On the “Loose” Constraint from IceCube Neutrino Nondetection of GRB 230307A

The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos. Within the constraint from IceCube neutrino nondetection, the limits for key physical parameters of this burst are extracted in different scen...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 958; no. 2; pp. 133 - 143
Main Author Song, Xin-Ying
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.12.2023
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ad02ef

Cover

Abstract The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos. Within the constraint from IceCube neutrino nondetection, the limits for key physical parameters of this burst are extracted in different scenarios, including the fireball, Poynting-flux-dominated, and hybrid jet. Different from the former nearby “monsters” and due to its smaller isotropic equivalent radiated energy ( E γ ,iso ∼ 4 × 10 52 erg), the constraint seems loose if nonthermal neutrinos produced from photomeson interactions are the only consideration. However, a quasi-thermal neutrino emission from hadronuclear processes is constrained in this neutron-rich postmerger environment, and the upper limit of the allowed nucleon loading factor is ∼a few. Based on this, a discussion is presented on the possible prompt emission mechanism and jet composition for GRB 230307A in the context of multimessenger astrophysics. It is worth noting that until now, no GRB neutrinos have been ever detected, even for the two brightest nearby GRBs ever observed (GRB 221009A and GRB 230307A), which have different dissipation mechanisms.
AbstractList The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos. Within the constraint from IceCube neutrino nondetection, the limits for key physical parameters of this burst are extracted in different scenarios, including the fireball, Poynting-flux-dominated, and hybrid jet. Different from the former nearby “monsters” and due to its smaller isotropic equivalent radiated energy ( E γ ,iso ∼ 4 × 10 52 erg), the constraint seems loose if nonthermal neutrinos produced from photomeson interactions are the only consideration. However, a quasi-thermal neutrino emission from hadronuclear processes is constrained in this neutron-rich postmerger environment, and the upper limit of the allowed nucleon loading factor is ∼a few. Based on this, a discussion is presented on the possible prompt emission mechanism and jet composition for GRB 230307A in the context of multimessenger astrophysics. It is worth noting that until now, no GRB neutrinos have been ever detected, even for the two brightest nearby GRBs ever observed (GRB 221009A and GRB 230307A), which have different dissipation mechanisms.
The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos. Within the constraint from IceCube neutrino nondetection, the limits for key physical parameters of this burst are extracted in different scenarios, including the fireball, Poynting-flux-dominated, and hybrid jet. Different from the former nearby “monsters” and due to its smaller isotropic equivalent radiated energy ( E _γ _,iso ∼ 4 × 10 ^52 erg), the constraint seems loose if nonthermal neutrinos produced from photomeson interactions are the only consideration. However, a quasi-thermal neutrino emission from hadronuclear processes is constrained in this neutron-rich postmerger environment, and the upper limit of the allowed nucleon loading factor is ∼a few. Based on this, a discussion is presented on the possible prompt emission mechanism and jet composition for GRB 230307A in the context of multimessenger astrophysics. It is worth noting that until now, no GRB neutrinos have been ever detected, even for the two brightest nearby GRBs ever observed (GRB 221009A and GRB 230307A), which have different dissipation mechanisms.
The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos. Within the constraint from IceCube neutrino nondetection, the limits for key physical parameters of this burst are extracted in different scenarios, including the fireball, Poynting-flux-dominated, and hybrid jet. Different from the former nearby “monsters” and due to its smaller isotropic equivalent radiated energy (Eγ,iso ∼ 4 × 1052 erg), the constraint seems loose if nonthermal neutrinos produced from photomeson interactions are the only consideration. However, a quasi-thermal neutrino emission from hadronuclear processes is constrained in this neutron-rich postmerger environment, and the upper limit of the allowed nucleon loading factor is ∼a few. Based on this, a discussion is presented on the possible prompt emission mechanism and jet composition for GRB 230307A in the context of multimessenger astrophysics. It is worth noting that until now, no GRB neutrinos have been ever detected, even for the two brightest nearby GRBs ever observed (GRB 221009A and GRB 230307A), which have different dissipation mechanisms.
Author Song, Xin-Ying
Author_xml – sequence: 1
  givenname: Xin-Ying
  orcidid: 0000-0002-2176-8778
  surname: Song
  fullname: Song, Xin-Ying
  organization: Chinese Academy of Sciences Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Beijing 100049, People's Republic of China
BookMark eNp9kc1q3DAUhUVIIZO0-ywF2daN7CvrZ5kO7WRgyEBJoDshS9eJh4k0kTWL7vIgycvlSWrHJYFCu5J0ON_R5dxjchhiQEJOS_YFFJfnZQ2q4FDLc-tZhe0Bmb1Jh2TGGOOFAPnziBz3_WZ8VlrPyHodaL5D-vL4tIqxx5fHZzqPoc_JdiHTNsV7unQ43zdIr3CfUxcivYrBY0aXuxhobOnix1daAQMmLz6SD63d9vjpz3lCbr5_u55fFqv1Yjm_WBWOlyIXGhpdCtSgUaEfb4iKccGcEkK5RktoXOtky7ngYAGcF94NSltX4MHBCVlOuT7ajdml7t6mXybazrwKMd0am3LntmiEB5Qg6xoaz5l0GjWrS1cJbcu6cTBknU1ZuxQf9thns4n7FIbxTaX0gHCl1eBik8ul2PcJ27dfS2bGFZixbzP2baYVDIj4C3FdtmNrY73b_4GfJ7CLu_dh_mn_Dc08mv4
CitedBy_id crossref_primary_10_1093_mnras_stae340
crossref_primary_10_1103_PhysRevD_111_043035
Cites_doi 10.1103/PhysRevLett.85.1362
10.1051/0004-6361:20077560
10.1086/430818
10.1103/PhysRevLett.75.386
10.1086/374217
10.3847/1538-4357/aca969
10.1103/PhysRevD.93.083003
10.3847/1538-4357/acb3bf
10.1093/mnras/sts219
10.1086/311644
10.3847/1538-4357/aa7569
10.1088/0004-637X/738/1/77
10.1103/PhysRevLett.108.231101
10.1103/PhysRevLett.110.121101
10.3847/2041-8213/acc077
10.1038/s41586-022-05403-8
10.1088/0004-637X/691/2/L67
10.1093/mnras/183.3.359
10.3847/1538-4357/abe123
10.1088/0004-637X/813/2/127
10.1088/1475-7516/2012/11/058
10.1103/PhysRevLett.87.171102
10.1086/174178
10.3847/1538-4357/acd2ca
10.1103/PhysRevD.98.043020
10.1103/PhysRevLett.110.241101
10.1088/1475-7516/2021/05/034
10.3847/2041-8213/aca3ae
10.3847/2041-8213/acc84b
10.1111/j.1365-2966.2006.10417.x
10.1051/0004-6361:20047033
10.3847/1538-4357/ace721
10.1086/184741
10.1038/nature05376
10.1103/PhysRevLett.78.2292
10.1111/j.1365-2966.2010.16770.x
10.1086/184740
10.1086/176448
10.1086/588136
10.1103/PhysRevLett.111.121102
10.1103/PhysRevLett.111.131102
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/ad02ef
DatabaseName Institute of Physics Journals Open Access
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Journals Open Access
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_6d3e737553bd407c9e9051c269a15bc3
10_3847_1538_4357_ad02ef
apjad02ef
GrantInformation_xml – fundername: National Programme on Key Research and Development Project
  grantid: 2021YFA0718500
– fundername: MOST ∣ National Natural Science Foundation of China (NSFC)
  grantid: 12303052
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
2WC
ID FETCH-LOGICAL-c416t-93b916e939e8ed16e9ee80460c8668cb973bcfc7f44643a33cd6dccfcf523d3c3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 27 01:31:46 EDT 2025
Wed Aug 13 03:18:10 EDT 2025
Tue Jul 01 03:39:43 EDT 2025
Thu Apr 24 23:07:01 EDT 2025
Sun Aug 18 14:50:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-93b916e939e8ed16e9ee80460c8668cb973bcfc7f44643a33cd6dccfcf523d3c3
Notes AAS48758
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2176-8778
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/ad02ef
PQID 2894074898
PQPubID 4562441
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_6d3e737553bd407c9e9051c269a15bc3
crossref_citationtrail_10_3847_1538_4357_ad02ef
iop_journals_10_3847_1538_4357_ad02ef
proquest_journals_2894074898
crossref_primary_10_3847_1538_4357_ad02ef
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Fermi GBM Team (apjad02efbib14) 2023
Rossi (apjad02efbib42) 2006; 369
Gehrels (apjad02efbib17) 2006; 444
Pe’er (apjad02efbib38) 2015; 813
Vietri (apjad02efbib45) 1995; 453
Vurm (apjad02efbib46) 2011; 738
IceCube Collaboration (apjad02efbib21) 2022
Bulla (apjad02efbib11) 2023
Abbasi (apjad02efbib2) 2021; 910
Bahcall (apjad02efbib7) 2000; 85
Pe’er (apjad02efbib37) 2008; 682
Paczynski (apjad02efbib35) 1986; 308
Svinkin (apjad02efbib44) 2023
Preece (apjad02efbib40) 1998; 506
Levan (apjad02efbib28) 2023b
Kimura (apjad02efbib24) 2018; 98
Murase (apjad02efbib31) 2013; 111
Senno (apjad02efbib43) 2016; 93
Pitik (apjad02efbib39) 2021; 2021
Mészáros (apjad02efbib30) 2001; 87
Aimuratov (apjad02efbib6) 2023; 955
Kimura (apjad02efbib23) 2022
Paczynski (apjad02efbib36) 1994; 427
Murase (apjad02efbib32) 2013; 111
IceCube Collaboration (apjad02efbib22) 2023
Hümmer (apjad02efbib20) 2012; 108
Waxman (apjad02efbib48) 1995; 75
Zhang (apjad02efbib53) 2013; 110
Goodman (apjad02efbib19) 1986; 308
Gao (apjad02efbib16) 2012; 2012
Lundman (apjad02efbib29) 2013; 428
Gecam Team (apjad02efbib50) 2023
Aartsen (apjad02efbib1) 2017; 843
Cavallo (apjad02efbib12) 1978; 183
Beloborodov (apjad02efbib10) 2010; 407
O’Connor (apjad02efbib34) 2023
Bartos (apjad02efbib8) 2013; 110
Rees (apjad02efbib41) 2005; 628
Abbasi (apjad02efbib4) 2023b; 946
Yang (apjad02efbib51) 2022; 612
Giannios (apjad02efbib18) 2005; 430
Chang (apjad02efbib13) 2023; 943
Beloborodov (apjad02efbib9) 2003; 588
Wang (apjad02efbib47) 2009; 691
Fermi GBM Team (apjad02efbib15) 2023
Koers (apjad02efbib25) 2007; 471
Abbasi (apjad02efbib3) 2023a; 951
Levan (apjad02efbib27) 2023a
Murase (apjad02efbib33) 2022; 941
Yang (apjad02efbib52) 2023; 947
Landau (apjad02efbib26) 1971
Ai (apjad02efbib5) 2023; 944
Waxman (apjad02efbib49) 1997; 78
References_xml – volume: 85
  start-page: 1362
  year: 2000
  ident: apjad02efbib7
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.85.1362
– year: 1971
  ident: apjad02efbib26
– volume: 471
  start-page: 395
  year: 2007
  ident: apjad02efbib25
  publication-title: A&A
  doi: 10.1051/0004-6361:20077560
– year: 2023a
  ident: apjad02efbib27
– volume: 628
  start-page: 847
  year: 2005
  ident: apjad02efbib41
  publication-title: ApJ
  doi: 10.1086/430818
– year: 2023
  ident: apjad02efbib22
– volume: 75
  start-page: 386
  year: 1995
  ident: apjad02efbib48
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.75.386
– volume: 588
  start-page: 931
  year: 2003
  ident: apjad02efbib9
  publication-title: ApJ
  doi: 10.1086/374217
– volume: 943
  start-page: 146
  year: 2023
  ident: apjad02efbib13
  publication-title: ApJ
  doi: 10.3847/1538-4357/aca969
– year: 2022
  ident: apjad02efbib23
– volume: 93
  start-page: 083003
  year: 2016
  ident: apjad02efbib43
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.93.083003
– volume: 944
  start-page: 115
  year: 2023
  ident: apjad02efbib5
  publication-title: ApJ
  doi: 10.3847/1538-4357/acb3bf
– volume: 428
  start-page: 2430
  year: 2013
  ident: apjad02efbib29
  publication-title: MNRAS
  doi: 10.1093/mnras/sts219
– volume: 506
  start-page: L23
  year: 1998
  ident: apjad02efbib40
  publication-title: ApJL
  doi: 10.1086/311644
– year: 2023
  ident: apjad02efbib50
– year: 2023
  ident: apjad02efbib11
– volume: 843
  start-page: 112
  year: 2017
  ident: apjad02efbib1
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7569
– volume: 738
  start-page: 77
  year: 2011
  ident: apjad02efbib46
  publication-title: ApJ
  doi: 10.1088/0004-637X/738/1/77
– volume: 108
  start-page: 231101
  year: 2012
  ident: apjad02efbib20
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.108.231101
– volume: 110
  start-page: 121101
  year: 2013
  ident: apjad02efbib53
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.110.121101
– volume: 946
  start-page: L26
  year: 2023b
  ident: apjad02efbib4
  publication-title: ApJL
  doi: 10.3847/2041-8213/acc077
– year: 2023
  ident: apjad02efbib44
– volume: 612
  start-page: 232
  year: 2022
  ident: apjad02efbib51
  publication-title: Natur
  doi: 10.1038/s41586-022-05403-8
– year: 2023
  ident: apjad02efbib34
– volume: 691
  start-page: L67
  year: 2009
  ident: apjad02efbib47
  publication-title: ApJL
  doi: 10.1088/0004-637X/691/2/L67
– volume: 183
  start-page: 359
  year: 1978
  ident: apjad02efbib12
  publication-title: MNRAS
  doi: 10.1093/mnras/183.3.359
– year: 2023
  ident: apjad02efbib15
– year: 2023
  ident: apjad02efbib14
– volume: 910
  start-page: 4
  year: 2021
  ident: apjad02efbib2
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe123
– volume: 813
  start-page: 127
  year: 2015
  ident: apjad02efbib38
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/2/127
– volume: 2012
  start-page: 058
  year: 2012
  ident: apjad02efbib16
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/11/058
– volume: 87
  start-page: 171102
  year: 2001
  ident: apjad02efbib30
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.87.171102
– volume: 427
  start-page: 708
  year: 1994
  ident: apjad02efbib36
  publication-title: ApJ
  doi: 10.1086/174178
– volume: 951
  start-page: 45
  year: 2023a
  ident: apjad02efbib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/acd2ca
– volume: 98
  start-page: 043020
  year: 2018
  ident: apjad02efbib24
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.98.043020
– volume: 110
  start-page: 241101
  year: 2013
  ident: apjad02efbib8
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.110.241101
– volume: 2021
  start-page: 034
  year: 2021
  ident: apjad02efbib39
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/05/034
– volume: 941
  start-page: L10
  year: 2022
  ident: apjad02efbib33
  publication-title: ApJL
  doi: 10.3847/2041-8213/aca3ae
– volume: 947
  start-page: L11
  year: 2023
  ident: apjad02efbib52
  publication-title: ApJL
  doi: 10.3847/2041-8213/acc84b
– volume: 369
  start-page: 1797
  year: 2006
  ident: apjad02efbib42
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10417.x
– volume: 430
  start-page: 1
  year: 2005
  ident: apjad02efbib18
  publication-title: A&A
  doi: 10.1051/0004-6361:20047033
– volume: 955
  start-page: 93
  year: 2023
  ident: apjad02efbib6
  publication-title: ApJ
  doi: 10.3847/1538-4357/ace721
– volume: 308
  start-page: L47
  year: 1986
  ident: apjad02efbib19
  publication-title: ApJL
  doi: 10.1086/184741
– volume: 444
  start-page: 1044
  year: 2006
  ident: apjad02efbib17
  publication-title: Natur
  doi: 10.1038/nature05376
– volume: 78
  start-page: 2292
  year: 1997
  ident: apjad02efbib49
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.78.2292
– volume: 407
  start-page: 1033
  year: 2010
  ident: apjad02efbib10
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16770.x
– volume: 308
  start-page: L43
  year: 1986
  ident: apjad02efbib35
  publication-title: ApJL
  doi: 10.1086/184740
– year: 2023b
  ident: apjad02efbib28
– volume: 453
  start-page: 883
  year: 1995
  ident: apjad02efbib45
  publication-title: ApJ
  doi: 10.1086/176448
– volume: 682
  start-page: 463
  year: 2008
  ident: apjad02efbib37
  publication-title: ApJ
  doi: 10.1086/588136
– volume: 111
  start-page: 121102
  year: 2013
  ident: apjad02efbib31
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.111.121102
– year: 2022
  ident: apjad02efbib21
– volume: 111
  start-page: 131102
  year: 2013
  ident: apjad02efbib32
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.111.131102
SSID ssj0004299
Score 2.4685447
Snippet The recent extremely bright gamma-ray burst (GRB) from a binary neutron star merger, GRB 230307A, may offer a good probe for the production of GRB neutrinos....
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133
SubjectTerms Astrophysics
Binary stars
Constraints
Emission
Fireballs
Gamma ray bursts
Gamma rays
Neutrino astronomy
Neutrinos
Neutron stars
Neutrons
Physical properties
Star mergers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIbZU-bSUHFTwsb33ZzcfxtfRL9FXEQm_LZjIBwe4W3_bQW_8Q_ef6l3Qm2dcKQr14CyG72Z3MZOaXj98I8aZS2rVtLAskSyqq1rNJARQW0ZgaLWEOvu_8eaGPTquPZ_XZH6m--ExYpgfOgpvqoNAoU9fKBwIf4JAZpWBGXXyoPSSez9KVKzC1uhFJs2zelFQ0_U6TWVNgYKZtKGfJ89w7ocTVT67le3_x14ScvMzBM_F0DA_lPH_WuniE3YbYmi95wbo_v5LvZCrn9Yjlhnj8JZc2xclJJymYkzfXvz71_RJvrn9LzsaZckAMkq-RyGPAvUuPcoHMwd_1ctF3AYd0GquTfZSHX3cloQWyyPlzcXqw_23vqBizJRRAQdVQOOUp1EOnHFoMXEK0vO0JVmsL3hnlIYKJBAAr1SoFQQegmkhYNChQL8Ra13e4JWQZddROtd7MgJsyKVwFOkQXrIl-NhHTlfgaGKnE-W9-NAQpWOANC7xhgTdZ4BPx_u6Ji0yj8UDbXR6Ru3ZMgJ0qSC2aUS2af6nFRLyl8WxGg1w-0Nn2asTvGxMIpXdW1tmX_-NbXoknnKQ-H4LZFmvDz0vcoVBm8K-T1t4CkZPuOg
  priority: 102
  providerName: Directory of Open Access Journals
Title On the “Loose” Constraint from IceCube Neutrino Nondetection of GRB 230307A
URI https://iopscience.iop.org/article/10.3847/1538-4357/ad02ef
https://www.proquest.com/docview/2894074898
https://doaj.org/article/6d3e737553bd407c9e9051c269a15bc3
Volume 958
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXHgXUhVL5AEgcsrvEiR_itK0oLYLdClGxB6QotscXIKnY7AFO_SHw5_pLmLGzW_FQhbhEVjSx4xmPPWOPv2HsUSGkqeswzgA1KStqSyrlXKYBlCpBo89B953fTOXhSfFqXs432PP1XZj2tJ_6h1hMQMGJhaTfAufSUdRRXOXVqPbjHMIVdpUSV1I839Hs-OJSZG5627fIpFDzdEb51xp-WZMidD-uNNj8H_NzXHQObrIPq99NsSYfh8vODt2335Ac_7M_t9iN3hjlk0R6m21As8W2JwvaHm8_f-VPeCyn3Y_FFrt2nEp32GzWcDQd-fnZ99dtu4Dzsx-ccn_GjBMdp0sr_MjB_tICnwIh_jctn7aNhy7GfjW8Dfzl2z2Ovgnq_-QuOzl48W7_MOtzM2QOTbguM8KiYQlGGNDgqQSg6ZDVaSm1s0YJ64JTAd3NQtRCOC-9wzcBPV8vnLjHNpu2gW3Gx0EGaURtVe6IlCDoCid9MF6rYPMBG62kU7keuJx686lCB4Y4WBEHK-JglTg4YE_XX5wm0I5LaPdI4Gs6gtuOL1BUVS-qSnoBSqiyFNajB-wMEKyZy3GcPyutEwP2GKVb9eq_uKSxndWAuiBGlxfrLLTR9_-xmgfsOmW9T1E1O2yz-7KEh2gbdXY37insRk3A50y8_wnE5Qhi
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagCMSFRwE1UMAHQOKwSVjv-nFMC6GFkkSISrlt1_b4Qrsbkc0BTv0h8Of6S5hZb1rxUIXEzbJmvfaMZzxjez4z9iwT0pRlGCaAmpRkpSWVci7RAErloDHmoHznDxO5d5i9m-fz7p3TNhemXnSmv4_FCBQcWUj6LdCWDlodxVVeDUo_TCEMFj5cZddyAlahDL7p7CIxMjWd_5slUqh5PKf8ayu_rEstfD-uNtiFP2x0u_CMb7OjdZfjfZPP_VVj--7bb2iO_zGmO-xW55TyUSS_y65Atcm2RkvaJq9PvvIXvC3HXZDlJrs-i6V7bDqtOLqQ_Oz0-0FdL-Hs9AenN0DblycaTskrfN_B7soCnwAh_1c1n9SVh6a9A1bxOvC3H3c4xihoB0b32eH4zafdvaR7oyFx6Mo1iREWHUwwwoAGTyUATYetTkupnTVKWBecChh2ZqIUwnnpHdYEjIC9cOIB26jqCrYYHwYZpBGlVakjUoKiy5z0wXitgk17bLCWUOE6AHMazXGBgQxxsSAuFsTFInKxx16ef7GI4B2X0O6Q0M_pCHa7rUBxFZ24CukFKKHyXFiPkbAzQPBmLsX5_iq3TvTYc5Rw0ZmB5SU_215PqgtiDH2xzUwb_fAfm3nKbsxej4uD_cn7R-xmiu5XvGizzTaaLyt4jO5SY5-0KvETWYsL1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+%E2%80%9CLoose%E2%80%9D+Constraint+from+IceCube+Neutrino+Nondetection+of+GRB+230307A&rft.jtitle=The+Astrophysical+journal&rft.au=Xin-Ying%2C+Song&rft.date=2023-12-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=958&rft.issue=2&rft.spage=133&rft_id=info:doi/10.3847%2F1538-4357%2Fad02ef&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon