Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid

This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water–Al 2O 3 nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures wi...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of mechanics, B, Fluids Vol. 29; no. 6; pp. 472 - 482
Main Authors Abu-Nada, Eiyad, Chamkha, Ali J.
Format Journal Article
LanguageEnglish
Published Issy-les-Moulineaux Elsevier Masson SAS 01.12.2010
Elsevier Masson
Subjects
Online AccessGet full text
ISSN0997-7546
1873-7390
DOI10.1016/j.euromechflu.2010.06.008

Cover

Abstract This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water–Al 2O 3 nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the hot wall and moving at a constant speed. The developed equations are given in terms of the stream function–vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Comparisons with previously published work are performed and found to be in good agreement. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on the flow and heat transfer characteristics. It is found that significant heat transfer enhancement can be obtained due to the presence of nanoparticles and that this is accentuated by inclination of the enclosure at moderate and large Richardson numbers.
AbstractList This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water–Al 2O 3 nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the hot wall and moving at a constant speed. The developed equations are given in terms of the stream function–vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Comparisons with previously published work are performed and found to be in good agreement. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on the flow and heat transfer characteristics. It is found that significant heat transfer enhancement can be obtained due to the presence of nanoparticles and that this is accentuated by inclination of the enclosure at moderate and large Richardson numbers.
This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water-Al sub(2)O sub(3) nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the hot wall and moving at a constant speed. The developed equations are given in terms of the stream function-vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Comparisons with previously published work are performed and found to be in good agreement. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on the flow and heat transfer characteristics. It is found that significant heat transfer enhancement can be obtained due to the presence of nanoparticles and that this is accentuated by inclination of the enclosure at moderate and large Richardson numbers.
Author Abu-Nada, Eiyad
Chamkha, Ali J.
Author_xml – sequence: 1
  givenname: Eiyad
  surname: Abu-Nada
  fullname: Abu-Nada, Eiyad
  email: eiyad@hu.edu.jo, eiyad@itv.uni-hannover.de
  organization: Leibniz Universität Hannover, Institut für Technische Verbrennung, Welfengarten 1a, 30167 Hannover, Germany
– sequence: 2
  givenname: Ali J.
  surname: Chamkha
  fullname: Chamkha, Ali J.
  organization: Manufacturing Engineering Department, The Public Authority for Applied Education and Training, Shuweikh 70654, Kuwait
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23287907$$DView record in Pascal Francis
BookMark eNqNkUFrHCEUx6Uk0E3S7zA9lPYy26fj6MyplCVtAym5pPQojj6Ji6uJzmzSb1-XTaH0UHLS9_i9v_J-Z-QkpoiEvKWwpkDFx-0al5x2aO5cWNYMah_EGmB4RVZ0kF0ruxFOyArGUbay5-I1OStlCwCcdWJFfn73T2gbk-IezexTbFxIj42PjW6Ct63Nfo-x1ib4WMHysOiMDdY6laXenA-h9h_9fFdHoo6pfsTbC3LqdCj45vk8Jz--XN5uvrXXN1-vNp-vW8OpmFsme2e5mXjXoXOcC0RLkelB4mQsw9H2jguYLLP95PgksWPdMAGYSTs72u6cvD_m3uf0sGCZ1c4XgyHoiGkpaqBSgBC0r-SH_5JUSMpYJUVF3z2juhgdXNbR-KLus9_p_Euxjg1yBFm5T0fO5FRKRqeMn_Vhi3PWPigK6iBJbdVfktRBkgKhqqSaMP6T8OeRl8xujrNY97v3mFUxvopB63N1qWzyL0j5DU37uDs
CitedBy_id crossref_primary_10_1108_HFF_10_2018_0566
crossref_primary_10_1080_17455030_2023_2198612
crossref_primary_10_1007_s10973_019_08900_7
crossref_primary_10_1177_16878132231157184
crossref_primary_10_1016_j_csite_2024_104391
crossref_primary_10_1016_j_ijft_2021_100118
crossref_primary_10_1016_j_proeng_2015_05_031
crossref_primary_10_1108_HFF_10_2018_0568
crossref_primary_10_1007_s10973_020_09664_1
crossref_primary_10_1016_j_proeng_2015_05_024
crossref_primary_10_1002_htj_21242
crossref_primary_10_1016_j_icheatmasstransfer_2019_104384
crossref_primary_10_1016_j_expthermflusci_2013_11_002
crossref_primary_10_1016_j_molliq_2014_07_010
crossref_primary_10_1016_j_icheatmasstransfer_2013_09_006
crossref_primary_10_1108_HFF_09_2019_0692
crossref_primary_10_1108_HFF_07_2018_0386
crossref_primary_10_1016_j_ijthermalsci_2011_04_007
crossref_primary_10_1080_10407782_2012_715983
crossref_primary_10_1016_j_ijthermalsci_2013_01_013
crossref_primary_10_1080_17455030_2021_2003909
crossref_primary_10_1016_j_ijft_2022_100195
crossref_primary_10_1080_09500340_2018_1510556
crossref_primary_10_1016_j_ijheatmasstransfer_2015_02_009
crossref_primary_10_1016_j_physa_2019_04_067
crossref_primary_10_1115_1_4044136
crossref_primary_10_1080_10407782_2024_2368753
crossref_primary_10_1016_j_euromechflu_2015_06_003
crossref_primary_10_3390_pr12061079
crossref_primary_10_1016_j_jtice_2024_105807
crossref_primary_10_1016_j_jmmm_2019_04_040
crossref_primary_10_1016_j_icheatmasstransfer_2022_106111
crossref_primary_10_1016_j_applthermaleng_2018_09_039
crossref_primary_10_1007_s10973_020_09832_3
crossref_primary_10_1016_j_ijmecsci_2017_07_057
crossref_primary_10_1016_j_icheatmasstransfer_2017_10_007
crossref_primary_10_1007_s10973_018_7881_8
crossref_primary_10_1016_j_aej_2022_01_009
crossref_primary_10_1016_j_ijmecsci_2018_10_037
crossref_primary_10_1166_jon_2023_2002
crossref_primary_10_1016_j_icheatmasstransfer_2017_02_009
crossref_primary_10_1016_j_euromechflu_2016_04_011
crossref_primary_10_1007_s10973_021_10971_4
crossref_primary_10_1080_17455030_2022_2087117
crossref_primary_10_1016_j_aej_2016_01_027
crossref_primary_10_1016_j_jmmm_2016_05_006
crossref_primary_10_1016_j_tsep_2021_101175
crossref_primary_10_1007_s10891_023_02707_y
crossref_primary_10_1021_acsomega_2c00923
crossref_primary_10_1016_j_asej_2014_12_012
crossref_primary_10_1016_j_rsurfi_2025_100469
crossref_primary_10_1016_j_powtec_2018_11_006
crossref_primary_10_1140_epjp_s13360_020_00205_1
crossref_primary_10_2514_1_T5821
crossref_primary_10_1002_htj_21917
crossref_primary_10_1007_s10973_018_7519_x
crossref_primary_10_1007_s10973_018_7914_3
crossref_primary_10_1016_j_jtice_2016_08_033
crossref_primary_10_1142_S0217979223502892
crossref_primary_10_1108_WJE_11_2017_0376
crossref_primary_10_1002_htj_22449
crossref_primary_10_1007_s10973_021_11193_4
crossref_primary_10_1016_j_anucene_2022_109596
crossref_primary_10_1007_s10973_018_7068_3
crossref_primary_10_1016_j_ijmecsci_2020_105876
crossref_primary_10_1002_htj_22683
crossref_primary_10_1007_s12206_012_0805_9
crossref_primary_10_1615_HeatTransRes_2023048854
crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_103
crossref_primary_10_1115_1_4031178
crossref_primary_10_1007_s10973_019_08345_y
crossref_primary_10_1080_01457632_2017_1338857
crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_116
crossref_primary_10_1021_ie201235p
crossref_primary_10_1002_htj_21207
crossref_primary_10_1016_j_applthermaleng_2011_11_065
crossref_primary_10_1016_j_enganabound_2022_09_011
crossref_primary_10_1166_jon_2023_2107
crossref_primary_10_1140_epjp_s13360_021_01189_2
crossref_primary_10_1007_s10973_020_10003_7
crossref_primary_10_1002_htj_22099
crossref_primary_10_1016_j_csite_2021_101089
crossref_primary_10_3390_app8112223
crossref_primary_10_2139_ssrn_4854863
crossref_primary_10_1080_15502287_2017_1366597
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_008
crossref_primary_10_1016_j_jmmm_2022_170153
crossref_primary_10_1063_5_0189237
crossref_primary_10_1007_s10973_022_11699_5
crossref_primary_10_1063_5_0252019
crossref_primary_10_1007_s10973_018_7037_x
crossref_primary_10_1080_10407782_2014_986001
crossref_primary_10_18186_thermal_843866
crossref_primary_10_1007_s12648_019_01474_y
crossref_primary_10_1016_j_amc_2019_03_008
crossref_primary_10_1016_j_ijheatmasstransfer_2016_09_041
crossref_primary_10_48084_etasr_809
crossref_primary_10_1139_cjp_2017_0282
crossref_primary_10_4236_jectc_2013_33013
crossref_primary_10_1134_S0018151X17030166
crossref_primary_10_1080_10407782_2016_1230423
crossref_primary_10_1007_s00396_023_05200_3
crossref_primary_10_1016_j_molliq_2016_08_032
crossref_primary_10_1016_j_apt_2015_01_005
crossref_primary_10_1016_j_heliyon_2021_e06143
crossref_primary_10_1051_matecconf_202033001008
crossref_primary_10_1002_mma_6930
crossref_primary_10_1140_epjp_i2019_12763_2
crossref_primary_10_1134_S0021894415030141
crossref_primary_10_1007_s12206_013_0875_3
crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_034
crossref_primary_10_2514_1_T4777
crossref_primary_10_3390_nano10030449
crossref_primary_10_1007_s10973_018_7036_y
crossref_primary_10_1016_j_ijthermalsci_2014_03_007
crossref_primary_10_1016_j_molliq_2016_05_076
crossref_primary_10_1016_j_jestch_2022_101095
crossref_primary_10_1515_nleng_2017_0001
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_136
crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_116
crossref_primary_10_1166_jon_2020_1748
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_018
crossref_primary_10_1016_j_molliq_2017_05_019
crossref_primary_10_1016_j_apt_2017_11_032
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_088
crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_028
crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_102
crossref_primary_10_1016_S1001_6058_15_60540_6
crossref_primary_10_1115_1_4046060
crossref_primary_10_1080_01430750_2024_2332525
crossref_primary_10_1080_10407782_2023_2294048
crossref_primary_10_1007_s40997_017_0083_3
crossref_primary_10_1016_j_powtec_2014_02_032
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_164
crossref_primary_10_1016_j_physa_2019_121179
crossref_primary_10_1016_j_apm_2013_11_033
crossref_primary_10_1007_s11771_021_4855_y
crossref_primary_10_1016_j_spmi_2011_01_002
crossref_primary_10_3390_nano11092250
crossref_primary_10_4236_jamp_2018_69162
crossref_primary_10_1007_s10973_019_08943_w
crossref_primary_10_1016_j_physa_2019_122826
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_053
crossref_primary_10_1016_j_aej_2015_12_014
crossref_primary_10_1016_j_ijft_2023_100528
crossref_primary_10_1016_j_csite_2021_101321
crossref_primary_10_1016_j_applthermaleng_2016_10_102
crossref_primary_10_3390_en16052338
crossref_primary_10_1016_j_heliyon_2022_e11968
crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_070
crossref_primary_10_12693_APhysPolA_124_665
crossref_primary_10_1016_j_icheatmasstransfer_2024_108367
crossref_primary_10_1515_ijcre_2016_0184
crossref_primary_10_1115_1_4031221
crossref_primary_10_1016_j_icheatmasstransfer_2025_108627
crossref_primary_10_1016_j_aej_2024_05_098
crossref_primary_10_1016_j_proeng_2014_11_766
crossref_primary_10_1051_epjap_2017170032
crossref_primary_10_1007_s10973_019_08204_w
crossref_primary_10_1038_s41598_019_55897_y
crossref_primary_10_1115_1_4045070
crossref_primary_10_1002_htj_21099
crossref_primary_10_1016_j_asej_2016_02_010
crossref_primary_10_1016_j_jestch_2015_08_005
crossref_primary_10_1007_s10973_018_7377_6
crossref_primary_10_1007_s10973_018_7715_8
crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_016
crossref_primary_10_1016_j_ijmecsci_2018_07_011
crossref_primary_10_1007_s10973_022_11418_0
crossref_primary_10_2514_1_T5430
crossref_primary_10_1016_j_powtec_2013_12_039
crossref_primary_10_1063_1_4981911
crossref_primary_10_1080_17455030_2022_2083718
crossref_primary_10_1016_j_powtec_2016_10_029
crossref_primary_10_1016_j_powtec_2014_06_040
crossref_primary_10_1016_j_icheatmasstransfer_2010_10_001
crossref_primary_10_1007_s00542_019_04690_y
crossref_primary_10_1108_HFF_04_2018_0176
crossref_primary_10_4028_p_f3jUCR
crossref_primary_10_1016_j_apt_2015_07_020
crossref_primary_10_1016_j_rineng_2022_100376
crossref_primary_10_1016_j_amc_2015_05_145
crossref_primary_10_1007_s10973_019_08068_0
crossref_primary_10_1007_s00170_024_14455_1
crossref_primary_10_1007_s10973_018_7317_5
crossref_primary_10_1016_j_ijmecsci_2018_12_036
crossref_primary_10_1007_s40430_024_05346_3
crossref_primary_10_1002_num_22971
crossref_primary_10_1016_j_jppr_2019_01_007
crossref_primary_10_18311_jmmf_2023_35816
crossref_primary_10_1016_j_icheatmasstransfer_2019_104310
crossref_primary_10_1007_s10973_018_7714_9
crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_117
crossref_primary_10_1016_j_icheatmasstransfer_2016_08_010
crossref_primary_10_1016_j_tsep_2020_100660
crossref_primary_10_1002_htj_21287
crossref_primary_10_1063_5_0196344
crossref_primary_10_1016_j_icheatmasstransfer_2011_08_011
crossref_primary_10_1016_j_ijthermalsci_2023_108402
crossref_primary_10_5402_2012_373202
crossref_primary_10_3390_sym14122658
crossref_primary_10_1016_j_ijheatmasstransfer_2016_06_049
crossref_primary_10_3390_pr13020432
crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_010
crossref_primary_10_1007_s00231_019_02698_8
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_006
crossref_primary_10_1108_HFF_03_2016_0090
crossref_primary_10_2139_ssrn_3372316
crossref_primary_10_1002_htj_22705
crossref_primary_10_1016_j_cjph_2021_07_013
crossref_primary_10_1016_j_icheatmasstransfer_2017_06_015
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_093
crossref_primary_10_1515_jnet_2022_0070
crossref_primary_10_1016_j_ijmecsci_2020_105696
crossref_primary_10_1016_j_spmi_2012_02_015
crossref_primary_10_1016_j_ijmecsci_2018_12_017
crossref_primary_10_4208_aamm_10_m1072
crossref_primary_10_1016_j_euromechflu_2018_03_002
crossref_primary_10_1166_jon_2023_2062
crossref_primary_10_2514_1_T7074
crossref_primary_10_1108_HFF_07_2020_0399
crossref_primary_10_1108_EC_06_2017_0225
crossref_primary_10_1108_HFF_10_2015_0448
crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_001
crossref_primary_10_1142_S0129183121500091
crossref_primary_10_1016_j_aej_2016_08_017
crossref_primary_10_1016_j_cplett_2022_139386
crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_003
crossref_primary_10_1016_j_ijthermalsci_2011_09_003
crossref_primary_10_3390_coatings11121481
crossref_primary_10_1016_j_physa_2019_123050
crossref_primary_10_1115_1_4034599
crossref_primary_10_1140_epjp_i2016_16095_5
crossref_primary_10_3390_en16114408
crossref_primary_10_1016_j_ijmecsci_2018_10_071
crossref_primary_10_1080_10407782_2017_1353377
crossref_primary_10_1002_htj_21260
crossref_primary_10_1016_j_ijmecsci_2019_105104
crossref_primary_10_1016_j_ijthermalsci_2020_106707
crossref_primary_10_1007_s10973_018_7455_9
crossref_primary_10_1080_01457632_2017_1421130
crossref_primary_10_1016_j_jtice_2017_01_006
crossref_primary_10_3390_e20120903
crossref_primary_10_1007_s13369_013_0792_x
crossref_primary_10_1016_j_apt_2015_03_012
crossref_primary_10_1002_eng2_12151
crossref_primary_10_1002_htj_21397
crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_031
crossref_primary_10_1016_j_icheatmasstransfer_2019_104472
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_078
crossref_primary_10_1140_epjp_i2018_11878_2
crossref_primary_10_1016_j_molliq_2018_04_119
crossref_primary_10_4236_anp_2016_54020
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_090
Cites_doi 10.1016/j.euromechflu.2006.06.006
10.1016/j.ijthermalsci.2009.09.002
10.1098/rsta.1904.0024
10.1016/S0017-9310(98)00227-0
10.1016/j.ijheatfluidflow.2008.04.009
10.1016/j.ijheatfluidflow.2009.02.001
10.1016/j.ijthermalsci.2008.11.020
10.1063/1.1756684
10.1115/IMECE2004-61054
10.1016/j.ijheatmasstransfer.2007.12.019
10.1016/S0017-9310(03)00156-X
10.1016/j.ijheatmasstransfer.2007.01.037
10.1016/j.cnsns.2009.06.015
10.1016/j.ijheatmasstransfer.2009.05.011
10.1016/j.ijheatmasstransfer.2006.09.034
10.1615/JEnhHeatTransf.v15.i4.10
10.1016/j.applthermaleng.2006.07.035
10.1016/j.apm.2009.06.026
10.1016/j.euromechflu.2009.05.006
10.1016/j.ijheatfluidflow.2009.02.003
10.1023/A:1024438603801
10.1016/j.icheatmasstransfer.2006.02.016
10.1080/104077802753570356
10.1016/j.ijthermalsci.2009.07.020
10.1016/S0735-1933(99)00091-3
10.1063/1.1700493
10.1016/j.ijthermalsci.2009.03.014
10.1016/j.ijheatfluidflow.2005.02.004
10.1615/IHTC13.p7.410
10.1016/j.applthermaleng.2006.10.034
10.1002/andp.19354160705
10.1016/S0017-9310(05)80069-9
10.1016/j.ijthermalsci.2007.10.005
10.1016/j.commatsci.2007.07.004
ContentType Journal Article
Copyright 2010 Elsevier Masson SAS
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Masson SAS
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
7U5
8FD
FR3
H8D
KR7
L7M
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
DOI 10.1016/j.euromechflu.2010.06.008
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1873-7390
EndPage 482
ExternalDocumentID 23287907
10_1016_j_euromechflu_2010_06_008
S0997754610000750
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
VH1
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7TB
7U5
8FD
FR3
H8D
KR7
L7M
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c416t-275fd4cb433eff446eed1e2a87ebcd2e9d5f460bd2d5bf4b7e3238b00cbafd9d3
IEDL.DBID AIKHN
ISSN 0997-7546
IngestDate Tue Oct 07 09:24:50 EDT 2025
Thu Oct 02 12:36:01 EDT 2025
Mon Jul 21 09:13:19 EDT 2025
Thu Apr 24 23:08:52 EDT 2025
Wed Oct 01 02:01:05 EDT 2025
Fri Feb 23 02:28:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Heat transfer enhancement
Mixed convection
Nanofluids
Lid-driven enclosure
Temperature distribution
Digital simulation
Velocity distribution
Cavity flow
Inclination
Finite volume methods
Moving wall
Combined convection
Nanoparticles
Laminar flow
Modelling
Square section
Heat transfer
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-275fd4cb433eff446eed1e2a87ebcd2e9d5f460bd2d5bf4b7e3238b00cbafd9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671226156
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_817606615
proquest_miscellaneous_1671226156
pascalfrancis_primary_23287907
crossref_citationtrail_10_1016_j_euromechflu_2010_06_008
crossref_primary_10_1016_j_euromechflu_2010_06_008
elsevier_sciencedirect_doi_10_1016_j_euromechflu_2010_06_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20101201
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 20101201
  day: 01
PublicationDecade 2010
PublicationPlace Issy-les-Moulineaux
PublicationPlace_xml – name: Issy-les-Moulineaux
PublicationTitle European journal of mechanics, B, Fluids
PublicationYear 2010
Publisher Elsevier Masson SAS
Elsevier Masson
Publisher_xml – name: Elsevier Masson SAS
– name: Elsevier Masson
References Iwatsu, Hyun, Kuwahara (br000110) 1993; 36
Aydin (br000120) 1999; 26
Abu-Nada, Masoud, Oztop, Campo (br000090) 2010; 49
Khanafer, Vafai, Lightstone (br000015) 2003; 46
Chamkha (br000125) 2002; 41
Abdelkhalek (br000140) 2008; 42
Waheed (br000145) 2009; 52
Sharif (br000130) 2007; 27
Versteeg, Malalasekera (br000185) 1995
S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, in: D.A. Siginer, H.P. Wang (Eds.), FED—vol. 231/MD—vol. 66, The American Society of Mechanical Engineers, New York, 1995, pp. 99–105.
Oztop, Abu-Nada (br000070) 2008; 29
Ouertatani, Ben Cheikh, Ben Beyaa, Lilia, Campo (br000105) 2009; 48
Ghasemi, Aminossadati (br000095) 2009; 49
X.-Q. Wang, A.S. Mujumdar, C. Yap, Free convection heat transfer in horizontal and vertical rectangular cavities filled with nanofluids, in: International Heat Transfer Conference IHTC-13, Sydney, Australia, 2006.
Muthtamilselvan, Kandaswamy, Lee (br000155) 2009; 15
Aminossadati, Ghasemi (br000075) 2009; 28
Bruggeman (br000040) 1935; 24
Khanafer, Al-Amiri, Pop (br000135) 2007; 26
Tiwari, Das (br000150) 2007; 50
Abu-Nada (br000160) 2009; 30
Patankar (br000180) 1980
Hwang, Lee, Jang (br000045) 2007; 50
Santra, Sen, Chakraborty (br000030) 2008; 47
Akbarinia, Behzadmehr (br000165) 2007; 27
Yu, Choi (br000085) 2003; 5
Abu-Nada, Oztop (br000100) 2009; 30
Maiga, Palm, Nguyen, Roy, Galanis (br000170) 2005; 26
S.P. Jang, S.U.S. Choi, Free convection in a rectangular cavity Benard convection with nanofluids, in: Proceedings of the IMECE, Anaheim, California, USA, 2004.
Santra, Sen, Chakraborty (br000060) 2008; 15
Brinkman (br000175) 1952; 20
Kumar, Prasad, Banerjee (br000010) 2010; 34
Jang, Choi (br000050) 2004; 84
Khanafer, Chamkha (br000115) 1999; 42
Jou, Tzeng (br000025) 2006; 33
Ogut (br000080) 2009; 48
Ho, Chen, Li (br000065) 2008; 51
Maxwell-Garnett (br000035) 1904; 203
Abu-Nada (10.1016/j.euromechflu.2010.06.008_br000160) 2009; 30
Ouertatani (10.1016/j.euromechflu.2010.06.008_br000105) 2009; 48
Jou (10.1016/j.euromechflu.2010.06.008_br000025) 2006; 33
Iwatsu (10.1016/j.euromechflu.2010.06.008_br000110) 1993; 36
Chamkha (10.1016/j.euromechflu.2010.06.008_br000125) 2002; 41
Maxwell-Garnett (10.1016/j.euromechflu.2010.06.008_br000035) 1904; 203
Ogut (10.1016/j.euromechflu.2010.06.008_br000080) 2009; 48
Khanafer (10.1016/j.euromechflu.2010.06.008_br000135) 2007; 26
Tiwari (10.1016/j.euromechflu.2010.06.008_br000150) 2007; 50
Brinkman (10.1016/j.euromechflu.2010.06.008_br000175) 1952; 20
Muthtamilselvan (10.1016/j.euromechflu.2010.06.008_br000155) 2009; 15
Abu-Nada (10.1016/j.euromechflu.2010.06.008_br000100) 2009; 30
Sharif (10.1016/j.euromechflu.2010.06.008_br000130) 2007; 27
10.1016/j.euromechflu.2010.06.008_br000020
Khanafer (10.1016/j.euromechflu.2010.06.008_br000115) 1999; 42
Santra (10.1016/j.euromechflu.2010.06.008_br000060) 2008; 15
Abu-Nada (10.1016/j.euromechflu.2010.06.008_br000090) 2010; 49
Khanafer (10.1016/j.euromechflu.2010.06.008_br000015) 2003; 46
Maiga (10.1016/j.euromechflu.2010.06.008_br000170) 2005; 26
10.1016/j.euromechflu.2010.06.008_br000005
Yu (10.1016/j.euromechflu.2010.06.008_br000085) 2003; 5
Akbarinia (10.1016/j.euromechflu.2010.06.008_br000165) 2007; 27
Kumar (10.1016/j.euromechflu.2010.06.008_br000010) 2010; 34
Oztop (10.1016/j.euromechflu.2010.06.008_br000070) 2008; 29
Patankar (10.1016/j.euromechflu.2010.06.008_br000180) 1980
Abdelkhalek (10.1016/j.euromechflu.2010.06.008_br000140) 2008; 42
Ho (10.1016/j.euromechflu.2010.06.008_br000065) 2008; 51
Waheed (10.1016/j.euromechflu.2010.06.008_br000145) 2009; 52
10.1016/j.euromechflu.2010.06.008_br000055
Aminossadati (10.1016/j.euromechflu.2010.06.008_br000075) 2009; 28
Versteeg (10.1016/j.euromechflu.2010.06.008_br000185) 1995
Ghasemi (10.1016/j.euromechflu.2010.06.008_br000095) 2009; 49
Santra (10.1016/j.euromechflu.2010.06.008_br000030) 2008; 47
Bruggeman (10.1016/j.euromechflu.2010.06.008_br000040) 1935; 24
Aydin (10.1016/j.euromechflu.2010.06.008_br000120) 1999; 26
Jang (10.1016/j.euromechflu.2010.06.008_br000050) 2004; 84
Hwang (10.1016/j.euromechflu.2010.06.008_br000045) 2007; 50
References_xml – volume: 50
  start-page: 2002
  year: 2007
  end-page: 2018
  ident: br000150
  article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids
  publication-title: Int. J. Heat Mass Transfer
– volume: 84
  start-page: 4316
  year: 2004
  end-page: 4318
  ident: br000050
  article-title: The role of Brownian motion in the enhanced thermal conductivity of nanofluids
  publication-title: Appl. Phys. Lett.
– year: 1995
  ident: br000185
  article-title: An Introduction to Computational Fluid Dynamic: The Finite Volume Method
– reference: S.P. Jang, S.U.S. Choi, Free convection in a rectangular cavity Benard convection with nanofluids, in: Proceedings of the IMECE, Anaheim, California, USA, 2004.
– volume: 26
  start-page: 1019
  year: 1999
  end-page: 1028
  ident: br000120
  article-title: Aiding and opposing mechanisms of mixed convection in a shear- and buoyancy-driven cavity
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 49
  start-page: 479
  year: 2010
  end-page: 491
  ident: br000090
  article-title: Effect of nanofluid variable properties on natural convection in enclosures
  publication-title: Int. J. Therm. Sci.
– volume: 20
  start-page: 571
  year: 1952
  end-page: 581
  ident: br000175
  article-title: The viscosity of concentrated suspensions and solution
  publication-title: J. Chem. Phys.
– volume: 46
  start-page: 3639
  year: 2003
  end-page: 3653
  ident: br000015
  article-title: Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids
  publication-title: Int. J. Heat Mass Transfer
– volume: 50
  start-page: 4003
  year: 2007
  end-page: 4010
  ident: br000045
  article-title: Buoyancy-driven heat transfer of water-based Al
  publication-title: Int. J. Heat Mass Transfer
– volume: 30
  start-page: 679
  year: 2009
  end-page: 690
  ident: br000160
  article-title: Effects of variable viscosity and thermal conductivity of Al
  publication-title: Int. J. Heat Fluid Flow
– volume: 29
  start-page: 1326
  year: 2008
  end-page: 1336
  ident: br000070
  article-title: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids
  publication-title: Int. J. Heat Fluid Flow
– volume: 52
  start-page: 5055
  year: 2009
  end-page: 5063
  ident: br000145
  article-title: Mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate
  publication-title: Int. J. Heat Mass Transfer
– volume: 42
  start-page: 2465
  year: 1999
  end-page: 2481
  ident: br000115
  article-title: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium
  publication-title: Int. J. Heat Mass Transfer
– volume: 26
  start-page: 530
  year: 2005
  end-page: 546
  ident: br000170
  article-title: Heat transfer enhancement by using nanofluids in forced convection flows
  publication-title: Int. J. Heat Fluid Flow
– volume: 203
  start-page: 385
  year: 1904
  end-page: 420
  ident: br000035
  article-title: Colours in metal glasses and in metallic films
  publication-title: Philos. Trans. R. Soc. Ser. A
– volume: 15
  start-page: 273
  year: 2008
  end-page: 287
  ident: br000060
  article-title: Study of heat transfer characteristics of copper–water nanofluid in a differentially heated square cavity with different viscosity models
  publication-title: J. Enhanc. Heat Transf.
– volume: 41
  start-page: 529
  year: 2002
  end-page: 546
  ident: br000125
  article-title: Hydromagnetic combined convection flow in a vertical lid-driven cavity enclosure with internal heat generation or absorption
  publication-title: Numer. Heat Transfer, Part A
– volume: 30
  start-page: 669
  year: 2009
  end-page: 678
  ident: br000100
  article-title: Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid
  publication-title: Int. J. Heat Fluid Flow
– volume: 24
  start-page: 636
  year: 1935
  end-page: 679
  ident: br000040
  article-title: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen
  publication-title: Ann. Phys., Lpz.
– volume: 49
  start-page: 1
  year: 2009
  end-page: 9
  ident: br000095
  article-title: Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux
  publication-title: Int. J. Therm. Sci.
– volume: 36
  start-page: 1601
  year: 1993
  end-page: 1608
  ident: br000110
  article-title: Mixed convection in a driven cavity with a stable vertical temperature gradient
  publication-title: Int. J. Heat Mass Transfer
– volume: 42
  start-page: 212
  year: 2008
  end-page: 219
  ident: br000140
  article-title: Mixed convection in a square cavity by a perturbation technique
  publication-title: Comput. Mater. Sci.
– volume: 33
  start-page: 727
  year: 2006
  end-page: 736
  ident: br000025
  article-title: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 26
  start-page: 669
  year: 2007
  end-page: 687
  ident: br000135
  article-title: Numerical simulation of unsteady mixed convection in a driven cavity, using an externally excited sliding lid
  publication-title: Eur. J. Mech. B Fluids
– volume: 51
  start-page: 4506
  year: 2008
  end-page: 4516
  ident: br000065
  article-title: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity
  publication-title: Int. J. Heat Mass Transfer
– volume: 28
  start-page: 630
  year: 2009
  end-page: 640
  ident: br000075
  article-title: Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure
  publication-title: Eur. J. Mech. B Fluids
– volume: 34
  start-page: 573
  year: 2010
  end-page: 592
  ident: br000010
  article-title: Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model
  publication-title: Appl. Math. Model.
– reference: X.-Q. Wang, A.S. Mujumdar, C. Yap, Free convection heat transfer in horizontal and vertical rectangular cavities filled with nanofluids, in: International Heat Transfer Conference IHTC-13, Sydney, Australia, 2006.
– volume: 27
  start-page: 1036
  year: 2007
  end-page: 1042
  ident: br000130
  article-title: Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom
  publication-title: Appl. Therm. Eng.
– year: 1980
  ident: br000180
  article-title: Numerical Heat Transfer and Fluid Flow
– volume: 48
  start-page: 1265
  year: 2009
  end-page: 1272
  ident: br000105
  article-title: Mixed convection in a double lid-driven cubic cavity
  publication-title: Int. J. Therm. Sci.
– volume: 47
  start-page: 1113
  year: 2008
  end-page: 1122
  ident: br000030
  article-title: Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid
  publication-title: Int. J. Therm. Sci.
– volume: 48
  start-page: 2063
  year: 2009
  end-page: 2073
  ident: br000080
  article-title: Natural convection of water-based nanofluids in an inclined enclosure with a heat source
  publication-title: Int. J. Therm. Sci.
– volume: 27
  start-page: 1327
  year: 2007
  end-page: 1337
  ident: br000165
  article-title: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes
  publication-title: Appl. Therm. Eng.
– volume: 5
  start-page: 167
  year: 2003
  end-page: 171
  ident: br000085
  article-title: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
  publication-title: J. Nanopart. Res.
– reference: S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, in: D.A. Siginer, H.P. Wang (Eds.), FED—vol. 231/MD—vol. 66, The American Society of Mechanical Engineers, New York, 1995, pp. 99–105.
– volume: 15
  start-page: 1501
  year: 2009
  end-page: 1510
  ident: br000155
  article-title: Heat transfer enhancement of copper–water nanofluids in a lid-driven enclosure
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 26
  start-page: 669
  year: 2007
  ident: 10.1016/j.euromechflu.2010.06.008_br000135
  article-title: Numerical simulation of unsteady mixed convection in a driven cavity, using an externally excited sliding lid
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2006.06.006
– volume: 49
  start-page: 479
  issue: 3
  year: 2010
  ident: 10.1016/j.euromechflu.2010.06.008_br000090
  article-title: Effect of nanofluid variable properties on natural convection in enclosures
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.09.002
– ident: 10.1016/j.euromechflu.2010.06.008_br000005
– volume: 203
  start-page: 385
  year: 1904
  ident: 10.1016/j.euromechflu.2010.06.008_br000035
  article-title: Colours in metal glasses and in metallic films
  publication-title: Philos. Trans. R. Soc. Ser. A
  doi: 10.1098/rsta.1904.0024
– volume: 42
  start-page: 2465
  year: 1999
  ident: 10.1016/j.euromechflu.2010.06.008_br000115
  article-title: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(98)00227-0
– volume: 29
  start-page: 1326
  year: 2008
  ident: 10.1016/j.euromechflu.2010.06.008_br000070
  article-title: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2008.04.009
– volume: 30
  start-page: 669
  year: 2009
  ident: 10.1016/j.euromechflu.2010.06.008_br000100
  article-title: Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2009.02.001
– volume: 48
  start-page: 1265
  year: 2009
  ident: 10.1016/j.euromechflu.2010.06.008_br000105
  article-title: Mixed convection in a double lid-driven cubic cavity
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2008.11.020
– volume: 84
  start-page: 4316
  year: 2004
  ident: 10.1016/j.euromechflu.2010.06.008_br000050
  article-title: The role of Brownian motion in the enhanced thermal conductivity of nanofluids
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1756684
– ident: 10.1016/j.euromechflu.2010.06.008_br000020
  doi: 10.1115/IMECE2004-61054
– volume: 51
  start-page: 4506
  issue: 17–18
  year: 2008
  ident: 10.1016/j.euromechflu.2010.06.008_br000065
  article-title: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.12.019
– volume: 46
  start-page: 3639
  year: 2003
  ident: 10.1016/j.euromechflu.2010.06.008_br000015
  article-title: Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(03)00156-X
– volume: 50
  start-page: 4003
  year: 2007
  ident: 10.1016/j.euromechflu.2010.06.008_br000045
  article-title: Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.01.037
– volume: 15
  start-page: 1501
  issue: 6
  year: 2009
  ident: 10.1016/j.euromechflu.2010.06.008_br000155
  article-title: Heat transfer enhancement of copper–water nanofluids in a lid-driven enclosure
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.06.015
– volume: 52
  start-page: 5055
  year: 2009
  ident: 10.1016/j.euromechflu.2010.06.008_br000145
  article-title: Mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.05.011
– volume: 50
  start-page: 2002
  year: 2007
  ident: 10.1016/j.euromechflu.2010.06.008_br000150
  article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.09.034
– volume: 15
  start-page: 273
  issue: 4
  year: 2008
  ident: 10.1016/j.euromechflu.2010.06.008_br000060
  article-title: Study of heat transfer characteristics of copper–water nanofluid in a differentially heated square cavity with different viscosity models
  publication-title: J. Enhanc. Heat Transf.
  doi: 10.1615/JEnhHeatTransf.v15.i4.10
– volume: 27
  start-page: 1036
  year: 2007
  ident: 10.1016/j.euromechflu.2010.06.008_br000130
  article-title: Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.07.035
– volume: 34
  start-page: 573
  issue: 3
  year: 2010
  ident: 10.1016/j.euromechflu.2010.06.008_br000010
  article-title: Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2009.06.026
– volume: 28
  start-page: 630
  year: 2009
  ident: 10.1016/j.euromechflu.2010.06.008_br000075
  article-title: Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2009.05.006
– volume: 30
  start-page: 679
  year: 2009
  ident: 10.1016/j.euromechflu.2010.06.008_br000160
  article-title: Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2009.02.003
– volume: 5
  start-page: 167
  year: 2003
  ident: 10.1016/j.euromechflu.2010.06.008_br000085
  article-title: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
  publication-title: J. Nanopart. Res.
  doi: 10.1023/A:1024438603801
– volume: 33
  start-page: 727
  year: 2006
  ident: 10.1016/j.euromechflu.2010.06.008_br000025
  article-title: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2006.02.016
– volume: 41
  start-page: 529
  year: 2002
  ident: 10.1016/j.euromechflu.2010.06.008_br000125
  article-title: Hydromagnetic combined convection flow in a vertical lid-driven cavity enclosure with internal heat generation or absorption
  publication-title: Numer. Heat Transfer, Part A
  doi: 10.1080/104077802753570356
– year: 1980
  ident: 10.1016/j.euromechflu.2010.06.008_br000180
– volume: 49
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.euromechflu.2010.06.008_br000095
  article-title: Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.07.020
– volume: 26
  start-page: 1019
  year: 1999
  ident: 10.1016/j.euromechflu.2010.06.008_br000120
  article-title: Aiding and opposing mechanisms of mixed convection in a shear- and buoyancy-driven cavity
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/S0735-1933(99)00091-3
– volume: 20
  start-page: 571
  year: 1952
  ident: 10.1016/j.euromechflu.2010.06.008_br000175
  article-title: The viscosity of concentrated suspensions and solution
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1700493
– volume: 48
  start-page: 2063
  issue: 11
  year: 2009
  ident: 10.1016/j.euromechflu.2010.06.008_br000080
  article-title: Natural convection of water-based nanofluids in an inclined enclosure with a heat source
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.03.014
– volume: 26
  start-page: 530
  year: 2005
  ident: 10.1016/j.euromechflu.2010.06.008_br000170
  article-title: Heat transfer enhancement by using nanofluids in forced convection flows
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2005.02.004
– ident: 10.1016/j.euromechflu.2010.06.008_br000055
  doi: 10.1615/IHTC13.p7.410
– year: 1995
  ident: 10.1016/j.euromechflu.2010.06.008_br000185
– volume: 27
  start-page: 1327
  year: 2007
  ident: 10.1016/j.euromechflu.2010.06.008_br000165
  article-title: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.10.034
– volume: 24
  start-page: 636
  year: 1935
  ident: 10.1016/j.euromechflu.2010.06.008_br000040
  article-title: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen
  publication-title: Ann. Phys., Lpz.
  doi: 10.1002/andp.19354160705
– volume: 36
  start-page: 1601
  year: 1993
  ident: 10.1016/j.euromechflu.2010.06.008_br000110
  article-title: Mixed convection in a driven cavity with a stable vertical temperature gradient
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(05)80069-9
– volume: 47
  start-page: 1113
  year: 2008
  ident: 10.1016/j.euromechflu.2010.06.008_br000030
  article-title: Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2007.10.005
– volume: 42
  start-page: 212
  year: 2008
  ident: 10.1016/j.euromechflu.2010.06.008_br000140
  article-title: Mixed convection in a square cavity by a perturbation technique
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2007.07.004
SSID ssj0004236
Score 2.4192686
Snippet This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water–Al 2O 3...
This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven inclined square enclosure filled with water-Al sub(2)O...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 472
SubjectTerms Condensed matter: structure, mechanical and thermal properties
Convection and heat transfer
Enclosure
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat transfer
Heat transfer enhancement
Laminar flows
Laminar flows in cavities
Lid-driven enclosure
Mathematical models
Mixed convection
Nanocomposites
Nanofluids
Nanomaterials
Nanoparticles
Nanostructure
Physics
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
Turbulent flows, convection, and heat transfer
Walls
Title Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid
URI https://dx.doi.org/10.1016/j.euromechflu.2010.06.008
https://www.proquest.com/docview/1671226156
https://www.proquest.com/docview/817606615
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004236
  issn: 0997-7546
  databaseCode: .~1
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004236
  issn: 0997-7546
  databaseCode: ACRLP
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004236
  issn: 0997-7546
  databaseCode: AIKHN
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SDZRC6Lt0m3ZRoFd117JsydBLCAnbluTShuYmZD2og2tvs7ukp_72jmx5kxACgR4tNNgeSTOfpG9mAD4YL5lJNad5yjTlhmW0lIWhiTY5c7lBhBFudE9O8_kZ_3KenW_B4RALE2iV0fb3Nr2z1rFlGrU5XVTV9FuI-RRZyBfeO75t2EH_I-UIdg4-f52fXodHsq5SYOhPg8Aj2L-meYUUGL-c-enrdSR6hdsJeZ-b2l3oJSrP91Uv7hjwzisdP4MnEU6Sg_6Ln8OWa17A0wgtSVy4y5fw46T6gw0dx7yLZCC-bq9I1RBN6spSexmsHj6HSEnsuPyNU8cRlK7bcIZIfIgZtCQc26JIo5sWf6Wyr-Ds-Oj74ZzGmgrUIPRaUSYyb7kpeZo673EviD4ycUxL4UpjmSts5nk-Ky2zWel5KVyKSsW1aUrtbWHT1zBq2sa9ASJnukitR0hgNBeM68IkmckRIBpryrQYgxxUqExMOB7qXtRqYJZdqBvaV0H7qmPZyTGwjeiiz7rxEKFPwzipW1NIoXd4iPjk1thuXoyYU4piJsawPwy2wjUYLlZ049r1UiW5SBDG4lZ4DOSePjIRYa-YZG__7zP34DHbMGrewWh1uXbvERetyglsf_ybTOLs_weBghGS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SFNpA6Lt0-0gV6NXdtSxZMvRSQsO2zebShOYmZD2Ii2tvsrs0p_z2jGx501ACgR4tNNgeaWa-0TwE8MF4SU2mWZJnVCfMUJ6UsjBJqk1OXW4QYYSI7uwwnx6zbyf8ZAP2hlqYkFYZdX-v0zttHUfGkZvjeVWNf4SaT8FDv_De8N2D-4xTETywj5fXeR6IF7qAZWg7GqY_gN3rJK_QAOO3M6e-XsU0rxCbkLcZqe25XiDrfH_nxT_qu7NJ-0_gUQST5HP_vU9hwzXP4HEEliSK7eI5_JxVFzjQZZh3dQzE1-0fUjVEk7qyiT0POg-fQ50kTlyc4cZxBKnrNpwgEh8qBi0Jh7ZI0uimxV-p7As43v9ytDdN4o0KiUHgtUyo4N4yU7Isc96jJ4gWMnVUS-FKY6krLPcsn5SWWl56VgqXoUlHyTSl9raw2UvYbNrGvQIiJ7rIrEdAYDQTlOnCpNzkCA-NNWVWjEAOLFQmthsPt17Uasgr-6X-4r4K3Fddjp0cAV2TzvueG3ch-jSsk7qxgRTahruQ79xY2_WLEXFKUUzECHaHxVYogSGsohvXrhYqzUWKIBYd4RGQW-bIVARPMeWv_-8z38PD6dHsQB18Pfz-BrboOrfmLWwuz1fuHSKkZbnTScAV1TYSWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+convection+flow+in+a+lid-driven+inclined+square+enclosure+filled+with+a+nanofluid&rft.jtitle=European+journal+of+mechanics%2C+B%2C+Fluids&rft.au=Abu-Nada%2C+Eiyad&rft.au=Chamkha%2C+Ali+J.&rft.date=2010-12-01&rft.issn=0997-7546&rft.volume=29&rft.issue=6&rft.spage=472&rft.epage=482&rft_id=info:doi/10.1016%2Fj.euromechflu.2010.06.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_euromechflu_2010_06_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7546&client=summon