On the “Loose” Constraint from IceCube Neutrino Nondetection of GRB 230307A
The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos. Within the constraint from IceCube neutrino nondetection, the limits for key physical parameters of this burst are extracted in different scen...
Saved in:
Published in | The Astrophysical journal Vol. 958; no. 2; pp. 133 - 143 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.12.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ad02ef |
Cover
Abstract | The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos. Within the constraint from IceCube neutrino nondetection, the limits for key physical parameters of this burst are extracted in different scenarios, including the fireball, Poynting-flux-dominated, and hybrid jet. Different from the former nearby “monsters” and due to its smaller isotropic equivalent radiated energy (
E
γ
,iso
∼ 4 × 10
52
erg), the constraint seems loose if nonthermal neutrinos produced from photomeson interactions are the only consideration. However, a quasi-thermal neutrino emission from hadronuclear processes is constrained in this neutron-rich postmerger environment, and the upper limit of the allowed nucleon loading factor is ∼a few. Based on this, a discussion is presented on the possible prompt emission mechanism and jet composition for GRB 230307A in the context of multimessenger astrophysics. It is worth noting that until now, no GRB neutrinos have been ever detected, even for the two brightest nearby GRBs ever observed (GRB 221009A and GRB 230307A), which have different dissipation mechanisms. |
---|---|
AbstractList | The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos. Within the constraint from IceCube neutrino nondetection, the limits for key physical parameters of this burst are extracted in different scenarios, including the fireball, Poynting-flux-dominated, and hybrid jet. Different from the former nearby “monsters” and due to its smaller isotropic equivalent radiated energy (
E
γ
,iso
∼ 4 × 10
52
erg), the constraint seems loose if nonthermal neutrinos produced from photomeson interactions are the only consideration. However, a quasi-thermal neutrino emission from hadronuclear processes is constrained in this neutron-rich postmerger environment, and the upper limit of the allowed nucleon loading factor is ∼a few. Based on this, a discussion is presented on the possible prompt emission mechanism and jet composition for GRB 230307A in the context of multimessenger astrophysics. It is worth noting that until now, no GRB neutrinos have been ever detected, even for the two brightest nearby GRBs ever observed (GRB 221009A and GRB 230307A), which have different dissipation mechanisms. The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos. Within the constraint from IceCube neutrino nondetection, the limits for key physical parameters of this burst are extracted in different scenarios, including the fireball, Poynting-flux-dominated, and hybrid jet. Different from the former nearby “monsters” and due to its smaller isotropic equivalent radiated energy ( E _γ _,iso ∼ 4 × 10 ^52 erg), the constraint seems loose if nonthermal neutrinos produced from photomeson interactions are the only consideration. However, a quasi-thermal neutrino emission from hadronuclear processes is constrained in this neutron-rich postmerger environment, and the upper limit of the allowed nucleon loading factor is ∼a few. Based on this, a discussion is presented on the possible prompt emission mechanism and jet composition for GRB 230307A in the context of multimessenger astrophysics. It is worth noting that until now, no GRB neutrinos have been ever detected, even for the two brightest nearby GRBs ever observed (GRB 221009A and GRB 230307A), which have different dissipation mechanisms. The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos. Within the constraint from IceCube neutrino nondetection, the limits for key physical parameters of this burst are extracted in different scenarios, including the fireball, Poynting-flux-dominated, and hybrid jet. Different from the former nearby “monsters” and due to its smaller isotropic equivalent radiated energy (Eγ,iso ∼ 4 × 1052 erg), the constraint seems loose if nonthermal neutrinos produced from photomeson interactions are the only consideration. However, a quasi-thermal neutrino emission from hadronuclear processes is constrained in this neutron-rich postmerger environment, and the upper limit of the allowed nucleon loading factor is ∼a few. Based on this, a discussion is presented on the possible prompt emission mechanism and jet composition for GRB 230307A in the context of multimessenger astrophysics. It is worth noting that until now, no GRB neutrinos have been ever detected, even for the two brightest nearby GRBs ever observed (GRB 221009A and GRB 230307A), which have different dissipation mechanisms. |
Author | Song, Xin-Ying |
Author_xml | – sequence: 1 givenname: Xin-Ying orcidid: 0000-0002-2176-8778 surname: Song fullname: Song, Xin-Ying organization: Chinese Academy of Sciences Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Beijing 100049, People's Republic of China |
BookMark | eNp9kc1q3DAUhUVIIZO0-ywF2daN7CvrZ5kO7WRgyEBJoDshS9eJh4k0kTWL7vIgycvlSWrHJYFCu5J0ON_R5dxjchhiQEJOS_YFFJfnZQ2q4FDLc-tZhe0Bmb1Jh2TGGOOFAPnziBz3_WZ8VlrPyHodaL5D-vL4tIqxx5fHZzqPoc_JdiHTNsV7unQ43zdIr3CfUxcivYrBY0aXuxhobOnix1daAQMmLz6SD63d9vjpz3lCbr5_u55fFqv1Yjm_WBWOlyIXGhpdCtSgUaEfb4iKccGcEkK5RktoXOtky7ngYAGcF94NSltX4MHBCVlOuT7ajdml7t6mXybazrwKMd0am3LntmiEB5Qg6xoaz5l0GjWrS1cJbcu6cTBknU1ZuxQf9thns4n7FIbxTaX0gHCl1eBik8ul2PcJ27dfS2bGFZixbzP2baYVDIj4C3FdtmNrY73b_4GfJ7CLu_dh_mn_Dc08mv4 |
CitedBy_id | crossref_primary_10_1093_mnras_stae340 crossref_primary_10_1103_PhysRevD_111_043035 |
Cites_doi | 10.1103/PhysRevLett.85.1362 10.1051/0004-6361:20077560 10.1086/430818 10.1103/PhysRevLett.75.386 10.1086/374217 10.3847/1538-4357/aca969 10.1103/PhysRevD.93.083003 10.3847/1538-4357/acb3bf 10.1093/mnras/sts219 10.1086/311644 10.3847/1538-4357/aa7569 10.1088/0004-637X/738/1/77 10.1103/PhysRevLett.108.231101 10.1103/PhysRevLett.110.121101 10.3847/2041-8213/acc077 10.1038/s41586-022-05403-8 10.1088/0004-637X/691/2/L67 10.1093/mnras/183.3.359 10.3847/1538-4357/abe123 10.1088/0004-637X/813/2/127 10.1088/1475-7516/2012/11/058 10.1103/PhysRevLett.87.171102 10.1086/174178 10.3847/1538-4357/acd2ca 10.1103/PhysRevD.98.043020 10.1103/PhysRevLett.110.241101 10.1088/1475-7516/2021/05/034 10.3847/2041-8213/aca3ae 10.3847/2041-8213/acc84b 10.1111/j.1365-2966.2006.10417.x 10.1051/0004-6361:20047033 10.3847/1538-4357/ace721 10.1086/184741 10.1038/nature05376 10.1103/PhysRevLett.78.2292 10.1111/j.1365-2966.2010.16770.x 10.1086/184740 10.1086/176448 10.1086/588136 10.1103/PhysRevLett.111.121102 10.1103/PhysRevLett.111.131102 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/ad02ef |
DatabaseName | Institute of Physics Journals Open Access IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Journals Open Access url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_6d3e737553bd407c9e9051c269a15bc3 10_3847_1538_4357_ad02ef apjad02ef |
GrantInformation_xml | – fundername: National Programme on Key Research and Development Project grantid: 2021YFA0718500 – fundername: MOST ∣ National Natural Science Foundation of China (NSFC) grantid: 12303052 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M 2WC |
ID | FETCH-LOGICAL-c416t-93b916e939e8ed16e9ee80460c8668cb973bcfc7f44643a33cd6dccfcf523d3c3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:31:46 EDT 2025 Wed Aug 13 03:18:10 EDT 2025 Tue Jul 01 03:39:43 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Sun Aug 18 14:50:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-93b916e939e8ed16e9ee80460c8668cb973bcfc7f44643a33cd6dccfcf523d3c3 |
Notes | AAS48758 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2176-8778 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/ad02ef |
PQID | 2894074898 |
PQPubID | 4562441 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6d3e737553bd407c9e9051c269a15bc3 crossref_citationtrail_10_3847_1538_4357_ad02ef iop_journals_10_3847_1538_4357_ad02ef proquest_journals_2894074898 crossref_primary_10_3847_1538_4357_ad02ef |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Fermi GBM Team (apjad02efbib14) 2023 Rossi (apjad02efbib42) 2006; 369 Gehrels (apjad02efbib17) 2006; 444 Pe’er (apjad02efbib38) 2015; 813 Vietri (apjad02efbib45) 1995; 453 Vurm (apjad02efbib46) 2011; 738 IceCube Collaboration (apjad02efbib21) 2022 Bulla (apjad02efbib11) 2023 Abbasi (apjad02efbib2) 2021; 910 Bahcall (apjad02efbib7) 2000; 85 Pe’er (apjad02efbib37) 2008; 682 Paczynski (apjad02efbib35) 1986; 308 Svinkin (apjad02efbib44) 2023 Preece (apjad02efbib40) 1998; 506 Levan (apjad02efbib28) 2023b Kimura (apjad02efbib24) 2018; 98 Murase (apjad02efbib31) 2013; 111 Senno (apjad02efbib43) 2016; 93 Pitik (apjad02efbib39) 2021; 2021 Mészáros (apjad02efbib30) 2001; 87 Aimuratov (apjad02efbib6) 2023; 955 Kimura (apjad02efbib23) 2022 Paczynski (apjad02efbib36) 1994; 427 Murase (apjad02efbib32) 2013; 111 IceCube Collaboration (apjad02efbib22) 2023 Hümmer (apjad02efbib20) 2012; 108 Waxman (apjad02efbib48) 1995; 75 Zhang (apjad02efbib53) 2013; 110 Goodman (apjad02efbib19) 1986; 308 Gao (apjad02efbib16) 2012; 2012 Lundman (apjad02efbib29) 2013; 428 Gecam Team (apjad02efbib50) 2023 Aartsen (apjad02efbib1) 2017; 843 Cavallo (apjad02efbib12) 1978; 183 Beloborodov (apjad02efbib10) 2010; 407 O’Connor (apjad02efbib34) 2023 Bartos (apjad02efbib8) 2013; 110 Rees (apjad02efbib41) 2005; 628 Abbasi (apjad02efbib4) 2023b; 946 Yang (apjad02efbib51) 2022; 612 Giannios (apjad02efbib18) 2005; 430 Chang (apjad02efbib13) 2023; 943 Beloborodov (apjad02efbib9) 2003; 588 Wang (apjad02efbib47) 2009; 691 Fermi GBM Team (apjad02efbib15) 2023 Koers (apjad02efbib25) 2007; 471 Abbasi (apjad02efbib3) 2023a; 951 Levan (apjad02efbib27) 2023a Murase (apjad02efbib33) 2022; 941 Yang (apjad02efbib52) 2023; 947 Landau (apjad02efbib26) 1971 Ai (apjad02efbib5) 2023; 944 Waxman (apjad02efbib49) 1997; 78 |
References_xml | – volume: 85 start-page: 1362 year: 2000 ident: apjad02efbib7 publication-title: PhRvL doi: 10.1103/PhysRevLett.85.1362 – year: 1971 ident: apjad02efbib26 – volume: 471 start-page: 395 year: 2007 ident: apjad02efbib25 publication-title: A&A doi: 10.1051/0004-6361:20077560 – year: 2023a ident: apjad02efbib27 – volume: 628 start-page: 847 year: 2005 ident: apjad02efbib41 publication-title: ApJ doi: 10.1086/430818 – year: 2023 ident: apjad02efbib22 – volume: 75 start-page: 386 year: 1995 ident: apjad02efbib48 publication-title: PhRvL doi: 10.1103/PhysRevLett.75.386 – volume: 588 start-page: 931 year: 2003 ident: apjad02efbib9 publication-title: ApJ doi: 10.1086/374217 – volume: 943 start-page: 146 year: 2023 ident: apjad02efbib13 publication-title: ApJ doi: 10.3847/1538-4357/aca969 – year: 2022 ident: apjad02efbib23 – volume: 93 start-page: 083003 year: 2016 ident: apjad02efbib43 publication-title: PhRvD doi: 10.1103/PhysRevD.93.083003 – volume: 944 start-page: 115 year: 2023 ident: apjad02efbib5 publication-title: ApJ doi: 10.3847/1538-4357/acb3bf – volume: 428 start-page: 2430 year: 2013 ident: apjad02efbib29 publication-title: MNRAS doi: 10.1093/mnras/sts219 – volume: 506 start-page: L23 year: 1998 ident: apjad02efbib40 publication-title: ApJL doi: 10.1086/311644 – year: 2023 ident: apjad02efbib50 – year: 2023 ident: apjad02efbib11 – volume: 843 start-page: 112 year: 2017 ident: apjad02efbib1 publication-title: ApJ doi: 10.3847/1538-4357/aa7569 – volume: 738 start-page: 77 year: 2011 ident: apjad02efbib46 publication-title: ApJ doi: 10.1088/0004-637X/738/1/77 – volume: 108 start-page: 231101 year: 2012 ident: apjad02efbib20 publication-title: PhRvL doi: 10.1103/PhysRevLett.108.231101 – volume: 110 start-page: 121101 year: 2013 ident: apjad02efbib53 publication-title: PhRvL doi: 10.1103/PhysRevLett.110.121101 – volume: 946 start-page: L26 year: 2023b ident: apjad02efbib4 publication-title: ApJL doi: 10.3847/2041-8213/acc077 – year: 2023 ident: apjad02efbib44 – volume: 612 start-page: 232 year: 2022 ident: apjad02efbib51 publication-title: Natur doi: 10.1038/s41586-022-05403-8 – year: 2023 ident: apjad02efbib34 – volume: 691 start-page: L67 year: 2009 ident: apjad02efbib47 publication-title: ApJL doi: 10.1088/0004-637X/691/2/L67 – volume: 183 start-page: 359 year: 1978 ident: apjad02efbib12 publication-title: MNRAS doi: 10.1093/mnras/183.3.359 – year: 2023 ident: apjad02efbib15 – year: 2023 ident: apjad02efbib14 – volume: 910 start-page: 4 year: 2021 ident: apjad02efbib2 publication-title: ApJ doi: 10.3847/1538-4357/abe123 – volume: 813 start-page: 127 year: 2015 ident: apjad02efbib38 publication-title: ApJ doi: 10.1088/0004-637X/813/2/127 – volume: 2012 start-page: 058 year: 2012 ident: apjad02efbib16 publication-title: JCAP doi: 10.1088/1475-7516/2012/11/058 – volume: 87 start-page: 171102 year: 2001 ident: apjad02efbib30 publication-title: PhRvL doi: 10.1103/PhysRevLett.87.171102 – volume: 427 start-page: 708 year: 1994 ident: apjad02efbib36 publication-title: ApJ doi: 10.1086/174178 – volume: 951 start-page: 45 year: 2023a ident: apjad02efbib3 publication-title: ApJ doi: 10.3847/1538-4357/acd2ca – volume: 98 start-page: 043020 year: 2018 ident: apjad02efbib24 publication-title: PhRvD doi: 10.1103/PhysRevD.98.043020 – volume: 110 start-page: 241101 year: 2013 ident: apjad02efbib8 publication-title: PhRvL doi: 10.1103/PhysRevLett.110.241101 – volume: 2021 start-page: 034 year: 2021 ident: apjad02efbib39 publication-title: JCAP doi: 10.1088/1475-7516/2021/05/034 – volume: 941 start-page: L10 year: 2022 ident: apjad02efbib33 publication-title: ApJL doi: 10.3847/2041-8213/aca3ae – volume: 947 start-page: L11 year: 2023 ident: apjad02efbib52 publication-title: ApJL doi: 10.3847/2041-8213/acc84b – volume: 369 start-page: 1797 year: 2006 ident: apjad02efbib42 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10417.x – volume: 430 start-page: 1 year: 2005 ident: apjad02efbib18 publication-title: A&A doi: 10.1051/0004-6361:20047033 – volume: 955 start-page: 93 year: 2023 ident: apjad02efbib6 publication-title: ApJ doi: 10.3847/1538-4357/ace721 – volume: 308 start-page: L47 year: 1986 ident: apjad02efbib19 publication-title: ApJL doi: 10.1086/184741 – volume: 444 start-page: 1044 year: 2006 ident: apjad02efbib17 publication-title: Natur doi: 10.1038/nature05376 – volume: 78 start-page: 2292 year: 1997 ident: apjad02efbib49 publication-title: PhRvL doi: 10.1103/PhysRevLett.78.2292 – volume: 407 start-page: 1033 year: 2010 ident: apjad02efbib10 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16770.x – volume: 308 start-page: L43 year: 1986 ident: apjad02efbib35 publication-title: ApJL doi: 10.1086/184740 – year: 2023b ident: apjad02efbib28 – volume: 453 start-page: 883 year: 1995 ident: apjad02efbib45 publication-title: ApJ doi: 10.1086/176448 – volume: 682 start-page: 463 year: 2008 ident: apjad02efbib37 publication-title: ApJ doi: 10.1086/588136 – volume: 111 start-page: 121102 year: 2013 ident: apjad02efbib31 publication-title: PhRvL doi: 10.1103/PhysRevLett.111.121102 – year: 2022 ident: apjad02efbib21 – volume: 111 start-page: 131102 year: 2013 ident: apjad02efbib32 publication-title: PhRvL doi: 10.1103/PhysRevLett.111.131102 |
SSID | ssj0004299 |
Score | 2.4685447 |
Snippet | The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos.... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 133 |
SubjectTerms | Astrophysics Binary stars Constraints Emission Fireballs Gamma ray bursts Gamma rays Neutrino astronomy Neutrinos Neutron stars Neutrons Physical properties Star mergers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIbZU-bSUHFTwsb33ZzcfxtfRL9FXEQm_LZjIBwe4W3_bQW_8Q_ef6l3Qm2dcKQr14CyG72Z3MZOaXj98I8aZS2rVtLAskSyqq1rNJARQW0ZgaLWEOvu_8eaGPTquPZ_XZH6m--ExYpgfOgpvqoNAoU9fKBwIf4JAZpWBGXXyoPSSez9KVKzC1uhFJs2zelFQ0_U6TWVNgYKZtKGfJ89w7ocTVT67le3_x14ScvMzBM_F0DA_lPH_WuniE3YbYmi95wbo_v5LvZCrn9Yjlhnj8JZc2xclJJymYkzfXvz71_RJvrn9LzsaZckAMkq-RyGPAvUuPcoHMwd_1ctF3AYd0GquTfZSHX3cloQWyyPlzcXqw_23vqBizJRRAQdVQOOUp1EOnHFoMXEK0vO0JVmsL3hnlIYKJBAAr1SoFQQegmkhYNChQL8Ra13e4JWQZddROtd7MgJsyKVwFOkQXrIl-NhHTlfgaGKnE-W9-NAQpWOANC7xhgTdZ4BPx_u6Ji0yj8UDbXR6Ru3ZMgJ0qSC2aUS2af6nFRLyl8WxGg1w-0Nn2asTvGxMIpXdW1tmX_-NbXoknnKQ-H4LZFmvDz0vcoVBm8K-T1t4CkZPuOg priority: 102 providerName: Directory of Open Access Journals |
Title | On the “Loose” Constraint from IceCube Neutrino Nondetection of GRB 230307A |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ad02ef https://www.proquest.com/docview/2894074898 https://doaj.org/article/6d3e737553bd407c9e9051c269a15bc3 |
Volume | 958 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXHgXUhVL5AEgcsrvEiR_itK0oLYLdClGxB6QotscXIKnY7AFO_SHw5_pLmLGzW_FQhbhEVjSx4xmPPWOPv2HsUSGkqeswzgA1KStqSyrlXKYBlCpBo89B953fTOXhSfFqXs432PP1XZj2tJ_6h1hMQMGJhaTfAufSUdRRXOXVqPbjHMIVdpUSV1I839Hs-OJSZG5627fIpFDzdEb51xp-WZMidD-uNNj8H_NzXHQObrIPq99NsSYfh8vODt2335Ac_7M_t9iN3hjlk0R6m21As8W2JwvaHm8_f-VPeCyn3Y_FFrt2nEp32GzWcDQd-fnZ99dtu4Dzsx-ccn_GjBMdp0sr_MjB_tICnwIh_jctn7aNhy7GfjW8Dfzl2z2Ovgnq_-QuOzl48W7_MOtzM2QOTbguM8KiYQlGGNDgqQSg6ZDVaSm1s0YJ64JTAd3NQtRCOC-9wzcBPV8vnLjHNpu2gW3Gx0EGaURtVe6IlCDoCid9MF6rYPMBG62kU7keuJx686lCB4Y4WBEHK-JglTg4YE_XX5wm0I5LaPdI4Gs6gtuOL1BUVS-qSnoBSqiyFNajB-wMEKyZy3GcPyutEwP2GKVb9eq_uKSxndWAuiBGlxfrLLTR9_-xmgfsOmW9T1E1O2yz-7KEh2gbdXY37insRk3A50y8_wnE5Qhi |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagCMSFRwE1UMAHQOKwSVjv-nFMC6GFkkSISrlt1_b4Qrsbkc0BTv0h8Of6S5hZb1rxUIXEzbJmvfaMZzxjez4z9iwT0pRlGCaAmpRkpSWVci7RAErloDHmoHznDxO5d5i9m-fz7p3TNhemXnSmv4_FCBQcWUj6LdCWDlodxVVeDUo_TCEMFj5cZddyAlahDL7p7CIxMjWd_5slUqh5PKf8ayu_rEstfD-uNtiFP2x0u_CMb7OjdZfjfZPP_VVj--7bb2iO_zGmO-xW55TyUSS_y65Atcm2RkvaJq9PvvIXvC3HXZDlJrs-i6V7bDqtOLqQ_Oz0-0FdL-Hs9AenN0DblycaTskrfN_B7soCnwAh_1c1n9SVh6a9A1bxOvC3H3c4xihoB0b32eH4zafdvaR7oyFx6Mo1iREWHUwwwoAGTyUATYetTkupnTVKWBecChh2ZqIUwnnpHdYEjIC9cOIB26jqCrYYHwYZpBGlVakjUoKiy5z0wXitgk17bLCWUOE6AHMazXGBgQxxsSAuFsTFInKxx16ef7GI4B2X0O6Q0M_pCHa7rUBxFZ24CukFKKHyXFiPkbAzQPBmLsX5_iq3TvTYc5Rw0ZmB5SU_215PqgtiDH2xzUwb_fAfm3nKbsxej4uD_cn7R-xmiu5XvGizzTaaLyt4jO5SY5-0KvETWYsL1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+%E2%80%9CLoose%E2%80%9D+Constraint+from+IceCube+Neutrino+Nondetection+of+GRB+230307A&rft.jtitle=The+Astrophysical+journal&rft.au=Xin-Ying%2C+Song&rft.date=2023-12-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=958&rft.issue=2&rft.spage=133&rft_id=info:doi/10.3847%2F1538-4357%2Fad02ef&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |