Emergency Collision Avoidance by Steering in Critical Situations

In this paper, an emergency collision avoidance system is proposed by including not only braking but also steering control actions. The minimum distance to avoid collision is calculated separately for braking and steering based on the relative motion to the surrounding vehicles and the lane informat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automotive technology Vol. 22; no. 1; pp. 173 - 184
Main Authors Park, Janghee, Kim, Dongchan, Huh, Kunsoo
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society of Automotive Engineers 01.02.2021
Springer Nature B.V
한국자동차공학회
Subjects
Online AccessGet full text
ISSN1229-9138
1976-3832
DOI10.1007/s12239-021-0018-2

Cover

Abstract In this paper, an emergency collision avoidance system is proposed by including not only braking but also steering control actions. The minimum distance to avoid collision is calculated separately for braking and steering based on the relative motion to the surrounding vehicles and the lane information obtained through the vision sensor. For steering avoidance control, an optimal control input is calculated through the model predictive control that satisfies constraints such as safe avoidance region created by surrounding vehicles and capacity of the vehicle actuator. In particular, for avoiding collision by lane changing, the maximum lateral acceleration and the maximum angle of the trajectory are considered. In addition, the abrupt lateral movement in avoidance causes nonlinear characteristics in tires and, thus, tire parameters are estimated through EKF (Extended Kalman Filter) to improve model prediction accuracy. The control intervention time of avoidance maneuvering is determined for braking and steering, respectively. The simulation results demonstrate that the proposed algorithm of integrating AEB (Autonomous Emergency Braking) and AES (Autonomous Emergency Steering) can effectively avoid the collision in critical situations and that the host vehicle can still maintain the safety inside the road boundary.
AbstractList In this paper, an emergency collision avoidance system is proposed by including not only braking but also steering control actions. The minimum distance to avoid collision is calculated separately for braking and steering based on the relative motion to the surrounding vehicles and the lane information obtained through the vision sensor. For steering avoidance control, an optimal control input is calculated through the model predictive control that satisfies constraints such as safe avoidance region created by surrounding vehicles and capacity of the vehicle actuator. In particular, for avoiding collision by lane changing, the maximum lateral acceleration and the maximum angle of the trajectory are considered. In addition, the abrupt lateral movement in avoidance causes nonlinear characteristics in tires and, thus, tire parameters are estimated through EKF (Extended Kalman Filter) to improve model prediction accuracy. The control intervention time of avoidance maneuvering is determined for braking and steering, respectively. The simulation results demonstrate that the proposed algorithm of integrating AEB (Autonomous Emergency Braking) and AES (Autonomous Emergency Steering) can effectively avoid the collision in critical situations and that the host vehicle can still maintain the safety inside the road boundary.
In this paper, an emergency collision avoidance system is proposed by including not only braking but also steering control actions. The minimum distance to avoid collision is calculated separately for braking and steering based on the relative motion to the surrounding vehicles and the lane information obtained through the vision sensor. For steering avoidance control, an optimal control input is calculated through the model predictive control that satisfies constraints such as safe avoidance region created by surrounding vehicles and capacity of the vehicle actuator. In particular, for avoiding collision by lane changing, the maximum lateral acceleration and the maximum angle of the trajectory are considered. In addition, the abrupt lateral movement in avoidance causes nonlinear characteristics in tires and, thus, tire parameters are estimated through EKF (Extended Kalman Filter) to improve model prediction accuracy. The control intervention time of avoidance maneuvering is determined for braking and steering, respectively. The simulation results demonstrate that the proposed algorithm of integrating AEB (Autonomous Emergency Braking) and AES (Autonomous Emergency Steering) can effectively avoid the collision in critical situations and that the host vehicle can still maintain the safety inside the road boundary. KCI Citation Count: 2
Author Huh, Kunsoo
Kim, Dongchan
Park, Janghee
Author_xml – sequence: 1
  givenname: Janghee
  surname: Park
  fullname: Park, Janghee
  organization: Department of Automotive Engineering, Hanyang University
– sequence: 2
  givenname: Dongchan
  surname: Kim
  fullname: Kim, Dongchan
  organization: Department of Automotive Engineering, Hanyang University
– sequence: 3
  givenname: Kunsoo
  surname: Huh
  fullname: Huh, Kunsoo
  email: khuh2@hanyang.ac.kr
  organization: Department of Automotive Engineering, Hanyang University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002681721$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMtKAzEUQINU8PkB7gZcuRjNzWOS7CylakEQbF2HNJMp0TGpyVTo3zvtCIKgq5vFOZebc4JGIQaH0AXga8BY3GQghKoSEygxBlmSA3QMSlQllZSM-jchqlRA5RE6yfkVY14Bxcfodvru0soFuy0msW199jEU48_oaxOsK5bbYt45l3xYFT4Uk-Q7b01bzH23MV3P5jN02Jg2u_PveYpe7qaLyUP5-HQ_m4wfS8ug6kq-tNKwCpxkjNQCuOVcyErUoFQlOVtKEA1fUkxrjq1h3BFpBQersLDCSXqKroa9ITX6zXodjd_PVdRvSY-fFzOtBDAsVM9eDuw6xY-Ny51-jZsU-vM0YRIrWSlGe0oMlE0x5-QabX23_1SXjG81YL1Lq4e0uk-rd2k16U34Za6Tfzdp-69DBievdzVd-rnpb-kLRMCKfA
CitedBy_id crossref_primary_10_1007_s12239_024_00044_4
crossref_primary_10_1299_transjsme_22_00272
crossref_primary_10_1016_j_aap_2025_107984
crossref_primary_10_1109_TIV_2023_3264684
crossref_primary_10_1016_j_geits_2022_100002
crossref_primary_10_3390_su15043069
crossref_primary_10_1080_00423114_2023_2300266
crossref_primary_10_1016_j_trc_2024_104491
crossref_primary_10_1109_JSEN_2023_3280012
crossref_primary_10_3390_wevj14040097
crossref_primary_10_1109_TIV_2023_3333796
crossref_primary_10_1007_s12239_025_00224_w
crossref_primary_10_1109_TITS_2024_3454803
Cites_doi 10.1007/978-3-642-04898-2_321
10.1109/ITSC.2015.69
10.1109/ITSC.2006.1707153
10.1109/IVS.2017.7995716
10.4271/2015-01-1414
10.1109/TCST.2007.894653
10.7467/KSAE.2012.20.6.126
10.1080/00423119208969994
10.1016/j.conengprac.2008.12.001
10.1109/IVS.2012.6232221
10.1109/TITS.2015.2453404
10.1109/IVS.2011.5940482
10.1186/s40648-014-0001-z
10.4271/971062
10.1109/CDC.2012.6426612
10.1109/IVS.2017.7995787
10.1007/s12239-014-0035-5
ContentType Journal Article
Copyright KSAE 2021
KSAE 2021.
Copyright_xml – notice: KSAE 2021
– notice: KSAE 2021.
DBID AAYXX
CITATION
3V.
7TB
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
KB.
L.-
M0C
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ACYCR
DOI 10.1007/s12239-021-0018-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ABI/Inform Complete
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database (Proquest)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Korean Citation Index
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3832
EndPage 184
ExternalDocumentID oai_kci_go_kr_ARTI_9714079
10_1007_s12239_021_0018_2
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
6NX
7WY
88I
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DBRKI
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GW5
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KB.
KC.
KOV
KVFHK
LLZTM
M0C
M2P
M4Y
MA-
MK~
ML~
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9P
PDBOC
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TR2
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7TB
7XB
8FD
8FK
FR3
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
AAFGU
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
UNUBA
ID FETCH-LOGICAL-c416t-5bc8a461e8442d715c557867d1996854b817f5b303d50ca45e28c751c907c7e83
IEDL.DBID U2A
ISSN 1229-9138
IngestDate Tue Jun 25 21:09:01 EDT 2024
Fri Jul 25 18:56:58 EDT 2025
Thu Apr 24 22:58:46 EDT 2025
Wed Oct 01 03:26:05 EDT 2025
Fri Feb 21 02:48:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords MPC
Collision avoidance
AEB
AES
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-5bc8a461e8442d715c557867d1996854b817f5b303d50ca45e28c751c907c7e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2480986943
PQPubID 54404
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9714079
proquest_journals_2480986943
crossref_citationtrail_10_1007_s12239_021_0018_2
crossref_primary_10_1007_s12239_021_0018_2
springer_journals_10_1007_s12239_021_0018_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Dordrecht
PublicationTitle International journal of automotive technology
PublicationTitleAbbrev Int.J Automot. Technol
PublicationYear 2021
Publisher The Korean Society of Automotive Engineers
Springer Nature B.V
한국자동차공학회
Publisher_xml – name: The Korean Society of Automotive Engineers
– name: Springer Nature B.V
– name: 한국자동차공학회
References CamachoE FAlbaC BModel predictive control2013Berlin, GermanySpringer Science & Business Media
Sledge, N. H. and Marshek, K. M. (1997). Comparison of ideal vehicle lane-change trajectories. SAE Trans. 2004–2027.
Tamke, A., Dang, T. and Breuel, G. (2011). A flexible method for criticality assessment in driver assistance systems. IEEE Intelligent Vehicles Symp., 697–702.
Kim, H., Cho, J., Kim, D. and Huh, K. (2017). Intervention minimized semi-autonomous control using decoupled model predictive control. IEEE Intelligent Vehicles Symp., 618–623.
YoonYShinJKimH JParkYSastrySModel-predictive active steering and obstacle avoidance for autonomous ground vehiclesControl Engineering Practice200917774175010.1016/j.conengprac.2008.12.001
Sötges, S. and Althoff, M. (2015). Determining the nonexistence of evasive trajectories for collision avoidance systems. IEEE Conf. Intelligent Transportation Systems (ITSC), 956–961.
Ribeiro M. I. (2004). Gaussian probability density functions: Properties and error characterization. Institute for Systems and Robotics. Lisboa, Portugal.
ErlienS MFujitaSGerdesJ CShared steering control using safe envelopes for obstacle avoidance and vehicle stabilityIEEE Trans. Intelligent Transportation Systems201617244145110.1109/TITS.2015.2453404
LeeDKimSKimCHuhKDevelopment of an autonomous braking system using the predicted stopping distanceInt. J. Automotive Technology201415234134610.1007/s12239-014-0035-5
Werling, M. and Liccardo, D. (2012). Automatic collision avoidance using model-predictive online optimization. IEEE Conf. Decision and Control (CDC), 6309–6314.
LefèvreSVasquezDLaugierCA survey on motion prediction and risk assessment for intelligent vehiclesRobomech J.20141111410.1186/s40648-014-0001-z
Berthelot, A., Tamke, A., Dang, T. and Breuel, G. (2012). A novel approach for the probabilistic computation of time-to-collision. IEEE Intelligent Vehicles Symp. Alcalá de Henares, Spain.
LeeDKimIHuhKTire lateral force estimation system using nonlinear Kalman filterTrans. Korean Society of Automotive Engineers201220612613110.7467/KSAE.2012.20.6.126
FalconePBorrelliFAsgariJTsengH EHrovatDPredictive active steering control for autonomous vehicle systemsIEEE Trans. Control Systems Technology200715356658010.1109/TCST.2007.894653
Europ NCAP (2015). 2020 Roadmap, Revision 1. https://cdn.euroncap.com/media/16472/euro-ncap-2020-roadmap-rev1-march-2015.pdf
Keller, M., Haß, C., Seewald, A. and Bertram, T. (2015). A model predictive approach to emergency maneuvers in critical traffic situations. IEEE Conf. Intelligent Transportation Systems (ITSC), 369–374.
GoodrichJDriving miss daisy: an autonomous chauffeur systemHouston Law Review2013511265296
Shah, J. and Benmimoun, M. (2015). Driver perceived threat and behavior in rear end collision avoidance situations. SAE Paper No. 2015-01-1414.
Eckert, A., Hartmann, B., Sevenich, M. and Rieth, P. E. (2011). Emergency steer & brake assist: a systematic approach for system integration of two complementary driver assistance systems. Proc. 22nd Int. Technical Conf. Enhanced Safety of Vehicles. Washington DC, USA.
Grewal, M. S. (2011). Kalman filtering. Int. Encyclopedia of Statistical Science: Springer, 705–708.
PacejkaH BBakkerEThe magic formula tyre modelVehicle System Dynamics19922111810.1080/00423119208969994
Carvalho, A., Gao, Y., Lefevre, S. and Borrelli, F. (2014). Stochastic predictive control of autonomous vehicles in uncertain environments. 12th Int. S. Advanced Vehicle Control (AVEC’14). Tokyo, Japan.
Schram, R., Williams, A. and van Ratingen, M. (2013). Implementation of Autonomous Emergency Braking (AEB), the next step in Euro NCAP’S safety assessment. ESV, Seoul.
Liu, C., Lee, S., Varnhagen, S. and Tseng, H. E. (2017). Path planning for autonomous vehicles using model predictive control. IEEE Intelligent Vehicles Symp., 174–179.
Schmidt, C., Oechsle, F. and Branz, W. (2006). Research on trajectory planning in emergency situations with multiple objects. IEEE Conf. Intelligent Transportation Systems (ITSC), 988–992.
18_CR9
18_CR15
18_CR6
18_CR3
18_CR4
18_CR1
18_CR19
18_CR18
18_CR17
D Lee (18_CR12) 2012; 20
18_CR11
S Lefèvre (18_CR14) 2014; 1
18_CR10
E F Camacho (18_CR2) 2013
J Goodrich (18_CR8) 2013; 51
D Lee (18_CR13) 2014; 15
18_CR24
18_CR23
S M Erlien (18_CR5) 2016; 17
P Falcone (18_CR7) 2007; 15
H B Pacejka (18_CR16) 1992; 21
18_CR22
18_CR21
18_CR20
Y Yoon (18_CR25) 2009; 17
References_xml – reference: PacejkaH BBakkerEThe magic formula tyre modelVehicle System Dynamics19922111810.1080/00423119208969994
– reference: LefèvreSVasquezDLaugierCA survey on motion prediction and risk assessment for intelligent vehiclesRobomech J.20141111410.1186/s40648-014-0001-z
– reference: ErlienS MFujitaSGerdesJ CShared steering control using safe envelopes for obstacle avoidance and vehicle stabilityIEEE Trans. Intelligent Transportation Systems201617244145110.1109/TITS.2015.2453404
– reference: Ribeiro M. I. (2004). Gaussian probability density functions: Properties and error characterization. Institute for Systems and Robotics. Lisboa, Portugal.
– reference: Eckert, A., Hartmann, B., Sevenich, M. and Rieth, P. E. (2011). Emergency steer & brake assist: a systematic approach for system integration of two complementary driver assistance systems. Proc. 22nd Int. Technical Conf. Enhanced Safety of Vehicles. Washington DC, USA.
– reference: YoonYShinJKimH JParkYSastrySModel-predictive active steering and obstacle avoidance for autonomous ground vehiclesControl Engineering Practice200917774175010.1016/j.conengprac.2008.12.001
– reference: Kim, H., Cho, J., Kim, D. and Huh, K. (2017). Intervention minimized semi-autonomous control using decoupled model predictive control. IEEE Intelligent Vehicles Symp., 618–623.
– reference: FalconePBorrelliFAsgariJTsengH EHrovatDPredictive active steering control for autonomous vehicle systemsIEEE Trans. Control Systems Technology200715356658010.1109/TCST.2007.894653
– reference: Liu, C., Lee, S., Varnhagen, S. and Tseng, H. E. (2017). Path planning for autonomous vehicles using model predictive control. IEEE Intelligent Vehicles Symp., 174–179.
– reference: Keller, M., Haß, C., Seewald, A. and Bertram, T. (2015). A model predictive approach to emergency maneuvers in critical traffic situations. IEEE Conf. Intelligent Transportation Systems (ITSC), 369–374.
– reference: Sötges, S. and Althoff, M. (2015). Determining the nonexistence of evasive trajectories for collision avoidance systems. IEEE Conf. Intelligent Transportation Systems (ITSC), 956–961.
– reference: LeeDKimSKimCHuhKDevelopment of an autonomous braking system using the predicted stopping distanceInt. J. Automotive Technology201415234134610.1007/s12239-014-0035-5
– reference: CamachoE FAlbaC BModel predictive control2013Berlin, GermanySpringer Science & Business Media
– reference: Carvalho, A., Gao, Y., Lefevre, S. and Borrelli, F. (2014). Stochastic predictive control of autonomous vehicles in uncertain environments. 12th Int. S. Advanced Vehicle Control (AVEC’14). Tokyo, Japan.
– reference: Grewal, M. S. (2011). Kalman filtering. Int. Encyclopedia of Statistical Science: Springer, 705–708.
– reference: Berthelot, A., Tamke, A., Dang, T. and Breuel, G. (2012). A novel approach for the probabilistic computation of time-to-collision. IEEE Intelligent Vehicles Symp. Alcalá de Henares, Spain.
– reference: GoodrichJDriving miss daisy: an autonomous chauffeur systemHouston Law Review2013511265296
– reference: Werling, M. and Liccardo, D. (2012). Automatic collision avoidance using model-predictive online optimization. IEEE Conf. Decision and Control (CDC), 6309–6314.
– reference: Schmidt, C., Oechsle, F. and Branz, W. (2006). Research on trajectory planning in emergency situations with multiple objects. IEEE Conf. Intelligent Transportation Systems (ITSC), 988–992.
– reference: Schram, R., Williams, A. and van Ratingen, M. (2013). Implementation of Autonomous Emergency Braking (AEB), the next step in Euro NCAP’S safety assessment. ESV, Seoul.
– reference: Shah, J. and Benmimoun, M. (2015). Driver perceived threat and behavior in rear end collision avoidance situations. SAE Paper No. 2015-01-1414.
– reference: Sledge, N. H. and Marshek, K. M. (1997). Comparison of ideal vehicle lane-change trajectories. SAE Trans. 2004–2027.
– reference: LeeDKimIHuhKTire lateral force estimation system using nonlinear Kalman filterTrans. Korean Society of Automotive Engineers201220612613110.7467/KSAE.2012.20.6.126
– reference: Europ NCAP (2015). 2020 Roadmap, Revision 1. https://cdn.euroncap.com/media/16472/euro-ncap-2020-roadmap-rev1-march-2015.pdf
– reference: Tamke, A., Dang, T. and Breuel, G. (2011). A flexible method for criticality assessment in driver assistance systems. IEEE Intelligent Vehicles Symp., 697–702.
– ident: 18_CR9
  doi: 10.1007/978-3-642-04898-2_321
– ident: 18_CR6
– ident: 18_CR22
– ident: 18_CR10
  doi: 10.1109/ITSC.2015.69
– ident: 18_CR19
– ident: 18_CR3
– ident: 18_CR18
  doi: 10.1109/ITSC.2006.1707153
– ident: 18_CR15
  doi: 10.1109/IVS.2017.7995716
– ident: 18_CR17
– ident: 18_CR20
  doi: 10.4271/2015-01-1414
– volume: 51
  start-page: 265
  issue: 1
  year: 2013
  ident: 18_CR8
  publication-title: Houston Law Review
– volume-title: Model predictive control
  year: 2013
  ident: 18_CR2
– volume: 15
  start-page: 566
  issue: 3
  year: 2007
  ident: 18_CR7
  publication-title: IEEE Trans. Control Systems Technology
  doi: 10.1109/TCST.2007.894653
– volume: 20
  start-page: 126
  issue: 6
  year: 2012
  ident: 18_CR12
  publication-title: Trans. Korean Society of Automotive Engineers
  doi: 10.7467/KSAE.2012.20.6.126
– volume: 21
  start-page: 1
  year: 1992
  ident: 18_CR16
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423119208969994
– volume: 17
  start-page: 741
  issue: 7
  year: 2009
  ident: 18_CR25
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2008.12.001
– ident: 18_CR1
  doi: 10.1109/IVS.2012.6232221
– volume: 17
  start-page: 441
  issue: 2
  year: 2016
  ident: 18_CR5
  publication-title: IEEE Trans. Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2453404
– ident: 18_CR4
– ident: 18_CR23
  doi: 10.1109/IVS.2011.5940482
– volume: 1
  start-page: 1
  issue: 1
  year: 2014
  ident: 18_CR14
  publication-title: Robomech J.
  doi: 10.1186/s40648-014-0001-z
– ident: 18_CR21
  doi: 10.4271/971062
– ident: 18_CR24
  doi: 10.1109/CDC.2012.6426612
– ident: 18_CR11
  doi: 10.1109/IVS.2017.7995787
– volume: 15
  start-page: 341
  issue: 2
  year: 2014
  ident: 18_CR13
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-014-0035-5
SSID ssj0056130
Score 2.303559
Snippet In this paper, an emergency collision avoidance system is proposed by including not only braking but also steering control actions. The minimum distance to...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 173
SubjectTerms Actuators
Algorithms
Automotive Engineering
Braking
Collision avoidance
Collision dynamics
Collisions
Constraint modelling
Emergencies
Emergency steering
Engineering
Extended Kalman filter
Lane changing
Model accuracy
Optimal control
Parameter estimation
Predictive control
Vehicles
자동차공학
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swED7a5KV9GFvX0nTdEKVPK6K2LFnyQ9mykZINGkbbQN6EJcsltDhd4hX676tzrKUZLE8GW7bh7qQ76e6-D-DUxWXBpOPUZHFGuSxTapQpaFJGtkwsOnVsTr4apcMx_zkRky0YhV4YLKsMa2KzUBczi2fk54yrKFNpxpMvj78pskZhdjVQaOQttUJx0UCMbUOXITJWB7rfBqNf12FtbqJl3IIxlmHOWYU8Z9NM5z1lRrFkAZnqKFvzVNvVvFwLQv_Jmzbu6PItvGnjSNJfKv4dbLlqD3ZfoQu-h6-D0FpJ8HigaSIn_afZtEBNE_NMburlWDKtSOA8IDfTegn_vdiH8eXg9vuQtoQJ1Pq4qqbCWJXzNHaKc1bIWFjhJ2QqCyw1VoIbFctSGO-1ChHZnAvHlJVeG36HbKVTyQF0qlnlDoF4L86tv2-jqOTey-ciNnGSl0qq3DrlehAF4WjbookjqcWDXuEgozy1lyfWzSnNevD57yuPSyiNTYNPvMT1vZ1qBMDG691M38-1D_N_6AxhBmXWg-OgEN1OvYVeGUoPzoKSVo__-8ejzR_7ADussQ2sZDmGTj3_4z76eKQ2n1ojewFVjtii
  priority: 102
  providerName: ProQuest
Title Emergency Collision Avoidance by Steering in Critical Situations
URI https://link.springer.com/article/10.1007/s12239-021-0018-2
https://www.proquest.com/docview/2480986943
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002681721
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Automotive Technology, 2021, 22(1), 119, pp.173-184
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1976-3832
  dateEnd: 20241031
  omitProxy: false
  ssIdentifier: ssj0056130
  issn: 1229-9138
  databaseCode: ADMLS
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1976-3832
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056130
  issn: 1229-9138
  databaseCode: AFBBN
  dateStart: 20080201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1976-3832
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0056130
  issn: 1229-9138
  databaseCode: BENPR
  dateStart: 20080201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1976-3832
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0056130
  issn: 1229-9138
  databaseCode: 8FG
  dateStart: 20080201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1976-3832
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056130
  issn: 1229-9138
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1976-3832
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056130
  issn: 1229-9138
  databaseCode: U2A
  dateStart: 20080201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_68bI9lK3daPoRROlTh8CWJUt-a1aSftFQ2gW6J2HJcgktTkncQv_76hxrWcZW2JPAPttwJ-l38t39DuDQxWXBpOPUZHFGuSxTapQpaFJGtkwsgjoWJ18N07MRv7gTd20d9yxku4eQZLNTL4rdPJJlFFMKsJMc9fvuukA2Lz-JR6wXtt_GIcZTFmMZhpVVCGX-7RVLYLRaTcslP_OP0GiDOINPsNG6iqQ3t-1nWHHVJnz8jUBwC477oXqS4B-Apk6c9F4m4wKNScwrua3nsmRckdDWgNyO6znD9-wLjAb9HydntO2JQK13nWoqjFU5T2OnOGeFjIUVfs2lssBsYiW4UbEshfHAVIjI5lw4pqz0CveHYCudSr7CWjWp3DYQD9Tc-us2ikrugTwXsYmTvFRS5dYp14EoKEfbljAc-1Y86gXVMepTe31iapzSrANHvx55mrNlvCd84DWuH-xYI8c1jvcT_TDV3pM_1xkyCcqsA3vBILpdXTPNuIoylWY86cC3YKTF7X9-cee_pHfhA2umCuau7MFaPX12-94DqU0XVtXgtAvrvdOfl30_fu8Pr2-6zTx8A6bh0oY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71cQAOiKfY0oKF4AKySBw7tg9VKbDVLm1XiLZSb27sOGhVlG1306L-OX4bnmzMUiR66ylS4iTKeOL5xjPzDcBrn1Ylk55Tq1NNuaxyapUtaVYlrsocGnUsTt4f5YMj_uVYHC_Br1gLg2mVcU1sF-py4nCP_D3jKtEq1zzbOjun2DUKo6uxhUbRtVYoN1uKsa6wY9df_Qwu3Gxz-DnM9xvGdvqHnwa06zJAXQAjDRXWqYLnqVecs1KmwomgxbksMT9XCW5VKithw1JfisQVXHimnAyfENxKJ73KwnOXYZVnXAfnb_Vjf_T1W7QFLTpHl48xjTFuFeOqbfFesMyaYooEdsaj7JplXK6n1TXQ-0-ctjV_Ow_gfodbyfZc0R7Ckq8fwb2_2Awfw4d-LOUkuB3RFq2T7cvJuETNIvaKHDTzsWRck9hjgRyMmznd-OwJHN2K6J7CSj2p_TMgATVwF867JKl4QBWFSG2aFZWSqnBe-R4kUTjGdezl2ETjh1nwLqM8TZAn5ukpw3rw9s8tZ3PqjpsGvwoSN6dubJBwG4_fJ-Z0aoJbMTQaaQ2l7sF6nBDT_eozs1DMHryLk7S4_N83rt38sJdwZ3C4v2f2hqPd53CXtXqCWTTrsNJML_xGwEKNfdEpHIGT29bx3yn7E2U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71ISE4IMpDbCnFQnABWU0cO3YOFVRtly6FCqlU6s2NHRutirLtbqDqX-PX4Ulitq1Ebz1FSpyHxl88M56ZbwDeuNRXTDpOTZEWlEufU6NMRTOfWJ9ZVOpYnPz1IN874p-PxfEC_Im1MJhWGdfEdqGuJhb3yDcYV0mh8oJnG75Pi_i2M_xwdk6xgxRGWmM7jQ4i--7yIrhvs83RTpjrt4wNd79v79G-wwC1wRBpqDBWlTxPneKcVTIVVgQE57LC3FwluFGp9MKEZb4SiS25cExZGT4_uJRWOpWF5y7CskQWd6xSH36KWqC1y9HZY6zA6LaKEdW2bC_o5IJicgT2xKPsmk5crKf-mrl7I0LbKr7hI3jYW6xkq4PYCiy4-jE8uMJj-AQ-7sYiToIbEW25Otn6PRlXiCliLslh040l45rE7grkcNx0ROOzp3B0J4J7Bkv1pHbPgQR7gdtw3iaJ58GeKEVq0qz0SqrSOuUGkEThaNvzlmP7jJ96zriM8tRBnpihpzQbwLt_t5x1pB23DX4dJK5P7Vgj1TYef0z06VQHh2KkCyQ0lMUA1uKE6P4nn-k5JAfwPk7S_PJ_37h6-8Newb2AbP1ldLD_Au6zFiaYPrMGS830l3sZjKDGrLdoI3By1_D-C3yNEP8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergency+Collision+Avoidance+by+Steering+in+Critical+Situations&rft.jtitle=International+journal+of+automotive+technology&rft.au=Park%2C+Janghee&rft.au=Kim%2C+Dongchan&rft.au=Huh%2C+Kunsoo&rft.date=2021-02-01&rft.issn=1229-9138&rft.eissn=1976-3832&rft.volume=22&rft.issue=1&rft.spage=173&rft.epage=184&rft_id=info:doi/10.1007%2Fs12239-021-0018-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12239_021_0018_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-9138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-9138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-9138&client=summon