New LHCb pentaquarks as hadrocharmonium states
New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario. 2 , 3 , In the new data the old LHCb pentaquark P c ( 4 4 5 0 ) splits into two states P c ( 4 4 4 0 ) and P c ( 4 4 5 7 ) . We interpret these two alm...
Saved in:
Published in | Modern physics letters A Vol. 35; no. 18; p. 2050151 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
14.06.2020
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0217-7323 1793-6632 |
DOI | 10.1142/S0217732320501515 |
Cover
Abstract | New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.
2
,
3
,
In the new data the old LHCb pentaquark
P
c
(
4
4
5
0
)
splits into two states
P
c
(
4
4
4
0
)
and
P
c
(
4
4
5
7
)
. We interpret these two almost degenerated hadrocharmonium states with
J
P
=
1
/
2
−
and
J
P
=
3
/
2
−
, as a result of hyperfine splitting between hadrocharmonium states predicted in Ref. 2. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting
2
,
3
that is compatible with the experimental data. The new
P
c
(
4
3
1
2
)
state finds a natural explanation as a bound state of
χ
c
0
and a nucleon, with
I
=
1
/
2
,
J
P
=
1
/
2
+
and binding energy 42 MeV. As a bound state of a spin-
0
meson and a nucleon, hadrocharmonium pentaquark
P
c
(
4
3
1
2
)
does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide
P
c
(
4
3
8
0
)
pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks. |
---|---|
AbstractList | New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.2,3, In the new data the old LHCb pentaquark Pc(4450) splits into two states Pc(4440) and Pc(4457). We interpret these two almost degenerated hadrocharmonium states with JP = 1/2− and JP = 3/2−, as a result of hyperfine splitting between hadrocharmonium states predicted in Ref. 2. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting2,3 that is compatible with the experimental data. The new Pc(4312) state finds a natural explanation as a bound state of χc0 and a nucleon, with I = 1/2, JP = 1/2+ and binding energy 42 MeV. As a bound state of a spin-0 meson and a nucleon, hadrocharmonium pentaquark Pc(4312) does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide Pc(4380) pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks. New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario. 2 , 3 , In the new data the old LHCb pentaquark P c ( 4 4 5 0 ) splits into two states P c ( 4 4 4 0 ) and P c ( 4 4 5 7 ) . We interpret these two almost degenerated hadrocharmonium states with J P = 1 / 2 − and J P = 3 / 2 − , as a result of hyperfine splitting between hadrocharmonium states predicted in Ref. 2. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting 2 , 3 that is compatible with the experimental data. The new P c ( 4 3 1 2 ) state finds a natural explanation as a bound state of χ c 0 and a nucleon, with I = 1 / 2 , J P = 1 / 2 + and binding energy 42 MeV. As a bound state of a spin- 0 meson and a nucleon, hadrocharmonium pentaquark P c ( 4 3 1 2 ) does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide P c ( 4 3 8 0 ) pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks. New LHCb Collaboration results on pentaquarks with hidden charm 1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.[Formula: see text] In the new data the old LHCb pentaquark [Formula: see text] splits into two states [Formula: see text] and [Formula: see text]. We interpret these two almost degenerated hadrocharmonium states with [Formula: see text] and [Formula: see text], as a result of hyperfine splitting between hadrocharmonium states predicted in Ref. 2. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting[Formula: see text] that is compatible with the experimental data. The new [Formula: see text] state finds a natural explanation as a bound state of [Formula: see text] and a nucleon, with [Formula: see text], [Formula: see text] and binding energy 42 MeV. As a bound state of a spin-[Formula: see text] meson and a nucleon, hadrocharmonium pentaquark [Formula: see text] does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide [Formula: see text] pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks. |
Author | Eides, Michael I. Petrov, Victor Yu Polyakov, Maxim V. |
Author_xml | – sequence: 1 givenname: Michael I. surname: Eides fullname: Eides, Michael I. – sequence: 2 givenname: Victor Yu surname: Petrov fullname: Petrov, Victor Yu – sequence: 3 givenname: Maxim V. surname: Polyakov fullname: Polyakov, Maxim V. |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8Lnrdm8p2jFLVC0YN6XrLZhKa2mzbZpfjv3VLxoOBpDu_7zAzPBI3a2DqErgHPABi5fcUEpKSEEswxcOBnaAxS01IISkZofIzLY36BJjmvMQYmORmj2bM7FMvFvC52ru3MvjfpIxcmFyvTpGhXJm1jG_ptkTvTuXyJzr3ZZHf1Pafo_eH-bb4oly-PT_O7ZWkZCF5qaZhQWIDmquZaCNFQcNbUVNaNt8opob2wRGAjPfMOcC25EpRTLIxqCJ2im9PeXYr73uWuWsc-tcPJijAArSTTdGjJU8ummHNyvrJheDPEtksmbCrA1VFO9UfOQMIvcpfC1qTPfxl8Yg4xbZpswyAs-GB_0L_IF3KNdMs |
CitedBy_id | crossref_primary_10_3390_sym12111869 crossref_primary_10_1103_PhysRevD_102_056018 crossref_primary_10_1103_PhysRevD_104_L091503 crossref_primary_10_1103_PhysRevD_104_014023 crossref_primary_10_1016_j_physletb_2025_139294 crossref_primary_10_1051_epjconf_202225804007 crossref_primary_10_1016_j_physletb_2023_138207 crossref_primary_10_1103_PhysRevD_104_114021 crossref_primary_10_1103_PhysRevC_108_015202 crossref_primary_10_1103_PhysRevD_102_036012 crossref_primary_10_1103_PhysRevD_104_114023 crossref_primary_10_1140_epjc_s10052_023_12188_1 crossref_primary_10_1088_1674_1137_abf13b crossref_primary_10_1103_PhysRevD_102_114020 crossref_primary_10_1103_PhysRevD_103_014023 crossref_primary_10_1140_epja_s10050_022_00700_2 crossref_primary_10_1103_PhysRevD_109_036019 crossref_primary_10_1103_PhysRevD_111_054029 crossref_primary_10_1103_PhysRevD_103_054004 crossref_primary_10_1103_PhysRevD_102_054025 crossref_primary_10_1103_PhysRevD_102_054023 crossref_primary_10_1103_PhysRevD_103_L111503 crossref_primary_10_1140_epjc_s10052_021_09613_8 crossref_primary_10_1142_S0217751X21500718 crossref_primary_10_1103_PhysRevC_102_025204 crossref_primary_10_1103_PhysRevD_107_074025 crossref_primary_10_1103_PhysRevD_104_054016 crossref_primary_10_1103_PhysRevD_103_034003 crossref_primary_10_1016_j_nuclphysb_2022_115936 crossref_primary_10_1140_epjc_s10052_022_10522_7 crossref_primary_10_1103_PhysRevD_108_L031503 crossref_primary_10_1140_epjc_s10052_022_11026_0 crossref_primary_10_1103_PhysRevD_104_094039 crossref_primary_10_1007_JHEP08_2021_157 crossref_primary_10_1103_PhysRevD_104_074022 crossref_primary_10_1103_PhysRevD_104_094032 crossref_primary_10_1088_1572_9494_abdaa4 crossref_primary_10_1103_PhysRevD_105_114048 crossref_primary_10_1103_PhysRevD_110_114022 crossref_primary_10_1140_epjc_s10052_021_09070_3 crossref_primary_10_1088_1674_1137_abd01c crossref_primary_10_1140_epjc_s10052_024_12699_5 crossref_primary_10_1140_epjc_s10052_021_09416_x crossref_primary_10_3390_sym15071298 crossref_primary_10_1103_PhysRevD_105_116021 crossref_primary_10_1140_epjc_s10052_022_11092_4 crossref_primary_10_1007_s00601_023_01831_y crossref_primary_10_1088_1674_1137_ad24d1 crossref_primary_10_1016_j_physrep_2024_12_001 crossref_primary_10_1088_1674_1137_abe8ce crossref_primary_10_1103_PhysRevD_108_114022 crossref_primary_10_31466_kfbd_1517746 crossref_primary_10_1103_PhysRevD_105_054013 crossref_primary_10_1103_PhysRevD_102_014016 crossref_primary_10_1088_1674_1137_ac6ed2 crossref_primary_10_1103_PhysRevD_109_096019 crossref_primary_10_1016_j_physrep_2023_04_003 crossref_primary_10_1103_PhysRevD_102_011504 crossref_primary_10_1103_PhysRevD_111_014012 crossref_primary_10_1140_epja_s10050_024_01240_7 |
Cites_doi | 10.1016/j.ppnp.2019.04.003 10.1016/j.physletb.2015.08.032 10.1016/j.physletb.2015.08.008 10.1103/PhysRevD.99.091501 10.1103/PhysRevD.72.094011 10.1103/PhysRevD.96.014022 10.1016/0550-3213(79)90200-1 10.1103/PhysRevLett.122.222001 10.1103/PhysRevLett.110.261601 10.1016/S0550-3213(98)81017-1 10.1103/PhysRevLett.67.556 10.1007/JHEP05(2019)061 10.1103/PhysRevLett.115.072001 10.1142/S0217732314500606 10.1007/JHEP10(2019)256 10.1103/PhysRevD.99.094006 10.1016/S0370-2693(02)03015-0 10.1016/0550-3213(95)00675-3 10.1140/epjc/s10052-017-5437-x 10.1007/BF01413192 10.1017/CBO9780511565045 10.1103/PhysRevD.88.036016 10.1007/JHEP06(2016)160 10.1016/0550-3213(84)90432-2 10.1016/0370-2693(93)90957-J 10.1016/j.physletb.2019.05.002 10.1103/PhysRevD.98.114037 10.1103/PhysRevD.80.034030 10.1140/epjc/s10052-019-6906-1 10.1140/epjc/s10052-018-5530-9 10.1016/j.physletb.2008.07.086 10.1103/PhysRevD.100.011502 10.1103/PhysRevD.94.054024 10.1103/PhysRevLett.122.242001 10.1016/0550-3213(79)90199-8 10.1016/0370-2693(92)91114-O 10.1016/j.ppnp.2008.02.001 10.1103/PhysRevD.93.054039 10.1016/j.physletb.2018.09.047 10.1103/PhysRevD.71.076005 10.1103/PhysRevLett.64.1011 10.1103/PhysRevD.90.016001 10.1016/0550-3213(86)90011-8 |
ContentType | Journal Article |
Copyright | 2020, World Scientific Publishing Company 2020. World Scientific Publishing Company |
Copyright_xml | – notice: 2020, World Scientific Publishing Company – notice: 2020. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0217732320501515 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1793-6632 |
ExternalDocumentID | 10_1142_S0217732320501515 S0217732320501515 |
GroupedDBID | -~X 0R~ 123 4.4 ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS COF CS3 DU5 EBS HZ~ O9- P2P P71 RWJ TN5 WSP AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c4165-97a468061958b59666d31ecab37bdfc8e869f6c260a7f4fe10b758635306a8d23 |
ISSN | 0217-7323 |
IngestDate | Mon Jun 30 04:50:11 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Tue Jul 01 01:44:43 EDT 2025 Fri Aug 23 08:20:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Pentaquark hidden charm hadrocharmonium |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4165-97a468061958b59666d31ecab37bdfc8e869f6c260a7f4fe10b758635306a8d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7629-6571 |
PQID | 2411987493 |
PQPubID | 2049922 |
ParticipantIDs | proquest_journals_2411987493 crossref_citationtrail_10_1142_S0217732320501515 worldscientific_primary_S0217732320501515 crossref_primary_10_1142_S0217732320501515 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200614 |
PublicationDateYYYYMMDD | 2020-06-14 |
PublicationDate_xml | – month: 06 year: 2020 text: 20200614 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Modern physics letters A |
PublicationYear | 2020 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | S0217732320501515BIB030 S0217732320501515BIB034 S0217732320501515BIB011 S0217732320501515BIB033 S0217732320501515BIB010 S0217732320501515BIB031 S0217732320501515BIB016 S0217732320501515BIB038 S0217732320501515BIB015 S0217732320501515BIB037 S0217732320501515BIB014 S0217732320501515BIB036 S0217732320501515BIB013 S0217732320501515BIB019 S0217732320501515BIB018 S0217732320501515BIB017 S0217732320501515BIB039 S0217732320501515BIB041 S0217732320501515BIB040 S0217732320501515BIB001 S0217732320501515BIB023 S0217732320501515BIB022 S0217732320501515BIB044 S0217732320501515BIB021 S0217732320501515BIB043 S0217732320501515BIB020 S0217732320501515BIB042 S0217732320501515BIB005 S0217732320501515BIB027 S0217732320501515BIB049 S0217732320501515BIB004 S0217732320501515BIB026 S0217732320501515BIB048 S0217732320501515BIB003 S0217732320501515BIB047 S0217732320501515BIB002 S0217732320501515BIB024 S0217732320501515BIB009 S0217732320501515BIB008 S0217732320501515BIB007 S0217732320501515BIB029 S0217732320501515BIB006 S0217732320501515BIB028 |
References_xml | – ident: S0217732320501515BIB005 doi: 10.1016/j.ppnp.2019.04.003 – ident: S0217732320501515BIB023 doi: 10.1016/j.physletb.2015.08.032 – ident: S0217732320501515BIB024 doi: 10.1016/j.physletb.2015.08.008 – ident: S0217732320501515BIB030 doi: 10.1103/PhysRevD.99.091501 – ident: S0217732320501515BIB041 doi: 10.1103/PhysRevD.72.094011 – ident: S0217732320501515BIB020 doi: 10.1103/PhysRevD.96.014022 – ident: S0217732320501515BIB044 doi: 10.1016/0550-3213(79)90200-1 – ident: S0217732320501515BIB001 doi: 10.1103/PhysRevLett.122.222001 – ident: S0217732320501515BIB017 doi: 10.1103/PhysRevLett.110.261601 – ident: S0217732320501515BIB036 doi: 10.1016/S0550-3213(98)81017-1 – ident: S0217732320501515BIB047 doi: 10.1103/PhysRevLett.67.556 – ident: S0217732320501515BIB028 doi: 10.1007/JHEP05(2019)061 – ident: S0217732320501515BIB004 doi: 10.1103/PhysRevLett.115.072001 – ident: S0217732320501515BIB008 doi: 10.1142/S0217732314500606 – ident: S0217732320501515BIB026 doi: 10.1007/JHEP10(2019)256 – ident: S0217732320501515BIB029 doi: 10.1103/PhysRevD.99.094006 – ident: S0217732320501515BIB039 doi: 10.1016/S0370-2693(02)03015-0 – ident: S0217732320501515BIB042 doi: 10.1016/0550-3213(95)00675-3 – ident: S0217732320501515BIB021 doi: 10.1140/epjc/s10052-017-5437-x – ident: S0217732320501515BIB049 doi: 10.1007/BF01413192 – ident: S0217732320501515BIB016 doi: 10.1017/CBO9780511565045 – ident: S0217732320501515BIB018 doi: 10.1103/PhysRevD.88.036016 – ident: S0217732320501515BIB022 doi: 10.1007/JHEP06(2016)160 – ident: S0217732320501515BIB037 doi: 10.1016/0550-3213(84)90432-2 – ident: S0217732320501515BIB048 doi: 10.1016/0370-2693(93)90957-J – ident: S0217732320501515BIB027 doi: 10.1016/j.physletb.2019.05.002 – ident: S0217732320501515BIB015 doi: 10.1103/PhysRevD.98.114037 – ident: S0217732320501515BIB040 doi: 10.1103/PhysRevD.80.034030 – ident: S0217732320501515BIB033 doi: 10.1140/epjc/s10052-019-6906-1 – ident: S0217732320501515BIB003 doi: 10.1140/epjc/s10052-018-5530-9 – ident: S0217732320501515BIB006 doi: 10.1016/j.physletb.2008.07.086 – ident: S0217732320501515BIB034 doi: 10.1103/PhysRevD.100.011502 – ident: S0217732320501515BIB014 doi: 10.1103/PhysRevD.94.054024 – ident: S0217732320501515BIB031 doi: 10.1103/PhysRevLett.122.242001 – ident: S0217732320501515BIB043 doi: 10.1016/0550-3213(79)90199-8 – ident: S0217732320501515BIB010 doi: 10.1016/0370-2693(92)91114-O – ident: S0217732320501515BIB011 doi: 10.1016/j.ppnp.2008.02.001 – ident: S0217732320501515BIB002 doi: 10.1103/PhysRevD.93.054039 – ident: S0217732320501515BIB013 doi: 10.1016/j.physletb.2018.09.047 – ident: S0217732320501515BIB007 doi: 10.1103/PhysRevD.71.076005 – ident: S0217732320501515BIB009 doi: 10.1103/PhysRevLett.64.1011 – ident: S0217732320501515BIB019 doi: 10.1103/PhysRevD.90.016001 – ident: S0217732320501515BIB038 doi: 10.1016/0550-3213(86)90011-8 |
SSID | ssj0014752 |
Score | 2.5478435 |
Snippet | New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.
2
,
3
,
In... New LHCb Collaboration results on pentaquarks with hidden charm 1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.[Formula:... New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.2,3, In the... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2050151 |
SubjectTerms | Ions Multipoles Nucleons Quantum chromodynamics Splitting |
Title | New LHCb pentaquarks as hadrocharmonium states |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0217732320501515 https://www.proquest.com/docview/2411987493 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1793-6632 dateEnd: 20241003 omitProxy: false ssIdentifier: ssj0014752 issn: 0217-7323 databaseCode: ADMLS dateStart: 19860401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExIvE5-iMFAeEBJELo3j2MnjVDpVqBuTaFF5iuzYEdW6pmuyCfjrOcdu0q3TBLxEVdReIt_5-ruPnw-ht5LJgAZgvEyqHNNYxDhmCcURYHsdyoAoYfjOxydsNKWfZ9Gs5Z7U7JJK9rLft_JK_kercA_0aliy_6DZRijcgM-gX7iChuH6Vzo2zYnj0UD6K9MBfgHaPivN4JgfQplJWGINbzK_PPdr1lC5jUPdCDSb1yj9RU3qKdvE5nCurP9wbfVtcvXb3KT5_e-meb5aF1eNby0Wv8RZcWUJQD_n56591mUUiBk8g4M2o2i7eGrXUrcrbSfEBkXPP6107bjatiPjrCC0wTy03OGets4U9j4GRHPN29rDSTZWFd_uxSmp68gg04gk_ahvcFf7l7Up0598SY-m43E6Gc4m71YX2AwTM0V3N1nlPtojnDHSQXuHn47HX5vyEuX1KKbmpV25G577ceep1wFLG4Xs10fals0ybcGSySO07-IJ79Aax2N0Ty-foAenVq9PUQ9MxDMm4m2ZiCdK74aJeNZEnqHp0XAyGGE3IgNngKQjnHBBWQyYLIliGUHoylQY6EzIkMPey2INGy9nGQStguc010FfQoAIIBMiRRErEj5HnWWx1C-Ql-Q8ShIZhzkTlPAMoLmiudIJIGiScdVF_c06pJk7P96MMVmklttO0p2l66IPzU9W9vCUu758sFnc1O2xMgV8abJiNAm76P2NBW9E7oh6ebeoV-hha_YHqFOtL_VrgJaVfOMM5Q-JSHR1 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+LHCb+pentaquarks+as+hadrocharmonium+states&rft.jtitle=Modern+physics+letters+A&rft.au=Eides%2C+Michael+I&rft.au=Victor+Yu+Petrov&rft.au=Polyakov%2C+Maxim+V&rft.date=2020-06-14&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0217-7323&rft.eissn=1793-6632&rft.volume=35&rft.issue=18&rft_id=info:doi/10.1142%2FS0217732320501515&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-7323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-7323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-7323&client=summon |