1-D coupled surface flow and transport equations revisited via the physics-informed neural network approach

•Applied physics-informed neural network (PINN) to solve solve coupled shallow water and transport equations.•PINN outperforms the traditional numerical finite difference method.•PINN is suitable for solving inverse problems with sparse and noisy data.•The accuracy of PINN is correlated with the num...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 625; no. Part B; p. 130048
Main Authors Niu, Jie, Xu, Wei, Qiu, Han, Li, Shan, Dong, Feifei
Format Journal Article
LanguageEnglish
Published United States Elsevier B.V 01.10.2023
Elsevier
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2023.130048

Cover

Abstract •Applied physics-informed neural network (PINN) to solve solve coupled shallow water and transport equations.•PINN outperforms the traditional numerical finite difference method.•PINN is suitable for solving inverse problems with sparse and noisy data.•The accuracy of PINN is correlated with the number of hidden parameters and layers. The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this work, we propose a mesh-free method based on the physics-informed neural network (PINN) to solve the one dimensional (1-D) SVE, ADE, and the coupled SVE and ADE (SVE-ADE) under various initial and boundary conditions. The PINN model extends the architecture of deep neural networks (DNNs) with implementation of loss function, which are additionally subject to constraints imposed by the physical laws of SVE and ADE, along with their initial and boundary conditions. In such a manner, PINNs can be quickly steered to the true solution while obeying the physical laws. The results of PINN model are compared with the analytical and/or numerical solutions under various conditions to investigate its accuracy and efficiency in solving the SVE, ADE, and SVE-ADE. Our results indicate PINN can accurately simulate the shock wave morphology and avoid numerical dissipation in unsteady flow condition. The PINN method outweighed traditional numerical methods in several aspects, including its ability to function with small amounts of data, no grid discretization, and random selection of sampling points, etc. Additionally, the PINN method is also suitable for solving inverse problems with sparse and noisy data. With 1% noise and 2000 initial and boundary condition points (Nu), the errors of the estimated flow rate (v) and diffusion coefficient (D) are 0.003% and 0.105%, respectively, which indicate the accuracy and robustness of the proposed method. Our results indicate the capability and robustness of the proposed PINN methodology for solving multi-physics problems, irrespective of the presence of sparse and noisy data in the training dataset.
AbstractList The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this work, we propose a mesh-free method based on the physics-informed neural network (PINN) to solve the one dimensional (1-D) SVE, ADE, and the coupled SVE and ADE (SVE-ADE) under various initial and boundary conditions. The PINN model extends the architecture of deep neural networks (DNNs) with implementation of loss function, which are additionally subject to constraints imposed by the physical laws of SVE and ADE, along with their initial and boundary conditions. In such a manner, PINNs can be quickly steered to the true solution while obeying the physical laws. The results of PINN model are compared with the analytical and/or numerical solutions under various conditions to investigate its accuracy and efficiency in solving the SVE, ADE, and SVE-ADE. Our results indicate PINN can accurately simulate the shock wave morphology and avoid numerical dissipation in unsteady flow condition. The PINN method outweighed traditional numerical methods in several aspects, including its ability to function with small amounts of data, no grid discretization, and random selection of sampling points, etc. Additionally, the PINN method is also suitable for solving inverse problems with sparse and noisy data. With 1% noise and 2000 initial and boundary condition points (Nᵤ), the errors of the estimated flow rate (v) and diffusion coefficient (D) are 0.003% and 0.105%, respectively, which indicate the accuracy and robustness of the proposed method. Our results indicate the capability and robustness of the proposed PINN methodology for solving multi-physics problems, irrespective of the presence of sparse and noisy data in the training dataset.
•Applied physics-informed neural network (PINN) to solve solve coupled shallow water and transport equations.•PINN outperforms the traditional numerical finite difference method.•PINN is suitable for solving inverse problems with sparse and noisy data.•The accuracy of PINN is correlated with the number of hidden parameters and layers. The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this work, we propose a mesh-free method based on the physics-informed neural network (PINN) to solve the one dimensional (1-D) SVE, ADE, and the coupled SVE and ADE (SVE-ADE) under various initial and boundary conditions. The PINN model extends the architecture of deep neural networks (DNNs) with implementation of loss function, which are additionally subject to constraints imposed by the physical laws of SVE and ADE, along with their initial and boundary conditions. In such a manner, PINNs can be quickly steered to the true solution while obeying the physical laws. The results of PINN model are compared with the analytical and/or numerical solutions under various conditions to investigate its accuracy and efficiency in solving the SVE, ADE, and SVE-ADE. Our results indicate PINN can accurately simulate the shock wave morphology and avoid numerical dissipation in unsteady flow condition. The PINN method outweighed traditional numerical methods in several aspects, including its ability to function with small amounts of data, no grid discretization, and random selection of sampling points, etc. Additionally, the PINN method is also suitable for solving inverse problems with sparse and noisy data. With 1% noise and 2000 initial and boundary condition points (Nu), the errors of the estimated flow rate (v) and diffusion coefficient (D) are 0.003% and 0.105%, respectively, which indicate the accuracy and robustness of the proposed method. Our results indicate the capability and robustness of the proposed PINN methodology for solving multi-physics problems, irrespective of the presence of sparse and noisy data in the training dataset.
The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this work, we propose a mesh-free method based on the physics-informed neural network (PINN) to solve the one dimensional (1-D) SVE, ADE, and the coupled SVE and ADE (SVE-ADE) under various initial and boundary conditions. The PINN model extends the architecture of deep neural networks (DNNs) with implementation of loss function, which are additionally subject to constraints imposed by the physical laws of SVE and ADE, along with their initial and boundary conditions. In such a manner, PINNs can be quickly steered to the true solution while obeying the physical laws. The results of PINN model are compared with the analytical and/or numerical solutions under various conditions to investigate its accuracy and efficiency in solving the SVE, ADE, and SVE-ADE. Our results indicate PINN can accurately simulate the shock wave morphology and avoid numerical dissipation in unsteady flow condition. The PINN method outweighed traditional numerical methods in several aspects, including its ability to function with small amounts of data, no grid discretization, and random selection of sampling points, etc. Additionally, the PINN method is also suitable for solving inverse problems with sparse and noisy data. With 1% noise and 2000 initial and boundary condition points (Nu), the errors of the estimated flow rate (v) and diffusion coefficient (D) are 0.003% and 0.105%, respectively, which indicate the accuracy and robustness of the proposed method. Finally, our results indicate the capability and robustness of the proposed PINN methodology for solving multi-physics problems, irrespective of the presence of sparse and noisy data in the training dataset.
ArticleNumber 130048
Author Niu, Jie
Qiu, Han
Li, Shan
Xu, Wei
Dong, Feifei
Author_xml – sequence: 1
  givenname: Jie
  surname: Niu
  fullname: Niu, Jie
  organization: College of Resources and Environmental Engineering, Guizhou University, Guizhou 550025, China
– sequence: 2
  givenname: Wei
  surname: Xu
  fullname: Xu, Wei
  organization: LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
– sequence: 3
  givenname: Han
  orcidid: 0000-0001-9962-2472
  surname: Qiu
  fullname: Qiu, Han
  email: han.qiu@pnnl.gov
  organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
– sequence: 4
  givenname: Shan
  surname: Li
  fullname: Li, Shan
  email: 19828635045@163.com
  organization: School of Environment, Jinan University, Guangzhou 510632, China
– sequence: 5
  givenname: Feifei
  surname: Dong
  fullname: Dong, Feifei
  organization: College of Life Science and Techonology, Jinan University, Guangzhou 510632, China
BackLink https://www.osti.gov/servlets/purl/2202422$$D View this record in Osti.gov
BookMark eNqFkUtv2zAQhInCAeo8fkIBoqde5C5JPdFDUbhJWyBALsmZoKgVREcmZZJy4H9fusqpF_OyB34z2J25JivrLBLyicGGASu_7ja74dR5N244cLFhAiCvP5A1q6sm4xVUK7IG4DxjZZN_JNch7CA9IfI1eWXZT6rdPI3Y0TD7Xmmk_ejeqLIdjV7ZMDkfKR5mFY2zgXo8mmBiwo9G0TggnYZTMDpkxvbO79OHxdmrMY345vwrVdPkndLDLbnq1Rjw7n3ekJeH--ft7-zx6def7Y_HTOesjJkqu7YtOGDZQlO0OXBgOTYCS6w09Kg4g7ZF1VYN1zUUfac7gXWRC6XKAhpxQz4vvi5EI4NOy-pBO2tRR8lTRjnnCfqyQGm3w4whyr0JGsdRWXRzkIIVgjUNr6uEfltQ7V0IHnuZLP-lkfIxo2Qgzz3InXzvQZ57kEsPSV38p5682St_uqj7vugwRXU06M-XoNXYGX8-pHPmgsNfqN2pTg
CitedBy_id crossref_primary_10_1017_eds_2024_14
crossref_primary_10_1063_5_0203775
crossref_primary_10_1016_j_jhydrol_2025_132835
crossref_primary_10_1016_j_engappai_2025_110126
Cites_doi 10.1016/j.cma.2004.06.034
10.1061/(ASCE)1090-0241(2008)134:2(214)
10.12989/aer.2014.3.1.045
10.1137/0916069
10.1016/0045-7825(89)90111-4
10.1016/j.cma.2019.112732
10.1016/j.cam.2008.12.015
10.1002/nme.5943
10.1186/s40323-022-00226-8
10.1007/978-90-481-3674-2_8
10.1029/91WR01912
10.2139/ssrn.4201377
10.1146/annurev.fl.17.010185.001003
10.1016/0045-7930(79)90037-9
10.1126/science.aaw4741
10.1016/0045-7825(92)90143-8
10.1093/imamat/13.2.233
10.1016/j.jhydrol.2013.11.046
10.1134/S0012266117100123
10.1002/hyp.333
10.1016/0021-9991(82)90066-3
10.2166/wst.1998.0066
10.1016/j.compfluid.2014.11.006
10.1016/j.jcp.2018.10.045
10.1007/s10921-020-00705-1
10.1016/0045-7825(82)90071-8
10.1029/2019WR026731
10.1016/j.jcp.2016.12.021
10.1029/2022WR033168
10.1016/j.cma.2019.112789
10.1006/jcph.1997.5713
10.1016/j.neucom.2018.06.056
10.1029/2020WR029479
10.1016/j.jcp.2017.07.050
10.1016/j.advwatres.2014.04.009
10.1017/jmech.2011.44
10.1016/j.jconhyd.2004.06.004
10.1016/j.jcp.2005.10.001
10.1038/s41467-021-26434-1
10.1016/0022-1694(83)90050-1
10.1016/j.camwa.2016.06.014
10.1061/(ASCE)0733-9372(1996)122:9(830)
10.1016/j.advwatres.2005.08.008
10.1016/0045-7825(86)90110-6
10.1016/j.jcp.2007.04.005
10.1016/j.advwatres.2008.07.002
10.1016/j.cma.2019.112623
10.1016/0022-1694(75)90004-9
10.3390/w12123580
10.1007/BF02456969
10.1016/0045-7825(94)00721-X
10.1016/S0045-7825(99)00015-8
10.1016/j.advwatres.2020.103610
10.1002/num.22135
10.1016/j.cpc.2010.11.013
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
7S9
L.6
OIOZB
OTOTI
DOI 10.1016/j.jhydrol.2023.130048
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Geography
Environmental Sciences
EISSN 1879-2707
ExternalDocumentID 2202422
10_1016_j_jhydrol_2023_130048
S0022169423009903
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
OIOZB
OTOTI
ID FETCH-LOGICAL-c416t-a6dbb520e6b095b402014e93e6e7c0fea210bbeab792c805fdcd3e8543aa65093
IEDL.DBID AIKHN
ISSN 0022-1694
IngestDate Mon Sep 02 05:56:12 EDT 2024
Sun Sep 28 06:40:16 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Thu Sep 25 00:52:46 EDT 2025
Sat Apr 13 16:38:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Part B
Keywords Advection-diffusion equation
Physics-informed neural network
Solute transport in surface water, multi-physics problem in hydrology
de Saint-Venant equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-a6dbb520e6b095b402014e93e6e7c0fea210bbeab792c805fdcd3e8543aa65093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PNNL-SA-190227
USDOE
National Natural Science Foundation of China (NSFC)
AC05-76RL01830; 41972244
ORCID 0000-0001-9962-2472
0000000199622472
OpenAccessLink https://www.osti.gov/servlets/purl/2202422
PQID 3153199287
PQPubID 24069
ParticipantIDs osti_scitechconnect_2202422
proquest_miscellaneous_3153199287
crossref_citationtrail_10_1016_j_jhydrol_2023_130048
crossref_primary_10_1016_j_jhydrol_2023_130048
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_130048
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Raissi, Yazdani, Karniadakis (b0290) 2020; 367
Benkhaldoun, Elmahi, Seaı (bib381) 2007; 226
Javadi, Al-Najjar, Evans (b0165) 2008; 134
Runkel (b0305) 1996; 122
Shivanian (b0315) 2017; 33
Harten (b0120) 1997; 135
Boyce, Yeh (b0030) 2014; 69
Leij, Skaggs, van Genuchten (b0200) 1991; 27
Ding, Zhang (b0070) 2009; 230
Mao, Jagtap, Karniadakis (bib382) 2020; 360
Fan, Li (b0080) 2006; 29
Shukla, Di Leoni, Blackshire, Sparkman, Karniadakis (b0320) 2020; 39
O'Loughlin, Bowmer (b0250) 1975; 26
Borker, Farhat, Tezaur (b0025) 2017; 332
Kissas, Yang, Hwuang, Witschey, Detre, Perdikaris (b0180) 2020; 358
Raissi, Perdikaris, Karniadakis (b0280) 2017; 348
Bischof, R., and Kraus, M. A., 2021. Multi-Objective Loss Balancing for Physics-Informed Deep Learning. arXiv:2110.09813.
Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 249–256.
Tian (b0350) 2011; 182
Chatwin, Allen (b0050) 1985; 17
Guo, Lai, Lin, Lee, Tan (b0110) 2011; 27
Franca, Farhat (b0095) 1995; 123
Kumar (b0195) 1983; 63
Markidis (b0220) 2021; Volume 4
Mahesh, Leandro, Lin (b0215) 2022
Pyatkov (b0265) 2017; 53
Hughes, Mallet, Akira (b0140) 1986; 54
Monthe, Benkhaldoun, Elmahi (b0230) 1999; 178
Cullen (b0060) 1974; 13
Raissi, Perdikaris, Karniadakis (b0285) 2019; 378
He, Barajas-Solano, Tartakovsky, Tartakovsky (b0125) 2020; 141
Byrd, Lu, Nocedal, Zhu (b0040) 1995; 16
Jakeman (b0160) 2006
Franca, Frey, Hughes (b0100) 1992; 95
Ku, Hong, Liu (b0190) 2020; 12
Raissi, M., Perdikaris, P., Karniadakis, G. E., 2017. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv:1711.10561.
Thompson, Warsi, Mastin (b0345) 1982; 47
Lynch, Gray (b0210) 1979; 7
Wang, Feng, Pieraccini, Scialò, Fidelibus (b0355) 2018; 117
Tartakovsky, Marrero, Perdikaris, Tartakovsky, Barajas‐Solano (b0340) 2020; 56
Nazari, Camponogara, Seman (b0240) 2022
Guyonnet, Neville (b0115) 2004; 75
You (b0375) 2006; 214
Mojtabi, Deville (b0225) 2015; 107
Feng, Tan, He (b0090) 2023; 59
Raissi (b0270) 2018; 19
Cedillo, Núñez, Sánchez-Cordero, Timbe, Samaniego, Alvarado (b0045) 2022; 9
Huyakorn (b0155) 2012
Ridolfi, Porporato, Revelli (b0295) 2006; 132
Baydin, A. G., Pearlmutter, B. A, Radul, A. A., Siskind, J. M., 2015. Automatic differentiation in machine learning: a survey. arXiv:1502.05767.
Deng, J., Li, X. A., Wu, J., Zhang, S., Li, W., Wang, Y. G., 2023. Physical informed neural networks with soft and hard boundary constraints for solving advection-diffusion equations using Fourier expansions. arXiv preprint arXiv:2306.12749.
Ghassan, Nicolas, Emmanuelle, Stéphane (b0105) 1998; 37
Koryagin, A., Khudorozkov, R., Tsimfer, S., 2019. PyDEns: a Python Framework for Solving Differential Equations with Neural Networks. arxiv:1909.11544.
Huang, Huang, Zhan (b0135) 2008; 31
Sun, Gao, Pan, Wang (b0325) 2020; 361
Hughes, Wells (b0150) 2005; 194
Niu, Li, Xu, Dong, Huang, Qiu (b0245) 2023; 129914
Sarra (b0310) 2012; 218
Wang, Wu, Elliot, Fiedler, Lapin (b0365) 2014; 509
He, Tartakovsky (b0130) 2021; 57
Zong, Y., He, Q., Tartakovsky, A. M., 2022. Physics-Informed Neural Network Method for Parabolic Differential Equations with Sharply Perturbed Initial Conditions. arXiv preprint arXiv:2208.08635.
Patil, Chore (b0255) 2014; 3
Li, Zheng, Kovachki, David, Chen, Liu, Azizzadenesheli, Anandkumar (b0205) 2021; arXiv:2111.03794
Szymkiewicz, R., 2010. Numerical Integration of the System of Saint Venant Equations. In: Numerical Modeling in Open Channel Hydraulics. Water Science and Technology Library, 83, 301-365. https://doi.org/10.1007/978-90-481-3674-2_8.
Wang, He (b0360) 2002; 23
Alonso, Jameson (b0005) 1994; 1994–0056
Moussa, Voltz, Andrieux (b0235) 2002; 16
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b0170) 2021; 3
Yadav, Yadav, Kim (b0370) 2016; 72
Hughes, Franca, Hulbert (b0145) 1989
Pinder, Gray (b0260) 2013
Berg, Nyström (b0015) 2018; 317
Kingma, D. P., and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv:1412.6980.
Chen, Liu, Sun (b0055) 2021; 12
Brooks, Hughes (b0035) 1982; 32
Mao (10.1016/j.jhydrol.2023.130048_bib382) 2020; 360
Tian (10.1016/j.jhydrol.2023.130048_b0350) 2011; 182
Raissi (10.1016/j.jhydrol.2023.130048_b0270) 2018; 19
Runkel (10.1016/j.jhydrol.2023.130048_b0305) 1996; 122
Monthe (10.1016/j.jhydrol.2023.130048_b0230) 1999; 178
10.1016/j.jhydrol.2023.130048_b0020
10.1016/j.jhydrol.2023.130048_b0185
Berg (10.1016/j.jhydrol.2023.130048_b0015) 2018; 317
10.1016/j.jhydrol.2023.130048_b0065
Benkhaldoun (10.1016/j.jhydrol.2023.130048_bib381) 2007; 226
Wang (10.1016/j.jhydrol.2023.130048_b0355) 2018; 117
Huang (10.1016/j.jhydrol.2023.130048_b0135) 2008; 31
Hughes (10.1016/j.jhydrol.2023.130048_b0150) 2005; 194
He (10.1016/j.jhydrol.2023.130048_b0125) 2020; 141
10.1016/j.jhydrol.2023.130048_b0380
Niu (10.1016/j.jhydrol.2023.130048_b0245) 2023; 129914
10.1016/j.jhydrol.2023.130048_bib385
Harten (10.1016/j.jhydrol.2023.130048_b0120) 1997; 135
Hughes (10.1016/j.jhydrol.2023.130048_b0145) 1989
Mojtabi (10.1016/j.jhydrol.2023.130048_b0225) 2015; 107
Tartakovsky (10.1016/j.jhydrol.2023.130048_b0340) 2020; 56
Jakeman (10.1016/j.jhydrol.2023.130048_b0160) 2006
Boyce (10.1016/j.jhydrol.2023.130048_b0030) 2014; 69
Sun (10.1016/j.jhydrol.2023.130048_b0325) 2020; 361
Ghassan (10.1016/j.jhydrol.2023.130048_b0105) 1998; 37
He (10.1016/j.jhydrol.2023.130048_b0130) 2021; 57
Cullen (10.1016/j.jhydrol.2023.130048_b0060) 1974; 13
Thompson (10.1016/j.jhydrol.2023.130048_b0345) 1982; 47
Kumar (10.1016/j.jhydrol.2023.130048_b0195) 1983; 63
10.1016/j.jhydrol.2023.130048_b0010
10.1016/j.jhydrol.2023.130048_b0175
Sarra (10.1016/j.jhydrol.2023.130048_b0310) 2012; 218
Shivanian (10.1016/j.jhydrol.2023.130048_b0315) 2017; 33
Raissi (10.1016/j.jhydrol.2023.130048_b0280) 2017; 348
Patil (10.1016/j.jhydrol.2023.130048_b0255) 2014; 3
10.1016/j.jhydrol.2023.130048_b0335
Shukla (10.1016/j.jhydrol.2023.130048_b0320) 2020; 39
Nazari (10.1016/j.jhydrol.2023.130048_b0240) 2022
Mahesh (10.1016/j.jhydrol.2023.130048_b0215) 2022
Ridolfi (10.1016/j.jhydrol.2023.130048_b0295) 2006; 132
Chatwin (10.1016/j.jhydrol.2023.130048_b0050) 1985; 17
Brooks (10.1016/j.jhydrol.2023.130048_b0035) 1982; 32
Pinder (10.1016/j.jhydrol.2023.130048_b0260) 2013
Raissi (10.1016/j.jhydrol.2023.130048_b0290) 2020; 367
Lynch (10.1016/j.jhydrol.2023.130048_b0210) 1979; 7
Borker (10.1016/j.jhydrol.2023.130048_b0025) 2017; 332
Leij (10.1016/j.jhydrol.2023.130048_b0200) 1991; 27
Wang (10.1016/j.jhydrol.2023.130048_b0365) 2014; 509
Ku (10.1016/j.jhydrol.2023.130048_b0190) 2020; 12
Fan (10.1016/j.jhydrol.2023.130048_b0080) 2006; 29
Wang (10.1016/j.jhydrol.2023.130048_b0360) 2002; 23
Moussa (10.1016/j.jhydrol.2023.130048_b0235) 2002; 16
Cedillo (10.1016/j.jhydrol.2023.130048_b0045) 2022; 9
O'Loughlin (10.1016/j.jhydrol.2023.130048_b0250) 1975; 26
Hughes (10.1016/j.jhydrol.2023.130048_b0140) 1986; 54
Pyatkov (10.1016/j.jhydrol.2023.130048_b0265) 2017; 53
You (10.1016/j.jhydrol.2023.130048_b0375) 2006; 214
Byrd (10.1016/j.jhydrol.2023.130048_b0040) 1995; 16
Ding (10.1016/j.jhydrol.2023.130048_b0070) 2009; 230
Kissas (10.1016/j.jhydrol.2023.130048_b0180) 2020; 358
Markidis (10.1016/j.jhydrol.2023.130048_b0220) 2021; Volume 4
Chen (10.1016/j.jhydrol.2023.130048_b0055) 2021; 12
Karniadakis (10.1016/j.jhydrol.2023.130048_b0170) 2021; 3
Yadav (10.1016/j.jhydrol.2023.130048_b0370) 2016; 72
Guo (10.1016/j.jhydrol.2023.130048_b0110) 2011; 27
Javadi (10.1016/j.jhydrol.2023.130048_b0165) 2008; 134
Raissi (10.1016/j.jhydrol.2023.130048_b0285) 2019; 378
Alonso (10.1016/j.jhydrol.2023.130048_b0005) 1994; 1994–0056
Huyakorn (10.1016/j.jhydrol.2023.130048_b0155) 2012
10.1016/j.jhydrol.2023.130048_b0275
Franca (10.1016/j.jhydrol.2023.130048_b0100) 1992; 95
Guyonnet (10.1016/j.jhydrol.2023.130048_b0115) 2004; 75
Li (10.1016/j.jhydrol.2023.130048_b0205) 2021; arXiv:2111.03794
Franca (10.1016/j.jhydrol.2023.130048_b0095) 1995; 123
Feng (10.1016/j.jhydrol.2023.130048_b0090) 2023; 59
References_xml – reference: Kingma, D. P., and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv:1412.6980.
– volume: 348
  start-page: 683
  year: 2017
  end-page: 693
  ident: b0280
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
– volume: 16
  start-page: 1190
  year: 1995
  end-page: 1208
  ident: b0040
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
– volume: 214
  start-page: 1
  year: 2006
  end-page: 11
  ident: b0375
  article-title: A high-order Pade ADI method for unsteady convection-diffusion equations
  publication-title: J. Comput. Phys.
– volume: arXiv:2111.03794
  year: 2021
  ident: b0205
  article-title: Physics-Informed Neural Operator for Learning Partial
  publication-title: Differential Equations
– reference: Raissi, M., Perdikaris, P., Karniadakis, G. E., 2017. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv:1711.10561.
– volume: 123
  start-page: 299
  year: 1995
  end-page: 308
  ident: b0095
  article-title: Bubble functions prompt unusual stabilized fifinite element methods
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 134
  start-page: 214
  year: 2008
  end-page: 230
  ident: b0165
  article-title: Numerical modelling of contaminant transport through soils: Case study
  publication-title: J. Geotech. Geoenviron. Eng.
– reference: Koryagin, A., Khudorozkov, R., Tsimfer, S., 2019. PyDEns: a Python Framework for Solving Differential Equations with Neural Networks. arxiv:1909.11544.
– year: 2013
  ident: b0260
  article-title: Finite element simulation in surface and subsurface hydrology
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  ident: b0290
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
– volume: 9
  start-page: 1
  year: 2022
  end-page: 23
  ident: b0045
  article-title: Physics-Informed Neural Network water surface predictability for 1D steady-state open channel cases with different flow types and complex bed profile shapes
  publication-title: Advanced Modeling and Simulation in Engineering Sciences
– reference: Zong, Y., He, Q., Tartakovsky, A. M., 2022. Physics-Informed Neural Network Method for Parabolic Differential Equations with Sharply Perturbed Initial Conditions. arXiv preprint arXiv:2208.08635.
– volume: 59
  start-page: e2022
  year: 2023
  ident: b0090
  article-title: Physics-Informed Neural Networks of the Saint-Venant Equations for Downscaling a Large-Scale River Model
  publication-title: Water Resour. Res.
– volume: 230
  start-page: 600
  year: 2009
  end-page: 606
  ident: b0070
  article-title: A new difference scheme with high accuracy and absolute stability for solving convection diffusion equations
  publication-title: J. Comput. Appl. Math.
– volume: 122
  start-page: 830
  year: 1996
  end-page: 832
  ident: b0305
  article-title: Solution of the advection-dispersion equation: continuous load of finite duration
  publication-title: J. Environ. Eng.
– volume: 178
  start-page: 215
  year: 1999
  end-page: 232
  ident: b0230
  article-title: Positivity Preserving Finite Volume Roe Schemes for Transport-Diffusion Equations
  publication-title: Comput. Methods Appl. Mech. Eng.
– reference: Szymkiewicz, R., 2010. Numerical Integration of the System of Saint Venant Equations. In: Numerical Modeling in Open Channel Hydraulics. Water Science and Technology Library, 83, 301-365. https://doi.org/10.1007/978-90-481-3674-2_8.
– reference: Deng, J., Li, X. A., Wu, J., Zhang, S., Li, W., Wang, Y. G., 2023. Physical informed neural networks with soft and hard boundary constraints for solving advection-diffusion equations using Fourier expansions. arXiv preprint arXiv:2306.12749.
– volume: 13
  start-page: 233
  year: 1974
  end-page: 247
  ident: b0060
  article-title: A finite element method for a non-linear initial value problem
  publication-title: IMA J. Appl. Math.
– volume: 129914
  year: 2023
  ident: b0245
  article-title: An efficient LSTM networks for predicting the tailing and multi-peaked breakthrough curves
  publication-title: J. Hydrol.
– volume: 72
  start-page: 1021
  year: 2016
  end-page: 1030
  ident: b0370
  article-title: Numerical solution of unsteady advection dispersion equation arising in contaminant transport through porous media using neural networks
  publication-title: Comput. Math. Appl.
– volume: 69
  start-page: 168
  year: 2014
  end-page: 180
  ident: b0030
  article-title: Parameter-independent model reduction of transient groundwater flflow models: Application to inverse problems
  publication-title: Adv. Water Resour.
– volume: 53
  start-page: 1352
  year: 2017
  end-page: 1363
  ident: b0265
  article-title: Some classes of inverse problems of determining the source function in convection–diffusion systems
  publication-title: Differ. Equ.
– volume: 63
  start-page: 345
  year: 1983
  end-page: 358
  ident: b0195
  article-title: Unsteady flow against dispersion in finite porous media
  publication-title: J. Hydrol.
– volume: 37
  start-page: 277
  year: 1998
  end-page: 284
  ident: b0105
  article-title: A stochastic approach to modelling solid transport in settling tanks
  publication-title: Water Sci. Technol.
– volume: 54
  start-page: 341
  year: 1986
  end-page: 355
  ident: b0140
  article-title: A new fifinite element formulation for computational flfluid dynamics: II
  publication-title: Beyond SUPG, Computer Methods in Applied Mechanics and Engineering.
– volume: 39
  start-page: 1
  year: 2020
  end-page: 20
  ident: b0320
  article-title: Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks
  publication-title: J. Nondestr. Eval.
– volume: 7
  start-page: 207
  year: 1979
  end-page: 228
  ident: b0210
  article-title: A wave equation model for finite element tidal computations
  publication-title: Comput. Fluids
– volume: 12
  start-page: 3580
  year: 2020
  ident: b0190
  article-title: Solving transient groundwater inverse problems using space–time collocation Trefftz method
  publication-title: Water.
– volume: 27
  start-page: 415
  year: 2011
  end-page: 430
  ident: b0110
  article-title: Finite-volume multi-stage scheme for advection-diffusion modeling in shallow water flows
  publication-title: J. Mech.
– volume: 12
  start-page: 6136
  year: 2021
  ident: b0055
  article-title: Physics-informed learning of governing equations from scarce data
  publication-title: Nat. Commun.
– volume: 23
  start-page: 741
  year: 2002
  end-page: 747
  ident: b0360
  article-title: High-Resolution Numerical Model for Shallow Water Flows and Pollutant Diffusions
  publication-title: Appl. Math. Mech.
– year: 1989
  ident: b0145
  article-title: A new fifinite element formulation for computational flfluid dynamics: VIII
  publication-title: The galerkin/least-squares method for advective-diffffusive equations, Computer Methods in Applied Mechanics and Engineering.
– year: 2012
  ident: b0155
  article-title: Computational methods in subsurface flow
– volume: 117
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0355
  article-title: Iterative coupling algorithms for large multidomain problems with the boundary element method
  publication-title: Int. J. Numer. Meth. Eng.
– year: 2006
  ident: b0160
  article-title: On numerical solutions of the shallow water wave equations
– volume: 1994–0056
  year: 1994
  ident: b0005
  article-title: Fully-implicit time-marching aeroelastic solutions
  publication-title: AIAA.
– volume: 27
  start-page: 2719
  year: 1991
  end-page: 2733
  ident: b0200
  article-title: Analytical solution for solute transport in three dimensional semi-infinite porous media
  publication-title: Water Resour. Res.
– volume: 182
  start-page: 649
  year: 2011
  end-page: 662
  ident: b0350
  article-title: A rational high-order compact ADI method for unsteady convection-diffusion equations
  publication-title: Comput. Phys. Commun.
– volume: 226
  start-page: 180
  year: 2007
  end-page: 203
  ident: bib381
  article-title: Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes
  publication-title: J. Comput. Phys.
– reference: Bischof, R., and Kraus, M. A., 2021. Multi-Objective Loss Balancing for Physics-Informed Deep Learning. arXiv:2110.09813.
– volume: 135
  start-page: 260
  year: 1997
  end-page: 278
  ident: b0120
  article-title: High resolution schemes for hyperbolic conservation laws
  publication-title: J. Comput. Phys.
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: b0170
  article-title: Physics-informed machine learning. Nature Reviews
  publication-title: Physics
– volume: 33
  start-page: 974
  year: 2017
  end-page: 994
  ident: b0315
  article-title: Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis
  publication-title: Numer. Meth. Part Differ. Equ.
– volume: 194
  start-page: 1141
  year: 2005
  end-page: 1159
  ident: b0150
  article-title: Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: Volume 4
  year: 2021
  ident: b0220
  publication-title: The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Frontiers in Big Data.
– volume: 317
  start-page: 28
  year: 2018
  end-page: 41
  ident: b0015
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
– volume: 141
  year: 2020
  ident: b0125
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv. Water Resour.
– volume: 31
  start-page: 1578
  year: 2008
  end-page: 1589
  ident: b0135
  article-title: A finite element solution for the fractional advection dispersion equation
  publication-title: Adv. Water Resour.
– volume: 16
  start-page: 393
  year: 2002
  end-page: 412
  ident: b0235
  article-title: Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events
  publication-title: Hydrol. Process.
– volume: 29
  start-page: 1000
  year: 2006
  end-page: 1019
  ident: b0080
  article-title: Diffusive wave solutions for open channel flows with uniform and concentrated lateral inflow
  publication-title: Adv. Water Resour.
– volume: 509
  start-page: 282
  year: 2014
  end-page: 294
  ident: b0365
  article-title: Linear diffusion-wave channel routing using a discrete Hayami convolution method
  publication-title: J. Hydrol.
– start-page: 77
  year: 2022
  end-page: 91
  ident: b0215
  article-title: Physics Informed Neural Network for Spatial-Temporal Flood Forecasting
  publication-title: Climate Change and Water Security
– volume: 32
  start-page: 199
  year: 1982
  end-page: 259
  ident: b0035
  article-title: Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 107
  start-page: 189
  year: 2015
  end-page: 195
  ident: b0225
  article-title: One-dimensional linear advection-diffusion equation: Analytical and finite element solutions
  publication-title: Comput. Fluids
– volume: 218
  start-page: 9853
  year: 2012
  end-page: 9865
  ident: b0310
  article-title: A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains
  publication-title: Appl. Math. Comput.
– volume: 47
  start-page: 1
  year: 1982
  end-page: 108
  ident: b0345
  article-title: Boundary-fitted coordinate systems for numerical solution of partial differential equations-a review
  publication-title: J. Comput. Phys.
– reference: Baydin, A. G., Pearlmutter, B. A, Radul, A. A., Siskind, J. M., 2015. Automatic differentiation in machine learning: a survey. arXiv:1502.05767.
– volume: 17
  start-page: 119
  year: 1985
  end-page: 149
  ident: b0050
  article-title: Mathematical models of dispersion in rivers and estuaries
  publication-title: Annu. Rev. Fluid Mech.
– volume: 95
  start-page: 253
  year: 1992
  end-page: 276
  ident: b0100
  article-title: Stabilized finite element methods: I. Application to the advective-diffusive model
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 360
  start-page: 112789
  year: 2020
  ident: bib382
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 57
  year: 2021
  ident: b0130
  article-title: Physics-Informed Neural Network Method for Forward and Backward Advection-Dispersion Equations
  publication-title: Water Resour. Res.
– volume: 132
  start-page: 125
  year: 2006
  end-page: 132
  ident: b0295
  article-title: Green's Function of the Linearized de Saint-Venant Equations
  publication-title: J. Eng. Mech.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b0285
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 361
  start-page: 112732
  year: 2020
  ident: b0325
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2022
  ident: b0240
  article-title: Physics-Informed Neural Networks for Modeling Water Flows in a River Channel
  publication-title: IEEE Transactions on Artificial
– volume: 56
  year: 2020
  ident: b0340
  article-title: Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems
  publication-title: Water Resour. Res.
– volume: 26
  start-page: 217
  year: 1975
  end-page: 235
  ident: b0250
  article-title: Dilution and decay of aquatic herbicides in flowing channels
  publication-title: J. Hydrol.
– volume: 332
  start-page: 520
  year: 2017
  end-page: 537
  ident: b0025
  article-title: A high-order discontinuous Galerkin method for unsteady advection-diffusion problems
  publication-title: J. Comput. Phys.
– reference: Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 249–256.
– volume: 75
  start-page: 141
  year: 2004
  end-page: 153
  ident: b0115
  article-title: Dimensionless analysis of two analytical solutions for 3-D solute transport in groundwater
  publication-title: J. Contam. Hydrol.
– volume: 3
  start-page: 45
  year: 2014
  end-page: 69
  ident: b0255
  article-title: Contaminant transport through porous media: An overview of experimental and numerical studies
  publication-title: Adv. Environ. Res.
– volume: 19
  start-page: 932
  year: 2018
  end-page: 955
  ident: b0270
  article-title: Deep hidden physics models: Deep learning of nonlinear partial differential equations
  publication-title: The Journal of Machine Learning Research.
– volume: 358
  year: 2020
  ident: b0180
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 194
  start-page: 1141
  issue: 9–11
  year: 2005
  ident: 10.1016/j.jhydrol.2023.130048_b0150
  article-title: Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.06.034
– volume: 134
  start-page: 214
  issue: 2
  year: 2008
  ident: 10.1016/j.jhydrol.2023.130048_b0165
  article-title: Numerical modelling of contaminant transport through soils: Case study
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(2008)134:2(214)
– volume: 3
  start-page: 45
  issue: 1
  year: 2014
  ident: 10.1016/j.jhydrol.2023.130048_b0255
  article-title: Contaminant transport through porous media: An overview of experimental and numerical studies
  publication-title: Adv. Environ. Res.
  doi: 10.12989/aer.2014.3.1.045
– ident: 10.1016/j.jhydrol.2023.130048_bib385
– volume: 16
  start-page: 1190
  issue: 5
  year: 1995
  ident: 10.1016/j.jhydrol.2023.130048_b0040
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916069
– year: 1989
  ident: 10.1016/j.jhydrol.2023.130048_b0145
  article-title: A new fifinite element formulation for computational flfluid dynamics: VIII
  publication-title: The galerkin/least-squares method for advective-diffffusive equations, Computer Methods in Applied Mechanics and Engineering.
  doi: 10.1016/0045-7825(89)90111-4
– volume: 361
  start-page: 112732
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130048_b0325
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112732
– volume: 230
  start-page: 600
  issue: 2
  year: 2009
  ident: 10.1016/j.jhydrol.2023.130048_b0070
  article-title: A new difference scheme with high accuracy and absolute stability for solving convection diffusion equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.12.015
– volume: 117
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130048_b0355
  article-title: Iterative coupling algorithms for large multidomain problems with the boundary element method
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.5943
– volume: 9
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2023.130048_b0045
  article-title: Physics-Informed Neural Network water surface predictability for 1D steady-state open channel cases with different flow types and complex bed profile shapes
  publication-title: Advanced Modeling and Simulation in Engineering Sciences
  doi: 10.1186/s40323-022-00226-8
– ident: 10.1016/j.jhydrol.2023.130048_b0335
  doi: 10.1007/978-90-481-3674-2_8
– volume: 27
  start-page: 2719
  issue: 10
  year: 1991
  ident: 10.1016/j.jhydrol.2023.130048_b0200
  article-title: Analytical solution for solute transport in three dimensional semi-infinite porous media
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR01912
– ident: 10.1016/j.jhydrol.2023.130048_b0380
  doi: 10.2139/ssrn.4201377
– volume: 17
  start-page: 119
  issue: 1
  year: 1985
  ident: 10.1016/j.jhydrol.2023.130048_b0050
  article-title: Mathematical models of dispersion in rivers and estuaries
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.17.010185.001003
– volume: 7
  start-page: 207
  issue: 3
  year: 1979
  ident: 10.1016/j.jhydrol.2023.130048_b0210
  article-title: A wave equation model for finite element tidal computations
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(79)90037-9
– volume: 367
  start-page: 1026
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130048_b0290
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– volume: arXiv:2111.03794
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130048_b0205
  article-title: Physics-Informed Neural Operator for Learning Partial
  publication-title: Differential Equations
– year: 2013
  ident: 10.1016/j.jhydrol.2023.130048_b0260
– volume: 95
  start-page: 253
  issue: 2
  year: 1992
  ident: 10.1016/j.jhydrol.2023.130048_b0100
  article-title: Stabilized finite element methods: I. Application to the advective-diffusive model
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(92)90143-8
– start-page: 77
  year: 2022
  ident: 10.1016/j.jhydrol.2023.130048_b0215
  article-title: Physics Informed Neural Network for Spatial-Temporal Flood Forecasting
– volume: 13
  start-page: 233
  issue: 2
  year: 1974
  ident: 10.1016/j.jhydrol.2023.130048_b0060
  article-title: A finite element method for a non-linear initial value problem
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/13.2.233
– volume: 509
  start-page: 282
  year: 2014
  ident: 10.1016/j.jhydrol.2023.130048_b0365
  article-title: Linear diffusion-wave channel routing using a discrete Hayami convolution method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.11.046
– volume: 53
  start-page: 1352
  year: 2017
  ident: 10.1016/j.jhydrol.2023.130048_b0265
  article-title: Some classes of inverse problems of determining the source function in convection–diffusion systems
  publication-title: Differ. Equ.
  doi: 10.1134/S0012266117100123
– volume: 16
  start-page: 393
  year: 2002
  ident: 10.1016/j.jhydrol.2023.130048_b0235
  article-title: Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.333
– volume: 47
  start-page: 1
  issue: 1
  year: 1982
  ident: 10.1016/j.jhydrol.2023.130048_b0345
  article-title: Boundary-fitted coordinate systems for numerical solution of partial differential equations-a review
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(82)90066-3
– volume: 19
  start-page: 932
  issue: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130048_b0270
  article-title: Deep hidden physics models: Deep learning of nonlinear partial differential equations
  publication-title: The Journal of Machine Learning Research.
– volume: 37
  start-page: 277
  issue: 1
  year: 1998
  ident: 10.1016/j.jhydrol.2023.130048_b0105
  article-title: A stochastic approach to modelling solid transport in settling tanks
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1998.0066
– volume: 107
  start-page: 189
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130048_b0225
  article-title: One-dimensional linear advection-diffusion equation: Analytical and finite element solutions
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2014.11.006
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130048_b0285
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 39
  start-page: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130048_b0320
  article-title: Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks
  publication-title: J. Nondestr. Eval.
  doi: 10.1007/s10921-020-00705-1
– volume: 32
  start-page: 199
  issue: 1–3
  year: 1982
  ident: 10.1016/j.jhydrol.2023.130048_b0035
  article-title: Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(82)90071-8
– volume: 56
  issue: 5
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130048_b0340
  article-title: Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026731
– year: 2006
  ident: 10.1016/j.jhydrol.2023.130048_b0160
– ident: 10.1016/j.jhydrol.2023.130048_b0275
– volume: 332
  start-page: 520
  year: 2017
  ident: 10.1016/j.jhydrol.2023.130048_b0025
  article-title: A high-order discontinuous Galerkin method for unsteady advection-diffusion problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.021
– ident: 10.1016/j.jhydrol.2023.130048_b0065
– volume: 129914
  year: 2023
  ident: 10.1016/j.jhydrol.2023.130048_b0245
  article-title: An efficient LSTM networks for predicting the tailing and multi-peaked breakthrough curves
  publication-title: J. Hydrol.
– volume: 59
  start-page: e2022
  issue: 2
  year: 2023
  ident: 10.1016/j.jhydrol.2023.130048_b0090
  article-title: Physics-Informed Neural Networks of the Saint-Venant Equations for Downscaling a Large-Scale River Model
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR033168
– volume: 360
  start-page: 112789
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130048_bib382
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112789
– volume: 135
  start-page: 260
  issue: 2
  year: 1997
  ident: 10.1016/j.jhydrol.2023.130048_b0120
  article-title: High resolution schemes for hyperbolic conservation laws
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5713
– volume: 317
  start-page: 28
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130048_b0015
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– volume: 57
  issue: 7
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130048_b0130
  article-title: Physics-Informed Neural Network Method for Forward and Backward Advection-Dispersion Equations
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR029479
– year: 2022
  ident: 10.1016/j.jhydrol.2023.130048_b0240
  article-title: Physics-Informed Neural Networks for Modeling Water Flows in a River Channel
  publication-title: IEEE Transactions on Artificial
– volume: 348
  start-page: 683
  year: 2017
  ident: 10.1016/j.jhydrol.2023.130048_b0280
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.07.050
– volume: 69
  start-page: 168
  year: 2014
  ident: 10.1016/j.jhydrol.2023.130048_b0030
  article-title: Parameter-independent model reduction of transient groundwater flflow models: Application to inverse problems
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2014.04.009
– volume: 27
  start-page: 415
  issue: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2023.130048_b0110
  article-title: Finite-volume multi-stage scheme for advection-diffusion modeling in shallow water flows
  publication-title: J. Mech.
  doi: 10.1017/jmech.2011.44
– volume: 75
  start-page: 141
  issue: 2
  year: 2004
  ident: 10.1016/j.jhydrol.2023.130048_b0115
  article-title: Dimensionless analysis of two analytical solutions for 3-D solute transport in groundwater
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2004.06.004
– volume: 214
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.jhydrol.2023.130048_b0375
  article-title: A high-order Pade ADI method for unsteady convection-diffusion equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.10.001
– ident: 10.1016/j.jhydrol.2023.130048_b0010
– volume: 12
  start-page: 6136
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130048_b0055
  article-title: Physics-informed learning of governing equations from scarce data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26434-1
– volume: 63
  start-page: 345
  issue: 3–4
  year: 1983
  ident: 10.1016/j.jhydrol.2023.130048_b0195
  article-title: Unsteady flow against dispersion in finite porous media
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(83)90050-1
– volume: 72
  start-page: 1021
  issue: 4
  year: 2016
  ident: 10.1016/j.jhydrol.2023.130048_b0370
  article-title: Numerical solution of unsteady advection dispersion equation arising in contaminant transport through porous media using neural networks
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.06.014
– volume: Volume 4
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130048_b0220
  publication-title: The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Frontiers in Big Data.
– volume: 3
  start-page: 422
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130048_b0170
  article-title: Physics-informed machine learning. Nature Reviews
  publication-title: Physics
– ident: 10.1016/j.jhydrol.2023.130048_b0175
– volume: 122
  start-page: 830
  issue: 9
  year: 1996
  ident: 10.1016/j.jhydrol.2023.130048_b0305
  article-title: Solution of the advection-dispersion equation: continuous load of finite duration
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(1996)122:9(830)
– volume: 218
  start-page: 9853
  year: 2012
  ident: 10.1016/j.jhydrol.2023.130048_b0310
  article-title: A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains
  publication-title: Appl. Math. Comput.
– volume: 1994–0056
  year: 1994
  ident: 10.1016/j.jhydrol.2023.130048_b0005
  article-title: Fully-implicit time-marching aeroelastic solutions
  publication-title: AIAA.
– volume: 29
  start-page: 1000
  year: 2006
  ident: 10.1016/j.jhydrol.2023.130048_b0080
  article-title: Diffusive wave solutions for open channel flows with uniform and concentrated lateral inflow
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2005.08.008
– volume: 54
  start-page: 341
  issue: 3
  year: 1986
  ident: 10.1016/j.jhydrol.2023.130048_b0140
  article-title: A new fifinite element formulation for computational flfluid dynamics: II
  publication-title: Beyond SUPG, Computer Methods in Applied Mechanics and Engineering.
  doi: 10.1016/0045-7825(86)90110-6
– volume: 226
  start-page: 180
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2023.130048_bib381
  article-title: Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.04.005
– volume: 31
  start-page: 1578
  issue: 12
  year: 2008
  ident: 10.1016/j.jhydrol.2023.130048_b0135
  article-title: A finite element solution for the fractional advection dispersion equation
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2008.07.002
– volume: 358
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130048_b0180
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112623
– volume: 26
  start-page: 217
  year: 1975
  ident: 10.1016/j.jhydrol.2023.130048_b0250
  article-title: Dilution and decay of aquatic herbicides in flowing channels
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(75)90004-9
– volume: 12
  start-page: 3580
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130048_b0190
  article-title: Solving transient groundwater inverse problems using space–time collocation Trefftz method
  publication-title: Water.
  doi: 10.3390/w12123580
– ident: 10.1016/j.jhydrol.2023.130048_b0020
– volume: 23
  start-page: 741
  year: 2002
  ident: 10.1016/j.jhydrol.2023.130048_b0360
  article-title: High-Resolution Numerical Model for Shallow Water Flows and Pollutant Diffusions
  publication-title: Appl. Math. Mech.
  doi: 10.1007/BF02456969
– ident: 10.1016/j.jhydrol.2023.130048_b0185
– year: 2012
  ident: 10.1016/j.jhydrol.2023.130048_b0155
– volume: 123
  start-page: 299
  issue: 1–4
  year: 1995
  ident: 10.1016/j.jhydrol.2023.130048_b0095
  article-title: Bubble functions prompt unusual stabilized fifinite element methods
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(94)00721-X
– volume: 132
  start-page: 125
  issue: 2
  year: 2006
  ident: 10.1016/j.jhydrol.2023.130048_b0295
  article-title: Green's Function of the Linearized de Saint-Venant Equations
  publication-title: J. Eng. Mech.
– volume: 178
  start-page: 215
  year: 1999
  ident: 10.1016/j.jhydrol.2023.130048_b0230
  article-title: Positivity Preserving Finite Volume Roe Schemes for Transport-Diffusion Equations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00015-8
– volume: 141
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130048_b0125
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103610
– volume: 33
  start-page: 974
  year: 2017
  ident: 10.1016/j.jhydrol.2023.130048_b0315
  article-title: Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis
  publication-title: Numer. Meth. Part Differ. Equ.
  doi: 10.1002/num.22135
– volume: 182
  start-page: 649
  issue: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2023.130048_b0350
  article-title: A rational high-order compact ADI method for unsteady convection-diffusion equations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.11.013
SSID ssj0000334
Score 2.475921
Snippet •Applied physics-informed neural network (PINN) to solve solve coupled shallow water and transport equations.•PINN outperforms the traditional numerical finite...
The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130048
SubjectTerms Advection-diffusion equation
data collection
de Saint-Venant equation
diffusivity
ENVIRONMENTAL SCIENCES
equations
multi-physics problem in hydrology
overland flow
Physics-informed neural network
solute transport in surface water
Solute transport in surface water, multi-physics problem in hydrology
solutes
surface water
transient flow
Title 1-D coupled surface flow and transport equations revisited via the physics-informed neural network approach
URI https://dx.doi.org/10.1016/j.jhydrol.2023.130048
https://www.proquest.com/docview/3153199287
https://www.osti.gov/servlets/purl/2202422
Volume 625
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LBdhj2xrFuhAbsqiSXZjo9FtyLbgJ5WoDdBkhk0WWCneWzopb-9pCWvGDagwI6WQdCgJPKTRX4E-KiyoqpcruVEmyCNRyOdyzJZBFUWDjUq37F9nhezC_P1Mr88gNO-FobTKpPvjz6989ZpZJysOV4vFlzjq1gT4QGGOcz4eago2k8HcHjy5dvs_N4ha2160nAWuC_kGS9Hy6ubetPyJYTSXWtk7gT07xA1aGnX_eWzu0B09gyeJgQpTuJHPocDbF7A49TM_OrmJfzI5CcR2v16hbXY7jdzF1DMV-0v4Zpa7Ho2c4HXkeZ7KzZdiTlhT_Fz4QRBQhF_eGxl5FWlF8x7SVqbmDUueiryV3Bx9vn76UymngoyEPTaSVfU3udqgoUncOX59JgZrDQWWIbJHB0dAb1H58tKhekkn9eh1jjNjXaOyfb0axg0bYNvQARf1rrsSLu0yfOSxPiSUIeMFPjKDcH0ZrQhEY5z34uV7TPLljZZ37L1bbT-EEa_xdaRceMhgWk_R_aPpWMpKjwkesRzymJMmRs4t4jklGLkoobwoZ9qS5uOb1Jcg-1-a3XGrovWWvn2_5UfwRN-ipmB72Cw2-zxPSGcnT-GR6Pb7Dit4ztggfvK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2h5QCXikIrtlAwUq9mN7aTbI6IgpavPYHEzbKdWbHbVbLdDxD_vp7YKapaCanXRE8Tje3xczzzBuCbSLKiMKnkfakcVxYVNyZJeOZEnhmUKGyj9jnKhg_q-jF93IDzthaG0ipj7A8xvYnW8UkverM3n0yoxleQJc8HiOaQ4uemoqbWHdg8u7oZjt4CspSqFQ0nwFshT296On16LRc1XUII2bRGpk5A_96iOrVfdX_F7GYjutyBD5FBsrPwkR9hA6td2IrNzJ9e9-BHwr8zV6_nMyzZcr0YG4dsPKtfmKlKtmrVzBn-DDLfS7ZoSsw992TPE8M8JWThh8eSB11V_4J0L73VKmSNs1aK_BM8XF7cnw957KnAnadeK26y0tpU9DGznlxZOj0mCguJGeauP0bjj4DWorF5Idygn45LV0ocpEoaQ2J78jN0qrrCfWDO5qXMG9EuqdI09zC6JJQu8QZsYbqgWjdqFwXHqe_FTLeZZVMdva_J-zp4vwunv2HzoLjxHmDQjpH-Y-povyu8Bz2gMSUYSeY6yi3yOCGIuYgunLRDrf2io5sUU2G9XmqZUOgq_Gnzy_8bP4at4f3drb69Gt0cwDa9CVmCh9BZLdb41bOdlT2Ks_kXT7f9sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1-D+coupled+surface+flow+and+transport+equations+revisited+via+the+physics-informed+neural+network+approach&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Niu%2C+Jie&rft.au=Xu%2C+Wei&rft.au=Qiu%2C+Han&rft.au=Li%2C+Shan&rft.date=2023-10-01&rft.issn=0022-1694&rft.volume=625+p.130048-&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.130048&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon