New LHCb pentaquarks as hadrocharmonium states

New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario. 2 , 3 , In the new data the old LHCb pentaquark P c ( 4 4 5 0 ) splits into two states P c ( 4 4 4 0 ) and P c ( 4 4 5 7 ) . We interpret these two alm...

Full description

Saved in:
Bibliographic Details
Published inModern physics letters A Vol. 35; no. 18; p. 2050151
Main Authors Eides, Michael I., Petrov, Victor Yu, Polyakov, Maxim V.
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 14.06.2020
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0217-7323
1793-6632
DOI10.1142/S0217732320501515

Cover

Abstract New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario. 2 , 3 , In the new data the old LHCb pentaquark P c ( 4 4 5 0 ) splits into two states P c ( 4 4 4 0 ) and P c ( 4 4 5 7 ) . We interpret these two almost degenerated hadrocharmonium states with J P = 1 / 2 − and J P = 3 / 2 − , as a result of hyperfine splitting between hadrocharmonium states predicted in Ref. 2. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting 2 , 3 that is compatible with the experimental data. The new P c ( 4 3 1 2 ) state finds a natural explanation as a bound state of χ c 0 and a nucleon, with I = 1 / 2 , J P = 1 / 2 + and binding energy 42 MeV. As a bound state of a spin- 0 meson and a nucleon, hadrocharmonium pentaquark P c ( 4 3 1 2 ) does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide P c ( 4 3 8 0 ) pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks.
AbstractList New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.2,3, In the new data the old LHCb pentaquark Pc(4450) splits into two states Pc(4440) and Pc(4457). We interpret these two almost degenerated hadrocharmonium states with JP = 1/2− and JP = 3/2−, as a result of hyperfine splitting between hadrocharmonium states predicted in Ref. 2. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting2,3 that is compatible with the experimental data. The new Pc(4312) state finds a natural explanation as a bound state of χc0 and a nucleon, with I = 1/2, JP = 1/2+ and binding energy 42 MeV. As a bound state of a spin-0 meson and a nucleon, hadrocharmonium pentaquark Pc(4312) does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide Pc(4380) pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks.
New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario. 2 , 3 , In the new data the old LHCb pentaquark P c ( 4 4 5 0 ) splits into two states P c ( 4 4 4 0 ) and P c ( 4 4 5 7 ) . We interpret these two almost degenerated hadrocharmonium states with J P = 1 / 2 − and J P = 3 / 2 − , as a result of hyperfine splitting between hadrocharmonium states predicted in Ref. 2. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting 2 , 3 that is compatible with the experimental data. The new P c ( 4 3 1 2 ) state finds a natural explanation as a bound state of χ c 0 and a nucleon, with I = 1 / 2 , J P = 1 / 2 + and binding energy 42 MeV. As a bound state of a spin- 0 meson and a nucleon, hadrocharmonium pentaquark P c ( 4 3 1 2 ) does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide P c ( 4 3 8 0 ) pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks.
New LHCb Collaboration results on pentaquarks with hidden charm 1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.[Formula: see text] In the new data the old LHCb pentaquark [Formula: see text] splits into two states [Formula: see text] and [Formula: see text]. We interpret these two almost degenerated hadrocharmonium states with [Formula: see text] and [Formula: see text], as a result of hyperfine splitting between hadrocharmonium states predicted in Ref. 2. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting[Formula: see text] that is compatible with the experimental data. The new [Formula: see text] state finds a natural explanation as a bound state of [Formula: see text] and a nucleon, with [Formula: see text], [Formula: see text] and binding energy 42 MeV. As a bound state of a spin-[Formula: see text] meson and a nucleon, hadrocharmonium pentaquark [Formula: see text] does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide [Formula: see text] pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks.
Author Eides, Michael I.
Petrov, Victor Yu
Polyakov, Maxim V.
Author_xml – sequence: 1
  givenname: Michael I.
  surname: Eides
  fullname: Eides, Michael I.
– sequence: 2
  givenname: Victor Yu
  surname: Petrov
  fullname: Petrov, Victor Yu
– sequence: 3
  givenname: Maxim V.
  surname: Polyakov
  fullname: Polyakov, Maxim V.
BookMark eNp9kE1LAzEQhoNUsK3-AG8Lnrdm8p2jFLVC0YN6XrLZhKa2mzbZpfjv3VLxoOBpDu_7zAzPBI3a2DqErgHPABi5fcUEpKSEEswxcOBnaAxS01IISkZofIzLY36BJjmvMQYmORmj2bM7FMvFvC52ru3MvjfpIxcmFyvTpGhXJm1jG_ptkTvTuXyJzr3ZZHf1Pafo_eH-bb4oly-PT_O7ZWkZCF5qaZhQWIDmquZaCNFQcNbUVNaNt8opob2wRGAjPfMOcC25EpRTLIxqCJ2im9PeXYr73uWuWsc-tcPJijAArSTTdGjJU8ummHNyvrJheDPEtksmbCrA1VFO9UfOQMIvcpfC1qTPfxl8Yg4xbZpswyAs-GB_0L_IF3KNdMs
CitedBy_id crossref_primary_10_3390_sym12111869
crossref_primary_10_1103_PhysRevD_102_056018
crossref_primary_10_1103_PhysRevD_104_L091503
crossref_primary_10_1103_PhysRevD_104_014023
crossref_primary_10_1016_j_physletb_2025_139294
crossref_primary_10_1051_epjconf_202225804007
crossref_primary_10_1016_j_physletb_2023_138207
crossref_primary_10_1103_PhysRevD_104_114021
crossref_primary_10_1103_PhysRevC_108_015202
crossref_primary_10_1103_PhysRevD_102_036012
crossref_primary_10_1103_PhysRevD_104_114023
crossref_primary_10_1140_epjc_s10052_023_12188_1
crossref_primary_10_1088_1674_1137_abf13b
crossref_primary_10_1103_PhysRevD_102_114020
crossref_primary_10_1103_PhysRevD_103_014023
crossref_primary_10_1140_epja_s10050_022_00700_2
crossref_primary_10_1103_PhysRevD_109_036019
crossref_primary_10_1103_PhysRevD_111_054029
crossref_primary_10_1103_PhysRevD_103_054004
crossref_primary_10_1103_PhysRevD_102_054025
crossref_primary_10_1103_PhysRevD_102_054023
crossref_primary_10_1103_PhysRevD_103_L111503
crossref_primary_10_1140_epjc_s10052_021_09613_8
crossref_primary_10_1142_S0217751X21500718
crossref_primary_10_1103_PhysRevC_102_025204
crossref_primary_10_1103_PhysRevD_107_074025
crossref_primary_10_1103_PhysRevD_104_054016
crossref_primary_10_1103_PhysRevD_103_034003
crossref_primary_10_1016_j_nuclphysb_2022_115936
crossref_primary_10_1140_epjc_s10052_022_10522_7
crossref_primary_10_1103_PhysRevD_108_L031503
crossref_primary_10_1140_epjc_s10052_022_11026_0
crossref_primary_10_1103_PhysRevD_104_094039
crossref_primary_10_1007_JHEP08_2021_157
crossref_primary_10_1103_PhysRevD_104_074022
crossref_primary_10_1103_PhysRevD_104_094032
crossref_primary_10_1088_1572_9494_abdaa4
crossref_primary_10_1103_PhysRevD_105_114048
crossref_primary_10_1103_PhysRevD_110_114022
crossref_primary_10_1140_epjc_s10052_021_09070_3
crossref_primary_10_1088_1674_1137_abd01c
crossref_primary_10_1140_epjc_s10052_024_12699_5
crossref_primary_10_1140_epjc_s10052_021_09416_x
crossref_primary_10_3390_sym15071298
crossref_primary_10_1103_PhysRevD_105_116021
crossref_primary_10_1140_epjc_s10052_022_11092_4
crossref_primary_10_1007_s00601_023_01831_y
crossref_primary_10_1088_1674_1137_ad24d1
crossref_primary_10_1016_j_physrep_2024_12_001
crossref_primary_10_1088_1674_1137_abe8ce
crossref_primary_10_1103_PhysRevD_108_114022
crossref_primary_10_31466_kfbd_1517746
crossref_primary_10_1103_PhysRevD_105_054013
crossref_primary_10_1103_PhysRevD_102_014016
crossref_primary_10_1088_1674_1137_ac6ed2
crossref_primary_10_1103_PhysRevD_109_096019
crossref_primary_10_1016_j_physrep_2023_04_003
crossref_primary_10_1103_PhysRevD_102_011504
crossref_primary_10_1103_PhysRevD_111_014012
crossref_primary_10_1140_epja_s10050_024_01240_7
Cites_doi 10.1016/j.ppnp.2019.04.003
10.1016/j.physletb.2015.08.032
10.1016/j.physletb.2015.08.008
10.1103/PhysRevD.99.091501
10.1103/PhysRevD.72.094011
10.1103/PhysRevD.96.014022
10.1016/0550-3213(79)90200-1
10.1103/PhysRevLett.122.222001
10.1103/PhysRevLett.110.261601
10.1016/S0550-3213(98)81017-1
10.1103/PhysRevLett.67.556
10.1007/JHEP05(2019)061
10.1103/PhysRevLett.115.072001
10.1142/S0217732314500606
10.1007/JHEP10(2019)256
10.1103/PhysRevD.99.094006
10.1016/S0370-2693(02)03015-0
10.1016/0550-3213(95)00675-3
10.1140/epjc/s10052-017-5437-x
10.1007/BF01413192
10.1017/CBO9780511565045
10.1103/PhysRevD.88.036016
10.1007/JHEP06(2016)160
10.1016/0550-3213(84)90432-2
10.1016/0370-2693(93)90957-J
10.1016/j.physletb.2019.05.002
10.1103/PhysRevD.98.114037
10.1103/PhysRevD.80.034030
10.1140/epjc/s10052-019-6906-1
10.1140/epjc/s10052-018-5530-9
10.1016/j.physletb.2008.07.086
10.1103/PhysRevD.100.011502
10.1103/PhysRevD.94.054024
10.1103/PhysRevLett.122.242001
10.1016/0550-3213(79)90199-8
10.1016/0370-2693(92)91114-O
10.1016/j.ppnp.2008.02.001
10.1103/PhysRevD.93.054039
10.1016/j.physletb.2018.09.047
10.1103/PhysRevD.71.076005
10.1103/PhysRevLett.64.1011
10.1103/PhysRevD.90.016001
10.1016/0550-3213(86)90011-8
ContentType Journal Article
Copyright 2020, World Scientific Publishing Company
2020. World Scientific Publishing Company
Copyright_xml – notice: 2020, World Scientific Publishing Company
– notice: 2020. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0217732320501515
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1793-6632
ExternalDocumentID 10_1142_S0217732320501515
S0217732320501515
GroupedDBID -~X
0R~
123
4.4
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
COF
CS3
DU5
EBS
HZ~
O9-
P2P
P71
RWJ
TN5
WSP
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c4165-97a468061958b59666d31ecab37bdfc8e869f6c260a7f4fe10b758635306a8d23
ISSN 0217-7323
IngestDate Mon Jun 30 04:50:11 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Tue Jul 01 01:44:43 EDT 2025
Fri Aug 23 08:20:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Pentaquark
hidden charm
hadrocharmonium
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4165-97a468061958b59666d31ecab37bdfc8e869f6c260a7f4fe10b758635306a8d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7629-6571
PQID 2411987493
PQPubID 2049922
ParticipantIDs proquest_journals_2411987493
crossref_citationtrail_10_1142_S0217732320501515
worldscientific_primary_S0217732320501515
crossref_primary_10_1142_S0217732320501515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200614
PublicationDateYYYYMMDD 2020-06-14
PublicationDate_xml – month: 06
  year: 2020
  text: 20200614
  day: 14
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Modern physics letters A
PublicationYear 2020
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0217732320501515BIB030
S0217732320501515BIB034
S0217732320501515BIB011
S0217732320501515BIB033
S0217732320501515BIB010
S0217732320501515BIB031
S0217732320501515BIB016
S0217732320501515BIB038
S0217732320501515BIB015
S0217732320501515BIB037
S0217732320501515BIB014
S0217732320501515BIB036
S0217732320501515BIB013
S0217732320501515BIB019
S0217732320501515BIB018
S0217732320501515BIB017
S0217732320501515BIB039
S0217732320501515BIB041
S0217732320501515BIB040
S0217732320501515BIB001
S0217732320501515BIB023
S0217732320501515BIB022
S0217732320501515BIB044
S0217732320501515BIB021
S0217732320501515BIB043
S0217732320501515BIB020
S0217732320501515BIB042
S0217732320501515BIB005
S0217732320501515BIB027
S0217732320501515BIB049
S0217732320501515BIB004
S0217732320501515BIB026
S0217732320501515BIB048
S0217732320501515BIB003
S0217732320501515BIB047
S0217732320501515BIB002
S0217732320501515BIB024
S0217732320501515BIB009
S0217732320501515BIB008
S0217732320501515BIB007
S0217732320501515BIB029
S0217732320501515BIB006
S0217732320501515BIB028
References_xml – ident: S0217732320501515BIB005
  doi: 10.1016/j.ppnp.2019.04.003
– ident: S0217732320501515BIB023
  doi: 10.1016/j.physletb.2015.08.032
– ident: S0217732320501515BIB024
  doi: 10.1016/j.physletb.2015.08.008
– ident: S0217732320501515BIB030
  doi: 10.1103/PhysRevD.99.091501
– ident: S0217732320501515BIB041
  doi: 10.1103/PhysRevD.72.094011
– ident: S0217732320501515BIB020
  doi: 10.1103/PhysRevD.96.014022
– ident: S0217732320501515BIB044
  doi: 10.1016/0550-3213(79)90200-1
– ident: S0217732320501515BIB001
  doi: 10.1103/PhysRevLett.122.222001
– ident: S0217732320501515BIB017
  doi: 10.1103/PhysRevLett.110.261601
– ident: S0217732320501515BIB036
  doi: 10.1016/S0550-3213(98)81017-1
– ident: S0217732320501515BIB047
  doi: 10.1103/PhysRevLett.67.556
– ident: S0217732320501515BIB028
  doi: 10.1007/JHEP05(2019)061
– ident: S0217732320501515BIB004
  doi: 10.1103/PhysRevLett.115.072001
– ident: S0217732320501515BIB008
  doi: 10.1142/S0217732314500606
– ident: S0217732320501515BIB026
  doi: 10.1007/JHEP10(2019)256
– ident: S0217732320501515BIB029
  doi: 10.1103/PhysRevD.99.094006
– ident: S0217732320501515BIB039
  doi: 10.1016/S0370-2693(02)03015-0
– ident: S0217732320501515BIB042
  doi: 10.1016/0550-3213(95)00675-3
– ident: S0217732320501515BIB021
  doi: 10.1140/epjc/s10052-017-5437-x
– ident: S0217732320501515BIB049
  doi: 10.1007/BF01413192
– ident: S0217732320501515BIB016
  doi: 10.1017/CBO9780511565045
– ident: S0217732320501515BIB018
  doi: 10.1103/PhysRevD.88.036016
– ident: S0217732320501515BIB022
  doi: 10.1007/JHEP06(2016)160
– ident: S0217732320501515BIB037
  doi: 10.1016/0550-3213(84)90432-2
– ident: S0217732320501515BIB048
  doi: 10.1016/0370-2693(93)90957-J
– ident: S0217732320501515BIB027
  doi: 10.1016/j.physletb.2019.05.002
– ident: S0217732320501515BIB015
  doi: 10.1103/PhysRevD.98.114037
– ident: S0217732320501515BIB040
  doi: 10.1103/PhysRevD.80.034030
– ident: S0217732320501515BIB033
  doi: 10.1140/epjc/s10052-019-6906-1
– ident: S0217732320501515BIB003
  doi: 10.1140/epjc/s10052-018-5530-9
– ident: S0217732320501515BIB006
  doi: 10.1016/j.physletb.2008.07.086
– ident: S0217732320501515BIB034
  doi: 10.1103/PhysRevD.100.011502
– ident: S0217732320501515BIB014
  doi: 10.1103/PhysRevD.94.054024
– ident: S0217732320501515BIB031
  doi: 10.1103/PhysRevLett.122.242001
– ident: S0217732320501515BIB043
  doi: 10.1016/0550-3213(79)90199-8
– ident: S0217732320501515BIB010
  doi: 10.1016/0370-2693(92)91114-O
– ident: S0217732320501515BIB011
  doi: 10.1016/j.ppnp.2008.02.001
– ident: S0217732320501515BIB002
  doi: 10.1103/PhysRevD.93.054039
– ident: S0217732320501515BIB013
  doi: 10.1016/j.physletb.2018.09.047
– ident: S0217732320501515BIB007
  doi: 10.1103/PhysRevD.71.076005
– ident: S0217732320501515BIB009
  doi: 10.1103/PhysRevLett.64.1011
– ident: S0217732320501515BIB019
  doi: 10.1103/PhysRevD.90.016001
– ident: S0217732320501515BIB038
  doi: 10.1016/0550-3213(86)90011-8
SSID ssj0014752
Score 2.5478435
Snippet New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario. 2 , 3 , In...
New LHCb Collaboration results on pentaquarks with hidden charm 1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.[Formula:...
New LHCb Collaboration results on pentaquarks with hidden charm1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.2,3, In the...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2050151
SubjectTerms Ions
Multipoles
Nucleons
Quantum chromodynamics
Splitting
Title New LHCb pentaquarks as hadrocharmonium states
URI http://www.worldscientific.com/doi/abs/10.1142/S0217732320501515
https://www.proquest.com/docview/2411987493
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1793-6632
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0014752
  issn: 0217-7323
  databaseCode: ADMLS
  dateStart: 19860401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExIvE5-iMFAeEBJELo3j2MnjVDpVqBuTaFF5iuzYEdW6pmuyCfjrOcdu0q3TBLxEVdReIt_5-ruPnw-ht5LJgAZgvEyqHNNYxDhmCcURYHsdyoAoYfjOxydsNKWfZ9Gs5Z7U7JJK9rLft_JK_kercA_0aliy_6DZRijcgM-gX7iChuH6Vzo2zYnj0UD6K9MBfgHaPivN4JgfQplJWGINbzK_PPdr1lC5jUPdCDSb1yj9RU3qKdvE5nCurP9wbfVtcvXb3KT5_e-meb5aF1eNby0Wv8RZcWUJQD_n56591mUUiBk8g4M2o2i7eGrXUrcrbSfEBkXPP6107bjatiPjrCC0wTy03OGets4U9j4GRHPN29rDSTZWFd_uxSmp68gg04gk_ahvcFf7l7Up0598SY-m43E6Gc4m71YX2AwTM0V3N1nlPtojnDHSQXuHn47HX5vyEuX1KKbmpV25G577ceep1wFLG4Xs10fals0ybcGSySO07-IJ79Aax2N0Ty-foAenVq9PUQ9MxDMm4m2ZiCdK74aJeNZEnqHp0XAyGGE3IgNngKQjnHBBWQyYLIliGUHoylQY6EzIkMPey2INGy9nGQStguc010FfQoAIIBMiRRErEj5HnWWx1C-Ql-Q8ShIZhzkTlPAMoLmiudIJIGiScdVF_c06pJk7P96MMVmklttO0p2l66IPzU9W9vCUu758sFnc1O2xMgV8abJiNAm76P2NBW9E7oh6ebeoV-hha_YHqFOtL_VrgJaVfOMM5Q-JSHR1
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+LHCb+pentaquarks+as+hadrocharmonium+states&rft.jtitle=Modern+physics+letters+A&rft.au=Eides%2C+Michael+I&rft.au=Victor+Yu+Petrov&rft.au=Polyakov%2C+Maxim+V&rft.date=2020-06-14&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0217-7323&rft.eissn=1793-6632&rft.volume=35&rft.issue=18&rft_id=info:doi/10.1142%2FS0217732320501515&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-7323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-7323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-7323&client=summon