Quasar Factor Analysis—An Unsupervised and Probabilistic Quasar Continuum Prediction Algorithm with Latent Factor Analysis

Since their first discovery, quasars have been essential probes of the distant Universe. However, due to our limited knowledge of its nature, predicting the intrinsic quasar continua has bottlenecked their usage. Existing methods of quasar continuum recovery often rely on a limited number of high-qu...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal. Supplement series Vol. 269; no. 1; pp. 4 - 33
Main Authors Sun, Zechang, Ting, Yuan-Sen, Cai, Zheng
Format Journal Article
LanguageEnglish
Published Saskatoon The American Astronomical Society 01.11.2023
IOP Publishing
Subjects
Online AccessGet full text
ISSN0067-0049
1538-4365
1538-4365
DOI10.3847/1538-4365/acf2f1

Cover

Abstract Since their first discovery, quasars have been essential probes of the distant Universe. However, due to our limited knowledge of its nature, predicting the intrinsic quasar continua has bottlenecked their usage. Existing methods of quasar continuum recovery often rely on a limited number of high-quality quasar spectra, which might not capture the full diversity of the quasar population. In this study, we propose an unsupervised probabilistic model, quasar factor analysis (QFA), which combines factor analysis with physical priors of the intergalactic medium to overcome these limitations. QFA captures the posterior distribution of quasar continua through generatively modeling quasar spectra. We demonstrate that QFA can achieve the state-of-the-art performance, ∼2% relative error, for continuum prediction in the Ly α forest region compared to previous methods. We further fit 90,678 2 < z < 3.5, signal-to-noise ratio >2 quasar spectra from Sloan Digital Sky Survey Data Release 16 and found that for ∼30% quasar spectra where the continua were ill-determined with previous methods, QFA yields visually more plausible continua. QFA also attains ≲1% error in the 1D Ly α power spectrum measurements at z ∼ 3 and ∼4% in z ∼ 2.4. In addition, QFA determines latent factors representing more physical motivation than principal component analysis. We investigate the evolution of the latent factors and report no significant redshift or luminosity dependency except for the Baldwin effect. The generative nature of QFA also enables outlier detection robustly; we showed that QFA is effective in selecting outlying quasar spectra, including damped Ly α systems and potential Type II quasar spectra.
AbstractList Since their first discovery, quasars have been essential probes of the distant Universe. However, due to our limited knowledge of its nature, predicting the intrinsic quasar continua has bottlenecked their usage. Existing methods of quasar continuum recovery often rely on a limited number of high-quality quasar spectra, which might not capture the full diversity of the quasar population. In this study, we propose an unsupervised probabilistic model, quasar factor analysis (QFA), which combines factor analysis with physical priors of the intergalactic medium to overcome these limitations. QFA captures the posterior distribution of quasar continua through generatively modeling quasar spectra. We demonstrate that QFA can achieve the state-of-the-art performance, ∼2% relative error, for continuum prediction in the Ly α forest region compared to previous methods. We further fit 90,678 2 < z < 3.5, signal-to-noise ratio >2 quasar spectra from Sloan Digital Sky Survey Data Release 16 and found that for ∼30% quasar spectra where the continua were ill-determined with previous methods, QFA yields visually more plausible continua. QFA also attains ≲1% error in the 1D Ly α power spectrum measurements at z ∼ 3 and ∼4% in z ∼ 2.4. In addition, QFA determines latent factors representing more physical motivation than principal component analysis. We investigate the evolution of the latent factors and report no significant redshift or luminosity dependency except for the Baldwin effect. The generative nature of QFA also enables outlier detection robustly; we showed that QFA is effective in selecting outlying quasar spectra, including damped Ly α systems and potential Type II quasar spectra.
Since their first discovery, quasars have been essential probes of the distant Universe. However, due to our limited knowledge of its nature, predicting the intrinsic quasar continua has bottlenecked their usage. Existing methods of quasar continuum recovery often rely on a limited number of high-quality quasar spectra, which might not capture the full diversity of the quasar population. In this study, we propose an unsupervised probabilistic model, quasar factor analysis (QFA), which combines factor analysis with physical priors of the intergalactic medium to overcome these limitations. QFA captures the posterior distribution of quasar continua through generatively modeling quasar spectra. We demonstrate that QFA can achieve the state-of-the-art performance, ∼2% relative error, for continuum prediction in the Lyα forest region compared to previous methods. We further fit 90,678 2 < z < 3.5, signal-to-noise ratio >2 quasar spectra from Sloan Digital Sky Survey Data Release 16 and found that for ∼30% quasar spectra where the continua were ill-determined with previous methods, QFA yields visually more plausible continua. QFA also attains ≲1% error in the 1D Lyα power spectrum measurements at z ∼ 3 and ∼4% in z ∼ 2.4. In addition, QFA determines latent factors representing more physical motivation than principal component analysis. We investigate the evolution of the latent factors and report no significant redshift or luminosity dependency except for the Baldwin effect. The generative nature of QFA also enables outlier detection robustly; we showed that QFA is effective in selecting outlying quasar spectra, including damped Lyα systems and potential Type II quasar spectra.
Since their first discovery, quasars have been essential probes of the distant Universe. However, due to our limited knowledge of its nature, predicting the intrinsic quasar continua has bottlenecked their usage. Existing methods of quasar continuum recovery often rely on a limited number of high-quality quasar spectra, which might not capture the full diversity of the quasar population. In this study, we propose an unsupervised probabilistic model, quasar factor analysis (QFA), which combines factor analysis with physical priors of the intergalactic medium to overcome these limitations. QFA captures the posterior distribution of quasar continua through generatively modeling quasar spectra. We demonstrate that QFA can achieve the state-of-the-art performance, ∼2% relative error, for continuum prediction in the Ly α forest region compared to previous methods. We further fit 90,678 2 < z < 3.5, signal-to-noise ratio >2 quasar spectra from Sloan Digital Sky Survey Data Release 16 and found that for ∼30% quasar spectra where the continua were ill-determined with previous methods, QFA yields visually more plausible continua. QFA also attains ≲1% error in the 1D Ly α power spectrum measurements at z ∼ 3 and ∼4% in z ∼ 2.4. In addition, QFA determines latent factors representing more physical motivation than principal component analysis. We investigate the evolution of the latent factors and report no significant redshift or luminosity dependency except for the Baldwin effect. The generative nature of QFA also enables outlier detection robustly; we showed that QFA is effective in selecting outlying quasar spectra, including damped Ly α systems and potential Type II quasar spectra.
Author Cai, Zheng
Sun, Zechang
Ting, Yuan-Sen
Author_xml – sequence: 1
  givenname: Zechang
  orcidid: 0000-0002-8246-7792
  surname: Sun
  fullname: Sun, Zechang
  organization: Tsinghua University Department of Astronomy, Beijing 100084, People's Republic of China
– sequence: 2
  givenname: Yuan-Sen
  orcidid: 0000-0001-5082-9536
  surname: Ting
  fullname: Ting, Yuan-Sen
  organization: Australian National University School of Computing, Acton, ACT 2601, Australia
– sequence: 3
  givenname: Zheng
  orcidid: 0000-0001-8467-6478
  surname: Cai
  fullname: Cai, Zheng
  organization: Peng Cheng Laboratory Department of Mathematics and Theories, Nanshan, Shenzhen, People's Republic of China
BookMark eNqNUctq3DAUFSWBTtLsszR0Wyd6WZKXw9C0gYG20KyFXk41eCRXkhsGsuhH9AvzJbXrkEKgJRtdce85R0fnnoCjEIMD4BzBCyIov0QNETUlrLlUpsMdegVWT60jsIKQ8RpC2r4GJznvIIS8Ie0K3H8ZVVapulKmxFStg-oP2eeHn7_WoboJeRxc-uGzs5UKtvqcolba9z4Xb6pH6iaG4sM47qexs94UH0O17m9j8uXbvrqbzmqrigvl-StvwHGn-uzOHuspuLl6_3Xzsd5--nC9WW9rQxErNZ18Y0YaQy3uCFINmm7IGEu5gKjDrmXOMSc0Nsg2TENtGSaEN9g6LVpNTsH1omuj2skh-b1KBxmVl38aMd1KlaYf9U5abqBotG61dbTRXCDGWkI5QZjglreTFlq0xjCow53q-ydBBOW8CjnnLufc5bKKifN24Qwpfh9dLnIXxzSFkCUWAgrGOJtRbEGZFHNOrpPGFzWnWZLy_f_k4TPiCxy9Wyg-Dn_N_BP-G_cpvGE
CitedBy_id crossref_primary_10_1093_mnras_stae2684
crossref_primary_10_1093_mnras_stae1985
crossref_primary_10_1093_mnras_stae1080
crossref_primary_10_3847_1538_4357_ad09b2
crossref_primary_10_1093_mnrasl_slad171
crossref_primary_10_3847_1538_3881_ad0be4
crossref_primary_10_3847_1538_4357_ad8239
Cites_doi 10.1088/1475-7516/2019/07/017
10.3847/1538-4357/aad6dc
10.1088/1475-7516/2020/03/068
10.1093/mnras/staa2918
10.3847/1538-4365/aba623
10.1093/mnras/stab572
10.1146/annurev.astro.42.053102.133950
10.3847/1538-4357/aad7f8
10.1086/324231
10.5281/zenodo.7979740
10.3847/1538-4357/ab76bd
10.1093/mnras/staa3783
10.1086/500572
10.3847/1538-4357/abc6fd
10.1051/0004-6361/201322130
10.1086/180695
10.5281/zenodo.8025967
10.3847/1538-4357/acb3c2
10.1051/0004-6361/201016025
10.1038/nature13712
10.1088/1475-7516/2013/04/026
10.3847/1538-4357/abbc1b
10.1088/1475-7516/2014/05/027
10.1088/0004-637X/714/1/834
10.1093/mnras/stz1504
10.18727/0722-6691/5117
10.1086/588648
10.1093/mnras/stz2188
10.1093/mnras/stx1958
10.1086/148444
10.1093/mnras/sty2302
10.1038/s41586-020-2649-2
10.1088/2041-8205/782/2/L29
10.1093/mnras/stt031
10.1093/mnras/staa505
10.1088/0004-637X/753/2/136
10.3847/1538-4357/ac8ead
10.1093/mnras/stab3252
10.1093/mnras/stab177
10.1086/426062
10.1086/155294
10.1088/1475-7516/2015/05/060
10.1103/PhysRevD.92.063505
10.3847/1538-4357/ac2b32
10.1093/mnras/staa3550
10.1111/j.1365-2966.2005.09126.x
10.1103/PhysRevLett.119.031302
10.3847/1538-4365/aa93d6
10.1515/9781400839087
10.1093/mnras/stz230
10.1093/mnras/staa2331
10.1051/0004-6361/201016233
10.1086/504836
10.3847/1538-4357/abca96
10.1088/1475-7516/2017/06/047
10.1088/0004-6256/143/2/51
10.3847/1538-4357/abb085
10.1051/0004-6361/201321745
10.1088/0067-0049/194/2/45
10.1093/mnras/sty196
10.1093/mnras/stab2017
10.1086/151185
10.1093/mnras/292.1.27
10.1088/0004-637X/755/2/89
10.3847/1538-4357/ab2590
10.3847/1538-4357/ac7c74
10.1093/mnras/staa1806
10.3847/1538-4357/aa7e31
10.3847/1538-4357/833/2/199
10.3847/1538-4365/ac82e8
10.1088/1475-7516/2023/07/041
10.1093/mnras/stac3257
10.1007/BF02289233
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
ADTOC
UNPAY
DOA
DOI 10.3847/1538-4365/acf2f1
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4365
ExternalDocumentID oai_doaj_org_article_d7c085bb9bde45b78166934731232979
10.3847/1538-4365/acf2f1
10_3847_1538_4365_acf2f1
apjsacf2f1
GrantInformation_xml – fundername: MOST ∣ National Key Research and Development Program of China (NKPs)
  grantid: 2018YFA0404503
  funderid: https://doi.org/10.13039/501100012166
– fundername: Department of Education and Training ∣ Australian Research Council (ARC)
  grantid: DE220101520
  funderid: https://doi.org/10.13039/501100000923
– fundername: National Science Foundation of China
  grantid: 12073014
– fundername: Science Research Grants from the China Manned Space Project
  grantid: MS-CSST2021-A05
GroupedDBID -~X
123
1JI
23N
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABCQX
ABHWH
ACBEA
ACGFO
ACGFS
ACHIP
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
E3Z
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
L7B
M~E
N5L
O3W
O43
OK1
P2P
PJBAE
RIN
RNP
RNS
ROL
SY9
T37
TSCCA
UPT
AAYXX
AEINN
CITATION
7TG
8FD
H8D
KL.
L7M
2WC
6TJ
ADIYS
ADTOC
AI.
EJD
MVM
OHT
UNPAY
VH1
VOH
ID FETCH-LOGICAL-c416t-40042635c4d2f31a51c4d1ccd47801f2e96ee6e8b2c1d56b0bd6233752deb89b3
IEDL.DBID UNPAY
ISSN 0067-0049
1538-4365
IngestDate Fri Oct 03 12:45:08 EDT 2025
Sun Sep 07 10:52:30 EDT 2025
Wed Aug 13 08:01:08 EDT 2025
Wed Oct 01 00:29:44 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Wed Aug 21 03:33:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-40042635c4d2f31a51c4d1ccd47801f2e96ee6e8b2c1d56b0bd6233752deb89b3
Notes Galaxies and Cosmology
AAS43423
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5082-9536
0000-0002-8246-7792
0000-0001-8467-6478
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3847/1538-4365/acf2f1
PQID 2880866761
PQPubID 4562442
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_d7c085bb9bde45b78166934731232979
iop_journals_10_3847_1538_4365_acf2f1
crossref_citationtrail_10_3847_1538_4365_acf2f1
crossref_primary_10_3847_1538_4365_acf2f1
proquest_journals_2880866761
unpaywall_primary_10_3847_1538_4365_acf2f1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Saskatoon
PublicationPlace_xml – name: Saskatoon
PublicationTitle The Astrophysical journal. Supplement series
PublicationTitleAbbrev APJS
PublicationTitleAlternate Astrophys. J. Suppl
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Vestergaard (apjsacf2f1bib81) 2006; 641
Greig (apjsacf2f1bib36) 2019; 484
Slijepcevic (apjsacf2f1bib77) 2021
Gunn (apjsacf2f1bib37) 1965; 142
Simon (apjsacf2f1bib76) 2022; 2023
Finley (apjsacf2f1bib30) 2013; 558
Fan (apjsacf2f1bib27) 2006; 132
Ricci (apjsacf2f1bib70) 2022
Zhao (apjsacf2f1bib92) 2019
Lynds (apjsacf2f1bib55) 1971; 164
Slosar (apjsacf2f1bib78) 2013; 2013
Baldwin (apjsacf2f1bib3) 1977; 214
WEA (apjsacf2f1bib85) 2016
Liu (apjsacf2f1bib53) 2021; 502
Chen (apjsacf2f1bib16) 2020
Montero-Camacho (apjsacf2f1bib58) 2020; 499
Becker (apjsacf2f1bib9) 2001; 122
Guo (apjsacf2f1bib38) 2019; 879
Pâris (apjsacf2f1bib63) 2011; 530
Reiman (apjsacf2f1bib68) 2020
Astropy Collaboration (apjsacf2f1bib1) 2022; 935
Barber (apjsacf2f1bib4) 2012
Xie (apjsacf2f1bib88) 2021
Parks (apjsacf2f1bib64) 2018; 476
Lin (apjsacf2f1bib52) 2022; 262
Eilers (apjsacf2f1bib25) 2017; 844
Faucher-Giguère (apjsacf2f1bib29) 2008; 681
Woods (apjsacf2f1bib87) 2011
Ho (apjsacf2f1bib40) 2020; 496
Sun (apjsacf2f1bib79) 2023
Jensen (apjsacf2f1bib43) 2016; 833
Hui (apjsacf2f1bib41) 1997; 292
Lee (apjsacf2f1bib51) 2012; 143
Karaçaylı (apjsacf2f1bib47) 2020; 497
Lee (apjsacf2f1bib50) 2012; 753
Lyke (apjsacf2f1bib54) 2020; 250
Becker (apjsacf2f1bib8) 2013; 430
Bautista (apjsacf2f1bib6) 2015; 2015
O’Briain (apjsacf2f1bib60) 2021; 906
Johnson (apjsacf2f1bib44) 2007
Yang (apjsacf2f1bib90) 2021; 923
Beaujean (apjsacf2f1bib7) 2017
Chaussidon (apjsacf2f1bib14) 2021; 509
Suzuki (apjsacf2f1bib80) 2005; 618
Meyer (apjsacf2f1bib57) 2019; 487
Davies (apjsacf2f1bib20) 2018b; 864
Draine (apjsacf2f1bib22) 2011
Font-Ribera (apjsacf2f1bib31) 2014; 2014
Gaikwad (apjsacf2f1bib32) 2021; 506
Garnett (apjsacf2f1bib33) 2017; 472
Rossi (apjsacf2f1bib71) 2017; 233
Villar (apjsacf2f1bib82) 2020; 905
Yang (apjsacf2f1bib89) 2020; 904
Ďurovčíková (apjsacf2f1bib24) 2020; 493
du Mas des Bourboux (apjsacf2f1bib23) 2020; 901
Croft (apjsacf2f1bib17) 2018; 481
Marianer (apjsacf2f1bib56) 2021; 500
Farr (apjsacf2f1bib28) 2020; 2020
Renard (apjsacf2f1bib69) 2020; 501
Shen (apjsacf2f1bib75) 2011; 194
Wang (apjsacf2f1bib84) 2022
Berthelot (apjsacf2f1bib10) 2019
Gerardi (apjsacf2f1bib35) 2023; 518
Bartholomew (apjsacf2f1bib5) 2011
De Jong (apjsacf2f1bib21) 2019; 175
Rossi (apjsacf2f1bib72) 2015; 92
Walmsley (apjsacf2f1bib83) 2022
Czerny (apjsacf2f1bib18) 2011; 525
Davies (apjsacf2f1bib19) 2018a; 864
Palanque-Delabrouille (apjsacf2f1bib61) 2013; 559
pandas development team (apjsacf2f1bib62) 2023
Wolfe (apjsacf2f1bib86) 2005; 43
Bahcall (apjsacf2f1bib2) 1971; 170
Eilers (apjsacf2f1bib26) 2022; 938
Yèche (apjsacf2f1bib91) 2017; 2017
Garzilli (apjsacf2f1bib34) 2019; 489
Chabanier (apjsacf2f1bib13) 2019; 2019
Schlegel (apjsacf2f1bib73) 2022
Chaussidon (apjsacf2f1bib15) 2023; 944
Iršič (apjsacf2f1bib42) 2017; 119
Kaiser (apjsacf2f1bib45) 1958; 23
Rafelski (apjsacf2f1bib66) 2014; 782
Kirkman (apjsacf2f1bib49) 2005; 360
Shen (apjsacf2f1bib74) 2014; 513
Kingma (apjsacf2f1bib48) 2014
Ng (apjsacf2f1bib59) 2004
Harris (apjsacf2f1bib39) 2020; 585
Bosman (apjsacf2f1bib11) 2021; 503
Paszke (apjsacf2f1bib65) 2019
Rafelski (apjsacf2f1bib67) 2012; 755
Kamble (apjsacf2f1bib46) 2020; 892
Carilli (apjsacf2f1bib12) 2010; 714
References_xml – volume: 2019
  start-page: 017
  year: 2019
  ident: apjsacf2f1bib13
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/07/017
– volume: 864
  start-page: 142
  year: 2018a
  ident: apjsacf2f1bib19
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad6dc
– volume: 2020
  start-page: 068
  year: 2020
  ident: apjsacf2f1bib28
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/03/068
– volume: 499
  start-page: 1640
  year: 2020
  ident: apjsacf2f1bib58
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2918
– volume: 250
  start-page: 8
  year: 2020
  ident: apjsacf2f1bib54
  publication-title: ApJS
  doi: 10.3847/1538-4365/aba623
– volume: 503
  start-page: 2077
  year: 2021
  ident: apjsacf2f1bib11
  publication-title: MNRAS
  doi: 10.1093/mnras/stab572
– start-page: 29
  year: 2022
  ident: apjsacf2f1bib83
– volume: 43
  start-page: 861
  year: 2005
  ident: apjsacf2f1bib86
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.42.053102.133950
– year: 2019
  ident: apjsacf2f1bib92
– volume: 864
  start-page: 143
  year: 2018b
  ident: apjsacf2f1bib20
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad7f8
– volume: 122
  start-page: 2850
  year: 2001
  ident: apjsacf2f1bib9
  publication-title: AJ
  doi: 10.1086/324231
– year: 2019
  ident: apjsacf2f1bib10
– year: 2023
  ident: apjsacf2f1bib62
  doi: 10.5281/zenodo.7979740
– year: 2020
  ident: apjsacf2f1bib68
– volume: 892
  start-page: 70
  year: 2020
  ident: apjsacf2f1bib46
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab76bd
– volume: 501
  start-page: 3883
  year: 2020
  ident: apjsacf2f1bib69
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3783
– volume: 641
  start-page: 689
  year: 2006
  ident: apjsacf2f1bib81
  publication-title: ApJ
  doi: 10.1086/500572
– volume: 905
  start-page: 94
  year: 2020
  ident: apjsacf2f1bib82
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc6fd
– start-page: 78
  year: 2004
  ident: apjsacf2f1bib59
– volume: 559
  start-page: A85
  year: 2013
  ident: apjsacf2f1bib61
  publication-title: A&A
  doi: 10.1051/0004-6361/201322130
– volume: 164
  start-page: L73
  year: 1971
  ident: apjsacf2f1bib55
  publication-title: ApJL
  doi: 10.1086/180695
– year: 2023
  ident: apjsacf2f1bib79
  doi: 10.5281/zenodo.8025967
– volume: 944
  start-page: 107
  year: 2023
  ident: apjsacf2f1bib15
  publication-title: ApJ
  doi: 10.3847/1538-4357/acb3c2
– year: 2022
  ident: apjsacf2f1bib73
– year: 2007
  ident: apjsacf2f1bib44
– volume: 525
  start-page: L8
  year: 2011
  ident: apjsacf2f1bib18
  publication-title: A&A
  doi: 10.1051/0004-6361/201016025
– year: 2012
  ident: apjsacf2f1bib4
– volume: 513
  start-page: 210
  year: 2014
  ident: apjsacf2f1bib74
  publication-title: Natur
  doi: 10.1038/nature13712
– volume: 2013
  start-page: 026
  year: 2013
  ident: apjsacf2f1bib78
  publication-title: JCAP
  doi: 10.1088/1475-7516/2013/04/026
– year: 2019
  ident: apjsacf2f1bib65
– volume: 904
  start-page: 26
  year: 2020
  ident: apjsacf2f1bib89
  publication-title: ApJ
  doi: 10.3847/1538-4357/abbc1b
– volume: 2014
  start-page: 027
  year: 2014
  ident: apjsacf2f1bib31
  publication-title: JCAP
  doi: 10.1088/1475-7516/2014/05/027
– volume: 714
  start-page: 834
  year: 2010
  ident: apjsacf2f1bib12
  publication-title: ApJ
  doi: 10.1088/0004-637X/714/1/834
– year: 2014
  ident: apjsacf2f1bib48
– volume: 487
  start-page: 3305
  year: 2019
  ident: apjsacf2f1bib57
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1504
– volume: 175
  start-page: 3
  year: 2019
  ident: apjsacf2f1bib21
  publication-title: Msngr
  doi: 10.18727/0722-6691/5117
– volume: 681
  start-page: 831
  year: 2008
  ident: apjsacf2f1bib29
  publication-title: ApJ
  doi: 10.1086/588648
– volume: 489
  start-page: 3456
  year: 2019
  ident: apjsacf2f1bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2188
– volume: 472
  start-page: 1850
  year: 2017
  ident: apjsacf2f1bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1958
– year: 2020
  ident: apjsacf2f1bib16
– volume: 142
  start-page: 1633
  year: 1965
  ident: apjsacf2f1bib37
  publication-title: ApJ
  doi: 10.1086/148444
– volume: 481
  start-page: 1320
  year: 2018
  ident: apjsacf2f1bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2302
– year: 2021
  ident: apjsacf2f1bib77
– volume: 585
  start-page: 357
  year: 2020
  ident: apjsacf2f1bib39
  publication-title: Natur
  doi: 10.1038/s41586-020-2649-2
– volume: 782
  start-page: L29
  year: 2014
  ident: apjsacf2f1bib66
  publication-title: ApJL
  doi: 10.1088/2041-8205/782/2/L29
– year: 2017
  ident: apjsacf2f1bib7
– volume: 430
  start-page: 2067
  year: 2013
  ident: apjsacf2f1bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stt031
– volume: 493
  start-page: 4256
  year: 2020
  ident: apjsacf2f1bib24
  publication-title: MNRAS
  doi: 10.1093/mnras/staa505
– volume: 753
  start-page: 136
  year: 2012
  ident: apjsacf2f1bib50
  publication-title: ApJ
  doi: 10.1088/0004-637X/753/2/136
– volume: 938
  start-page: 17
  year: 2022
  ident: apjsacf2f1bib26
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac8ead
– volume: 509
  start-page: 3904
  year: 2021
  ident: apjsacf2f1bib14
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3252
– volume: 502
  start-page: 3510
  year: 2021
  ident: apjsacf2f1bib53
  publication-title: MNRAS
  doi: 10.1093/mnras/stab177
– volume: 618
  start-page: 592
  year: 2005
  ident: apjsacf2f1bib80
  publication-title: ApJ
  doi: 10.1086/426062
– year: 2021
  ident: apjsacf2f1bib88
– volume: 214
  start-page: 679
  year: 1977
  ident: apjsacf2f1bib3
  publication-title: ApJ
  doi: 10.1086/155294
– volume: 2015
  start-page: 060
  year: 2015
  ident: apjsacf2f1bib6
  publication-title: JCAP
  doi: 10.1088/1475-7516/2015/05/060
– volume: 92
  start-page: 063505
  year: 2015
  ident: apjsacf2f1bib72
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.92.063505
– volume: 923
  start-page: 262
  year: 2021
  ident: apjsacf2f1bib90
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac2b32
– volume: 500
  start-page: 5408
  year: 2021
  ident: apjsacf2f1bib56
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3550
– year: 2022
  ident: apjsacf2f1bib70
– volume: 360
  start-page: 1373
  year: 2005
  ident: apjsacf2f1bib49
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09126.x
– volume: 119
  start-page: 031302
  year: 2017
  ident: apjsacf2f1bib42
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.119.031302
– volume: 233
  start-page: 12
  year: 2017
  ident: apjsacf2f1bib71
  publication-title: ApJS
  doi: 10.3847/1538-4365/aa93d6
– year: 2011
  ident: apjsacf2f1bib22
  doi: 10.1515/9781400839087
– volume: 484
  start-page: 5094
  year: 2019
  ident: apjsacf2f1bib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stz230
– volume: 497
  start-page: 4742
  year: 2020
  ident: apjsacf2f1bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2331
– volume: 530
  start-page: A50
  year: 2011
  ident: apjsacf2f1bib63
  publication-title: A&A
  doi: 10.1051/0004-6361/201016233
– volume: 132
  start-page: 117
  year: 2006
  ident: apjsacf2f1bib27
  publication-title: AJ
  doi: 10.1086/504836
– volume: 906
  start-page: 130
  year: 2021
  ident: apjsacf2f1bib60
  publication-title: ApJ
  doi: 10.3847/1538-4357/abca96
– volume: 2017
  start-page: 047
  year: 2017
  ident: apjsacf2f1bib91
  publication-title: JCAP
  doi: 10.1088/1475-7516/2017/06/047
– volume: 143
  start-page: 51
  year: 2012
  ident: apjsacf2f1bib51
  publication-title: AJ
  doi: 10.1088/0004-6256/143/2/51
– year: 2011
  ident: apjsacf2f1bib5
– volume: 901
  start-page: 153
  year: 2020
  ident: apjsacf2f1bib23
  publication-title: ApJ
  doi: 10.3847/1538-4357/abb085
– volume: 558
  start-page: A111
  year: 2013
  ident: apjsacf2f1bib30
  publication-title: A&A
  doi: 10.1051/0004-6361/201321745
– volume: 194
  start-page: 45
  year: 2011
  ident: apjsacf2f1bib75
  publication-title: ApJS
  doi: 10.1088/0067-0049/194/2/45
– volume: 476
  start-page: 1151
  year: 2018
  ident: apjsacf2f1bib64
  publication-title: MNRAS
  doi: 10.1093/mnras/sty196
– volume: 506
  start-page: 4389
  year: 2021
  ident: apjsacf2f1bib32
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2017
– volume: 170
  start-page: 17
  year: 1971
  ident: apjsacf2f1bib2
  publication-title: ApJ
  doi: 10.1086/151185
– volume: 292
  start-page: 27
  year: 1997
  ident: apjsacf2f1bib41
  publication-title: MNRAS
  doi: 10.1093/mnras/292.1.27
– volume: 755
  start-page: 89
  year: 2012
  ident: apjsacf2f1bib67
  publication-title: ApJ
  doi: 10.1088/0004-637X/755/2/89
– volume: 879
  start-page: 72
  year: 2019
  ident: apjsacf2f1bib38
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab2590
– volume: 935
  start-page: 167
  year: 2022
  ident: apjsacf2f1bib1
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7c74
– volume: 496
  start-page: 5436
  year: 2020
  ident: apjsacf2f1bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1806
– volume: 844
  start-page: 136
  year: 2017
  ident: apjsacf2f1bib25
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7e31
– start-page: 174
  year: 2011
  ident: apjsacf2f1bib87
– volume: 833
  start-page: 199
  year: 2016
  ident: apjsacf2f1bib43
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/2/199
– volume: 262
  start-page: 38
  year: 2022
  ident: apjsacf2f1bib52
  publication-title: ApJS
  doi: 10.3847/1538-4365/ac82e8
– volume: 2023
  start-page: 041
  year: 2022
  ident: apjsacf2f1bib76
  publication-title: JCAP
  doi: 10.1088/1475-7516/2023/07/041
– year: 2022
  ident: apjsacf2f1bib84
– volume: 518
  start-page: 2567
  year: 2023
  ident: apjsacf2f1bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3257
– volume: 23
  start-page: 187
  year: 1958
  ident: apjsacf2f1bib45
  publication-title: Psychometrika
  doi: 10.1007/BF02289233
– year: 2016
  ident: apjsacf2f1bib85
SSID ssj0007539
Score 2.5424736
Snippet Since their first discovery, quasars have been essential probes of the distant Universe. However, due to our limited knowledge of its nature, predicting the...
SourceID doaj
unpaywall
proquest
crossref
iop
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4
SubjectTerms Active galactic nuclei
Algorithms
Bayesian statistics
Data analysis
Factor analysis
Intergalactic media
Intergalactic medium
Luminosity
Lyman alpha forest
Outliers (statistics)
Posterior distribution
Principal components analysis
Probabilistic models
Quasars
Red shift
Signal to noise ratio
Sky surveys (astronomy)
Spectra
Supermassive black holes
System effectiveness
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bixMxFA6yIPoiuirbdZU8qKAwtJPLZPJYxbKIygoW9m3IbbTQpqUzgyz44I_wF_pLPGcyrbs-7L74FmYSEnJuX27fIeS54iB0JorMBK1ggVKKzORWZsEY7plRwub4Gvnjp-J0Lt6fy_NLqb7wTliiB04TN_bKASqwVlsfhLQKz7k0F4ojFtCqf7o3KfVuMTX4YADhCfiCG0AQnA4oObjicW_ighdybFzN6vxKQOp5-yHMLNabK5DzThc35uK7WS4vRZ_ZfXJvgI10mob7gNwK8ZAcTRvcyF6vLuhL2pfTPkVzSG6fpdJD8uNzZxqzpbM-sQ7dkZD8_vlrGuk8Nt0GvUUTPDXR07Mt2Dfel0X6Zjo0RQarRey6FfzGcx2UJZ0uv663i_bbiuJWLv0AmDW2__byiMxn7768Pc2GlAuZA2TWZqJfU3HphGc1z43MoZQ754WCUFazoIsQilBa5nIvCzuxHvATV5L5YEtt-WNyENcxHBFqwQV7PWEhr4UQxplSWS1YmAgrZenkiIx38165gY8c02IsK1iXoKQqlFSFkqqSpEbk1b7FJnFxXFP3DYpyXw9ZtPsPoFvVoFvVTbo1Ii9AEarBqptrOjvZqcrfygw8Y4k3iOH367363Djw4_8x8CfkLgMwlt5MnpCDdtuFpwCeWvust5M_xw0SvQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA7LiuiL6KrsuKvkQQWFOtNcmhafRnFYxMsKDu5bya26MJMZpi3Lgg_-CH-hv8Rzmk51RVbfQpM0IeeS7-TyhZCHioPQmcgS7QsFAUouEp0amXituWNaCZPibeS377KjuXh9Ik92yPPhLsxq3bv-Z5CMRMFxCNG-OfjScWejgmdyrG3FKgh9ruDuFhLnv-efBjcMODxiX_AEiIPjHuVf_3BhTuqo-2GmgeYvoM5rbVjr8zO9WPw2Ac1ukhs9cqTT2M9bZMeHPbI_rXEte7U8p49pl45LFfUeuXocU7fJ1w-trvWGzrq3deiWh-THt-_TQOehbtfoMGrvqA6OHm_AxPHILDI4074qklidhrZdQjZu7aA46XTxebU5bb4sKa7m0jcAW0PzZyt3yHz26uPLo6R_dSGxAM6aRHRhFZdWOFbxVMsUUqm1TiiYzSrmi8z7zOeG2dTJzEyMAwjFlWTOm7ww_C7ZDavg9wk14IVdMWE-rYQQ2upcmUIwPxFGytzKERlvx720PSU5voyxKCE0QUmVKKkSJVVGSY3Ik6HGOtJxXFL2BYpyKIdE2t0HUKqyV6rSKQug05jCOC-kUbiNWnChOELNQhUj8ggUoewNu76kscOtqvwqzMA55niIGLKfDurzz47f-882D8h1BpAr3ow8JLvNpvX3ASI15kFnCj8B3JMKGg
  priority: 102
  providerName: IOP Publishing
Title Quasar Factor Analysis—An Unsupervised and Probabilistic Quasar Continuum Prediction Algorithm with Latent Factor Analysis
URI https://iopscience.iop.org/article/10.3847/1538-4365/acf2f1
https://www.proquest.com/docview/2880866761
https://doi.org/10.3847/1538-4365/acf2f1
https://doaj.org/article/d7c085bb9bde45b78166934731232979
UnpaywallVersion publishedVersion
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 1538-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007539
  issn: 1538-4365
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1538-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007539
  issn: 1538-4365
  databaseCode: O3W
  dateStart: 19961201
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1538-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007539
  issn: 1538-4365
  databaseCode: IOP
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1538-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007539
  issn: 1538-4365
  databaseCode: M~E
  dateStart: 19540101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZQJwQvXAZohTH5AZBAytr4EiePAVENBFuRqBhPkW8ZFW1aNYnQEA_8CH4hv4RzkrRsExrwYlnxcZzYx8efj-3PhDxSHBqdiSjQPlEwQYlFoEMjA681d0wrYUI8jfz2MDqYiNfH8rjzd-BZmDPr9xwM56DpkIJHcqBtznKY52xFElB3j2xNDsfpx8bQQl_vkO5GvF2R_OMrzo1ADVE_jCvTxfIcxrxWF0t9-kXPZmeGm9HNlvuobFgKcZfJ5_26Mvv26wUOx3_5k1vkRoc5adoqyW1yxRfbZCct0Qu-mJ_SJ7SJt06OcptcHbexO-Tbu1qXekVHza08dM1g8vP7j7Sgk6Ksl2hqSu-oLhwdr8A44GZb5H6mXVakv5oWdT2HZFwUQkWg6exksZpWn-YU_cD0DQDeorpYyl0yGb18_-Ig6O5rCCzAuioQzYSMSyscy3moZQix0FonFIyDOfNJ5H3kY8Ns6GRkhsYB-OJKMudNnBh-j_SKReF3CDVgv10yZD7MhRDa6liZRDA_FEbK2Mo-GazbMLMdmTneqTHLYFKD1Z1hdWdY3Vlb3X3ydJNj2RJ5XCL7HNViI4cU3M0DaM-s69GZUxbgqjGJcV5Io3ABNuFCcQSpiUr65DEoVdaZhPKSwnbXavdbmIFZjXH7MSQ_26jiXz_8_v8IPyDXGSC29mDlLulVq9o_BIRVmb3GMwHhq6MxhEf8w17X3X4Bvf8gDg
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgiMsLlwFaYYAfAAmktI1jx8ljuVQDxigSlfYWfMs20aZRkwgN8cCP4BfySzgnTgub0EDizUrs2Dk-_vz59pmQhzKCSmc8DpRLJQxQEh6oUIvAKRVZpiTXIZ5GfrsX70z5632x391z2p6FWZQd9Pch6IWCvQmxfUeApYO2jfIoFgNlcpaHg9Lm58mFVqcET_C9m6yhGLi457-ABsiF_TrlH79yol9q5fuht4EinGCel5uiVMef1Wz2Wyc0vkY-rorv95586je17psvp5Qd_-P_rpOrHUGlIx_9Bjnnik2yNapwynwxP6aPaRv2MyLVJrk48aGb5Ov7RlVqScftFT50JXfy49v3UUGnRdWUiEuVs1QVlk6WgCS4MxeFommXFLWyjoqmmcNrXEFCr6Gj2cFieVQfzilOGtNdYMdFfTqXW2Q6fvnh-U7QXe4QGOCAdcDb0VskDLcsj0IlQgiFxlguodPMmUtj52KXaGZCK2I91BaYWiQFs04nqY5uk41iUbgtQjWAvU2HzIU551wZlUidcuaGXAuRGNEjg1XVZqZTPscLOGYZjIDQ5BmaPEOTZ97kPfJknaL0qh9nxH2G3rKOh3rd7QOo26yr28xKA9xW61Rbx4WWuFqbRlxGyGhTmfbII3CHrMOP6ozMtlfe-CsyAwxOcK8yvH669tC_FvzOP-b5gFyavBhnu6_23twlVxiQPH8Wc5ts1MvG3QNSVuv7bcP7CRmNLuk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hVAguBQqoKS3aAyCB5Cbeh9c-uoioQlAFiUjlZO3LEDVxothWVcSBH8Ev5JcwYzuhrVCB28o767VnZ2e-fX1LyDPFodGZiALtEwUDlFgEOjQy8Fpzx7QSJsTTyO9PouOJeHsqT7v5DjwLc2n9noPjHDQdUvBIDrTNWQ7jnK1IAuruka3JyTj91Dha6Osd0t2ItyuSf3zFlQjUEPVDXJkullcw5p26WOqLcz2bXQo3o3st91HZsBTiLpOzw7oyh_brNQ7Hf_mT-2S7w5w0bY3kAbnlix2ym5Y4C76YX9AXtEm3kxzlDrk9blMPybcPtS71io6aW3nomsHk5_cfaUEnRVkv0dWU3lFdODpegXPAzbbI_Uy7okh_NS3qeg7ZuCiEhkDT2efFalp9mVOcB6bvAPAW1fVaHpHJ6M3H18dBd19DYAHWVYFoBmRcWuFYzkMtQ0iF1jqhIA7mzCeR95GPDbOhk5EZGgfgiyvJnDdxYvhj0isWhd8l1ID_dsmQ-TAXQmirY2USwfxQGCljK_tksG7DzHZk5ninxiyDQQ2qO0N1Z6jurFV3n7zclFi2RB43yB6hWWzkkIK7eQDtmXU9OnPKAlw1JjHOC2kULsAmXCiOIDVRSZ88B6PKOpdQ3lDZ_trsfgszcKsxbj-G7FcbU_zrh-_9j_ATcpcBYmsPVu6TXrWq_QEgrMo87TrXL5_lHRY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasar+Factor+Analysis%E2%80%94An+Unsupervised+and+Probabilistic+Quasar+Continuum+Prediction+Algorithm+with+Latent+Factor+Analysis&rft.jtitle=The+Astrophysical+journal.+Supplement+series&rft.au=Sun%2C+Zechang&rft.au=Yuan-Sen%2C+Ting&rft.au=Cai%2C+Zheng&rft.date=2023-11-01&rft.pub=IOP+Publishing&rft.issn=0067-0049&rft.eissn=1538-4365&rft.volume=269&rft.issue=1&rft.spage=4&rft_id=info:doi/10.3847%2F1538-4365%2Facf2f1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0067-0049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0067-0049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0067-0049&client=summon