estimated flow rate (v) and diffusion coefficient (D) are 0.003% and 0.105%, respectively, which indicate the accuracy and robustness of the proposed method. Our results indicate the capability and robustness of the proposed PINN methodology for solving multi-physics problems, irrespective of the presence of sparse and noisy data in the training dataset. •Applied physics-informed neural network (PINN) to solve solve coupled shallow water and transport equations.•PINN outperforms the traditional numerical finite difference method.•PINN is suitable for solving inverse problems with sparse and noisy data.•The accuracy of PINN is correlated with the number of hidden parameters and layers. The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this work, we propose a mesh-free method based on the physics-informed neural network (PINN) to solve the one dimensional (1-D) SVE, ADE, and the coupled SVE and ADE (SVE-ADE) under various initial and boundary conditions. The PINN model extends the architecture of deep neural networks (DNNs) with implementation of loss function, which are additionally subject to constraints imposed by the physical laws of SVE and ADE, along with their initial and boundary conditions. In such a manner, PINNs can be quickly steered to the true solution while obeying the physical laws. The results of PINN model are compared with the analytical and/or numerical solutions under various conditions to investigate its accuracy and efficiency in solving the SVE, ADE, and SVE-ADE. Our results indicate PINN can accurately simulate the shock wave morphology and avoid numerical dissipation in unsteady flow condition. The PINN method outweighed traditional numerical methods in several aspects, including its ability to function with small amounts of data, no grid discretization, and random selection of sampling points, etc. Additionally, the PINN method is also suitable for solving inverse problems with sparse and noisy data. With 1% noise and 2000 initial and boundary condition points (Nu), the errors of the estimated flow rate (v) and diffusion coefficient (D) are 0.003% and 0.105%, respectively, which indicate the accuracy and robustness of the proposed method. Our results indicate the capability and robustness of the proposed PINN methodology for solving multi-physics problems, irrespective of the presence of sparse and noisy data in the training dataset. The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this work, we propose a mesh-free method based on the physics-informed neural network (PINN) to solve the one dimensional (1-D) SVE, ADE, and the coupled SVE and ADE (SVE-ADE) under various initial and boundary conditions. The PINN model extends the architecture of deep neural networks (DNNs) with implementation of loss function, which are additionally subject to constraints imposed by the physical laws of SVE and ADE, along with their initial and boundary conditions. In such a manner, PINNs can be quickly steered to the true solution while obeying the physical laws. The results of PINN model are compared with the analytical and/or numerical solutions under various conditions to investigate its accuracy and efficiency in solving the SVE, ADE, and SVE-ADE. Our results indicate PINN can accurately simulate the shock wave morphology and avoid numerical dissipation in unsteady flow condition. The PINN method outweighed traditional numerical methods in several aspects, including its ability to function with small amounts of data, no grid discretization, and random selection of sampling points, etc. Additionally, the PINN method is also suitable for solving inverse problems with sparse and noisy data. With 1% noise and 2000 initial and boundary condition points (Nu), the errors of the estimated flow rate (v) and diffusion coefficient (D) are 0.003% and 0.105%, respectively, which indicate the accuracy and robustness of the proposed method. Finally, our results indicate the capability and robustness of the proposed PINN methodology for solving multi-physics problems, irrespective of the presence of sparse and noisy data in the training dataset. |
ArticleNumber | 130048 |
Author | Niu, Jie Qiu, Han Li, Shan Xu, Wei Dong, Feifei |
Author_xml | – sequence: 1 givenname: Jie surname: Niu fullname: Niu, Jie organization: College of Resources and Environmental Engineering, Guizhou University, Guizhou 550025, China – sequence: 2 givenname: Wei surname: Xu fullname: Xu, Wei organization: LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China – sequence: 3 givenname: Han orcidid: 0000-0001-9962-2472 surname: Qiu fullname: Qiu, Han email: han.qiu@pnnl.gov organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA – sequence: 4 givenname: Shan surname: Li fullname: Li, Shan email: 19828635045@163.com organization: School of Environment, Jinan University, Guangzhou 510632, China – sequence: 5 givenname: Feifei surname: Dong fullname: Dong, Feifei organization: College of Life Science and Techonology, Jinan University, Guangzhou 510632, China |
BackLink | https://www.osti.gov/servlets/purl/2202422$$D View this record in Osti.gov |
BookMark | eNqFkUtv2zAQhInCAeo8fkIBoqde5C5JPdFDUbhJWyBALsmZoKgVREcmZZJy4H9fusqpF_OyB34z2J25JivrLBLyicGGASu_7ja74dR5N244cLFhAiCvP5A1q6sm4xVUK7IG4DxjZZN_JNch7CA9IfI1eWXZT6rdPI3Y0TD7Xmmk_ejeqLIdjV7ZMDkfKR5mFY2zgXo8mmBiwo9G0TggnYZTMDpkxvbO79OHxdmrMY345vwrVdPkndLDLbnq1Rjw7n3ekJeH--ft7-zx6def7Y_HTOesjJkqu7YtOGDZQlO0OXBgOTYCS6w09Kg4g7ZF1VYN1zUUfac7gXWRC6XKAhpxQz4vvi5EI4NOy-pBO2tRR8lTRjnnCfqyQGm3w4whyr0JGsdRWXRzkIIVgjUNr6uEfltQ7V0IHnuZLP-lkfIxo2Qgzz3InXzvQZ57kEsPSV38p5682St_uqj7vugwRXU06M-XoNXYGX8-pHPmgsNfqN2pTg |
CitedBy_id | crossref_primary_10_1017_eds_2024_14 crossref_primary_10_1063_5_0203775 crossref_primary_10_1016_j_jhydrol_2025_132835 crossref_primary_10_1016_j_engappai_2025_110126 |
Cites_doi | 10.1016/j.cma.2004.06.034 10.1061/(ASCE)1090-0241(2008)134:2(214) 10.12989/aer.2014.3.1.045 10.1137/0916069 10.1016/0045-7825(89)90111-4 10.1016/j.cma.2019.112732 10.1016/j.cam.2008.12.015 10.1002/nme.5943 10.1186/s40323-022-00226-8 10.1007/978-90-481-3674-2_8 10.1029/91WR01912 10.2139/ssrn.4201377 10.1146/annurev.fl.17.010185.001003 10.1016/0045-7930(79)90037-9 10.1126/science.aaw4741 10.1016/0045-7825(92)90143-8 10.1093/imamat/13.2.233 10.1016/j.jhydrol.2013.11.046 10.1134/S0012266117100123 10.1002/hyp.333 10.1016/0021-9991(82)90066-3 10.2166/wst.1998.0066 10.1016/j.compfluid.2014.11.006 10.1016/j.jcp.2018.10.045 10.1007/s10921-020-00705-1 10.1016/0045-7825(82)90071-8 10.1029/2019WR026731 10.1016/j.jcp.2016.12.021 10.1029/2022WR033168 10.1016/j.cma.2019.112789 10.1006/jcph.1997.5713 10.1016/j.neucom.2018.06.056 10.1029/2020WR029479 10.1016/j.jcp.2017.07.050 10.1016/j.advwatres.2014.04.009 10.1017/jmech.2011.44 10.1016/j.jconhyd.2004.06.004 10.1016/j.jcp.2005.10.001 10.1038/s41467-021-26434-1 10.1016/0022-1694(83)90050-1 10.1016/j.camwa.2016.06.014 10.1061/(ASCE)0733-9372(1996)122:9(830) 10.1016/j.advwatres.2005.08.008 10.1016/0045-7825(86)90110-6 10.1016/j.jcp.2007.04.005 10.1016/j.advwatres.2008.07.002 10.1016/j.cma.2019.112623 10.1016/0022-1694(75)90004-9 10.3390/w12123580 10.1007/BF02456969 10.1016/0045-7825(94)00721-X 10.1016/S0045-7825(99)00015-8 10.1016/j.advwatres.2020.103610 10.1002/num.22135 10.1016/j.cpc.2010.11.013 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
DBID | AAYXX CITATION 7S9 L.6 OIOZB OTOTI |
DOI | 10.1016/j.jhydrol.2023.130048 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Environmental Sciences |
EISSN | 1879-2707 |
ExternalDocumentID | 2202422 10_1016_j_jhydrol_2023_130048 S0022169423009903 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 OIOZB OTOTI |
ID | FETCH-LOGICAL-c416t-a6dbb520e6b095b402014e93e6e7c0fea210bbeab792c805fdcd3e8543aa65093 |
IEDL.DBID | AIKHN |
ISSN | 0022-1694 |
IngestDate | Mon Sep 02 05:56:12 EDT 2024 Sun Sep 28 06:40:16 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Thu Sep 25 00:52:46 EDT 2025 Sat Apr 13 16:38:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Part B |
Keywords | Advection-diffusion equation Physics-informed neural network Solute transport in surface water, multi-physics problem in hydrology de Saint-Venant equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-a6dbb520e6b095b402014e93e6e7c0fea210bbeab792c805fdcd3e8543aa65093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PNNL-SA-190227 USDOE National Natural Science Foundation of China (NSFC) AC05-76RL01830; 41972244 |
ORCID | 0000-0001-9962-2472 0000000199622472 |
OpenAccessLink | https://www.osti.gov/servlets/purl/2202422 |
PQID | 3153199287 |
PQPubID | 24069 |
ParticipantIDs | osti_scitechconnect_2202422 proquest_miscellaneous_3153199287 crossref_citationtrail_10_1016_j_jhydrol_2023_130048 crossref_primary_10_1016_j_jhydrol_2023_130048 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_130048 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Raissi, Yazdani, Karniadakis (b0290) 2020; 367 Benkhaldoun, Elmahi, Seaı (bib381) 2007; 226 Javadi, Al-Najjar, Evans (b0165) 2008; 134 Runkel (b0305) 1996; 122 Shivanian (b0315) 2017; 33 Harten (b0120) 1997; 135 Boyce, Yeh (b0030) 2014; 69 Leij, Skaggs, van Genuchten (b0200) 1991; 27 Ding, Zhang (b0070) 2009; 230 Mao, Jagtap, Karniadakis (bib382) 2020; 360 Fan, Li (b0080) 2006; 29 Shukla, Di Leoni, Blackshire, Sparkman, Karniadakis (b0320) 2020; 39 O'Loughlin, Bowmer (b0250) 1975; 26 Borker, Farhat, Tezaur (b0025) 2017; 332 Kissas, Yang, Hwuang, Witschey, Detre, Perdikaris (b0180) 2020; 358 Raissi, Perdikaris, Karniadakis (b0280) 2017; 348 Bischof, R., and Kraus, M. A., 2021. Multi-Objective Loss Balancing for Physics-Informed Deep Learning. arXiv:2110.09813. Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 249–256. Tian (b0350) 2011; 182 Chatwin, Allen (b0050) 1985; 17 Guo, Lai, Lin, Lee, Tan (b0110) 2011; 27 Franca, Farhat (b0095) 1995; 123 Kumar (b0195) 1983; 63 Markidis (b0220) 2021; Volume 4 Mahesh, Leandro, Lin (b0215) 2022 Pyatkov (b0265) 2017; 53 Hughes, Mallet, Akira (b0140) 1986; 54 Monthe, Benkhaldoun, Elmahi (b0230) 1999; 178 Cullen (b0060) 1974; 13 Raissi, Perdikaris, Karniadakis (b0285) 2019; 378 He, Barajas-Solano, Tartakovsky, Tartakovsky (b0125) 2020; 141 Byrd, Lu, Nocedal, Zhu (b0040) 1995; 16 Jakeman (b0160) 2006 Franca, Frey, Hughes (b0100) 1992; 95 Ku, Hong, Liu (b0190) 2020; 12 Raissi, M., Perdikaris, P., Karniadakis, G. E., 2017. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv:1711.10561. Thompson, Warsi, Mastin (b0345) 1982; 47 Lynch, Gray (b0210) 1979; 7 Wang, Feng, Pieraccini, Scialò, Fidelibus (b0355) 2018; 117 Tartakovsky, Marrero, Perdikaris, Tartakovsky, Barajas‐Solano (b0340) 2020; 56 Nazari, Camponogara, Seman (b0240) 2022 Guyonnet, Neville (b0115) 2004; 75 You (b0375) 2006; 214 Mojtabi, Deville (b0225) 2015; 107 Feng, Tan, He (b0090) 2023; 59 Raissi (b0270) 2018; 19 Cedillo, Núñez, Sánchez-Cordero, Timbe, Samaniego, Alvarado (b0045) 2022; 9 Huyakorn (b0155) 2012 Ridolfi, Porporato, Revelli (b0295) 2006; 132 Baydin, A. G., Pearlmutter, B. A, Radul, A. A., Siskind, J. M., 2015. Automatic differentiation in machine learning: a survey. arXiv:1502.05767. Deng, J., Li, X. A., Wu, J., Zhang, S., Li, W., Wang, Y. G., 2023. Physical informed neural networks with soft and hard boundary constraints for solving advection-diffusion equations using Fourier expansions. arXiv preprint arXiv:2306.12749. Ghassan, Nicolas, Emmanuelle, Stéphane (b0105) 1998; 37 Koryagin, A., Khudorozkov, R., Tsimfer, S., 2019. PyDEns: a Python Framework for Solving Differential Equations with Neural Networks. arxiv:1909.11544. Huang, Huang, Zhan (b0135) 2008; 31 Sun, Gao, Pan, Wang (b0325) 2020; 361 Hughes, Wells (b0150) 2005; 194 Niu, Li, Xu, Dong, Huang, Qiu (b0245) 2023; 129914 Sarra (b0310) 2012; 218 Wang, Wu, Elliot, Fiedler, Lapin (b0365) 2014; 509 He, Tartakovsky (b0130) 2021; 57 Zong, Y., He, Q., Tartakovsky, A. M., 2022. Physics-Informed Neural Network Method for Parabolic Differential Equations with Sharply Perturbed Initial Conditions. arXiv preprint arXiv:2208.08635. Patil, Chore (b0255) 2014; 3 Li, Zheng, Kovachki, David, Chen, Liu, Azizzadenesheli, Anandkumar (b0205) 2021; arXiv:2111.03794 Szymkiewicz, R., 2010. Numerical Integration of the System of Saint Venant Equations. In: Numerical Modeling in Open Channel Hydraulics. Water Science and Technology Library, 83, 301-365. https://doi.org/10.1007/978-90-481-3674-2_8. Wang, He (b0360) 2002; 23 Alonso, Jameson (b0005) 1994; 1994–0056 Moussa, Voltz, Andrieux (b0235) 2002; 16 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b0170) 2021; 3 Yadav, Yadav, Kim (b0370) 2016; 72 Hughes, Franca, Hulbert (b0145) 1989 Pinder, Gray (b0260) 2013 Berg, Nyström (b0015) 2018; 317 Kingma, D. P., and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv:1412.6980. Chen, Liu, Sun (b0055) 2021; 12 Brooks, Hughes (b0035) 1982; 32 Mao (10.1016/j.jhydrol.2023.130048_bib382) 2020; 360 Tian (10.1016/j.jhydrol.2023.130048_b0350) 2011; 182 Raissi (10.1016/j.jhydrol.2023.130048_b0270) 2018; 19 Runkel (10.1016/j.jhydrol.2023.130048_b0305) 1996; 122 Monthe (10.1016/j.jhydrol.2023.130048_b0230) 1999; 178 10.1016/j.jhydrol.2023.130048_b0020 10.1016/j.jhydrol.2023.130048_b0185 Berg (10.1016/j.jhydrol.2023.130048_b0015) 2018; 317 10.1016/j.jhydrol.2023.130048_b0065 Benkhaldoun (10.1016/j.jhydrol.2023.130048_bib381) 2007; 226 Wang (10.1016/j.jhydrol.2023.130048_b0355) 2018; 117 Huang (10.1016/j.jhydrol.2023.130048_b0135) 2008; 31 Hughes (10.1016/j.jhydrol.2023.130048_b0150) 2005; 194 He (10.1016/j.jhydrol.2023.130048_b0125) 2020; 141 10.1016/j.jhydrol.2023.130048_b0380 Niu (10.1016/j.jhydrol.2023.130048_b0245) 2023; 129914 10.1016/j.jhydrol.2023.130048_bib385 Harten (10.1016/j.jhydrol.2023.130048_b0120) 1997; 135 Hughes (10.1016/j.jhydrol.2023.130048_b0145) 1989 Mojtabi (10.1016/j.jhydrol.2023.130048_b0225) 2015; 107 Tartakovsky (10.1016/j.jhydrol.2023.130048_b0340) 2020; 56 Jakeman (10.1016/j.jhydrol.2023.130048_b0160) 2006 Boyce (10.1016/j.jhydrol.2023.130048_b0030) 2014; 69 Sun (10.1016/j.jhydrol.2023.130048_b0325) 2020; 361 Ghassan (10.1016/j.jhydrol.2023.130048_b0105) 1998; 37 He (10.1016/j.jhydrol.2023.130048_b0130) 2021; 57 Cullen (10.1016/j.jhydrol.2023.130048_b0060) 1974; 13 Thompson (10.1016/j.jhydrol.2023.130048_b0345) 1982; 47 Kumar (10.1016/j.jhydrol.2023.130048_b0195) 1983; 63 10.1016/j.jhydrol.2023.130048_b0010 10.1016/j.jhydrol.2023.130048_b0175 Sarra (10.1016/j.jhydrol.2023.130048_b0310) 2012; 218 Shivanian (10.1016/j.jhydrol.2023.130048_b0315) 2017; 33 Raissi (10.1016/j.jhydrol.2023.130048_b0280) 2017; 348 Patil (10.1016/j.jhydrol.2023.130048_b0255) 2014; 3 10.1016/j.jhydrol.2023.130048_b0335 Shukla (10.1016/j.jhydrol.2023.130048_b0320) 2020; 39 Nazari (10.1016/j.jhydrol.2023.130048_b0240) 2022 Mahesh (10.1016/j.jhydrol.2023.130048_b0215) 2022 Ridolfi (10.1016/j.jhydrol.2023.130048_b0295) 2006; 132 Chatwin (10.1016/j.jhydrol.2023.130048_b0050) 1985; 17 Brooks (10.1016/j.jhydrol.2023.130048_b0035) 1982; 32 Pinder (10.1016/j.jhydrol.2023.130048_b0260) 2013 Raissi (10.1016/j.jhydrol.2023.130048_b0290) 2020; 367 Lynch (10.1016/j.jhydrol.2023.130048_b0210) 1979; 7 Borker (10.1016/j.jhydrol.2023.130048_b0025) 2017; 332 Leij (10.1016/j.jhydrol.2023.130048_b0200) 1991; 27 Wang (10.1016/j.jhydrol.2023.130048_b0365) 2014; 509 Ku (10.1016/j.jhydrol.2023.130048_b0190) 2020; 12 Fan (10.1016/j.jhydrol.2023.130048_b0080) 2006; 29 Wang (10.1016/j.jhydrol.2023.130048_b0360) 2002; 23 Moussa (10.1016/j.jhydrol.2023.130048_b0235) 2002; 16 Cedillo (10.1016/j.jhydrol.2023.130048_b0045) 2022; 9 O'Loughlin (10.1016/j.jhydrol.2023.130048_b0250) 1975; 26 Hughes (10.1016/j.jhydrol.2023.130048_b0140) 1986; 54 Pyatkov (10.1016/j.jhydrol.2023.130048_b0265) 2017; 53 You (10.1016/j.jhydrol.2023.130048_b0375) 2006; 214 Byrd (10.1016/j.jhydrol.2023.130048_b0040) 1995; 16 Ding (10.1016/j.jhydrol.2023.130048_b0070) 2009; 230 Kissas (10.1016/j.jhydrol.2023.130048_b0180) 2020; 358 Markidis (10.1016/j.jhydrol.2023.130048_b0220) 2021; Volume 4 Chen (10.1016/j.jhydrol.2023.130048_b0055) 2021; 12 Karniadakis (10.1016/j.jhydrol.2023.130048_b0170) 2021; 3 Yadav (10.1016/j.jhydrol.2023.130048_b0370) 2016; 72 Guo (10.1016/j.jhydrol.2023.130048_b0110) 2011; 27 Javadi (10.1016/j.jhydrol.2023.130048_b0165) 2008; 134 Raissi (10.1016/j.jhydrol.2023.130048_b0285) 2019; 378 Alonso (10.1016/j.jhydrol.2023.130048_b0005) 1994; 1994–0056 Huyakorn (10.1016/j.jhydrol.2023.130048_b0155) 2012 10.1016/j.jhydrol.2023.130048_b0275 Franca (10.1016/j.jhydrol.2023.130048_b0100) 1992; 95 Guyonnet (10.1016/j.jhydrol.2023.130048_b0115) 2004; 75 Li (10.1016/j.jhydrol.2023.130048_b0205) 2021; arXiv:2111.03794 Franca (10.1016/j.jhydrol.2023.130048_b0095) 1995; 123 Feng (10.1016/j.jhydrol.2023.130048_b0090) 2023; 59 |
References_xml | – reference: Kingma, D. P., and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv:1412.6980. – volume: 348 start-page: 683 year: 2017 end-page: 693 ident: b0280 article-title: Machine learning of linear differential equations using Gaussian processes publication-title: J. Comput. Phys. – volume: 16 start-page: 1190 year: 1995 end-page: 1208 ident: b0040 article-title: A limited memory algorithm for bound constrained optimization publication-title: SIAM J. Sci. Comput. – volume: 214 start-page: 1 year: 2006 end-page: 11 ident: b0375 article-title: A high-order Pade ADI method for unsteady convection-diffusion equations publication-title: J. Comput. Phys. – volume: arXiv:2111.03794 year: 2021 ident: b0205 article-title: Physics-Informed Neural Operator for Learning Partial publication-title: Differential Equations – reference: Raissi, M., Perdikaris, P., Karniadakis, G. E., 2017. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv:1711.10561. – volume: 123 start-page: 299 year: 1995 end-page: 308 ident: b0095 article-title: Bubble functions prompt unusual stabilized fifinite element methods publication-title: Comput. Methods Appl. Mech. Eng. – volume: 134 start-page: 214 year: 2008 end-page: 230 ident: b0165 article-title: Numerical modelling of contaminant transport through soils: Case study publication-title: J. Geotech. Geoenviron. Eng. – reference: Koryagin, A., Khudorozkov, R., Tsimfer, S., 2019. PyDEns: a Python Framework for Solving Differential Equations with Neural Networks. arxiv:1909.11544. – year: 2013 ident: b0260 article-title: Finite element simulation in surface and subsurface hydrology – volume: 367 start-page: 1026 year: 2020 end-page: 1030 ident: b0290 article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations publication-title: Science – volume: 9 start-page: 1 year: 2022 end-page: 23 ident: b0045 article-title: Physics-Informed Neural Network water surface predictability for 1D steady-state open channel cases with different flow types and complex bed profile shapes publication-title: Advanced Modeling and Simulation in Engineering Sciences – reference: Zong, Y., He, Q., Tartakovsky, A. M., 2022. Physics-Informed Neural Network Method for Parabolic Differential Equations with Sharply Perturbed Initial Conditions. arXiv preprint arXiv:2208.08635. – volume: 59 start-page: e2022 year: 2023 ident: b0090 article-title: Physics-Informed Neural Networks of the Saint-Venant Equations for Downscaling a Large-Scale River Model publication-title: Water Resour. Res. – volume: 230 start-page: 600 year: 2009 end-page: 606 ident: b0070 article-title: A new difference scheme with high accuracy and absolute stability for solving convection diffusion equations publication-title: J. Comput. Appl. Math. – volume: 122 start-page: 830 year: 1996 end-page: 832 ident: b0305 article-title: Solution of the advection-dispersion equation: continuous load of finite duration publication-title: J. Environ. Eng. – volume: 178 start-page: 215 year: 1999 end-page: 232 ident: b0230 article-title: Positivity Preserving Finite Volume Roe Schemes for Transport-Diffusion Equations publication-title: Comput. Methods Appl. Mech. Eng. – reference: Szymkiewicz, R., 2010. Numerical Integration of the System of Saint Venant Equations. In: Numerical Modeling in Open Channel Hydraulics. Water Science and Technology Library, 83, 301-365. https://doi.org/10.1007/978-90-481-3674-2_8. – reference: Deng, J., Li, X. A., Wu, J., Zhang, S., Li, W., Wang, Y. G., 2023. Physical informed neural networks with soft and hard boundary constraints for solving advection-diffusion equations using Fourier expansions. arXiv preprint arXiv:2306.12749. – volume: 13 start-page: 233 year: 1974 end-page: 247 ident: b0060 article-title: A finite element method for a non-linear initial value problem publication-title: IMA J. Appl. Math. – volume: 129914 year: 2023 ident: b0245 article-title: An efficient LSTM networks for predicting the tailing and multi-peaked breakthrough curves publication-title: J. Hydrol. – volume: 72 start-page: 1021 year: 2016 end-page: 1030 ident: b0370 article-title: Numerical solution of unsteady advection dispersion equation arising in contaminant transport through porous media using neural networks publication-title: Comput. Math. Appl. – volume: 69 start-page: 168 year: 2014 end-page: 180 ident: b0030 article-title: Parameter-independent model reduction of transient groundwater flflow models: Application to inverse problems publication-title: Adv. Water Resour. – volume: 53 start-page: 1352 year: 2017 end-page: 1363 ident: b0265 article-title: Some classes of inverse problems of determining the source function in convection–diffusion systems publication-title: Differ. Equ. – volume: 63 start-page: 345 year: 1983 end-page: 358 ident: b0195 article-title: Unsteady flow against dispersion in finite porous media publication-title: J. Hydrol. – volume: 37 start-page: 277 year: 1998 end-page: 284 ident: b0105 article-title: A stochastic approach to modelling solid transport in settling tanks publication-title: Water Sci. Technol. – volume: 54 start-page: 341 year: 1986 end-page: 355 ident: b0140 article-title: A new fifinite element formulation for computational flfluid dynamics: II publication-title: Beyond SUPG, Computer Methods in Applied Mechanics and Engineering. – volume: 39 start-page: 1 year: 2020 end-page: 20 ident: b0320 article-title: Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks publication-title: J. Nondestr. Eval. – volume: 7 start-page: 207 year: 1979 end-page: 228 ident: b0210 article-title: A wave equation model for finite element tidal computations publication-title: Comput. Fluids – volume: 12 start-page: 3580 year: 2020 ident: b0190 article-title: Solving transient groundwater inverse problems using space–time collocation Trefftz method publication-title: Water. – volume: 27 start-page: 415 year: 2011 end-page: 430 ident: b0110 article-title: Finite-volume multi-stage scheme for advection-diffusion modeling in shallow water flows publication-title: J. Mech. – volume: 12 start-page: 6136 year: 2021 ident: b0055 article-title: Physics-informed learning of governing equations from scarce data publication-title: Nat. Commun. – volume: 23 start-page: 741 year: 2002 end-page: 747 ident: b0360 article-title: High-Resolution Numerical Model for Shallow Water Flows and Pollutant Diffusions publication-title: Appl. Math. Mech. – year: 1989 ident: b0145 article-title: A new fifinite element formulation for computational flfluid dynamics: VIII publication-title: The galerkin/least-squares method for advective-diffffusive equations, Computer Methods in Applied Mechanics and Engineering. – year: 2012 ident: b0155 article-title: Computational methods in subsurface flow – volume: 117 start-page: 1 year: 2018 end-page: 14 ident: b0355 article-title: Iterative coupling algorithms for large multidomain problems with the boundary element method publication-title: Int. J. Numer. Meth. Eng. – year: 2006 ident: b0160 article-title: On numerical solutions of the shallow water wave equations – volume: 1994–0056 year: 1994 ident: b0005 article-title: Fully-implicit time-marching aeroelastic solutions publication-title: AIAA. – volume: 27 start-page: 2719 year: 1991 end-page: 2733 ident: b0200 article-title: Analytical solution for solute transport in three dimensional semi-infinite porous media publication-title: Water Resour. Res. – volume: 182 start-page: 649 year: 2011 end-page: 662 ident: b0350 article-title: A rational high-order compact ADI method for unsteady convection-diffusion equations publication-title: Comput. Phys. Commun. – volume: 226 start-page: 180 year: 2007 end-page: 203 ident: bib381 article-title: Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes publication-title: J. Comput. Phys. – reference: Bischof, R., and Kraus, M. A., 2021. Multi-Objective Loss Balancing for Physics-Informed Deep Learning. arXiv:2110.09813. – volume: 135 start-page: 260 year: 1997 end-page: 278 ident: b0120 article-title: High resolution schemes for hyperbolic conservation laws publication-title: J. Comput. Phys. – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: b0170 article-title: Physics-informed machine learning. Nature Reviews publication-title: Physics – volume: 33 start-page: 974 year: 2017 end-page: 994 ident: b0315 article-title: Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis publication-title: Numer. Meth. Part Differ. Equ. – volume: 194 start-page: 1141 year: 2005 end-page: 1159 ident: b0150 article-title: Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations publication-title: Comput. Methods Appl. Mech. Eng. – volume: Volume 4 year: 2021 ident: b0220 publication-title: The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Frontiers in Big Data. – volume: 317 start-page: 28 year: 2018 end-page: 41 ident: b0015 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing – volume: 141 year: 2020 ident: b0125 article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport publication-title: Adv. Water Resour. – volume: 31 start-page: 1578 year: 2008 end-page: 1589 ident: b0135 article-title: A finite element solution for the fractional advection dispersion equation publication-title: Adv. Water Resour. – volume: 16 start-page: 393 year: 2002 end-page: 412 ident: b0235 article-title: Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events publication-title: Hydrol. Process. – volume: 29 start-page: 1000 year: 2006 end-page: 1019 ident: b0080 article-title: Diffusive wave solutions for open channel flows with uniform and concentrated lateral inflow publication-title: Adv. Water Resour. – volume: 509 start-page: 282 year: 2014 end-page: 294 ident: b0365 article-title: Linear diffusion-wave channel routing using a discrete Hayami convolution method publication-title: J. Hydrol. – start-page: 77 year: 2022 end-page: 91 ident: b0215 article-title: Physics Informed Neural Network for Spatial-Temporal Flood Forecasting publication-title: Climate Change and Water Security – volume: 32 start-page: 199 year: 1982 end-page: 259 ident: b0035 article-title: Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations publication-title: Comput. Methods Appl. Mech. Eng. – volume: 107 start-page: 189 year: 2015 end-page: 195 ident: b0225 article-title: One-dimensional linear advection-diffusion equation: Analytical and finite element solutions publication-title: Comput. Fluids – volume: 218 start-page: 9853 year: 2012 end-page: 9865 ident: b0310 article-title: A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains publication-title: Appl. Math. Comput. – volume: 47 start-page: 1 year: 1982 end-page: 108 ident: b0345 article-title: Boundary-fitted coordinate systems for numerical solution of partial differential equations-a review publication-title: J. Comput. Phys. – reference: Baydin, A. G., Pearlmutter, B. A, Radul, A. A., Siskind, J. M., 2015. Automatic differentiation in machine learning: a survey. arXiv:1502.05767. – volume: 17 start-page: 119 year: 1985 end-page: 149 ident: b0050 article-title: Mathematical models of dispersion in rivers and estuaries publication-title: Annu. Rev. Fluid Mech. – volume: 95 start-page: 253 year: 1992 end-page: 276 ident: b0100 article-title: Stabilized finite element methods: I. Application to the advective-diffusive model publication-title: Comput. Methods Appl. Mech. Eng. – volume: 360 start-page: 112789 year: 2020 ident: bib382 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 57 year: 2021 ident: b0130 article-title: Physics-Informed Neural Network Method for Forward and Backward Advection-Dispersion Equations publication-title: Water Resour. Res. – volume: 132 start-page: 125 year: 2006 end-page: 132 ident: b0295 article-title: Green's Function of the Linearized de Saint-Venant Equations publication-title: J. Eng. Mech. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b0285 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 361 start-page: 112732 year: 2020 ident: b0325 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Comput. Methods Appl. Mech. Eng. – year: 2022 ident: b0240 article-title: Physics-Informed Neural Networks for Modeling Water Flows in a River Channel publication-title: IEEE Transactions on Artificial – volume: 56 year: 2020 ident: b0340 article-title: Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems publication-title: Water Resour. Res. – volume: 26 start-page: 217 year: 1975 end-page: 235 ident: b0250 article-title: Dilution and decay of aquatic herbicides in flowing channels publication-title: J. Hydrol. – volume: 332 start-page: 520 year: 2017 end-page: 537 ident: b0025 article-title: A high-order discontinuous Galerkin method for unsteady advection-diffusion problems publication-title: J. Comput. Phys. – reference: Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 249–256. – volume: 75 start-page: 141 year: 2004 end-page: 153 ident: b0115 article-title: Dimensionless analysis of two analytical solutions for 3-D solute transport in groundwater publication-title: J. Contam. Hydrol. – volume: 3 start-page: 45 year: 2014 end-page: 69 ident: b0255 article-title: Contaminant transport through porous media: An overview of experimental and numerical studies publication-title: Adv. Environ. Res. – volume: 19 start-page: 932 year: 2018 end-page: 955 ident: b0270 article-title: Deep hidden physics models: Deep learning of nonlinear partial differential equations publication-title: The Journal of Machine Learning Research. – volume: 358 year: 2020 ident: b0180 article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks publication-title: Comput. Methods Appl. Mech. Eng. – volume: 194 start-page: 1141 issue: 9–11 year: 2005 ident: 10.1016/j.jhydrol.2023.130048_b0150 article-title: Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2004.06.034 – volume: 134 start-page: 214 issue: 2 year: 2008 ident: 10.1016/j.jhydrol.2023.130048_b0165 article-title: Numerical modelling of contaminant transport through soils: Case study publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2008)134:2(214) – volume: 3 start-page: 45 issue: 1 year: 2014 ident: 10.1016/j.jhydrol.2023.130048_b0255 article-title: Contaminant transport through porous media: An overview of experimental and numerical studies publication-title: Adv. Environ. Res. doi: 10.12989/aer.2014.3.1.045 – ident: 10.1016/j.jhydrol.2023.130048_bib385 – volume: 16 start-page: 1190 issue: 5 year: 1995 ident: 10.1016/j.jhydrol.2023.130048_b0040 article-title: A limited memory algorithm for bound constrained optimization publication-title: SIAM J. Sci. Comput. doi: 10.1137/0916069 – year: 1989 ident: 10.1016/j.jhydrol.2023.130048_b0145 article-title: A new fifinite element formulation for computational flfluid dynamics: VIII publication-title: The galerkin/least-squares method for advective-diffffusive equations, Computer Methods in Applied Mechanics and Engineering. doi: 10.1016/0045-7825(89)90111-4 – volume: 361 start-page: 112732 year: 2020 ident: 10.1016/j.jhydrol.2023.130048_b0325 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112732 – volume: 230 start-page: 600 issue: 2 year: 2009 ident: 10.1016/j.jhydrol.2023.130048_b0070 article-title: A new difference scheme with high accuracy and absolute stability for solving convection diffusion equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.12.015 – volume: 117 start-page: 1 year: 2018 ident: 10.1016/j.jhydrol.2023.130048_b0355 article-title: Iterative coupling algorithms for large multidomain problems with the boundary element method publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.5943 – volume: 9 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.jhydrol.2023.130048_b0045 article-title: Physics-Informed Neural Network water surface predictability for 1D steady-state open channel cases with different flow types and complex bed profile shapes publication-title: Advanced Modeling and Simulation in Engineering Sciences doi: 10.1186/s40323-022-00226-8 – ident: 10.1016/j.jhydrol.2023.130048_b0335 doi: 10.1007/978-90-481-3674-2_8 – volume: 27 start-page: 2719 issue: 10 year: 1991 ident: 10.1016/j.jhydrol.2023.130048_b0200 article-title: Analytical solution for solute transport in three dimensional semi-infinite porous media publication-title: Water Resour. Res. doi: 10.1029/91WR01912 – ident: 10.1016/j.jhydrol.2023.130048_b0380 doi: 10.2139/ssrn.4201377 – volume: 17 start-page: 119 issue: 1 year: 1985 ident: 10.1016/j.jhydrol.2023.130048_b0050 article-title: Mathematical models of dispersion in rivers and estuaries publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.17.010185.001003 – volume: 7 start-page: 207 issue: 3 year: 1979 ident: 10.1016/j.jhydrol.2023.130048_b0210 article-title: A wave equation model for finite element tidal computations publication-title: Comput. Fluids doi: 10.1016/0045-7930(79)90037-9 – volume: 367 start-page: 1026 year: 2020 ident: 10.1016/j.jhydrol.2023.130048_b0290 article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations publication-title: Science doi: 10.1126/science.aaw4741 – volume: arXiv:2111.03794 year: 2021 ident: 10.1016/j.jhydrol.2023.130048_b0205 article-title: Physics-Informed Neural Operator for Learning Partial publication-title: Differential Equations – year: 2013 ident: 10.1016/j.jhydrol.2023.130048_b0260 – volume: 95 start-page: 253 issue: 2 year: 1992 ident: 10.1016/j.jhydrol.2023.130048_b0100 article-title: Stabilized finite element methods: I. Application to the advective-diffusive model publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(92)90143-8 – start-page: 77 year: 2022 ident: 10.1016/j.jhydrol.2023.130048_b0215 article-title: Physics Informed Neural Network for Spatial-Temporal Flood Forecasting – volume: 13 start-page: 233 issue: 2 year: 1974 ident: 10.1016/j.jhydrol.2023.130048_b0060 article-title: A finite element method for a non-linear initial value problem publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/13.2.233 – volume: 509 start-page: 282 year: 2014 ident: 10.1016/j.jhydrol.2023.130048_b0365 article-title: Linear diffusion-wave channel routing using a discrete Hayami convolution method publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.11.046 – volume: 53 start-page: 1352 year: 2017 ident: 10.1016/j.jhydrol.2023.130048_b0265 article-title: Some classes of inverse problems of determining the source function in convection–diffusion systems publication-title: Differ. Equ. doi: 10.1134/S0012266117100123 – volume: 16 start-page: 393 year: 2002 ident: 10.1016/j.jhydrol.2023.130048_b0235 article-title: Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events publication-title: Hydrol. Process. doi: 10.1002/hyp.333 – volume: 47 start-page: 1 issue: 1 year: 1982 ident: 10.1016/j.jhydrol.2023.130048_b0345 article-title: Boundary-fitted coordinate systems for numerical solution of partial differential equations-a review publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(82)90066-3 – volume: 19 start-page: 932 issue: 1 year: 2018 ident: 10.1016/j.jhydrol.2023.130048_b0270 article-title: Deep hidden physics models: Deep learning of nonlinear partial differential equations publication-title: The Journal of Machine Learning Research. – volume: 37 start-page: 277 issue: 1 year: 1998 ident: 10.1016/j.jhydrol.2023.130048_b0105 article-title: A stochastic approach to modelling solid transport in settling tanks publication-title: Water Sci. Technol. doi: 10.2166/wst.1998.0066 – volume: 107 start-page: 189 year: 2015 ident: 10.1016/j.jhydrol.2023.130048_b0225 article-title: One-dimensional linear advection-diffusion equation: Analytical and finite element solutions publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2014.11.006 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.jhydrol.2023.130048_b0285 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 39 start-page: 1 year: 2020 ident: 10.1016/j.jhydrol.2023.130048_b0320 article-title: Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks publication-title: J. Nondestr. Eval. doi: 10.1007/s10921-020-00705-1 – volume: 32 start-page: 199 issue: 1–3 year: 1982 ident: 10.1016/j.jhydrol.2023.130048_b0035 article-title: Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(82)90071-8 – volume: 56 issue: 5 year: 2020 ident: 10.1016/j.jhydrol.2023.130048_b0340 article-title: Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems publication-title: Water Resour. Res. doi: 10.1029/2019WR026731 – year: 2006 ident: 10.1016/j.jhydrol.2023.130048_b0160 – ident: 10.1016/j.jhydrol.2023.130048_b0275 – volume: 332 start-page: 520 year: 2017 ident: 10.1016/j.jhydrol.2023.130048_b0025 article-title: A high-order discontinuous Galerkin method for unsteady advection-diffusion problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.021 – ident: 10.1016/j.jhydrol.2023.130048_b0065 – volume: 129914 year: 2023 ident: 10.1016/j.jhydrol.2023.130048_b0245 article-title: An efficient LSTM networks for predicting the tailing and multi-peaked breakthrough curves publication-title: J. Hydrol. – volume: 59 start-page: e2022 issue: 2 year: 2023 ident: 10.1016/j.jhydrol.2023.130048_b0090 article-title: Physics-Informed Neural Networks of the Saint-Venant Equations for Downscaling a Large-Scale River Model publication-title: Water Resour. Res. doi: 10.1029/2022WR033168 – volume: 360 start-page: 112789 year: 2020 ident: 10.1016/j.jhydrol.2023.130048_bib382 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112789 – volume: 135 start-page: 260 issue: 2 year: 1997 ident: 10.1016/j.jhydrol.2023.130048_b0120 article-title: High resolution schemes for hyperbolic conservation laws publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5713 – volume: 317 start-page: 28 year: 2018 ident: 10.1016/j.jhydrol.2023.130048_b0015 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.056 – volume: 57 issue: 7 year: 2021 ident: 10.1016/j.jhydrol.2023.130048_b0130 article-title: Physics-Informed Neural Network Method for Forward and Backward Advection-Dispersion Equations publication-title: Water Resour. Res. doi: 10.1029/2020WR029479 – year: 2022 ident: 10.1016/j.jhydrol.2023.130048_b0240 article-title: Physics-Informed Neural Networks for Modeling Water Flows in a River Channel publication-title: IEEE Transactions on Artificial – volume: 348 start-page: 683 year: 2017 ident: 10.1016/j.jhydrol.2023.130048_b0280 article-title: Machine learning of linear differential equations using Gaussian processes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.07.050 – volume: 69 start-page: 168 year: 2014 ident: 10.1016/j.jhydrol.2023.130048_b0030 article-title: Parameter-independent model reduction of transient groundwater flflow models: Application to inverse problems publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2014.04.009 – volume: 27 start-page: 415 issue: 3 year: 2011 ident: 10.1016/j.jhydrol.2023.130048_b0110 article-title: Finite-volume multi-stage scheme for advection-diffusion modeling in shallow water flows publication-title: J. Mech. doi: 10.1017/jmech.2011.44 – volume: 75 start-page: 141 issue: 2 year: 2004 ident: 10.1016/j.jhydrol.2023.130048_b0115 article-title: Dimensionless analysis of two analytical solutions for 3-D solute transport in groundwater publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2004.06.004 – volume: 214 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.jhydrol.2023.130048_b0375 article-title: A high-order Pade ADI method for unsteady convection-diffusion equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.10.001 – ident: 10.1016/j.jhydrol.2023.130048_b0010 – volume: 12 start-page: 6136 year: 2021 ident: 10.1016/j.jhydrol.2023.130048_b0055 article-title: Physics-informed learning of governing equations from scarce data publication-title: Nat. Commun. doi: 10.1038/s41467-021-26434-1 – volume: 63 start-page: 345 issue: 3–4 year: 1983 ident: 10.1016/j.jhydrol.2023.130048_b0195 article-title: Unsteady flow against dispersion in finite porous media publication-title: J. Hydrol. doi: 10.1016/0022-1694(83)90050-1 – volume: 72 start-page: 1021 issue: 4 year: 2016 ident: 10.1016/j.jhydrol.2023.130048_b0370 article-title: Numerical solution of unsteady advection dispersion equation arising in contaminant transport through porous media using neural networks publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.06.014 – volume: Volume 4 year: 2021 ident: 10.1016/j.jhydrol.2023.130048_b0220 publication-title: The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Frontiers in Big Data. – volume: 3 start-page: 422 year: 2021 ident: 10.1016/j.jhydrol.2023.130048_b0170 article-title: Physics-informed machine learning. Nature Reviews publication-title: Physics – ident: 10.1016/j.jhydrol.2023.130048_b0175 – volume: 122 start-page: 830 issue: 9 year: 1996 ident: 10.1016/j.jhydrol.2023.130048_b0305 article-title: Solution of the advection-dispersion equation: continuous load of finite duration publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(1996)122:9(830) – volume: 218 start-page: 9853 year: 2012 ident: 10.1016/j.jhydrol.2023.130048_b0310 article-title: A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains publication-title: Appl. Math. Comput. – volume: 1994–0056 year: 1994 ident: 10.1016/j.jhydrol.2023.130048_b0005 article-title: Fully-implicit time-marching aeroelastic solutions publication-title: AIAA. – volume: 29 start-page: 1000 year: 2006 ident: 10.1016/j.jhydrol.2023.130048_b0080 article-title: Diffusive wave solutions for open channel flows with uniform and concentrated lateral inflow publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2005.08.008 – volume: 54 start-page: 341 issue: 3 year: 1986 ident: 10.1016/j.jhydrol.2023.130048_b0140 article-title: A new fifinite element formulation for computational flfluid dynamics: II publication-title: Beyond SUPG, Computer Methods in Applied Mechanics and Engineering. doi: 10.1016/0045-7825(86)90110-6 – volume: 226 start-page: 180 issue: 1 year: 2007 ident: 10.1016/j.jhydrol.2023.130048_bib381 article-title: Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.04.005 – volume: 31 start-page: 1578 issue: 12 year: 2008 ident: 10.1016/j.jhydrol.2023.130048_b0135 article-title: A finite element solution for the fractional advection dispersion equation publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2008.07.002 – volume: 358 year: 2020 ident: 10.1016/j.jhydrol.2023.130048_b0180 article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112623 – volume: 26 start-page: 217 year: 1975 ident: 10.1016/j.jhydrol.2023.130048_b0250 article-title: Dilution and decay of aquatic herbicides in flowing channels publication-title: J. Hydrol. doi: 10.1016/0022-1694(75)90004-9 – volume: 12 start-page: 3580 year: 2020 ident: 10.1016/j.jhydrol.2023.130048_b0190 article-title: Solving transient groundwater inverse problems using space–time collocation Trefftz method publication-title: Water. doi: 10.3390/w12123580 – ident: 10.1016/j.jhydrol.2023.130048_b0020 – volume: 23 start-page: 741 year: 2002 ident: 10.1016/j.jhydrol.2023.130048_b0360 article-title: High-Resolution Numerical Model for Shallow Water Flows and Pollutant Diffusions publication-title: Appl. Math. Mech. doi: 10.1007/BF02456969 – ident: 10.1016/j.jhydrol.2023.130048_b0185 – year: 2012 ident: 10.1016/j.jhydrol.2023.130048_b0155 – volume: 123 start-page: 299 issue: 1–4 year: 1995 ident: 10.1016/j.jhydrol.2023.130048_b0095 article-title: Bubble functions prompt unusual stabilized fifinite element methods publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(94)00721-X – volume: 132 start-page: 125 issue: 2 year: 2006 ident: 10.1016/j.jhydrol.2023.130048_b0295 article-title: Green's Function of the Linearized de Saint-Venant Equations publication-title: J. Eng. Mech. – volume: 178 start-page: 215 year: 1999 ident: 10.1016/j.jhydrol.2023.130048_b0230 article-title: Positivity Preserving Finite Volume Roe Schemes for Transport-Diffusion Equations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00015-8 – volume: 141 year: 2020 ident: 10.1016/j.jhydrol.2023.130048_b0125 article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103610 – volume: 33 start-page: 974 year: 2017 ident: 10.1016/j.jhydrol.2023.130048_b0315 article-title: Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis publication-title: Numer. Meth. Part Differ. Equ. doi: 10.1002/num.22135 – volume: 182 start-page: 649 issue: 3 year: 2011 ident: 10.1016/j.jhydrol.2023.130048_b0350 article-title: A rational high-order compact ADI method for unsteady convection-diffusion equations publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.11.013 |
SSID | ssj0000334 |
Score | 2.475921 |
Snippet | •Applied physics-informed neural network (PINN) to solve solve coupled shallow water and transport equations.•PINN outperforms the traditional numerical finite... The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 130048 |
SubjectTerms | Advection-diffusion equation data collection de Saint-Venant equation diffusivity ENVIRONMENTAL SCIENCES equations multi-physics problem in hydrology overland flow Physics-informed neural network solute transport in surface water Solute transport in surface water, multi-physics problem in hydrology solutes surface water transient flow |
Title | 1-D coupled surface flow and transport equations revisited via the physics-informed neural network approach |
URI | https://dx.doi.org/10.1016/j.jhydrol.2023.130048 https://www.proquest.com/docview/3153199287 https://www.osti.gov/servlets/purl/2202422 |
Volume | 625 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LBdhj2xrFuhAbsqiSXZjo9FtyLbgJ5WoDdBkhk0WWCneWzopb-9pCWvGDagwI6WQdCgJPKTRX4E-KiyoqpcruVEmyCNRyOdyzJZBFUWDjUq37F9nhezC_P1Mr88gNO-FobTKpPvjz6989ZpZJysOV4vFlzjq1gT4QGGOcz4eago2k8HcHjy5dvs_N4ha2160nAWuC_kGS9Hy6ubetPyJYTSXWtk7gT07xA1aGnX_eWzu0B09gyeJgQpTuJHPocDbF7A49TM_OrmJfzI5CcR2v16hbXY7jdzF1DMV-0v4Zpa7Ho2c4HXkeZ7KzZdiTlhT_Fz4QRBQhF_eGxl5FWlF8x7SVqbmDUueiryV3Bx9vn76UymngoyEPTaSVfU3udqgoUncOX59JgZrDQWWIbJHB0dAb1H58tKhekkn9eh1jjNjXaOyfb0axg0bYNvQARf1rrsSLu0yfOSxPiSUIeMFPjKDcH0ZrQhEY5z34uV7TPLljZZ37L1bbT-EEa_xdaRceMhgWk_R_aPpWMpKjwkesRzymJMmRs4t4jklGLkoobwoZ9qS5uOb1Jcg-1-a3XGrovWWvn2_5UfwRN-ipmB72Cw2-zxPSGcnT-GR6Pb7Dit4ztggfvK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2h5QCXikIrtlAwUq9mN7aTbI6IgpavPYHEzbKdWbHbVbLdDxD_vp7YKapaCanXRE8Tje3xczzzBuCbSLKiMKnkfakcVxYVNyZJeOZEnhmUKGyj9jnKhg_q-jF93IDzthaG0ipj7A8xvYnW8UkverM3n0yoxleQJc8HiOaQ4uemoqbWHdg8u7oZjt4CspSqFQ0nwFshT296On16LRc1XUII2bRGpk5A_96iOrVfdX_F7GYjutyBD5FBsrPwkR9hA6td2IrNzJ9e9-BHwr8zV6_nMyzZcr0YG4dsPKtfmKlKtmrVzBn-DDLfS7ZoSsw992TPE8M8JWThh8eSB11V_4J0L73VKmSNs1aK_BM8XF7cnw957KnAnadeK26y0tpU9DGznlxZOj0mCguJGeauP0bjj4DWorF5Idygn45LV0ocpEoaQ2J78jN0qrrCfWDO5qXMG9EuqdI09zC6JJQu8QZsYbqgWjdqFwXHqe_FTLeZZVMdva_J-zp4vwunv2HzoLjxHmDQjpH-Y-povyu8Bz2gMSUYSeY6yi3yOCGIuYgunLRDrf2io5sUU2G9XmqZUOgq_Gnzy_8bP4at4f3drb69Gt0cwDa9CVmCh9BZLdb41bOdlT2Ks_kXT7f9sA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1-D+coupled+surface+flow+and+transport+equations+revisited+via+the+physics-informed+neural+network+approach&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Niu%2C+Jie&rft.au=Xu%2C+Wei&rft.au=Qiu%2C+Han&rft.au=Li%2C+Shan&rft.date=2023-10-01&rft.issn=0022-1694&rft.volume=625+p.130048-&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.130048&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |