Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application
Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 40; pp. e2102091 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202102091 |
Cover
Abstract | Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs‐based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs.
Carbon dots (CDs) open a new avenue for regulating properties due to abundant defects, functional groups, and so on, which show great effects in electrical energy storage and electrochemical catalysis. In this review, three key points related to CDs are presented in detail: structure and interface modification of CDs, original syntheses of CDs composites (CDs/X), and their applications. |
---|---|
AbstractList | Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs‐based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs. Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs-based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs.Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs-based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs. Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs‐based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs. Carbon dots (CDs) open a new avenue for regulating properties due to abundant defects, functional groups, and so on, which show great effects in electrical energy storage and electrochemical catalysis. In this review, three key points related to CDs are presented in detail: structure and interface modification of CDs, original syntheses of CDs composites (CDs/X), and their applications. |
Author | Guo, Ruiting Li, Lin Hou, Hongshuai Fu, Chaopeng Xiang, Yinger Ji, Xiaobo Cheng, Ruiqi Zou, Guoqiang |
Author_xml | – sequence: 1 givenname: Ruiqi surname: Cheng fullname: Cheng, Ruiqi organization: Shanghai Jiao Tong University – sequence: 2 givenname: Yinger surname: Xiang fullname: Xiang, Yinger organization: Central South University – sequence: 3 givenname: Ruiting surname: Guo fullname: Guo, Ruiting organization: Central South University – sequence: 4 givenname: Lin surname: Li fullname: Li, Lin organization: Central South University – sequence: 5 givenname: Guoqiang surname: Zou fullname: Zou, Guoqiang organization: Central South University – sequence: 6 givenname: Chaopeng surname: Fu fullname: Fu, Chaopeng email: chaopengfu@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 7 givenname: Hongshuai surname: Hou fullname: Hou, Hongshuai email: hs-hou@csu.edu.cn organization: Central South University – sequence: 8 givenname: Xiaobo orcidid: 0000-0002-5405-7913 surname: Ji fullname: Ji, Xiaobo organization: Central South University |
BookMark | eNqFkEtPAjEURhuDiYBuXTdx4wbsY15dEkQlgbhAN24mpXNHh3SmY9uJ4d9bhGBCYlzduzjnPr4B6jWmAYSuKRlTQtidq7UeM8IoYUTQM9SnCeWjJGOid-wpuUAD5zaEcMqitI_eVt52yncWsGwKPG882FIqwEtTVGWlpK9Mg02Jp9KuQ3dvvMOlsXimQXlr1AfUgdJ41oB93-JJ2-qDdYnOS6kdXB3qEL0-zF6mT6PF8-N8OlmMVBSuGmVFXDCSqUIQqVJSUCEoJ4yxDKDga7ZWUGZRDHEikyQFSQFKngkueJzRaE35EN3u57bWfHbgfF5XToHWsgHTuZzFcSzS8C8J6M0JujGdbcJ1gUoFJxljSaDGe0pZ45yFMm9tVUu7zSnJd1Hnu6jzY9RBiE4EVfmfDLyVlf5bE3vtq9Kw_WdJvlouFr_uN-e3lWs |
CitedBy_id | crossref_primary_10_1002_smsc_202200012 crossref_primary_10_1016_j_jclepro_2023_137474 crossref_primary_10_1016_j_carbon_2023_118513 crossref_primary_10_1002_aesr_202200062 crossref_primary_10_1016_j_foodcont_2024_110693 crossref_primary_10_1002_adfm_202400001 crossref_primary_10_1016_j_trechm_2022_10_005 crossref_primary_10_1016_j_mtsust_2022_100207 crossref_primary_10_1016_j_cej_2024_157379 crossref_primary_10_1002_adhm_202402285 crossref_primary_10_1007_s44246_022_00015_3 crossref_primary_10_1016_j_jpowsour_2022_232476 crossref_primary_10_1007_s40820_022_00873_x crossref_primary_10_1016_j_saa_2023_122542 crossref_primary_10_1016_j_cej_2023_141930 crossref_primary_10_3390_gels7040173 crossref_primary_10_1007_s00216_022_04405_9 crossref_primary_10_1021_acs_inorgchem_3c03115 crossref_primary_10_1248_cpb_c23_00410 crossref_primary_10_1016_j_dyepig_2022_110895 crossref_primary_10_1016_j_cej_2024_156434 crossref_primary_10_1016_j_electacta_2024_144529 crossref_primary_10_1016_j_jelechem_2022_116177 crossref_primary_10_1021_acsbiomaterials_4c01256 crossref_primary_10_3390_w17020210 crossref_primary_10_1039_D1TC04271H crossref_primary_10_1016_j_saa_2023_123582 crossref_primary_10_1016_j_indcrop_2024_118683 crossref_primary_10_1002_slct_202304217 crossref_primary_10_3390_eng5030116 crossref_primary_10_1016_j_ijbiomac_2025_139466 crossref_primary_10_1016_j_foodchem_2024_141374 crossref_primary_10_1016_j_scib_2024_08_011 crossref_primary_10_1038_s41392_024_01889_y crossref_primary_10_1039_D3QM00723E crossref_primary_10_1016_j_susmat_2024_e01087 crossref_primary_10_1016_j_cis_2024_103178 crossref_primary_10_1016_j_est_2022_104711 crossref_primary_10_1039_D3NR01966G crossref_primary_10_1039_D4NA00763H crossref_primary_10_1016_j_est_2022_104764 crossref_primary_10_1016_j_ijhydene_2024_05_422 crossref_primary_10_1177_08853282221125313 crossref_primary_10_1021_acsaenm_4c00305 crossref_primary_10_1002_aenm_202402721 crossref_primary_10_1002_smll_202300906 crossref_primary_10_1007_s00604_023_06021_5 crossref_primary_10_1039_D4SC08659G crossref_primary_10_1016_j_talanta_2024_127330 crossref_primary_10_1088_1361_6528_ada0c0 crossref_primary_10_1016_j_cartre_2023_100276 crossref_primary_10_1016_j_est_2024_110640 crossref_primary_10_1016_j_jcis_2025_01_133 crossref_primary_10_1002_smll_202106863 crossref_primary_10_1016_j_heliyon_2024_e32133 crossref_primary_10_1080_17518253_2023_2196031 crossref_primary_10_1021_acs_chemrev_3c00186 crossref_primary_10_1021_acsami_4c03368 crossref_primary_10_1016_j_jallcom_2023_170481 crossref_primary_10_1016_j_ijhydene_2024_12_443 |
Cites_doi | 10.1021/acs.jpclett.9b00119 10.1039/C7NJ04983H 10.1016/j.talanta.2016.11.019 10.1016/j.jhazmat.2018.04.071 10.1039/C7NJ03621C 10.1016/j.apsusc.2019.143597 10.1039/C9RA08726E 10.1039/c4ta00860j 10.1016/j.snb.2016.12.079 10.1039/C4RA10885J 10.1002/anie.201807643 10.1016/j.snb.2016.11.044 10.1016/j.carbon.2018.11.041 10.1021/ja050124h 10.1016/j.cej.2018.09.100 10.1016/j.matlet.2019.01.139 10.1002/adma.201800676 10.1016/j.trac.2017.02.001 10.1021/acsnano.5b05406 10.1021/ac503183y 10.1016/j.jcis.2018.12.047 10.1016/j.jallcom.2017.06.130 10.1146/annurev-bioeng-071811-150124 10.1039/c3ra45294h 10.1002/adma.200902825 10.1002/adma.201605416 10.1016/j.talanta.2018.02.114 10.1016/j.apenergy.2019.114027 10.1039/C7NR01727H 10.1016/j.jcis.2019.11.044 10.1002/ppsc.201300252 10.1016/j.carbon.2013.12.085 10.1016/j.aca.2019.01.021 10.1039/C4CS00269E 10.1039/C6RA05175H 10.1021/am501256x 10.1016/j.jlumin.2019.03.064 10.1016/j.jcis.2016.07.058 10.1039/C4NR02365J 10.1039/C4CP02761B 10.1021/acs.jpcc.7b08702 10.1016/j.msec.2017.11.034 10.1016/j.talanta.2019.02.098 10.1016/j.carbon.2016.12.035 10.1103/PhysRevLett.95.205501 10.1039/C7GC03218H 10.1002/anie.202013985 10.1016/j.electacta.2016.07.119 10.1016/j.carbon.2016.12.033 10.1016/j.nanoen.2019.104038 10.1021/ac3012126 10.1016/j.diamond.2018.11.002 10.1016/j.apsusc.2017.05.189 10.1039/C6NJ04118C 10.1039/C9QI00217K 10.1021/jp905912n 10.1016/j.talanta.2018.12.042 10.1038/nmat2378 10.1016/j.msec.2019.110376 10.1016/j.carbon.2012.06.002 10.1016/B978-0-08-097774-4.00416-2 10.1002/bio.2927 10.1039/C4TC01991A 10.1016/j.cej.2019.122745 10.1021/ac500289c 10.1039/c2jm30935a 10.1021/ar300128j 10.1039/C4RA00601A 10.1038/ncomms2141 10.1039/C9NH00608G 10.1002/adma.201102866 10.1021/jacs.5b03799 10.1039/c2cc31201h 10.1002/advs.201801432 10.1016/j.jelechem.2018.10.050 10.1016/j.carbon.2017.01.005 10.1039/C5NR05549K 10.1021/cs300691m 10.1021/ja404523s 10.1016/j.ijhydene.2017.11.157 10.1002/chem.201802793 10.1016/j.microc.2019.04.015 10.1039/C6RA11579A 10.3389/fchem.2019.00671 10.1002/slct.201700100 10.1021/acsami.7b06231 10.1021/acsami.7b07267 10.1039/C6NJ01753C 10.1002/smll.201901803 10.1039/C4TA05483K 10.1016/j.seppur.2018.10.057 10.1016/j.mtener.2019.01.013 10.1039/C8NJ06069J 10.1002/chem.201901748 10.1021/acsomega.8b03490 10.1016/j.carbon.2019.09.079 10.1016/j.jallcom.2020.154308 10.1021/ez400137j 10.1039/C3NR05380F 10.1021/nn4053342 10.1002/adma.201705913 10.1103/PhysRevLett.90.037401 10.1002/anie.201504951 10.1021/ja040082h 10.1039/C5TA04867B 10.1016/j.cej.2019.123260 10.1016/j.snb.2015.09.081 10.1039/C9TC03632F 10.1021/ja503372r 10.1021/acsami.5b05509 10.1016/j.cej.2017.05.127 10.1021/ja409445p 10.1016/j.cej.2017.08.070 10.1039/c1cc11122a 10.1039/C3AN02222F 10.1038/ncomms6357 10.1039/C6CC01078D 10.1038/nmat2297 10.1039/C0EE00197J 10.1016/j.carbon.2017.06.076 10.1016/j.biomaterials.2012.01.052 10.1002/smll.201602164 10.1002/smll.201903610 10.1002/adfm.201203441 10.1016/j.apsusc.2018.10.104 10.1039/c3tb00583f 10.1016/j.apsusc.2018.09.026 10.1016/j.nanoen.2019.104093 10.1016/j.carbon.2019.01.078 10.1016/j.apcatb.2018.01.033 10.1039/C4CC08735F 10.1002/adma.200901545 10.1021/ja206030c 10.1002/adma.200901996 10.1016/j.jpowsour.2015.10.092 10.1016/j.snb.2019.01.117 10.1016/j.snb.2019.127383 10.1016/j.cej.2019.123016 10.1002/aenm.201902736 10.1038/s41598-018-37479-6 10.1186/s12951-019-0525-8 10.1016/j.jcis.2018.11.024 10.1016/j.jcis.2020.01.092 10.1007/s00604-017-2196-1 10.1039/C5NR02427G 10.1002/aenm.201802042 10.1002/anie.201301114 10.1002/smll.201401328 10.1021/acsami.8b00323 10.1021/acsomega.7b01539 10.1039/C9RA01488H 10.1016/j.ijhydene.2018.05.053 10.1021/nn504637y 10.1016/j.ijhydene.2017.01.029 10.1002/adma.201200164 10.1039/C3CS60323G 10.1016/j.talanta.2015.12.047 10.1039/C1CS15060J 10.1016/j.talanta.2019.120538 10.1039/C7TA11050B 10.1021/acsami.7b16002 10.1016/j.jcis.2019.12.030 10.1039/C5TA03610K 10.1016/j.apsusc.2016.08.106 10.1016/j.matchemphys.2018.12.031 10.1002/anie.201300519 10.1021/ac100852z 10.1002/adfm.201501250 10.1016/j.carbon.2016.08.023 10.1016/j.carbon.2016.08.002 10.1039/c0cp00789g 10.1039/C8CS00750K 10.1021/jacs.8b01868 10.1016/j.progpolymsci.2010.11.003 10.1002/anie.201000982 10.1016/j.apsusc.2019.02.243 10.1039/c3nr00006k 10.1021/nl504038s 10.1016/j.jiec.2018.10.007 10.1038/ncomms1945 10.1016/j.carbon.2017.10.097 10.1039/c3nr33954h 10.1021/acsami.6b01325 10.1016/j.jlumin.2019.116827 10.1039/c3nr04402e 10.1016/j.snb.2017.03.158 10.1002/adma.201602912 10.1039/C4NR04267K 10.1016/j.carbon.2013.07.095 10.1002/adfm.201203771 10.1016/j.saa.2019.117211 10.1016/j.electacta.2019.135391 10.1039/C9NJ02359C 10.1016/j.apsusc.2017.09.060 10.1039/C8GC02736F 10.1002/adma.201606459 10.1039/C8NR06986G 10.1002/anie.202017102 10.1016/j.bios.2015.11.085 10.1016/j.mtcomm.2016.11.002 10.1002/cphc.201500837 10.1002/advs.201901316 10.1016/j.snb.2017.09.155 10.1039/c3cc45215h 10.1016/j.materresbull.2019.03.021 10.1016/j.jphotobiol.2016.05.017 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202102091 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202102091 SMLL202102091 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Innovation Mover Program of Central South University funderid: 2020CX007 – fundername: National Natural Science Foundation of China funderid: 52074539; 51904342 – fundername: Science and Technology Innovation Program of Hunan Province funderid: 2020RC4005; 2019RS1004 – fundername: Hunan Provincial Science and Technology Plan funderid: 2020JJ3048 – fundername: Fundamental Research Funds for Central Universities of the Central South University funderid: 2020zzts393 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 LH4 |
ID | FETCH-LOGICAL-c4161-8d5d208cd90ac70d1991302228eed3b2bcef845e56a667ea1eef3893935814b13 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Sep 05 13:54:17 EDT 2025 Fri Jul 25 12:04:12 EDT 2025 Tue Jul 01 02:54:01 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Jan 22 16:56:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4161-8d5d208cd90ac70d1991302228eed3b2bcef845e56a667ea1eef3893935814b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5405-7913 |
PQID | 2579308226 |
PQPubID | 1046358 |
PageCount | 31 |
ParticipantIDs | proquest_miscellaneous_2555973120 proquest_journals_2579308226 crossref_primary_10_1002_smll_202102091 crossref_citationtrail_10_1002_smll_202102091 wiley_primary_10_1002_smll_202102091_SMLL202102091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2019 2020 2018; 211 562 354 2014; 139 2019 2019; 21 15 2013; 3 2013; 4 2013; 1 2016 2012; 109 3 2019 2020 2019; 143 382 91 2019; 10 2017 2019 2014 2018; 115 12 16 43 2019; 12 2019; 15 2017; 89 2019; 17 2016; 303 2012; 14 2013; 7 2013; 5 2018; 42 2013 2016 2019; 64 223 147 2019 2019 2018 2011; 69 43 255 47 2010; 22 2018; 6 2018; 8 2015; 137 2019; 25 2013; 52 2016; 40 2018; 30 2020; 331 2017; 164 2013 2012 2018; 135 22 140 2008 2012; 7 41 2011 2010; 23 22 2016; 390 2012; 22 2020; 219 2019; 1058 2014; 10 2012 2019; 24 356 2019; 7 2019; 9 2019; 4 2019; 6 2018; 184 2018; 227 2015; 51 2020; 384 2015; 54 2016; 10 2020; 304 2011; 4 2016; 17 2020; 827 2012; 33 2018; 20 2019; 221 2014; 43 2016; 161 2012; 50 2016; 6 2017 2016; 326 12 2010; 49 2013 2014; 135 136 2019; 43 2019; 48 2005; 127 2005; 95 2019 2019; 9 225 2012; 48 2016; 213 2012; 46 2016; 28 2021; 60 2018; 10 2017; 422 2014 2017; 6 122 2016; 8 2019; 211 2017; 42 2017; 41 2014; 70 2004; 126 2017; 2 2018; 127 2013; 23 2017; 114 2019; 480 2017; 9 2016; 79 2019; 242 2020; 5 2014; 5 2014; 4 2014; 2 2019; 66 2019; 65 2019; 115 2016 2009; 150 113 2020; 257 2017; 242 2017; 243 2017; 122 2019; 196 2014 2020 2016; 6 156 31 2014; 6 2019; 199 2010 2011; 22 36 2013 2019; 5 467‐468 2017; 248 2015; 15 2015; 3 2020 2020 2020; 566 561 108 2010 2018; 427 2016; 52 2019; 146 2015 2014; 44 31 2017; 29 2019 2020 2018; 286 209 84 2017; 330 2015; 7 2016; 482 2014; 86 2014 2017; 4 723 2015; 25 2016 2019 2019; 109 832 463 2012; 3 2012 2003; 134 90 2019; 539 2017; 10 2019 2020 2018; 382 43 2009; 8 2017; 184 2019; 537 2014 2013 2016 2015; 49 6 3 2012; 84 2019; 495 2018; 57 e_1_2_9_79_1 e_1_2_9_33_2 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_33_3 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_107_3 e_1_2_9_107_2 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_122_2 e_1_2_9_145_1 e_1_2_9_122_3 e_1_2_9_168_1 e_1_2_9_33_4 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_45_2 e_1_2_9_6_2 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_11_2 Li H. (e_1_2_9_154_1) 2012; 22 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_57_2 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_133_2 e_1_2_9_156_2 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_31_2 e_1_2_9_77_1 e_1_2_9_31_3 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_162_2 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_162_3 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_28_3 e_1_2_9_28_2 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_2 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_29_2 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_37_2 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_41_2 e_1_2_9_41_3 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_125_2 e_1_2_9_102_1 e_1_2_9_125_3 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_38_2 e_1_2_9_42_1 e_1_2_9_88_1 Neikov O. D. (e_1_2_9_5_1) 2019 e_1_2_9_65_1 e_1_2_9_1_2 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_2 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_12_2 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_120_3 e_1_2_9_166_1 e_1_2_9_105_1 Jiang H. (e_1_2_9_80_1) 2019; 12 e_1_2_9_12_4 e_1_2_9_12_3 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_120_2 e_1_2_9_143_1 e_1_2_9_62_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_104_1 e_1_2_9_13_2 e_1_2_9_59_2 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_40_2 e_1_2_9_40_3 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_86_1 e_1_2_9_3_2 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_139_2 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 |
References_xml | – volume: 6 122 start-page: 7918 247 year: 2014 2017 publication-title: ACS Appl. Mater. Interfaces Carbon – volume: 7 year: 2019 publication-title: J. Mater. Chem. C – volume: 46 start-page: 171 year: 2012 publication-title: Acc. Chem. Res. – volume: 2 start-page: 4241 year: 2017 publication-title: ChemistrySelect – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 5750 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 1165 year: 2019 publication-title: Chemistry – volume: 114 start-page: 533 year: 2017 publication-title: Carbon – volume: 20 start-page: 1383 year: 2018 publication-title: Green Chem. – volume: 221 year: 2019 publication-title: Spectrochim. Acta – volume: 211 562 354 start-page: 873 224 54 year: 2019 2020 2018 publication-title: Sep. Purif. Technol. J. Colloid Interface Sci. J. Hazard. Mater. – volume: 51 start-page: 3419 year: 2015 publication-title: Chem. Commun. – volume: 33 start-page: 3604 year: 2012 publication-title: Biomaterials – volume: 22 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2014 publication-title: Nanoscale – volume: 326 12 start-page: 58 5927 year: 2017 2016 publication-title: Chem. Eng. J. Small – volume: 126 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 5465 year: 2014 publication-title: RSC Adv. – volume: 6 start-page: 6476 year: 2018 publication-title: J. Mater. Chem. A – volume: 42 start-page: 2931 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 86 year: 2014 publication-title: Anal. Chem. – volume: 10 start-page: 953 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 43 start-page: 631 year: 2014 publication-title: Chem. Soc. Rev. – volume: 109 832 463 start-page: 402 87 1148 year: 2016 2019 2019 publication-title: Carbon J. Electroanal. Chem. Appl. Surf. Sci. – volume: 137 start-page: 7588 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2019 publication-title: RSC Adv. – volume: 6 start-page: 1453 year: 2019 publication-title: Inorg. Chem. Front. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 5 467‐468 start-page: 1816 446 year: 2013 2019 publication-title: Nanoscale Appl. Surf. Sci. – volume: 52 start-page: 3953 year: 2013 publication-title: Angew. Chem., Int. Ed. Engl. – year: 2019 – volume: 227 start-page: 312 year: 2018 publication-title: Appl. Catal., B – volume: 86 start-page: 4423 year: 2014 publication-title: Anal. Chem. – volume: 64 223 147 start-page: 424 689 1038 year: 2013 2016 2019 publication-title: Carbon Sens. Actuators, B Microchem. J. – volume: 5 year: 2013 publication-title: Nanoscale – volume: 3 start-page: 166 year: 2013 publication-title: ACS Catal. – volume: 114 start-page: 544 year: 2017 publication-title: Carbon – volume: 2 start-page: 8660 year: 2014 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 12 year: 2010 publication-title: Phys. Chem. Chem. Phys. – volume: 248 start-page: 481 year: 2017 publication-title: Sens. Actuators, B – volume: 139 start-page: 2322 year: 2014 publication-title: Analyst – volume: 21 15 start-page: 449 year: 2019 2019 publication-title: Green Chemistry Small – volume: 10 start-page: 484 year: 2016 publication-title: ACS Nano – volume: 4 723 start-page: 333 year: 2014 2017 publication-title: RSC Adv. J. Alloys Compd. – volume: 135 136 start-page: 7587 year: 2013 2014 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 127 start-page: 340 year: 2018 publication-title: Carbon – volume: 1 start-page: 2375 year: 2013 publication-title: J. Mater. Chem. B – volume: 390 start-page: 435 year: 2016 publication-title: Appl. Surf. Sci. – volume: 827 year: 2020 publication-title: J. Alloys Compd. – volume: 150 113 start-page: 253 year: 2016 2009 publication-title: Talanta J. Phys. Chem. C – volume: 146 start-page: 1 year: 2019 publication-title: Carbon – volume: 22 start-page: 734 year: 2010 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 3 start-page: 934 year: 2012 publication-title: Nat. Commun. – volume: 164 start-page: 100 year: 2017 publication-title: Talanta – volume: 14 start-page: 1 year: 2012 publication-title: Annu. Rev. Biomed. Eng. – volume: 48 start-page: 4527 year: 2012 publication-title: Chem. Commun. – volume: 384 year: 2020 publication-title: Chem. Eng. J. – volume: 1 start-page: 87 year: 2013 publication-title: Environ. Sci. Technol. Lett. – volume: 15 start-page: 565 year: 2015 publication-title: Nano Lett. – volume: 184 start-page: 2063 year: 2017 publication-title: Microchim. Acta – volume: 219 year: 2020 publication-title: J. Lumin. – volume: 89 start-page: 163 year: 2017 publication-title: TrAC, Trends Anal. Chem. – volume: 10 start-page: 4926 year: 2014 publication-title: Small – volume: 60 start-page: 7234 year: 2021 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 69 43 255 47 start-page: 455 3284 6858 year: 2019 2019 2018 2011 publication-title: J. Ind. Eng. Chem. New J. Chem. Sens. Actuators, B Chem. Commun. – volume: 199 start-page: 581 year: 2019 publication-title: Talanta – volume: 211 start-page: 298 year: 2019 publication-title: J. Lumin. – volume: 65 year: 2019 publication-title: Nano Energy – volume: 48 start-page: 2315 year: 2019 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 322 year: 2019 publication-title: Environ. Sci. Technol. Lett. – volume: 161 start-page: 154 year: 2016 publication-title: J. Photochem. Photobiol., B – volume: 304 year: 2020 publication-title: Sens. Actuators, B – volume: 213 start-page: 332 year: 2016 publication-title: Electrochim. Acta – volume: 482 start-page: 8 year: 2016 publication-title: J. Colloid Interface Sci. – volume: 24 356 start-page: 2037 994 year: 2012 2019 publication-title: Adv. Mater. Chem. Eng. J. – volume: 23 22 start-page: 5801 505 year: 2011 2010 publication-title: Adv. Mater. Adv. Mater. – volume: 3 start-page: 542 year: 2015 publication-title: J. Mater. Chem. A – volume: 1058 start-page: 146 year: 2019 publication-title: Anal. Chim. Acta – volume: 135 22 140 start-page: 5791 year: 2013 2012 2018 publication-title: J. Am. Chem. Soc. J. Mater. Chem. J. Am. Chem. Soc. – volume: 242 start-page: 231 year: 2017 publication-title: Sens. Actuators, B – volume: 243 start-page: 1002 year: 2017 publication-title: Sens. Actuators, B – volume: 42 start-page: 1690 year: 2018 publication-title: New J. Chem. – year: 2014 publication-title: ACS Nano – volume: 122 start-page: 349 year: 2017 publication-title: J. Phys. Chem. C – volume: 79 start-page: 1 year: 2016 publication-title: Biosens. Bioelectron. – volume: 25 year: 2019 publication-title: Chemistry – volume: 40 start-page: 8710 year: 2016 publication-title: New J. Chem. – volume: 7 start-page: 671 year: 2019 publication-title: Front. Chem. – volume: 115 start-page: 140 year: 2019 publication-title: Mater. Res. Bull. – volume: 5 start-page: 7776 year: 2013 publication-title: Nanoscale – volume: 23 start-page: 5062 year: 2013 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 8343 year: 2017 publication-title: ACS Omega – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 70 start-page: 149 year: 2014 publication-title: Carbon – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 4 year: 2013 – volume: 9 start-page: 9577 year: 2019 publication-title: RSC Adv. – volume: 28 start-page: 9532 year: 2016 publication-title: Adv. Mater. – volume: 196 start-page: 456 year: 2019 publication-title: Talanta – volume: 41 start-page: 3750 year: 2017 publication-title: New J. Chem. – volume: 303 start-page: 109 year: 2016 publication-title: J. Power Sources – volume: 9 225 start-page: 4101 23 year: 2019 2019 publication-title: Sci. Rep. Mater. Chem. Phys. – volume: 4 start-page: 1161 year: 2011 publication-title: Energy Environ. Sci. – volume: 23 start-page: 4111 year: 2013 publication-title: Adv. Funct. Mater. – volume: 84 start-page: 6220 year: 2012 publication-title: Anal. Chem. – volume: 566 561 108 start-page: 357 678 year: 2020 2020 2020 publication-title: J. Colloid Interface Sci. J. Colloid Interface Sci. Mater. Sci. Eng. – volume: 115 12 16 43 start-page: 134 198 4726 year: 2017 2019 2014 2018 publication-title: Carbon Mater. Today Energy Phys. Chem. Chem. Phys. Int. J. Hydrogen Energy – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 184 start-page: 184 year: 2018 publication-title: Talanta – volume: 330 start-page: 1166 year: 2017 publication-title: Chem. Eng. J. – volume: 7 year: 2013 publication-title: ACS Nano – volume: 17 start-page: 92 year: 2019 publication-title: J. Nanobiotechnol. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 427 start-page: 715 year: 2018 publication-title: Appl. Surf. Sci. – volume: 60 start-page: 3290 year: 2021 publication-title: Angew. Chem., Int. Ed. Engl. – start-page: 5511 year: 2010 publication-title: Anal. Chem. – volume: 286 209 84 start-page: 77 60 year: 2019 2020 2018 publication-title: Sens. Actuators, B Talanta Mater. Sci. Eng., C – volume: 44 31 start-page: 362 415 year: 2015 2014 publication-title: Chem. Soc. Rev. Part. Part. Syst. Charact. – volume: 6 156 31 start-page: 1890 558 81 year: 2014 2020 2016 publication-title: Nanoscale Carbon Luminescence – volume: 109 3 start-page: 373 1144 year: 2016 2012 publication-title: Carbon Nat. Commun. – volume: 49 start-page: 5310 year: 2010 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 10 start-page: 112 year: 2017 publication-title: Mater. Today Commun. – volume: 242 start-page: 156 year: 2019 publication-title: Mater. Lett. – volume: 537 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 43 start-page: 1812 year: 2019 publication-title: New J. Chem. – volume: 52 start-page: 7800 year: 2013 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 5 start-page: 5357 year: 2014 publication-title: Nat. Commun. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 4 start-page: 4943 year: 2019 publication-title: ACS Omega – volume: 66 year: 2019 publication-title: Nano Energy – volume: 15 year: 2019 publication-title: Small – volume: 257 year: 2020 publication-title: Appl. Energy – volume: 8 start-page: 235 year: 2009 publication-title: Nat. Mater. – volume: 49 6 3 start-page: 291 year: 2013 2016 2015 publication-title: Chem. Commun. RSC Adv. J. Mater. Chem. C – volume: 5 start-page: 573 year: 2020 publication-title: Nanoscale Horiz. – volume: 7 41 start-page: 845 797 year: 2008 2012 publication-title: Nat. Mater. Chem. Soc. Rev. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 42 start-page: 2857 year: 2018 publication-title: New J. Chem. – volume: 422 start-page: 847 year: 2017 publication-title: Appl. Surf. Sci. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 134 90 start-page: 15 year: 2012 2003 publication-title: J. Am. Chem. Soc. Phys. Rev. Lett. – volume: 17 start-page: 598 year: 2016 publication-title: ChemPhysChem – volume: 539 start-page: 332 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 382 43 year: 2020 2018 publication-title: Chem. Eng. J. Int. J. Hydrogen Energy – volume: 143 382 91 start-page: 457 64 year: 2019 2020 2019 publication-title: Carbon Chem. Eng. J. Diamond Relat. Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 5467 year: 2017 publication-title: Nanoscale – volume: 22 36 start-page: 1672 638 year: 2010 2011 publication-title: Adv. Mater. Prog. Polym. Sci. – volume: 25 start-page: 4929 year: 2015 publication-title: Adv. Funct. Mater. – volume: 495 year: 2019 publication-title: Appl. Surf. Sci. – volume: 331 year: 2020 publication-title: Electrochim. Acta – volume: 7 year: 2015 publication-title: Nanoscale – volume: 127 start-page: 5917 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 5589 year: 2016 publication-title: Chem. Commun. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 480 start-page: 727 year: 2019 publication-title: Appl. Surf. Sci. – volume: 50 start-page: 4738 year: 2012 publication-title: Carbon – ident: e_1_2_9_71_1 doi: 10.1021/acs.jpclett.9b00119 – ident: e_1_2_9_119_1 doi: 10.1039/C7NJ04983H – ident: e_1_2_9_92_1 doi: 10.1016/j.talanta.2016.11.019 – ident: e_1_2_9_125_3 doi: 10.1016/j.jhazmat.2018.04.071 – ident: e_1_2_9_81_1 doi: 10.1039/C7NJ03621C – ident: e_1_2_9_150_1 doi: 10.1016/j.apsusc.2019.143597 – ident: e_1_2_9_47_1 doi: 10.1039/C9RA08726E – ident: e_1_2_9_8_1 doi: 10.1039/c4ta00860j – ident: e_1_2_9_49_1 doi: 10.1016/j.snb.2016.12.079 – ident: e_1_2_9_108_1 doi: 10.1039/C4RA10885J – ident: e_1_2_9_164_1 doi: 10.1002/anie.201807643 – ident: e_1_2_9_99_1 doi: 10.1016/j.snb.2016.11.044 – ident: e_1_2_9_122_1 doi: 10.1016/j.carbon.2018.11.041 – ident: e_1_2_9_63_1 doi: 10.1021/ja050124h – ident: e_1_2_9_7_2 doi: 10.1016/j.cej.2018.09.100 – ident: e_1_2_9_104_1 doi: 10.1016/j.matlet.2019.01.139 – ident: e_1_2_9_158_1 doi: 10.1002/adma.201800676 – ident: e_1_2_9_46_1 doi: 10.1016/j.trac.2017.02.001 – ident: e_1_2_9_24_1 doi: 10.1021/acsnano.5b05406 – ident: e_1_2_9_97_1 doi: 10.1021/ac503183y – ident: e_1_2_9_35_1 doi: 10.1016/j.jcis.2018.12.047 – ident: e_1_2_9_3_2 doi: 10.1016/j.jallcom.2017.06.130 – ident: e_1_2_9_27_1 doi: 10.1146/annurev-bioeng-071811-150124 – ident: e_1_2_9_102_1 doi: 10.1039/c3ra45294h – ident: e_1_2_9_55_1 doi: 10.1002/adma.200902825 – ident: e_1_2_9_94_1 doi: 10.1002/adma.201605416 – ident: e_1_2_9_115_1 doi: 10.1016/j.talanta.2018.02.114 – ident: e_1_2_9_2_1 doi: 10.1016/j.apenergy.2019.114027 – ident: e_1_2_9_169_1 doi: 10.1039/C7NR01727H – ident: e_1_2_9_41_2 doi: 10.1016/j.jcis.2019.11.044 – ident: e_1_2_9_29_2 doi: 10.1002/ppsc.201300252 – ident: e_1_2_9_89_1 doi: 10.1016/j.carbon.2013.12.085 – ident: e_1_2_9_118_1 doi: 10.1016/j.aca.2019.01.021 – ident: e_1_2_9_29_1 doi: 10.1039/C4CS00269E – ident: e_1_2_9_40_2 doi: 10.1039/C6RA05175H – ident: e_1_2_9_11_1 doi: 10.1021/am501256x – ident: e_1_2_9_83_1 doi: 10.1016/j.jlumin.2019.03.064 – ident: e_1_2_9_77_1 doi: 10.1016/j.jcis.2016.07.058 – ident: e_1_2_9_67_1 doi: 10.1039/C4NR02365J – ident: e_1_2_9_12_3 doi: 10.1039/C4CP02761B – ident: e_1_2_9_103_1 doi: 10.1021/acs.jpcc.7b08702 – ident: e_1_2_9_31_3 doi: 10.1016/j.msec.2017.11.034 – ident: e_1_2_9_88_1 doi: 10.1016/j.talanta.2019.02.098 – ident: e_1_2_9_101_1 doi: 10.1016/j.carbon.2016.12.035 – volume: 12 start-page: 322 year: 2019 ident: e_1_2_9_80_1 publication-title: Environ. Sci. Technol. Lett. – ident: e_1_2_9_58_1 doi: 10.1103/PhysRevLett.95.205501 – ident: e_1_2_9_129_1 doi: 10.1039/C7GC03218H – ident: e_1_2_9_159_1 doi: 10.1002/anie.202013985 – ident: e_1_2_9_166_1 doi: 10.1016/j.electacta.2016.07.119 – volume: 22 start-page: 24230 year: 2012 ident: e_1_2_9_154_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_9_19_1 doi: 10.1016/j.carbon.2016.12.033 – ident: e_1_2_9_147_1 doi: 10.1016/j.nanoen.2019.104038 – ident: e_1_2_9_50_1 doi: 10.1021/ac3012126 – ident: e_1_2_9_122_3 doi: 10.1016/j.diamond.2018.11.002 – ident: e_1_2_9_134_1 doi: 10.1016/j.apsusc.2017.05.189 – ident: e_1_2_9_146_1 doi: 10.1039/C6NJ04118C – ident: e_1_2_9_163_1 doi: 10.1039/C9QI00217K – ident: e_1_2_9_45_2 doi: 10.1021/jp905912n – ident: e_1_2_9_44_1 doi: 10.1016/j.talanta.2018.12.042 – ident: e_1_2_9_68_1 doi: 10.1038/nmat2378 – ident: e_1_2_9_41_3 doi: 10.1016/j.msec.2019.110376 – ident: e_1_2_9_53_1 doi: 10.1016/j.carbon.2012.06.002 – volume-title: Handbook of Non‐Ferrous Metal Powders year: 2019 ident: e_1_2_9_5_1 – ident: e_1_2_9_20_1 doi: 10.1016/B978-0-08-097774-4.00416-2 – ident: e_1_2_9_28_3 doi: 10.1002/bio.2927 – ident: e_1_2_9_40_3 doi: 10.1039/C4TC01991A – ident: e_1_2_9_38_1 doi: 10.1016/j.cej.2019.122745 – ident: e_1_2_9_90_1 doi: 10.1021/ac500289c – ident: e_1_2_9_162_2 doi: 10.1039/c2jm30935a – ident: e_1_2_9_23_1 doi: 10.1021/ar300128j – ident: e_1_2_9_3_1 doi: 10.1039/C4RA00601A – ident: e_1_2_9_59_2 doi: 10.1038/ncomms2141 – ident: e_1_2_9_95_1 doi: 10.1039/C9NH00608G – ident: e_1_2_9_57_1 doi: 10.1002/adma.201102866 – ident: e_1_2_9_148_1 doi: 10.1021/jacs.5b03799 – ident: e_1_2_9_69_1 doi: 10.1039/c2cc31201h – ident: e_1_2_9_121_1 doi: 10.1002/advs.201801432 – ident: e_1_2_9_120_2 doi: 10.1016/j.jelechem.2018.10.050 – ident: e_1_2_9_12_1 doi: 10.1016/j.carbon.2017.01.005 – ident: e_1_2_9_117_1 doi: 10.1039/C5NR05549K – ident: e_1_2_9_153_1 doi: 10.1021/cs300691m – ident: e_1_2_9_156_1 doi: 10.1021/ja404523s – ident: e_1_2_9_12_4 doi: 10.1016/j.ijhydene.2017.11.157 – ident: e_1_2_9_14_1 doi: 10.1002/chem.201802793 – ident: e_1_2_9_107_3 doi: 10.1016/j.microc.2019.04.015 – ident: e_1_2_9_132_1 doi: 10.1039/C6RA11579A – ident: e_1_2_9_34_1 doi: 10.3389/fchem.2019.00671 – ident: e_1_2_9_123_1 doi: 10.1002/slct.201700100 – ident: e_1_2_9_157_1 doi: 10.1021/acsami.7b06231 – ident: e_1_2_9_30_1 doi: 10.1021/acsami.7b07267 – ident: e_1_2_9_114_1 doi: 10.1039/C6NJ01753C – ident: e_1_2_9_13_2 doi: 10.1002/smll.201901803 – ident: e_1_2_9_96_1 doi: 10.1039/C4TA05483K – ident: e_1_2_9_125_1 doi: 10.1016/j.seppur.2018.10.057 – ident: e_1_2_9_12_2 doi: 10.1016/j.mtener.2019.01.013 – ident: e_1_2_9_85_1 doi: 10.1039/C8NJ06069J – ident: e_1_2_9_36_1 doi: 10.1002/chem.201901748 – ident: e_1_2_9_144_1 doi: 10.1021/acsomega.8b03490 – ident: e_1_2_9_28_2 doi: 10.1016/j.carbon.2019.09.079 – ident: e_1_2_9_151_1 doi: 10.1016/j.jallcom.2020.154308 – ident: e_1_2_9_82_1 doi: 10.1021/ez400137j – ident: e_1_2_9_28_1 doi: 10.1039/C3NR05380F – ident: e_1_2_9_62_1 doi: 10.1021/nn4053342 – ident: e_1_2_9_72_1 doi: 10.1002/adma.201705913 – ident: e_1_2_9_6_2 doi: 10.1103/PhysRevLett.90.037401 – ident: e_1_2_9_17_1 doi: 10.1002/anie.201504951 – ident: e_1_2_9_4_1 doi: 10.1021/ja040082h – ident: e_1_2_9_155_1 doi: 10.1039/C5TA04867B – ident: e_1_2_9_25_1 doi: 10.1016/j.cej.2019.123260 – ident: e_1_2_9_107_2 doi: 10.1016/j.snb.2015.09.081 – ident: e_1_2_9_131_1 doi: 10.1039/C9TC03632F – ident: e_1_2_9_156_2 doi: 10.1021/ja503372r – ident: e_1_2_9_74_1 doi: 10.1021/acsami.5b05509 – ident: e_1_2_9_139_1 doi: 10.1016/j.cej.2017.05.127 – ident: e_1_2_9_162_1 doi: 10.1021/ja409445p – ident: e_1_2_9_135_1 doi: 10.1016/j.cej.2017.08.070 – ident: e_1_2_9_33_4 doi: 10.1039/c1cc11122a – ident: e_1_2_9_93_1 doi: 10.1039/C3AN02222F – ident: e_1_2_9_61_1 doi: 10.1038/ncomms6357 – ident: e_1_2_9_109_1 doi: 10.1039/C6CC01078D – ident: e_1_2_9_133_1 doi: 10.1038/nmat2297 – ident: e_1_2_9_165_1 doi: 10.1039/C0EE00197J – ident: e_1_2_9_11_2 doi: 10.1016/j.carbon.2017.06.076 – ident: e_1_2_9_52_1 doi: 10.1016/j.biomaterials.2012.01.052 – ident: e_1_2_9_139_2 doi: 10.1002/smll.201602164 – ident: e_1_2_9_152_1 doi: 10.1002/smll.201903610 – ident: e_1_2_9_64_1 doi: 10.1002/adfm.201203441 – ident: e_1_2_9_9_2 doi: 10.1016/j.apsusc.2018.10.104 – ident: e_1_2_9_98_1 doi: 10.1039/c3tb00583f – ident: e_1_2_9_120_3 doi: 10.1016/j.apsusc.2018.09.026 – ident: e_1_2_9_10_1 doi: 10.1016/j.nanoen.2019.104093 – ident: e_1_2_9_140_1 doi: 10.1016/j.carbon.2019.01.078 – ident: e_1_2_9_124_1 doi: 10.1016/j.apcatb.2018.01.033 – ident: e_1_2_9_60_1 doi: 10.1039/C4CC08735F – ident: e_1_2_9_1_1 doi: 10.1002/adma.200901545 – ident: e_1_2_9_6_1 doi: 10.1021/ja206030c – ident: e_1_2_9_57_2 doi: 10.1002/adma.200901996 – ident: e_1_2_9_168_1 doi: 10.1016/j.jpowsour.2015.10.092 – ident: e_1_2_9_31_1 doi: 10.1016/j.snb.2019.01.117 – ident: e_1_2_9_111_1 doi: 10.1016/j.snb.2019.127383 – ident: e_1_2_9_122_2 doi: 10.1016/j.cej.2019.123016 – ident: e_1_2_9_130_1 doi: 10.1002/aenm.201902736 – ident: e_1_2_9_37_1 doi: 10.1038/s41598-018-37479-6 – ident: e_1_2_9_42_1 doi: 10.1186/s12951-019-0525-8 – ident: e_1_2_9_126_1 doi: 10.1016/j.jcis.2018.11.024 – ident: e_1_2_9_41_1 doi: 10.1016/j.jcis.2020.01.092 – ident: e_1_2_9_105_1 doi: 10.1007/s00604-017-2196-1 – ident: e_1_2_9_110_1 doi: 10.1039/C5NR02427G – ident: e_1_2_9_66_1 doi: 10.1002/aenm.201802042 – ident: e_1_2_9_76_1 doi: 10.1002/anie.201301114 – ident: e_1_2_9_51_1 doi: 10.1002/smll.201401328 – ident: e_1_2_9_54_1 doi: 10.1021/acsami.8b00323 – ident: e_1_2_9_32_1 doi: 10.1021/acsomega.7b01539 – ident: e_1_2_9_145_1 doi: 10.1039/C9RA01488H – ident: e_1_2_9_38_2 doi: 10.1016/j.ijhydene.2018.05.053 – ident: e_1_2_9_128_1 doi: 10.1021/nn504637y – ident: e_1_2_9_149_1 doi: 10.1016/j.ijhydene.2017.01.029 – ident: e_1_2_9_7_1 doi: 10.1002/adma.201200164 – ident: e_1_2_9_161_1 doi: 10.1039/C3CS60323G – ident: e_1_2_9_45_1 doi: 10.1016/j.talanta.2015.12.047 – ident: e_1_2_9_133_2 doi: 10.1039/C1CS15060J – ident: e_1_2_9_31_2 doi: 10.1016/j.talanta.2019.120538 – ident: e_1_2_9_142_1 doi: 10.1039/C7TA11050B – ident: e_1_2_9_100_1 doi: 10.1021/acsami.7b16002 – ident: e_1_2_9_125_2 doi: 10.1016/j.jcis.2019.12.030 – ident: e_1_2_9_143_1 doi: 10.1039/C5TA03610K – ident: e_1_2_9_70_1 doi: 10.1016/j.apsusc.2016.08.106 – ident: e_1_2_9_37_2 doi: 10.1016/j.matchemphys.2018.12.031 – ident: e_1_2_9_87_1 doi: 10.1002/anie.201300519 – ident: e_1_2_9_48_1 doi: 10.1021/ac100852z – ident: e_1_2_9_137_1 doi: 10.1002/adfm.201501250 – ident: e_1_2_9_59_1 doi: 10.1016/j.carbon.2016.08.023 – ident: e_1_2_9_120_1 doi: 10.1016/j.carbon.2016.08.002 – ident: e_1_2_9_79_1 doi: 10.1039/c0cp00789g – ident: e_1_2_9_43_1 doi: 10.1039/C8CS00750K – ident: e_1_2_9_162_3 doi: 10.1021/jacs.8b01868 – ident: e_1_2_9_1_2 doi: 10.1016/j.progpolymsci.2010.11.003 – ident: e_1_2_9_18_1 doi: 10.1002/anie.201000982 – ident: e_1_2_9_141_1 doi: 10.1016/j.apsusc.2019.02.243 – ident: e_1_2_9_91_1 doi: 10.1039/c3nr00006k – ident: e_1_2_9_138_1 doi: 10.1021/nl504038s – ident: e_1_2_9_33_1 doi: 10.1016/j.jiec.2018.10.007 – ident: e_1_2_9_21_1 doi: 10.1038/ncomms1945 – ident: e_1_2_9_86_1 doi: 10.1016/j.carbon.2017.10.097 – ident: e_1_2_9_9_1 doi: 10.1039/c3nr33954h – ident: e_1_2_9_116_1 doi: 10.1021/acsami.6b01325 – ident: e_1_2_9_39_1 doi: 10.1016/j.jlumin.2019.116827 – ident: e_1_2_9_112_1 doi: 10.1039/c3nr04402e – ident: e_1_2_9_78_1 doi: 10.1016/j.snb.2017.03.158 – ident: e_1_2_9_65_1 doi: 10.1002/adma.201602912 – ident: e_1_2_9_113_1 doi: 10.1039/C4NR04267K – ident: e_1_2_9_107_1 doi: 10.1016/j.carbon.2013.07.095 – ident: e_1_2_9_16_1 doi: 10.1002/adfm.201203771 – ident: e_1_2_9_75_1 doi: 10.1016/j.saa.2019.117211 – ident: e_1_2_9_106_1 doi: 10.1016/j.electacta.2019.135391 – ident: e_1_2_9_33_2 doi: 10.1039/C9NJ02359C – ident: e_1_2_9_167_1 doi: 10.1016/j.apsusc.2017.09.060 – ident: e_1_2_9_13_1 doi: 10.1039/C8GC02736F – ident: e_1_2_9_56_1 doi: 10.1002/adma.201606459 – ident: e_1_2_9_136_1 doi: 10.1039/C8NR06986G – ident: e_1_2_9_160_1 doi: 10.1002/anie.202017102 – ident: e_1_2_9_84_1 doi: 10.1016/j.bios.2015.11.085 – ident: e_1_2_9_73_1 doi: 10.1016/j.mtcomm.2016.11.002 – ident: e_1_2_9_22_1 doi: 10.1002/cphc.201500837 – ident: e_1_2_9_15_1 doi: 10.1002/advs.201901316 – ident: e_1_2_9_33_3 doi: 10.1016/j.snb.2017.09.155 – ident: e_1_2_9_40_1 doi: 10.1039/c3cc45215h – ident: e_1_2_9_127_1 doi: 10.1016/j.materresbull.2019.03.021 – ident: e_1_2_9_26_1 doi: 10.1016/j.jphotobiol.2016.05.017 |
SSID | ssj0031247 |
Score | 2.5955808 |
SecondaryResourceType | review_article |
Snippet | Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2102091 |
SubjectTerms | batteries Carbon Carbon dots carbon dot‐based composites electrocatalysis Electrocatalysts Electron transfer Energy storage Fluorescence Functional groups Nanomaterials Nanotechnology Storage batteries |
Title | Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202102091 https://www.proquest.com/docview/2579308226 https://www.proquest.com/docview/2555973120 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMCD7KQHv8XqlAiCp279zNrj2AdDNg_OwfBS8nlxtrJuF_9689KPbYIIemtpQtu8vLz3kpdfELr3IyVlTACF2AnsQMduNqVU2XGs4oi6nAsK85CTJzKaBY_zcL61i7_gQ9QTbqAZZrwGBacsb2-gofn7ApYOIGRxzPZ11ycAz-8_1_woXxsvc7qKtlk2gLcqaqPjtXer71qljau57bAaizM8QrT61iLR5K21XrEW__yGcfzPzxyjw9Idxd2i_5ygPZmeooMtSOEZep0axOx6KTFNBTZTiIpyiSeZgDwjI1qcKdyjS6av-tkqx9oVxoPihB1eIgnwwGwzxN3Nkvk5mg0HL72RXZ7IYHMIhOxIhMJzIi5ih_KOIyBvyoeQMdKm1mce41JFQShDQgnpSOpKqcAjMpS1gLn-BWqkWSovEfa4ipXikWI-rL2KiIhABA6nlISCeMJCdiWRhJe4cjg1Y5EUoGUvgTZL6jaz0ENd_qMAdfxYslkJOCkVNk_0yBUDuccjFrqrH2tVg_UTmspsDWUg_NKdyrGQZ6T5y5uS6WQ8ru-u_lLpGu3DdZE-2EQNLXF5o92gFbs1Xf0L9BMAMw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH5CZQAGbkQ5jYTElDbN4SYjgqICCQNtJcQSOT4WSoJ6LPx6_JyjgISQYMthK46fn9_p7wGcu4GSMqQIhdj1LE_bbhZjTFlhqMKAdTgXDP2Q8QPtj7y7J7_KJsSzMAU-RO1wQ84w-zUyODqk2wvU0OnrGGMHaLPYeH592QTpUC96rBGkXC2-TH0VLbUshN6qcBttp_21_1e5tFA2P6usRubcbEBajbZINXlpzWdpi79_A3L81-9swnqpkZLLYgltwZLMtmHtE07hDjwPDMrsfCIJywQxXkTFuCRxLjDVyFCX5IpcsUmqr67z2ZRobZj0iiI7vEQlID1z0pBcLqLmuzC66Q2v-lZZlMHiaAtZgfCFYwdchDbjXVtg6pSLVmOgpa2bOimXKvB86VNGaVeyjpQKlSIDtOalHXcPGlmeyX0gDlehUjxQqYvhVxFQ4QnP5oxRX1BHNMGqSJLwErEcC2eMkwJr2UlwzpJ6zppwUbd_K7A6fmx5VFE4KXl2mujNK0TwHoc24ax-rbkNQygsk_kc26AFpleV3QTHkPOXLyWDOIrqu4O_dDqFlf4wjpLo9uH-EFbxeZFNeAQNTX15rLWiWXpi1v0HAXMEUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kgujBt1ituoLgKTbNY5scSx9UbUXUgngJm31crEnp4-Kvd2eTpq0ggt7y2CXJzk7mm53ZbwCu3EBJGVKkQqx7lqd9N4sxpqwwVGHAapwLhuuQ_QfaHXh3r_7r0i7-jB-iWHBDzTD_a1TwkVDVBWno5GOIoQN0WWzcvr7uUW0rERY9FQRSrrZepryKNloWMm_NaRttp7raf9UsLbDmMmI1JqezA2z-slmmyfvNbBrf8M9vPI7_-Zpd2M7xKGlkE2gP1mSyD1tLLIUH8PZsOGZnY0lYIohZQ1SMS9JPBSYaGdmSVJEmG8f6qJVOJ0RjYdLOSuzwnJOAtM0-Q9JYxMwPYdBpvzS7Vl6SweLoCVmB8IVjB1yENuN1W2DilIs-Y6BtrRs7MZcq8HzpU0ZpXbKalAohkaFZ8-KaewSlJE3kMRCHq1ApHqjYxeCrCKjwhGdzxqgvqCPKYM0lEvGcrxzLZgyjjGnZiXDMomLMynBdtB9lTB0_tqzMBRzlGjuJ9K8rROoeh5bhsritdQ0DKCyR6QzboP-lJ5VdBsdI85cnRc_9Xq84O_lLpwvYeGx1ot7tw_0pbOLlLJWwAiUtfHmmIdE0Pjez_gvtMwMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+Interface+Modification+of+Carbon+Dots+for+Electrochemical+Energy+Application&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cheng%2C+Ruiqi&rft.au=Xiang%2C+Yinger&rft.au=Guo%2C+Ruiting&rft.au=Li%2C+Lin&rft.date=2021-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=40&rft_id=info:doi/10.1002%2Fsmll.202102091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202102091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |