Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid
This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water–Al 2O 3 nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures wi...
Saved in:
| Published in | European journal of mechanics, B, Fluids Vol. 29; no. 6; pp. 472 - 482 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Issy-les-Moulineaux
Elsevier Masson SAS
01.12.2010
Elsevier Masson |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0997-7546 1873-7390 |
| DOI | 10.1016/j.euromechflu.2010.06.008 |
Cover
| Abstract | This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water–Al
2O
3 nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the hot wall and moving at a constant speed. The developed equations are given in terms of the stream function–vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Comparisons with previously published work are performed and found to be in good agreement. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on the flow and heat transfer characteristics. It is found that significant heat transfer enhancement can be obtained due to the presence of nanoparticles and that this is accentuated by inclination of the enclosure at moderate and large Richardson numbers. |
|---|---|
| AbstractList | This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water–Al
2O
3 nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the hot wall and moving at a constant speed. The developed equations are given in terms of the stream function–vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Comparisons with previously published work are performed and found to be in good agreement. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on the flow and heat transfer characteristics. It is found that significant heat transfer enhancement can be obtained due to the presence of nanoparticles and that this is accentuated by inclination of the enclosure at moderate and large Richardson numbers. This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water-Al sub(2)O sub(3) nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the hot wall and moving at a constant speed. The developed equations are given in terms of the stream function-vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Comparisons with previously published work are performed and found to be in good agreement. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on the flow and heat transfer characteristics. It is found that significant heat transfer enhancement can be obtained due to the presence of nanoparticles and that this is accentuated by inclination of the enclosure at moderate and large Richardson numbers. |
| Author | Abu-Nada, Eiyad Chamkha, Ali J. |
| Author_xml | – sequence: 1 givenname: Eiyad surname: Abu-Nada fullname: Abu-Nada, Eiyad email: eiyad@hu.edu.jo, eiyad@itv.uni-hannover.de organization: Leibniz Universität Hannover, Institut für Technische Verbrennung, Welfengarten 1a, 30167 Hannover, Germany – sequence: 2 givenname: Ali J. surname: Chamkha fullname: Chamkha, Ali J. organization: Manufacturing Engineering Department, The Public Authority for Applied Education and Training, Shuweikh 70654, Kuwait |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23287907$$DView record in Pascal Francis |
| BookMark | eNqNkUFrHCEUx6Uk0E3S7zA9lPYy26fj6MyplCVtAym5pPQojj6Ji6uJzmzSb1-XTaH0UHLS9_i9v_J-Z-QkpoiEvKWwpkDFx-0al5x2aO5cWNYMah_EGmB4RVZ0kF0ruxFOyArGUbay5-I1OStlCwCcdWJFfn73T2gbk-IezexTbFxIj42PjW6Ct63Nfo-x1ib4WMHysOiMDdY6laXenA-h9h_9fFdHoo6pfsTbC3LqdCj45vk8Jz--XN5uvrXXN1-vNp-vW8OpmFsme2e5mXjXoXOcC0RLkelB4mQsw9H2jguYLLP95PgksWPdMAGYSTs72u6cvD_m3uf0sGCZ1c4XgyHoiGkpaqBSgBC0r-SH_5JUSMpYJUVF3z2juhgdXNbR-KLus9_p_Euxjg1yBFm5T0fO5FRKRqeMn_Vhi3PWPigK6iBJbdVfktRBkgKhqqSaMP6T8OeRl8xujrNY97v3mFUxvopB63N1qWzyL0j5DU37uDs |
| CitedBy_id | crossref_primary_10_1108_HFF_10_2018_0566 crossref_primary_10_1080_17455030_2023_2198612 crossref_primary_10_1007_s10973_019_08900_7 crossref_primary_10_1177_16878132231157184 crossref_primary_10_1016_j_csite_2024_104391 crossref_primary_10_1016_j_ijft_2021_100118 crossref_primary_10_1016_j_proeng_2015_05_031 crossref_primary_10_1108_HFF_10_2018_0568 crossref_primary_10_1007_s10973_020_09664_1 crossref_primary_10_1016_j_proeng_2015_05_024 crossref_primary_10_1002_htj_21242 crossref_primary_10_1016_j_icheatmasstransfer_2019_104384 crossref_primary_10_1016_j_expthermflusci_2013_11_002 crossref_primary_10_1016_j_molliq_2014_07_010 crossref_primary_10_1016_j_icheatmasstransfer_2013_09_006 crossref_primary_10_1108_HFF_09_2019_0692 crossref_primary_10_1108_HFF_07_2018_0386 crossref_primary_10_1016_j_ijthermalsci_2011_04_007 crossref_primary_10_1080_10407782_2012_715983 crossref_primary_10_1016_j_ijthermalsci_2013_01_013 crossref_primary_10_1080_17455030_2021_2003909 crossref_primary_10_1016_j_ijft_2022_100195 crossref_primary_10_1080_09500340_2018_1510556 crossref_primary_10_1016_j_ijheatmasstransfer_2015_02_009 crossref_primary_10_1016_j_physa_2019_04_067 crossref_primary_10_1115_1_4044136 crossref_primary_10_1080_10407782_2024_2368753 crossref_primary_10_1016_j_euromechflu_2015_06_003 crossref_primary_10_3390_pr12061079 crossref_primary_10_1016_j_jtice_2024_105807 crossref_primary_10_1016_j_jmmm_2019_04_040 crossref_primary_10_1016_j_icheatmasstransfer_2022_106111 crossref_primary_10_1016_j_applthermaleng_2018_09_039 crossref_primary_10_1007_s10973_020_09832_3 crossref_primary_10_1016_j_ijmecsci_2017_07_057 crossref_primary_10_1016_j_icheatmasstransfer_2017_10_007 crossref_primary_10_1007_s10973_018_7881_8 crossref_primary_10_1016_j_aej_2022_01_009 crossref_primary_10_1016_j_ijmecsci_2018_10_037 crossref_primary_10_1166_jon_2023_2002 crossref_primary_10_1016_j_icheatmasstransfer_2017_02_009 crossref_primary_10_1016_j_euromechflu_2016_04_011 crossref_primary_10_1007_s10973_021_10971_4 crossref_primary_10_1080_17455030_2022_2087117 crossref_primary_10_1016_j_aej_2016_01_027 crossref_primary_10_1016_j_jmmm_2016_05_006 crossref_primary_10_1016_j_tsep_2021_101175 crossref_primary_10_1007_s10891_023_02707_y crossref_primary_10_1021_acsomega_2c00923 crossref_primary_10_1016_j_asej_2014_12_012 crossref_primary_10_1016_j_rsurfi_2025_100469 crossref_primary_10_1016_j_powtec_2018_11_006 crossref_primary_10_1140_epjp_s13360_020_00205_1 crossref_primary_10_2514_1_T5821 crossref_primary_10_1002_htj_21917 crossref_primary_10_1007_s10973_018_7519_x crossref_primary_10_1007_s10973_018_7914_3 crossref_primary_10_1016_j_jtice_2016_08_033 crossref_primary_10_1142_S0217979223502892 crossref_primary_10_1108_WJE_11_2017_0376 crossref_primary_10_1002_htj_22449 crossref_primary_10_1007_s10973_021_11193_4 crossref_primary_10_1016_j_anucene_2022_109596 crossref_primary_10_1007_s10973_018_7068_3 crossref_primary_10_1016_j_ijmecsci_2020_105876 crossref_primary_10_1002_htj_22683 crossref_primary_10_1007_s12206_012_0805_9 crossref_primary_10_1615_HeatTransRes_2023048854 crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_103 crossref_primary_10_1115_1_4031178 crossref_primary_10_1007_s10973_019_08345_y crossref_primary_10_1080_01457632_2017_1338857 crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_116 crossref_primary_10_1021_ie201235p crossref_primary_10_1002_htj_21207 crossref_primary_10_1016_j_applthermaleng_2011_11_065 crossref_primary_10_1016_j_enganabound_2022_09_011 crossref_primary_10_1166_jon_2023_2107 crossref_primary_10_1140_epjp_s13360_021_01189_2 crossref_primary_10_1007_s10973_020_10003_7 crossref_primary_10_1002_htj_22099 crossref_primary_10_1016_j_csite_2021_101089 crossref_primary_10_3390_app8112223 crossref_primary_10_2139_ssrn_4854863 crossref_primary_10_1080_15502287_2017_1366597 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_008 crossref_primary_10_1016_j_jmmm_2022_170153 crossref_primary_10_1063_5_0189237 crossref_primary_10_1007_s10973_022_11699_5 crossref_primary_10_1063_5_0252019 crossref_primary_10_1007_s10973_018_7037_x crossref_primary_10_1080_10407782_2014_986001 crossref_primary_10_18186_thermal_843866 crossref_primary_10_1007_s12648_019_01474_y crossref_primary_10_1016_j_amc_2019_03_008 crossref_primary_10_1016_j_ijheatmasstransfer_2016_09_041 crossref_primary_10_48084_etasr_809 crossref_primary_10_1139_cjp_2017_0282 crossref_primary_10_4236_jectc_2013_33013 crossref_primary_10_1134_S0018151X17030166 crossref_primary_10_1080_10407782_2016_1230423 crossref_primary_10_1007_s00396_023_05200_3 crossref_primary_10_1016_j_molliq_2016_08_032 crossref_primary_10_1016_j_apt_2015_01_005 crossref_primary_10_1016_j_heliyon_2021_e06143 crossref_primary_10_1051_matecconf_202033001008 crossref_primary_10_1002_mma_6930 crossref_primary_10_1140_epjp_i2019_12763_2 crossref_primary_10_1134_S0021894415030141 crossref_primary_10_1007_s12206_013_0875_3 crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_034 crossref_primary_10_2514_1_T4777 crossref_primary_10_3390_nano10030449 crossref_primary_10_1007_s10973_018_7036_y crossref_primary_10_1016_j_ijthermalsci_2014_03_007 crossref_primary_10_1016_j_molliq_2016_05_076 crossref_primary_10_1016_j_jestch_2022_101095 crossref_primary_10_1515_nleng_2017_0001 crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_136 crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_116 crossref_primary_10_1166_jon_2020_1748 crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_018 crossref_primary_10_1016_j_molliq_2017_05_019 crossref_primary_10_1016_j_apt_2017_11_032 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_088 crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_028 crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_102 crossref_primary_10_1016_S1001_6058_15_60540_6 crossref_primary_10_1115_1_4046060 crossref_primary_10_1080_01430750_2024_2332525 crossref_primary_10_1080_10407782_2023_2294048 crossref_primary_10_1007_s40997_017_0083_3 crossref_primary_10_1016_j_powtec_2014_02_032 crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_164 crossref_primary_10_1016_j_physa_2019_121179 crossref_primary_10_1016_j_apm_2013_11_033 crossref_primary_10_1007_s11771_021_4855_y crossref_primary_10_1016_j_spmi_2011_01_002 crossref_primary_10_3390_nano11092250 crossref_primary_10_4236_jamp_2018_69162 crossref_primary_10_1007_s10973_019_08943_w crossref_primary_10_1016_j_physa_2019_122826 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_053 crossref_primary_10_1016_j_aej_2015_12_014 crossref_primary_10_1016_j_ijft_2023_100528 crossref_primary_10_1016_j_csite_2021_101321 crossref_primary_10_1016_j_applthermaleng_2016_10_102 crossref_primary_10_3390_en16052338 crossref_primary_10_1016_j_heliyon_2022_e11968 crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_070 crossref_primary_10_12693_APhysPolA_124_665 crossref_primary_10_1016_j_icheatmasstransfer_2024_108367 crossref_primary_10_1515_ijcre_2016_0184 crossref_primary_10_1115_1_4031221 crossref_primary_10_1016_j_icheatmasstransfer_2025_108627 crossref_primary_10_1016_j_aej_2024_05_098 crossref_primary_10_1016_j_proeng_2014_11_766 crossref_primary_10_1051_epjap_2017170032 crossref_primary_10_1007_s10973_019_08204_w crossref_primary_10_1038_s41598_019_55897_y crossref_primary_10_1115_1_4045070 crossref_primary_10_1002_htj_21099 crossref_primary_10_1016_j_asej_2016_02_010 crossref_primary_10_1016_j_jestch_2015_08_005 crossref_primary_10_1007_s10973_018_7377_6 crossref_primary_10_1007_s10973_018_7715_8 crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_016 crossref_primary_10_1016_j_ijmecsci_2018_07_011 crossref_primary_10_1007_s10973_022_11418_0 crossref_primary_10_2514_1_T5430 crossref_primary_10_1016_j_powtec_2013_12_039 crossref_primary_10_1063_1_4981911 crossref_primary_10_1080_17455030_2022_2083718 crossref_primary_10_1016_j_powtec_2016_10_029 crossref_primary_10_1016_j_powtec_2014_06_040 crossref_primary_10_1016_j_icheatmasstransfer_2010_10_001 crossref_primary_10_1007_s00542_019_04690_y crossref_primary_10_1108_HFF_04_2018_0176 crossref_primary_10_4028_p_f3jUCR crossref_primary_10_1016_j_apt_2015_07_020 crossref_primary_10_1016_j_rineng_2022_100376 crossref_primary_10_1016_j_amc_2015_05_145 crossref_primary_10_1007_s10973_019_08068_0 crossref_primary_10_1007_s00170_024_14455_1 crossref_primary_10_1007_s10973_018_7317_5 crossref_primary_10_1016_j_ijmecsci_2018_12_036 crossref_primary_10_1007_s40430_024_05346_3 crossref_primary_10_1002_num_22971 crossref_primary_10_1016_j_jppr_2019_01_007 crossref_primary_10_18311_jmmf_2023_35816 crossref_primary_10_1016_j_icheatmasstransfer_2019_104310 crossref_primary_10_1007_s10973_018_7714_9 crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_117 crossref_primary_10_1016_j_icheatmasstransfer_2016_08_010 crossref_primary_10_1016_j_tsep_2020_100660 crossref_primary_10_1002_htj_21287 crossref_primary_10_1063_5_0196344 crossref_primary_10_1016_j_icheatmasstransfer_2011_08_011 crossref_primary_10_1016_j_ijthermalsci_2023_108402 crossref_primary_10_5402_2012_373202 crossref_primary_10_3390_sym14122658 crossref_primary_10_1016_j_ijheatmasstransfer_2016_06_049 crossref_primary_10_3390_pr13020432 crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_010 crossref_primary_10_1007_s00231_019_02698_8 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_006 crossref_primary_10_1108_HFF_03_2016_0090 crossref_primary_10_2139_ssrn_3372316 crossref_primary_10_1002_htj_22705 crossref_primary_10_1016_j_cjph_2021_07_013 crossref_primary_10_1016_j_icheatmasstransfer_2017_06_015 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_093 crossref_primary_10_1515_jnet_2022_0070 crossref_primary_10_1016_j_ijmecsci_2020_105696 crossref_primary_10_1016_j_spmi_2012_02_015 crossref_primary_10_1016_j_ijmecsci_2018_12_017 crossref_primary_10_4208_aamm_10_m1072 crossref_primary_10_1016_j_euromechflu_2018_03_002 crossref_primary_10_1166_jon_2023_2062 crossref_primary_10_2514_1_T7074 crossref_primary_10_1108_HFF_07_2020_0399 crossref_primary_10_1108_EC_06_2017_0225 crossref_primary_10_1108_HFF_10_2015_0448 crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_001 crossref_primary_10_1142_S0129183121500091 crossref_primary_10_1016_j_aej_2016_08_017 crossref_primary_10_1016_j_cplett_2022_139386 crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_003 crossref_primary_10_1016_j_ijthermalsci_2011_09_003 crossref_primary_10_3390_coatings11121481 crossref_primary_10_1016_j_physa_2019_123050 crossref_primary_10_1115_1_4034599 crossref_primary_10_1140_epjp_i2016_16095_5 crossref_primary_10_3390_en16114408 crossref_primary_10_1016_j_ijmecsci_2018_10_071 crossref_primary_10_1080_10407782_2017_1353377 crossref_primary_10_1002_htj_21260 crossref_primary_10_1016_j_ijmecsci_2019_105104 crossref_primary_10_1016_j_ijthermalsci_2020_106707 crossref_primary_10_1007_s10973_018_7455_9 crossref_primary_10_1080_01457632_2017_1421130 crossref_primary_10_1016_j_jtice_2017_01_006 crossref_primary_10_3390_e20120903 crossref_primary_10_1007_s13369_013_0792_x crossref_primary_10_1016_j_apt_2015_03_012 crossref_primary_10_1002_eng2_12151 crossref_primary_10_1002_htj_21397 crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_031 crossref_primary_10_1016_j_icheatmasstransfer_2019_104472 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_078 crossref_primary_10_1140_epjp_i2018_11878_2 crossref_primary_10_1016_j_molliq_2018_04_119 crossref_primary_10_4236_anp_2016_54020 crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_090 |
| Cites_doi | 10.1016/j.euromechflu.2006.06.006 10.1016/j.ijthermalsci.2009.09.002 10.1098/rsta.1904.0024 10.1016/S0017-9310(98)00227-0 10.1016/j.ijheatfluidflow.2008.04.009 10.1016/j.ijheatfluidflow.2009.02.001 10.1016/j.ijthermalsci.2008.11.020 10.1063/1.1756684 10.1115/IMECE2004-61054 10.1016/j.ijheatmasstransfer.2007.12.019 10.1016/S0017-9310(03)00156-X 10.1016/j.ijheatmasstransfer.2007.01.037 10.1016/j.cnsns.2009.06.015 10.1016/j.ijheatmasstransfer.2009.05.011 10.1016/j.ijheatmasstransfer.2006.09.034 10.1615/JEnhHeatTransf.v15.i4.10 10.1016/j.applthermaleng.2006.07.035 10.1016/j.apm.2009.06.026 10.1016/j.euromechflu.2009.05.006 10.1016/j.ijheatfluidflow.2009.02.003 10.1023/A:1024438603801 10.1016/j.icheatmasstransfer.2006.02.016 10.1080/104077802753570356 10.1016/j.ijthermalsci.2009.07.020 10.1016/S0735-1933(99)00091-3 10.1063/1.1700493 10.1016/j.ijthermalsci.2009.03.014 10.1016/j.ijheatfluidflow.2005.02.004 10.1615/IHTC13.p7.410 10.1016/j.applthermaleng.2006.10.034 10.1002/andp.19354160705 10.1016/S0017-9310(05)80069-9 10.1016/j.ijthermalsci.2007.10.005 10.1016/j.commatsci.2007.07.004 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Masson SAS 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Masson SAS – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7TB 7U5 8FD FR3 H8D KR7 L7M 7QH 7TG 7UA C1K F1W H96 KL. L.G |
| DOI | 10.1016/j.euromechflu.2010.06.008 |
| DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1873-7390 |
| EndPage | 482 |
| ExternalDocumentID | 23287907 10_1016_j_euromechflu_2010_06_008 S0997754610000750 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSG SST SSZ T5K VH1 XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7TB 7U5 8FD FR3 H8D KR7 L7M 7QH 7TG 7UA C1K F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-c416t-275fd4cb433eff446eed1e2a87ebcd2e9d5f460bd2d5bf4b7e3238b00cbafd9d3 |
| IEDL.DBID | AIKHN |
| ISSN | 0997-7546 |
| IngestDate | Tue Oct 07 09:24:50 EDT 2025 Thu Oct 02 12:36:01 EDT 2025 Mon Jul 21 09:13:19 EDT 2025 Thu Apr 24 23:08:52 EDT 2025 Wed Oct 01 02:01:05 EDT 2025 Fri Feb 23 02:28:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Heat transfer enhancement Mixed convection Nanofluids Lid-driven enclosure Temperature distribution Digital simulation Velocity distribution Cavity flow Inclination Finite volume methods Moving wall Combined convection Nanoparticles Laminar flow Modelling Square section Heat transfer |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c416t-275fd4cb433eff446eed1e2a87ebcd2e9d5f460bd2d5bf4b7e3238b00cbafd9d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1671226156 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_817606615 proquest_miscellaneous_1671226156 pascalfrancis_primary_23287907 crossref_citationtrail_10_1016_j_euromechflu_2010_06_008 crossref_primary_10_1016_j_euromechflu_2010_06_008 elsevier_sciencedirect_doi_10_1016_j_euromechflu_2010_06_008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20101201 |
| PublicationDateYYYYMMDD | 2010-12-01 |
| PublicationDate_xml | – month: 12 year: 2010 text: 20101201 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Issy-les-Moulineaux |
| PublicationPlace_xml | – name: Issy-les-Moulineaux |
| PublicationTitle | European journal of mechanics, B, Fluids |
| PublicationYear | 2010 |
| Publisher | Elsevier Masson SAS Elsevier Masson |
| Publisher_xml | – name: Elsevier Masson SAS – name: Elsevier Masson |
| References | Iwatsu, Hyun, Kuwahara (br000110) 1993; 36 Aydin (br000120) 1999; 26 Abu-Nada, Masoud, Oztop, Campo (br000090) 2010; 49 Khanafer, Vafai, Lightstone (br000015) 2003; 46 Chamkha (br000125) 2002; 41 Abdelkhalek (br000140) 2008; 42 Waheed (br000145) 2009; 52 Sharif (br000130) 2007; 27 Versteeg, Malalasekera (br000185) 1995 S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, in: D.A. Siginer, H.P. Wang (Eds.), FED—vol. 231/MD—vol. 66, The American Society of Mechanical Engineers, New York, 1995, pp. 99–105. Oztop, Abu-Nada (br000070) 2008; 29 Ouertatani, Ben Cheikh, Ben Beyaa, Lilia, Campo (br000105) 2009; 48 Ghasemi, Aminossadati (br000095) 2009; 49 X.-Q. Wang, A.S. Mujumdar, C. Yap, Free convection heat transfer in horizontal and vertical rectangular cavities filled with nanofluids, in: International Heat Transfer Conference IHTC-13, Sydney, Australia, 2006. Muthtamilselvan, Kandaswamy, Lee (br000155) 2009; 15 Aminossadati, Ghasemi (br000075) 2009; 28 Bruggeman (br000040) 1935; 24 Khanafer, Al-Amiri, Pop (br000135) 2007; 26 Tiwari, Das (br000150) 2007; 50 Abu-Nada (br000160) 2009; 30 Patankar (br000180) 1980 Hwang, Lee, Jang (br000045) 2007; 50 Santra, Sen, Chakraborty (br000030) 2008; 47 Akbarinia, Behzadmehr (br000165) 2007; 27 Yu, Choi (br000085) 2003; 5 Abu-Nada, Oztop (br000100) 2009; 30 Maiga, Palm, Nguyen, Roy, Galanis (br000170) 2005; 26 S.P. Jang, S.U.S. Choi, Free convection in a rectangular cavity Benard convection with nanofluids, in: Proceedings of the IMECE, Anaheim, California, USA, 2004. Santra, Sen, Chakraborty (br000060) 2008; 15 Brinkman (br000175) 1952; 20 Kumar, Prasad, Banerjee (br000010) 2010; 34 Jang, Choi (br000050) 2004; 84 Khanafer, Chamkha (br000115) 1999; 42 Jou, Tzeng (br000025) 2006; 33 Ogut (br000080) 2009; 48 Ho, Chen, Li (br000065) 2008; 51 Maxwell-Garnett (br000035) 1904; 203 Abu-Nada (10.1016/j.euromechflu.2010.06.008_br000160) 2009; 30 Ouertatani (10.1016/j.euromechflu.2010.06.008_br000105) 2009; 48 Jou (10.1016/j.euromechflu.2010.06.008_br000025) 2006; 33 Iwatsu (10.1016/j.euromechflu.2010.06.008_br000110) 1993; 36 Chamkha (10.1016/j.euromechflu.2010.06.008_br000125) 2002; 41 Maxwell-Garnett (10.1016/j.euromechflu.2010.06.008_br000035) 1904; 203 Ogut (10.1016/j.euromechflu.2010.06.008_br000080) 2009; 48 Khanafer (10.1016/j.euromechflu.2010.06.008_br000135) 2007; 26 Tiwari (10.1016/j.euromechflu.2010.06.008_br000150) 2007; 50 Brinkman (10.1016/j.euromechflu.2010.06.008_br000175) 1952; 20 Muthtamilselvan (10.1016/j.euromechflu.2010.06.008_br000155) 2009; 15 Abu-Nada (10.1016/j.euromechflu.2010.06.008_br000100) 2009; 30 Sharif (10.1016/j.euromechflu.2010.06.008_br000130) 2007; 27 10.1016/j.euromechflu.2010.06.008_br000020 Khanafer (10.1016/j.euromechflu.2010.06.008_br000115) 1999; 42 Santra (10.1016/j.euromechflu.2010.06.008_br000060) 2008; 15 Abu-Nada (10.1016/j.euromechflu.2010.06.008_br000090) 2010; 49 Khanafer (10.1016/j.euromechflu.2010.06.008_br000015) 2003; 46 Maiga (10.1016/j.euromechflu.2010.06.008_br000170) 2005; 26 10.1016/j.euromechflu.2010.06.008_br000005 Yu (10.1016/j.euromechflu.2010.06.008_br000085) 2003; 5 Akbarinia (10.1016/j.euromechflu.2010.06.008_br000165) 2007; 27 Kumar (10.1016/j.euromechflu.2010.06.008_br000010) 2010; 34 Oztop (10.1016/j.euromechflu.2010.06.008_br000070) 2008; 29 Patankar (10.1016/j.euromechflu.2010.06.008_br000180) 1980 Abdelkhalek (10.1016/j.euromechflu.2010.06.008_br000140) 2008; 42 Ho (10.1016/j.euromechflu.2010.06.008_br000065) 2008; 51 Waheed (10.1016/j.euromechflu.2010.06.008_br000145) 2009; 52 10.1016/j.euromechflu.2010.06.008_br000055 Aminossadati (10.1016/j.euromechflu.2010.06.008_br000075) 2009; 28 Versteeg (10.1016/j.euromechflu.2010.06.008_br000185) 1995 Ghasemi (10.1016/j.euromechflu.2010.06.008_br000095) 2009; 49 Santra (10.1016/j.euromechflu.2010.06.008_br000030) 2008; 47 Bruggeman (10.1016/j.euromechflu.2010.06.008_br000040) 1935; 24 Aydin (10.1016/j.euromechflu.2010.06.008_br000120) 1999; 26 Jang (10.1016/j.euromechflu.2010.06.008_br000050) 2004; 84 Hwang (10.1016/j.euromechflu.2010.06.008_br000045) 2007; 50 |
| References_xml | – volume: 50 start-page: 2002 year: 2007 end-page: 2018 ident: br000150 article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Transfer – volume: 84 start-page: 4316 year: 2004 end-page: 4318 ident: br000050 article-title: The role of Brownian motion in the enhanced thermal conductivity of nanofluids publication-title: Appl. Phys. Lett. – year: 1995 ident: br000185 article-title: An Introduction to Computational Fluid Dynamic: The Finite Volume Method – reference: S.P. Jang, S.U.S. Choi, Free convection in a rectangular cavity Benard convection with nanofluids, in: Proceedings of the IMECE, Anaheim, California, USA, 2004. – volume: 26 start-page: 1019 year: 1999 end-page: 1028 ident: br000120 article-title: Aiding and opposing mechanisms of mixed convection in a shear- and buoyancy-driven cavity publication-title: Int. Commun. Heat Mass Transfer – volume: 49 start-page: 479 year: 2010 end-page: 491 ident: br000090 article-title: Effect of nanofluid variable properties on natural convection in enclosures publication-title: Int. J. Therm. Sci. – volume: 20 start-page: 571 year: 1952 end-page: 581 ident: br000175 article-title: The viscosity of concentrated suspensions and solution publication-title: J. Chem. Phys. – volume: 46 start-page: 3639 year: 2003 end-page: 3653 ident: br000015 article-title: Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids publication-title: Int. J. Heat Mass Transfer – volume: 50 start-page: 4003 year: 2007 end-page: 4010 ident: br000045 article-title: Buoyancy-driven heat transfer of water-based Al publication-title: Int. J. Heat Mass Transfer – volume: 30 start-page: 679 year: 2009 end-page: 690 ident: br000160 article-title: Effects of variable viscosity and thermal conductivity of Al publication-title: Int. J. Heat Fluid Flow – volume: 29 start-page: 1326 year: 2008 end-page: 1336 ident: br000070 article-title: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids publication-title: Int. J. Heat Fluid Flow – volume: 52 start-page: 5055 year: 2009 end-page: 5063 ident: br000145 article-title: Mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate publication-title: Int. J. Heat Mass Transfer – volume: 42 start-page: 2465 year: 1999 end-page: 2481 ident: br000115 article-title: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium publication-title: Int. J. Heat Mass Transfer – volume: 26 start-page: 530 year: 2005 end-page: 546 ident: br000170 article-title: Heat transfer enhancement by using nanofluids in forced convection flows publication-title: Int. J. Heat Fluid Flow – volume: 203 start-page: 385 year: 1904 end-page: 420 ident: br000035 article-title: Colours in metal glasses and in metallic films publication-title: Philos. Trans. R. Soc. Ser. A – volume: 15 start-page: 273 year: 2008 end-page: 287 ident: br000060 article-title: Study of heat transfer characteristics of copper–water nanofluid in a differentially heated square cavity with different viscosity models publication-title: J. Enhanc. Heat Transf. – volume: 41 start-page: 529 year: 2002 end-page: 546 ident: br000125 article-title: Hydromagnetic combined convection flow in a vertical lid-driven cavity enclosure with internal heat generation or absorption publication-title: Numer. Heat Transfer, Part A – volume: 30 start-page: 669 year: 2009 end-page: 678 ident: br000100 article-title: Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid publication-title: Int. J. Heat Fluid Flow – volume: 24 start-page: 636 year: 1935 end-page: 679 ident: br000040 article-title: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen publication-title: Ann. Phys., Lpz. – volume: 49 start-page: 1 year: 2009 end-page: 9 ident: br000095 article-title: Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux publication-title: Int. J. Therm. Sci. – volume: 36 start-page: 1601 year: 1993 end-page: 1608 ident: br000110 article-title: Mixed convection in a driven cavity with a stable vertical temperature gradient publication-title: Int. J. Heat Mass Transfer – volume: 42 start-page: 212 year: 2008 end-page: 219 ident: br000140 article-title: Mixed convection in a square cavity by a perturbation technique publication-title: Comput. Mater. Sci. – volume: 33 start-page: 727 year: 2006 end-page: 736 ident: br000025 article-title: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures publication-title: Int. Commun. Heat Mass Transfer – volume: 26 start-page: 669 year: 2007 end-page: 687 ident: br000135 article-title: Numerical simulation of unsteady mixed convection in a driven cavity, using an externally excited sliding lid publication-title: Eur. J. Mech. B Fluids – volume: 51 start-page: 4506 year: 2008 end-page: 4516 ident: br000065 article-title: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity publication-title: Int. J. Heat Mass Transfer – volume: 28 start-page: 630 year: 2009 end-page: 640 ident: br000075 article-title: Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure publication-title: Eur. J. Mech. B Fluids – volume: 34 start-page: 573 year: 2010 end-page: 592 ident: br000010 article-title: Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model publication-title: Appl. Math. Model. – reference: X.-Q. Wang, A.S. Mujumdar, C. Yap, Free convection heat transfer in horizontal and vertical rectangular cavities filled with nanofluids, in: International Heat Transfer Conference IHTC-13, Sydney, Australia, 2006. – volume: 27 start-page: 1036 year: 2007 end-page: 1042 ident: br000130 article-title: Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom publication-title: Appl. Therm. Eng. – year: 1980 ident: br000180 article-title: Numerical Heat Transfer and Fluid Flow – volume: 48 start-page: 1265 year: 2009 end-page: 1272 ident: br000105 article-title: Mixed convection in a double lid-driven cubic cavity publication-title: Int. J. Therm. Sci. – volume: 47 start-page: 1113 year: 2008 end-page: 1122 ident: br000030 article-title: Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid publication-title: Int. J. Therm. Sci. – volume: 48 start-page: 2063 year: 2009 end-page: 2073 ident: br000080 article-title: Natural convection of water-based nanofluids in an inclined enclosure with a heat source publication-title: Int. J. Therm. Sci. – volume: 27 start-page: 1327 year: 2007 end-page: 1337 ident: br000165 article-title: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes publication-title: Appl. Therm. Eng. – volume: 5 start-page: 167 year: 2003 end-page: 171 ident: br000085 article-title: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model publication-title: J. Nanopart. Res. – reference: S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, in: D.A. Siginer, H.P. Wang (Eds.), FED—vol. 231/MD—vol. 66, The American Society of Mechanical Engineers, New York, 1995, pp. 99–105. – volume: 15 start-page: 1501 year: 2009 end-page: 1510 ident: br000155 article-title: Heat transfer enhancement of copper–water nanofluids in a lid-driven enclosure publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 26 start-page: 669 year: 2007 ident: 10.1016/j.euromechflu.2010.06.008_br000135 article-title: Numerical simulation of unsteady mixed convection in a driven cavity, using an externally excited sliding lid publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2006.06.006 – volume: 49 start-page: 479 issue: 3 year: 2010 ident: 10.1016/j.euromechflu.2010.06.008_br000090 article-title: Effect of nanofluid variable properties on natural convection in enclosures publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.09.002 – ident: 10.1016/j.euromechflu.2010.06.008_br000005 – volume: 203 start-page: 385 year: 1904 ident: 10.1016/j.euromechflu.2010.06.008_br000035 article-title: Colours in metal glasses and in metallic films publication-title: Philos. Trans. R. Soc. Ser. A doi: 10.1098/rsta.1904.0024 – volume: 42 start-page: 2465 year: 1999 ident: 10.1016/j.euromechflu.2010.06.008_br000115 article-title: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(98)00227-0 – volume: 29 start-page: 1326 year: 2008 ident: 10.1016/j.euromechflu.2010.06.008_br000070 article-title: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2008.04.009 – volume: 30 start-page: 669 year: 2009 ident: 10.1016/j.euromechflu.2010.06.008_br000100 article-title: Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2009.02.001 – volume: 48 start-page: 1265 year: 2009 ident: 10.1016/j.euromechflu.2010.06.008_br000105 article-title: Mixed convection in a double lid-driven cubic cavity publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2008.11.020 – volume: 84 start-page: 4316 year: 2004 ident: 10.1016/j.euromechflu.2010.06.008_br000050 article-title: The role of Brownian motion in the enhanced thermal conductivity of nanofluids publication-title: Appl. Phys. Lett. doi: 10.1063/1.1756684 – ident: 10.1016/j.euromechflu.2010.06.008_br000020 doi: 10.1115/IMECE2004-61054 – volume: 51 start-page: 4506 issue: 17–18 year: 2008 ident: 10.1016/j.euromechflu.2010.06.008_br000065 article-title: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.12.019 – volume: 46 start-page: 3639 year: 2003 ident: 10.1016/j.euromechflu.2010.06.008_br000015 article-title: Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(03)00156-X – volume: 50 start-page: 4003 year: 2007 ident: 10.1016/j.euromechflu.2010.06.008_br000045 article-title: Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.01.037 – volume: 15 start-page: 1501 issue: 6 year: 2009 ident: 10.1016/j.euromechflu.2010.06.008_br000155 article-title: Heat transfer enhancement of copper–water nanofluids in a lid-driven enclosure publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.06.015 – volume: 52 start-page: 5055 year: 2009 ident: 10.1016/j.euromechflu.2010.06.008_br000145 article-title: Mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.05.011 – volume: 50 start-page: 2002 year: 2007 ident: 10.1016/j.euromechflu.2010.06.008_br000150 article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.09.034 – volume: 15 start-page: 273 issue: 4 year: 2008 ident: 10.1016/j.euromechflu.2010.06.008_br000060 article-title: Study of heat transfer characteristics of copper–water nanofluid in a differentially heated square cavity with different viscosity models publication-title: J. Enhanc. Heat Transf. doi: 10.1615/JEnhHeatTransf.v15.i4.10 – volume: 27 start-page: 1036 year: 2007 ident: 10.1016/j.euromechflu.2010.06.008_br000130 article-title: Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.07.035 – volume: 34 start-page: 573 issue: 3 year: 2010 ident: 10.1016/j.euromechflu.2010.06.008_br000010 article-title: Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2009.06.026 – volume: 28 start-page: 630 year: 2009 ident: 10.1016/j.euromechflu.2010.06.008_br000075 article-title: Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2009.05.006 – volume: 30 start-page: 679 year: 2009 ident: 10.1016/j.euromechflu.2010.06.008_br000160 article-title: Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2009.02.003 – volume: 5 start-page: 167 year: 2003 ident: 10.1016/j.euromechflu.2010.06.008_br000085 article-title: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model publication-title: J. Nanopart. Res. doi: 10.1023/A:1024438603801 – volume: 33 start-page: 727 year: 2006 ident: 10.1016/j.euromechflu.2010.06.008_br000025 article-title: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2006.02.016 – volume: 41 start-page: 529 year: 2002 ident: 10.1016/j.euromechflu.2010.06.008_br000125 article-title: Hydromagnetic combined convection flow in a vertical lid-driven cavity enclosure with internal heat generation or absorption publication-title: Numer. Heat Transfer, Part A doi: 10.1080/104077802753570356 – year: 1980 ident: 10.1016/j.euromechflu.2010.06.008_br000180 – volume: 49 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.euromechflu.2010.06.008_br000095 article-title: Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.07.020 – volume: 26 start-page: 1019 year: 1999 ident: 10.1016/j.euromechflu.2010.06.008_br000120 article-title: Aiding and opposing mechanisms of mixed convection in a shear- and buoyancy-driven cavity publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/S0735-1933(99)00091-3 – volume: 20 start-page: 571 year: 1952 ident: 10.1016/j.euromechflu.2010.06.008_br000175 article-title: The viscosity of concentrated suspensions and solution publication-title: J. Chem. Phys. doi: 10.1063/1.1700493 – volume: 48 start-page: 2063 issue: 11 year: 2009 ident: 10.1016/j.euromechflu.2010.06.008_br000080 article-title: Natural convection of water-based nanofluids in an inclined enclosure with a heat source publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.03.014 – volume: 26 start-page: 530 year: 2005 ident: 10.1016/j.euromechflu.2010.06.008_br000170 article-title: Heat transfer enhancement by using nanofluids in forced convection flows publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2005.02.004 – ident: 10.1016/j.euromechflu.2010.06.008_br000055 doi: 10.1615/IHTC13.p7.410 – year: 1995 ident: 10.1016/j.euromechflu.2010.06.008_br000185 – volume: 27 start-page: 1327 year: 2007 ident: 10.1016/j.euromechflu.2010.06.008_br000165 article-title: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.10.034 – volume: 24 start-page: 636 year: 1935 ident: 10.1016/j.euromechflu.2010.06.008_br000040 article-title: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen publication-title: Ann. Phys., Lpz. doi: 10.1002/andp.19354160705 – volume: 36 start-page: 1601 year: 1993 ident: 10.1016/j.euromechflu.2010.06.008_br000110 article-title: Mixed convection in a driven cavity with a stable vertical temperature gradient publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(05)80069-9 – volume: 47 start-page: 1113 year: 2008 ident: 10.1016/j.euromechflu.2010.06.008_br000030 article-title: Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2007.10.005 – volume: 42 start-page: 212 year: 2008 ident: 10.1016/j.euromechflu.2010.06.008_br000140 article-title: Mixed convection in a square cavity by a perturbation technique publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2007.07.004 |
| SSID | ssj0004236 |
| Score | 2.4192686 |
| Snippet | This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water–Al
2O
3... This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water-Al sub(2)O... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 472 |
| SubjectTerms | Condensed matter: structure, mechanical and thermal properties Convection and heat transfer Enclosure Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Heat transfer Heat transfer enhancement Laminar flows Laminar flows in cavities Lid-driven enclosure Mathematical models Mixed convection Nanocomposites Nanofluids Nanomaterials Nanoparticles Nanostructure Physics Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes Turbulent flows, convection, and heat transfer Walls |
| Title | Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid |
| URI | https://dx.doi.org/10.1016/j.euromechflu.2010.06.008 https://www.proquest.com/docview/1671226156 https://www.proquest.com/docview/817606615 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004236 issn: 0997-7546 databaseCode: .~1 dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004236 issn: 0997-7546 databaseCode: ACRLP dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004236 issn: 0997-7546 databaseCode: AIKHN dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SDZRC6Lt0m3ZRoFd117JsydBLCAnbluTShuYmZD2og2tvs7ukp_72jmx5kxACgR4tNNgeSTOfpG9mAD4YL5lJNad5yjTlhmW0lIWhiTY5c7lBhBFudE9O8_kZ_3KenW_B4RALE2iV0fb3Nr2z1rFlGrU5XVTV9FuI-RRZyBfeO75t2EH_I-UIdg4-f52fXodHsq5SYOhPg8Aj2L-meYUUGL-c-enrdSR6hdsJeZ-b2l3oJSrP91Uv7hjwzisdP4MnEU6Sg_6Ln8OWa17A0wgtSVy4y5fw46T6gw0dx7yLZCC-bq9I1RBN6spSexmsHj6HSEnsuPyNU8cRlK7bcIZIfIgZtCQc26JIo5sWf6Wyr-Ds-Oj74ZzGmgrUIPRaUSYyb7kpeZo673EviD4ycUxL4UpjmSts5nk-Ky2zWel5KVyKSsW1aUrtbWHT1zBq2sa9ASJnukitR0hgNBeM68IkmckRIBpryrQYgxxUqExMOB7qXtRqYJZdqBvaV0H7qmPZyTGwjeiiz7rxEKFPwzipW1NIoXd4iPjk1thuXoyYU4piJsawPwy2wjUYLlZ049r1UiW5SBDG4lZ4DOSePjIRYa-YZG__7zP34DHbMGrewWh1uXbvERetyglsf_ybTOLs_weBghGS |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SFNpA6Lt0-0gV6NXdtSxZMvRSQsO2zebShOYmZD2Ii2tvsrs0p_z2jGx501ACgR4tNNgeaWa-0TwE8MF4SU2mWZJnVCfMUJ6UsjBJqk1OXW4QYYSI7uwwnx6zbyf8ZAP2hlqYkFYZdX-v0zttHUfGkZvjeVWNf4SaT8FDv_De8N2D-4xTETywj5fXeR6IF7qAZWg7GqY_gN3rJK_QAOO3M6e-XsU0rxCbkLcZqe25XiDrfH_nxT_qu7NJ-0_gUQST5HP_vU9hwzXP4HEEliSK7eI5_JxVFzjQZZh3dQzE1-0fUjVEk7qyiT0POg-fQ50kTlyc4cZxBKnrNpwgEh8qBi0Jh7ZI0uimxV-p7As43v9ytDdN4o0KiUHgtUyo4N4yU7Isc96jJ4gWMnVUS-FKY6krLPcsn5SWWl56VgqXoUlHyTSl9raw2UvYbNrGvQIiJ7rIrEdAYDQTlOnCpNzkCA-NNWVWjEAOLFQmthsPt17Uasgr-6X-4r4K3Fddjp0cAV2TzvueG3ch-jSsk7qxgRTahruQ79xY2_WLEXFKUUzECHaHxVYogSGsohvXrhYqzUWKIBYd4RGQW-bIVARPMeWv_-8z38PD6dHsQB18Pfz-BrboOrfmLWwuz1fuHSKkZbnTScAV1TYSWg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+convection+flow+in+a+lid-driven+inclined+square+enclosure+filled+with+a+nanofluid&rft.jtitle=European+journal+of+mechanics%2C+B%2C+Fluids&rft.au=Abu-Nada%2C+Eiyad&rft.au=Chamkha%2C+Ali+J.&rft.date=2010-12-01&rft.issn=0997-7546&rft.volume=29&rft.issue=6&rft.spage=472&rft.epage=482&rft_id=info:doi/10.1016%2Fj.euromechflu.2010.06.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_euromechflu_2010_06_008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7546&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7546&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7546&client=summon |