Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application

Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 40; pp. e2102091 - n/a
Main Authors Cheng, Ruiqi, Xiang, Yinger, Guo, Ruiting, Li, Lin, Zou, Guoqiang, Fu, Chaopeng, Hou, Hongshuai, Ji, Xiaobo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202102091

Cover

Abstract Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs‐based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs. Carbon dots (CDs) open a new avenue for regulating properties due to abundant defects, functional groups, and so on, which show great effects in electrical energy storage and electrochemical catalysis. In this review, three key points related to CDs are presented in detail: structure and interface modification of CDs, original syntheses of CDs composites (CDs/X), and their applications.
AbstractList Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs‐based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs.
Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs-based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs.Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs-based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs.
Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs‐based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs. Carbon dots (CDs) open a new avenue for regulating properties due to abundant defects, functional groups, and so on, which show great effects in electrical energy storage and electrochemical catalysis. In this review, three key points related to CDs are presented in detail: structure and interface modification of CDs, original syntheses of CDs composites (CDs/X), and their applications.
Author Guo, Ruiting
Li, Lin
Hou, Hongshuai
Fu, Chaopeng
Xiang, Yinger
Ji, Xiaobo
Cheng, Ruiqi
Zou, Guoqiang
Author_xml – sequence: 1
  givenname: Ruiqi
  surname: Cheng
  fullname: Cheng, Ruiqi
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Yinger
  surname: Xiang
  fullname: Xiang, Yinger
  organization: Central South University
– sequence: 3
  givenname: Ruiting
  surname: Guo
  fullname: Guo, Ruiting
  organization: Central South University
– sequence: 4
  givenname: Lin
  surname: Li
  fullname: Li, Lin
  organization: Central South University
– sequence: 5
  givenname: Guoqiang
  surname: Zou
  fullname: Zou, Guoqiang
  organization: Central South University
– sequence: 6
  givenname: Chaopeng
  surname: Fu
  fullname: Fu, Chaopeng
  email: chaopengfu@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 7
  givenname: Hongshuai
  surname: Hou
  fullname: Hou, Hongshuai
  email: hs-hou@csu.edu.cn
  organization: Central South University
– sequence: 8
  givenname: Xiaobo
  orcidid: 0000-0002-5405-7913
  surname: Ji
  fullname: Ji, Xiaobo
  organization: Central South University
BookMark eNqFkEtPAjEURhuDiYBuXTdx4wbsY15dEkQlgbhAN24mpXNHh3SmY9uJ4d9bhGBCYlzduzjnPr4B6jWmAYSuKRlTQtidq7UeM8IoYUTQM9SnCeWjJGOid-wpuUAD5zaEcMqitI_eVt52yncWsGwKPG882FIqwEtTVGWlpK9Mg02Jp9KuQ3dvvMOlsXimQXlr1AfUgdJ41oB93-JJ2-qDdYnOS6kdXB3qEL0-zF6mT6PF8-N8OlmMVBSuGmVFXDCSqUIQqVJSUCEoJ4yxDKDga7ZWUGZRDHEikyQFSQFKngkueJzRaE35EN3u57bWfHbgfF5XToHWsgHTuZzFcSzS8C8J6M0JujGdbcJ1gUoFJxljSaDGe0pZ45yFMm9tVUu7zSnJd1Hnu6jzY9RBiE4EVfmfDLyVlf5bE3vtq9Kw_WdJvlouFr_uN-e3lWs
CitedBy_id crossref_primary_10_1002_smsc_202200012
crossref_primary_10_1016_j_jclepro_2023_137474
crossref_primary_10_1016_j_carbon_2023_118513
crossref_primary_10_1002_aesr_202200062
crossref_primary_10_1016_j_foodcont_2024_110693
crossref_primary_10_1002_adfm_202400001
crossref_primary_10_1016_j_trechm_2022_10_005
crossref_primary_10_1016_j_mtsust_2022_100207
crossref_primary_10_1016_j_cej_2024_157379
crossref_primary_10_1002_adhm_202402285
crossref_primary_10_1007_s44246_022_00015_3
crossref_primary_10_1016_j_jpowsour_2022_232476
crossref_primary_10_1007_s40820_022_00873_x
crossref_primary_10_1016_j_saa_2023_122542
crossref_primary_10_1016_j_cej_2023_141930
crossref_primary_10_3390_gels7040173
crossref_primary_10_1007_s00216_022_04405_9
crossref_primary_10_1021_acs_inorgchem_3c03115
crossref_primary_10_1248_cpb_c23_00410
crossref_primary_10_1016_j_dyepig_2022_110895
crossref_primary_10_1016_j_cej_2024_156434
crossref_primary_10_1016_j_electacta_2024_144529
crossref_primary_10_1016_j_jelechem_2022_116177
crossref_primary_10_1021_acsbiomaterials_4c01256
crossref_primary_10_3390_w17020210
crossref_primary_10_1039_D1TC04271H
crossref_primary_10_1016_j_saa_2023_123582
crossref_primary_10_1016_j_indcrop_2024_118683
crossref_primary_10_1002_slct_202304217
crossref_primary_10_3390_eng5030116
crossref_primary_10_1016_j_ijbiomac_2025_139466
crossref_primary_10_1016_j_foodchem_2024_141374
crossref_primary_10_1016_j_scib_2024_08_011
crossref_primary_10_1038_s41392_024_01889_y
crossref_primary_10_1039_D3QM00723E
crossref_primary_10_1016_j_susmat_2024_e01087
crossref_primary_10_1016_j_cis_2024_103178
crossref_primary_10_1016_j_est_2022_104711
crossref_primary_10_1039_D3NR01966G
crossref_primary_10_1039_D4NA00763H
crossref_primary_10_1016_j_est_2022_104764
crossref_primary_10_1016_j_ijhydene_2024_05_422
crossref_primary_10_1177_08853282221125313
crossref_primary_10_1021_acsaenm_4c00305
crossref_primary_10_1002_aenm_202402721
crossref_primary_10_1002_smll_202300906
crossref_primary_10_1007_s00604_023_06021_5
crossref_primary_10_1039_D4SC08659G
crossref_primary_10_1016_j_talanta_2024_127330
crossref_primary_10_1088_1361_6528_ada0c0
crossref_primary_10_1016_j_cartre_2023_100276
crossref_primary_10_1016_j_est_2024_110640
crossref_primary_10_1016_j_jcis_2025_01_133
crossref_primary_10_1002_smll_202106863
crossref_primary_10_1016_j_heliyon_2024_e32133
crossref_primary_10_1080_17518253_2023_2196031
crossref_primary_10_1021_acs_chemrev_3c00186
crossref_primary_10_1021_acsami_4c03368
crossref_primary_10_1016_j_jallcom_2023_170481
crossref_primary_10_1016_j_ijhydene_2024_12_443
Cites_doi 10.1021/acs.jpclett.9b00119
10.1039/C7NJ04983H
10.1016/j.talanta.2016.11.019
10.1016/j.jhazmat.2018.04.071
10.1039/C7NJ03621C
10.1016/j.apsusc.2019.143597
10.1039/C9RA08726E
10.1039/c4ta00860j
10.1016/j.snb.2016.12.079
10.1039/C4RA10885J
10.1002/anie.201807643
10.1016/j.snb.2016.11.044
10.1016/j.carbon.2018.11.041
10.1021/ja050124h
10.1016/j.cej.2018.09.100
10.1016/j.matlet.2019.01.139
10.1002/adma.201800676
10.1016/j.trac.2017.02.001
10.1021/acsnano.5b05406
10.1021/ac503183y
10.1016/j.jcis.2018.12.047
10.1016/j.jallcom.2017.06.130
10.1146/annurev-bioeng-071811-150124
10.1039/c3ra45294h
10.1002/adma.200902825
10.1002/adma.201605416
10.1016/j.talanta.2018.02.114
10.1016/j.apenergy.2019.114027
10.1039/C7NR01727H
10.1016/j.jcis.2019.11.044
10.1002/ppsc.201300252
10.1016/j.carbon.2013.12.085
10.1016/j.aca.2019.01.021
10.1039/C4CS00269E
10.1039/C6RA05175H
10.1021/am501256x
10.1016/j.jlumin.2019.03.064
10.1016/j.jcis.2016.07.058
10.1039/C4NR02365J
10.1039/C4CP02761B
10.1021/acs.jpcc.7b08702
10.1016/j.msec.2017.11.034
10.1016/j.talanta.2019.02.098
10.1016/j.carbon.2016.12.035
10.1103/PhysRevLett.95.205501
10.1039/C7GC03218H
10.1002/anie.202013985
10.1016/j.electacta.2016.07.119
10.1016/j.carbon.2016.12.033
10.1016/j.nanoen.2019.104038
10.1021/ac3012126
10.1016/j.diamond.2018.11.002
10.1016/j.apsusc.2017.05.189
10.1039/C6NJ04118C
10.1039/C9QI00217K
10.1021/jp905912n
10.1016/j.talanta.2018.12.042
10.1038/nmat2378
10.1016/j.msec.2019.110376
10.1016/j.carbon.2012.06.002
10.1016/B978-0-08-097774-4.00416-2
10.1002/bio.2927
10.1039/C4TC01991A
10.1016/j.cej.2019.122745
10.1021/ac500289c
10.1039/c2jm30935a
10.1021/ar300128j
10.1039/C4RA00601A
10.1038/ncomms2141
10.1039/C9NH00608G
10.1002/adma.201102866
10.1021/jacs.5b03799
10.1039/c2cc31201h
10.1002/advs.201801432
10.1016/j.jelechem.2018.10.050
10.1016/j.carbon.2017.01.005
10.1039/C5NR05549K
10.1021/cs300691m
10.1021/ja404523s
10.1016/j.ijhydene.2017.11.157
10.1002/chem.201802793
10.1016/j.microc.2019.04.015
10.1039/C6RA11579A
10.3389/fchem.2019.00671
10.1002/slct.201700100
10.1021/acsami.7b06231
10.1021/acsami.7b07267
10.1039/C6NJ01753C
10.1002/smll.201901803
10.1039/C4TA05483K
10.1016/j.seppur.2018.10.057
10.1016/j.mtener.2019.01.013
10.1039/C8NJ06069J
10.1002/chem.201901748
10.1021/acsomega.8b03490
10.1016/j.carbon.2019.09.079
10.1016/j.jallcom.2020.154308
10.1021/ez400137j
10.1039/C3NR05380F
10.1021/nn4053342
10.1002/adma.201705913
10.1103/PhysRevLett.90.037401
10.1002/anie.201504951
10.1021/ja040082h
10.1039/C5TA04867B
10.1016/j.cej.2019.123260
10.1016/j.snb.2015.09.081
10.1039/C9TC03632F
10.1021/ja503372r
10.1021/acsami.5b05509
10.1016/j.cej.2017.05.127
10.1021/ja409445p
10.1016/j.cej.2017.08.070
10.1039/c1cc11122a
10.1039/C3AN02222F
10.1038/ncomms6357
10.1039/C6CC01078D
10.1038/nmat2297
10.1039/C0EE00197J
10.1016/j.carbon.2017.06.076
10.1016/j.biomaterials.2012.01.052
10.1002/smll.201602164
10.1002/smll.201903610
10.1002/adfm.201203441
10.1016/j.apsusc.2018.10.104
10.1039/c3tb00583f
10.1016/j.apsusc.2018.09.026
10.1016/j.nanoen.2019.104093
10.1016/j.carbon.2019.01.078
10.1016/j.apcatb.2018.01.033
10.1039/C4CC08735F
10.1002/adma.200901545
10.1021/ja206030c
10.1002/adma.200901996
10.1016/j.jpowsour.2015.10.092
10.1016/j.snb.2019.01.117
10.1016/j.snb.2019.127383
10.1016/j.cej.2019.123016
10.1002/aenm.201902736
10.1038/s41598-018-37479-6
10.1186/s12951-019-0525-8
10.1016/j.jcis.2018.11.024
10.1016/j.jcis.2020.01.092
10.1007/s00604-017-2196-1
10.1039/C5NR02427G
10.1002/aenm.201802042
10.1002/anie.201301114
10.1002/smll.201401328
10.1021/acsami.8b00323
10.1021/acsomega.7b01539
10.1039/C9RA01488H
10.1016/j.ijhydene.2018.05.053
10.1021/nn504637y
10.1016/j.ijhydene.2017.01.029
10.1002/adma.201200164
10.1039/C3CS60323G
10.1016/j.talanta.2015.12.047
10.1039/C1CS15060J
10.1016/j.talanta.2019.120538
10.1039/C7TA11050B
10.1021/acsami.7b16002
10.1016/j.jcis.2019.12.030
10.1039/C5TA03610K
10.1016/j.apsusc.2016.08.106
10.1016/j.matchemphys.2018.12.031
10.1002/anie.201300519
10.1021/ac100852z
10.1002/adfm.201501250
10.1016/j.carbon.2016.08.023
10.1016/j.carbon.2016.08.002
10.1039/c0cp00789g
10.1039/C8CS00750K
10.1021/jacs.8b01868
10.1016/j.progpolymsci.2010.11.003
10.1002/anie.201000982
10.1016/j.apsusc.2019.02.243
10.1039/c3nr00006k
10.1021/nl504038s
10.1016/j.jiec.2018.10.007
10.1038/ncomms1945
10.1016/j.carbon.2017.10.097
10.1039/c3nr33954h
10.1021/acsami.6b01325
10.1016/j.jlumin.2019.116827
10.1039/c3nr04402e
10.1016/j.snb.2017.03.158
10.1002/adma.201602912
10.1039/C4NR04267K
10.1016/j.carbon.2013.07.095
10.1002/adfm.201203771
10.1016/j.saa.2019.117211
10.1016/j.electacta.2019.135391
10.1039/C9NJ02359C
10.1016/j.apsusc.2017.09.060
10.1039/C8GC02736F
10.1002/adma.201606459
10.1039/C8NR06986G
10.1002/anie.202017102
10.1016/j.bios.2015.11.085
10.1016/j.mtcomm.2016.11.002
10.1002/cphc.201500837
10.1002/advs.201901316
10.1016/j.snb.2017.09.155
10.1039/c3cc45215h
10.1016/j.materresbull.2019.03.021
10.1016/j.jphotobiol.2016.05.017
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202102091
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202102091
SMLL202102091
Genre reviewArticle
GrantInformation_xml – fundername: Innovation Mover Program of Central South University
  funderid: 2020CX007
– fundername: National Natural Science Foundation of China
  funderid: 52074539; 51904342
– fundername: Science and Technology Innovation Program of Hunan Province
  funderid: 2020RC4005; 2019RS1004
– fundername: Hunan Provincial Science and Technology Plan
  funderid: 2020JJ3048
– fundername: Fundamental Research Funds for Central Universities of the Central South University
  funderid: 2020zzts393
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-c4161-8d5d208cd90ac70d1991302228eed3b2bcef845e56a667ea1eef3893935814b13
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 13:54:17 EDT 2025
Fri Jul 25 12:04:12 EDT 2025
Tue Jul 01 02:54:01 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Wed Jan 22 16:56:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4161-8d5d208cd90ac70d1991302228eed3b2bcef845e56a667ea1eef3893935814b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5405-7913
PQID 2579308226
PQPubID 1046358
PageCount 31
ParticipantIDs proquest_miscellaneous_2555973120
proquest_journals_2579308226
crossref_primary_10_1002_smll_202102091
crossref_citationtrail_10_1002_smll_202102091
wiley_primary_10_1002_smll_202102091_SMLL202102091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2019 2020 2018; 211 562 354
2014; 139
2019 2019; 21 15
2013; 3
2013; 4
2013; 1
2016 2012; 109 3
2019 2020 2019; 143 382 91
2019; 10
2017 2019 2014 2018; 115 12 16 43
2019; 12
2019; 15
2017; 89
2019; 17
2016; 303
2012; 14
2013; 7
2013; 5
2018; 42
2013 2016 2019; 64 223 147
2019 2019 2018 2011; 69 43 255 47
2010; 22
2018; 6
2018; 8
2015; 137
2019; 25
2013; 52
2016; 40
2018; 30
2020; 331
2017; 164
2013 2012 2018; 135 22 140
2008 2012; 7 41
2011 2010; 23 22
2016; 390
2012; 22
2020; 219
2019; 1058
2014; 10
2012 2019; 24 356
2019; 7
2019; 9
2019; 4
2019; 6
2018; 184
2018; 227
2015; 51
2020; 384
2015; 54
2016; 10
2020; 304
2011; 4
2016; 17
2020; 827
2012; 33
2018; 20
2019; 221
2014; 43
2016; 161
2012; 50
2016; 6
2017 2016; 326 12
2010; 49
2013 2014; 135 136
2019; 43
2019; 48
2005; 127
2005; 95
2019 2019; 9 225
2012; 48
2016; 213
2012; 46
2016; 28
2021; 60
2018; 10
2017; 422
2014 2017; 6 122
2016; 8
2019; 211
2017; 42
2017; 41
2014; 70
2004; 126
2017; 2
2018; 127
2013; 23
2017; 114
2019; 480
2017; 9
2016; 79
2019; 242
2020; 5
2014; 5
2014; 4
2014; 2
2019; 66
2019; 65
2019; 115
2016 2009; 150 113
2020; 257
2017; 242
2017; 243
2017; 122
2019; 196
2014 2020 2016; 6 156 31
2014; 6
2019; 199
2010 2011; 22 36
2013 2019; 5 467‐468
2017; 248
2015; 15
2015; 3
2020 2020 2020; 566 561 108
2010
2018; 427
2016; 52
2019; 146
2015 2014; 44 31
2017; 29
2019 2020 2018; 286 209 84
2017; 330
2015; 7
2016; 482
2014; 86
2014 2017; 4 723
2015; 25
2016 2019 2019; 109 832 463
2012; 3
2012 2003; 134 90
2019; 539
2017; 10
2019
2020 2018; 382 43
2009; 8
2017; 184
2019; 537
2014
2013 2016 2015; 49 6 3
2012; 84
2019; 495
2018; 57
e_1_2_9_79_1
e_1_2_9_33_2
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_33_3
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_107_3
e_1_2_9_107_2
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_122_2
e_1_2_9_145_1
e_1_2_9_122_3
e_1_2_9_168_1
e_1_2_9_33_4
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_45_2
e_1_2_9_6_2
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_11_2
Li H. (e_1_2_9_154_1) 2012; 22
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_57_2
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_133_2
e_1_2_9_156_2
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_31_2
e_1_2_9_77_1
e_1_2_9_31_3
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_162_2
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_162_3
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_28_3
e_1_2_9_28_2
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_2
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_29_2
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_37_2
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_41_2
e_1_2_9_41_3
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_125_2
e_1_2_9_102_1
e_1_2_9_125_3
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_38_2
e_1_2_9_42_1
e_1_2_9_88_1
Neikov O. D. (e_1_2_9_5_1) 2019
e_1_2_9_65_1
e_1_2_9_1_2
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_2
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_12_2
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_120_3
e_1_2_9_166_1
e_1_2_9_105_1
Jiang H. (e_1_2_9_80_1) 2019; 12
e_1_2_9_12_4
e_1_2_9_12_3
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_120_2
e_1_2_9_143_1
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_104_1
e_1_2_9_13_2
e_1_2_9_59_2
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_40_2
e_1_2_9_40_3
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_86_1
e_1_2_9_3_2
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_139_2
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
References_xml – volume: 6 122
  start-page: 7918 247
  year: 2014 2017
  publication-title: ACS Appl. Mater. Interfaces Carbon
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 46
  start-page: 171
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 2
  start-page: 4241
  year: 2017
  publication-title: ChemistrySelect
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 5750
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 1165
  year: 2019
  publication-title: Chemistry
– volume: 114
  start-page: 533
  year: 2017
  publication-title: Carbon
– volume: 20
  start-page: 1383
  year: 2018
  publication-title: Green Chem.
– volume: 221
  year: 2019
  publication-title: Spectrochim. Acta
– volume: 211 562 354
  start-page: 873 224 54
  year: 2019 2020 2018
  publication-title: Sep. Purif. Technol. J. Colloid Interface Sci. J. Hazard. Mater.
– volume: 51
  start-page: 3419
  year: 2015
  publication-title: Chem. Commun.
– volume: 33
  start-page: 3604
  year: 2012
  publication-title: Biomaterials
– volume: 22
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 326 12
  start-page: 58 5927
  year: 2017 2016
  publication-title: Chem. Eng. J. Small
– volume: 126
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 5465
  year: 2014
  publication-title: RSC Adv.
– volume: 6
  start-page: 6476
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 42
  start-page: 2931
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 86
  year: 2014
  publication-title: Anal. Chem.
– volume: 10
  start-page: 953
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 43
  start-page: 631
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 109 832 463
  start-page: 402 87 1148
  year: 2016 2019 2019
  publication-title: Carbon J. Electroanal. Chem. Appl. Surf. Sci.
– volume: 137
  start-page: 7588
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2019
  publication-title: RSC Adv.
– volume: 6
  start-page: 1453
  year: 2019
  publication-title: Inorg. Chem. Front.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 5 467‐468
  start-page: 1816 446
  year: 2013 2019
  publication-title: Nanoscale Appl. Surf. Sci.
– volume: 52
  start-page: 3953
  year: 2013
  publication-title: Angew. Chem., Int. Ed. Engl.
– year: 2019
– volume: 227
  start-page: 312
  year: 2018
  publication-title: Appl. Catal., B
– volume: 86
  start-page: 4423
  year: 2014
  publication-title: Anal. Chem.
– volume: 64 223 147
  start-page: 424 689 1038
  year: 2013 2016 2019
  publication-title: Carbon Sens. Actuators, B Microchem. J.
– volume: 5
  year: 2013
  publication-title: Nanoscale
– volume: 3
  start-page: 166
  year: 2013
  publication-title: ACS Catal.
– volume: 114
  start-page: 544
  year: 2017
  publication-title: Carbon
– volume: 2
  start-page: 8660
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 12
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 248
  start-page: 481
  year: 2017
  publication-title: Sens. Actuators, B
– volume: 139
  start-page: 2322
  year: 2014
  publication-title: Analyst
– volume: 21 15
  start-page: 449
  year: 2019 2019
  publication-title: Green Chemistry Small
– volume: 10
  start-page: 484
  year: 2016
  publication-title: ACS Nano
– volume: 4 723
  start-page: 333
  year: 2014 2017
  publication-title: RSC Adv. J. Alloys Compd.
– volume: 135 136
  start-page: 7587
  year: 2013 2014
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 127
  start-page: 340
  year: 2018
  publication-title: Carbon
– volume: 1
  start-page: 2375
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 390
  start-page: 435
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 827
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 150 113
  start-page: 253
  year: 2016 2009
  publication-title: Talanta J. Phys. Chem. C
– volume: 146
  start-page: 1
  year: 2019
  publication-title: Carbon
– volume: 22
  start-page: 734
  year: 2010
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 3
  start-page: 934
  year: 2012
  publication-title: Nat. Commun.
– volume: 164
  start-page: 100
  year: 2017
  publication-title: Talanta
– volume: 14
  start-page: 1
  year: 2012
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 48
  start-page: 4527
  year: 2012
  publication-title: Chem. Commun.
– volume: 384
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 87
  year: 2013
  publication-title: Environ. Sci. Technol. Lett.
– volume: 15
  start-page: 565
  year: 2015
  publication-title: Nano Lett.
– volume: 184
  start-page: 2063
  year: 2017
  publication-title: Microchim. Acta
– volume: 219
  year: 2020
  publication-title: J. Lumin.
– volume: 89
  start-page: 163
  year: 2017
  publication-title: TrAC, Trends Anal. Chem.
– volume: 10
  start-page: 4926
  year: 2014
  publication-title: Small
– volume: 60
  start-page: 7234
  year: 2021
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 69 43 255 47
  start-page: 455 3284 6858
  year: 2019 2019 2018 2011
  publication-title: J. Ind. Eng. Chem. New J. Chem. Sens. Actuators, B Chem. Commun.
– volume: 199
  start-page: 581
  year: 2019
  publication-title: Talanta
– volume: 211
  start-page: 298
  year: 2019
  publication-title: J. Lumin.
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 48
  start-page: 2315
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 322
  year: 2019
  publication-title: Environ. Sci. Technol. Lett.
– volume: 161
  start-page: 154
  year: 2016
  publication-title: J. Photochem. Photobiol., B
– volume: 304
  year: 2020
  publication-title: Sens. Actuators, B
– volume: 213
  start-page: 332
  year: 2016
  publication-title: Electrochim. Acta
– volume: 482
  start-page: 8
  year: 2016
  publication-title: J. Colloid Interface Sci.
– volume: 24 356
  start-page: 2037 994
  year: 2012 2019
  publication-title: Adv. Mater. Chem. Eng. J.
– volume: 23 22
  start-page: 5801 505
  year: 2011 2010
  publication-title: Adv. Mater. Adv. Mater.
– volume: 3
  start-page: 542
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 1058
  start-page: 146
  year: 2019
  publication-title: Anal. Chim. Acta
– volume: 135 22 140
  start-page: 5791
  year: 2013 2012 2018
  publication-title: J. Am. Chem. Soc. J. Mater. Chem. J. Am. Chem. Soc.
– volume: 242
  start-page: 231
  year: 2017
  publication-title: Sens. Actuators, B
– volume: 243
  start-page: 1002
  year: 2017
  publication-title: Sens. Actuators, B
– volume: 42
  start-page: 1690
  year: 2018
  publication-title: New J. Chem.
– year: 2014
  publication-title: ACS Nano
– volume: 122
  start-page: 349
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 79
  start-page: 1
  year: 2016
  publication-title: Biosens. Bioelectron.
– volume: 25
  year: 2019
  publication-title: Chemistry
– volume: 40
  start-page: 8710
  year: 2016
  publication-title: New J. Chem.
– volume: 7
  start-page: 671
  year: 2019
  publication-title: Front. Chem.
– volume: 115
  start-page: 140
  year: 2019
  publication-title: Mater. Res. Bull.
– volume: 5
  start-page: 7776
  year: 2013
  publication-title: Nanoscale
– volume: 23
  start-page: 5062
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 8343
  year: 2017
  publication-title: ACS Omega
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 70
  start-page: 149
  year: 2014
  publication-title: Carbon
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 4
  year: 2013
– volume: 9
  start-page: 9577
  year: 2019
  publication-title: RSC Adv.
– volume: 28
  start-page: 9532
  year: 2016
  publication-title: Adv. Mater.
– volume: 196
  start-page: 456
  year: 2019
  publication-title: Talanta
– volume: 41
  start-page: 3750
  year: 2017
  publication-title: New J. Chem.
– volume: 303
  start-page: 109
  year: 2016
  publication-title: J. Power Sources
– volume: 9 225
  start-page: 4101 23
  year: 2019 2019
  publication-title: Sci. Rep. Mater. Chem. Phys.
– volume: 4
  start-page: 1161
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 23
  start-page: 4111
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 84
  start-page: 6220
  year: 2012
  publication-title: Anal. Chem.
– volume: 566 561 108
  start-page: 357 678
  year: 2020 2020 2020
  publication-title: J. Colloid Interface Sci. J. Colloid Interface Sci. Mater. Sci. Eng.
– volume: 115 12 16 43
  start-page: 134 198 4726
  year: 2017 2019 2014 2018
  publication-title: Carbon Mater. Today Energy Phys. Chem. Chem. Phys. Int. J. Hydrogen Energy
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 184
  start-page: 184
  year: 2018
  publication-title: Talanta
– volume: 330
  start-page: 1166
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2013
  publication-title: ACS Nano
– volume: 17
  start-page: 92
  year: 2019
  publication-title: J. Nanobiotechnol.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 427
  start-page: 715
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 60
  start-page: 3290
  year: 2021
  publication-title: Angew. Chem., Int. Ed. Engl.
– start-page: 5511
  year: 2010
  publication-title: Anal. Chem.
– volume: 286 209 84
  start-page: 77 60
  year: 2019 2020 2018
  publication-title: Sens. Actuators, B Talanta Mater. Sci. Eng., C
– volume: 44 31
  start-page: 362 415
  year: 2015 2014
  publication-title: Chem. Soc. Rev. Part. Part. Syst. Charact.
– volume: 6 156 31
  start-page: 1890 558 81
  year: 2014 2020 2016
  publication-title: Nanoscale Carbon Luminescence
– volume: 109 3
  start-page: 373 1144
  year: 2016 2012
  publication-title: Carbon Nat. Commun.
– volume: 49
  start-page: 5310
  year: 2010
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 10
  start-page: 112
  year: 2017
  publication-title: Mater. Today Commun.
– volume: 242
  start-page: 156
  year: 2019
  publication-title: Mater. Lett.
– volume: 537
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 43
  start-page: 1812
  year: 2019
  publication-title: New J. Chem.
– volume: 52
  start-page: 7800
  year: 2013
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 5
  start-page: 5357
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 4
  start-page: 4943
  year: 2019
  publication-title: ACS Omega
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 15
  year: 2019
  publication-title: Small
– volume: 257
  year: 2020
  publication-title: Appl. Energy
– volume: 8
  start-page: 235
  year: 2009
  publication-title: Nat. Mater.
– volume: 49 6 3
  start-page: 291
  year: 2013 2016 2015
  publication-title: Chem. Commun. RSC Adv. J. Mater. Chem. C
– volume: 5
  start-page: 573
  year: 2020
  publication-title: Nanoscale Horiz.
– volume: 7 41
  start-page: 845 797
  year: 2008 2012
  publication-title: Nat. Mater. Chem. Soc. Rev.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 42
  start-page: 2857
  year: 2018
  publication-title: New J. Chem.
– volume: 422
  start-page: 847
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 134 90
  start-page: 15
  year: 2012 2003
  publication-title: J. Am. Chem. Soc. Phys. Rev. Lett.
– volume: 17
  start-page: 598
  year: 2016
  publication-title: ChemPhysChem
– volume: 539
  start-page: 332
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 382 43
  year: 2020 2018
  publication-title: Chem. Eng. J. Int. J. Hydrogen Energy
– volume: 143 382 91
  start-page: 457 64
  year: 2019 2020 2019
  publication-title: Carbon Chem. Eng. J. Diamond Relat. Mater.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 5467
  year: 2017
  publication-title: Nanoscale
– volume: 22 36
  start-page: 1672 638
  year: 2010 2011
  publication-title: Adv. Mater. Prog. Polym. Sci.
– volume: 25
  start-page: 4929
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 495
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 331
  year: 2020
  publication-title: Electrochim. Acta
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 127
  start-page: 5917
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 5589
  year: 2016
  publication-title: Chem. Commun.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 480
  start-page: 727
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 50
  start-page: 4738
  year: 2012
  publication-title: Carbon
– ident: e_1_2_9_71_1
  doi: 10.1021/acs.jpclett.9b00119
– ident: e_1_2_9_119_1
  doi: 10.1039/C7NJ04983H
– ident: e_1_2_9_92_1
  doi: 10.1016/j.talanta.2016.11.019
– ident: e_1_2_9_125_3
  doi: 10.1016/j.jhazmat.2018.04.071
– ident: e_1_2_9_81_1
  doi: 10.1039/C7NJ03621C
– ident: e_1_2_9_150_1
  doi: 10.1016/j.apsusc.2019.143597
– ident: e_1_2_9_47_1
  doi: 10.1039/C9RA08726E
– ident: e_1_2_9_8_1
  doi: 10.1039/c4ta00860j
– ident: e_1_2_9_49_1
  doi: 10.1016/j.snb.2016.12.079
– ident: e_1_2_9_108_1
  doi: 10.1039/C4RA10885J
– ident: e_1_2_9_164_1
  doi: 10.1002/anie.201807643
– ident: e_1_2_9_99_1
  doi: 10.1016/j.snb.2016.11.044
– ident: e_1_2_9_122_1
  doi: 10.1016/j.carbon.2018.11.041
– ident: e_1_2_9_63_1
  doi: 10.1021/ja050124h
– ident: e_1_2_9_7_2
  doi: 10.1016/j.cej.2018.09.100
– ident: e_1_2_9_104_1
  doi: 10.1016/j.matlet.2019.01.139
– ident: e_1_2_9_158_1
  doi: 10.1002/adma.201800676
– ident: e_1_2_9_46_1
  doi: 10.1016/j.trac.2017.02.001
– ident: e_1_2_9_24_1
  doi: 10.1021/acsnano.5b05406
– ident: e_1_2_9_97_1
  doi: 10.1021/ac503183y
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jcis.2018.12.047
– ident: e_1_2_9_3_2
  doi: 10.1016/j.jallcom.2017.06.130
– ident: e_1_2_9_27_1
  doi: 10.1146/annurev-bioeng-071811-150124
– ident: e_1_2_9_102_1
  doi: 10.1039/c3ra45294h
– ident: e_1_2_9_55_1
  doi: 10.1002/adma.200902825
– ident: e_1_2_9_94_1
  doi: 10.1002/adma.201605416
– ident: e_1_2_9_115_1
  doi: 10.1016/j.talanta.2018.02.114
– ident: e_1_2_9_2_1
  doi: 10.1016/j.apenergy.2019.114027
– ident: e_1_2_9_169_1
  doi: 10.1039/C7NR01727H
– ident: e_1_2_9_41_2
  doi: 10.1016/j.jcis.2019.11.044
– ident: e_1_2_9_29_2
  doi: 10.1002/ppsc.201300252
– ident: e_1_2_9_89_1
  doi: 10.1016/j.carbon.2013.12.085
– ident: e_1_2_9_118_1
  doi: 10.1016/j.aca.2019.01.021
– ident: e_1_2_9_29_1
  doi: 10.1039/C4CS00269E
– ident: e_1_2_9_40_2
  doi: 10.1039/C6RA05175H
– ident: e_1_2_9_11_1
  doi: 10.1021/am501256x
– ident: e_1_2_9_83_1
  doi: 10.1016/j.jlumin.2019.03.064
– ident: e_1_2_9_77_1
  doi: 10.1016/j.jcis.2016.07.058
– ident: e_1_2_9_67_1
  doi: 10.1039/C4NR02365J
– ident: e_1_2_9_12_3
  doi: 10.1039/C4CP02761B
– ident: e_1_2_9_103_1
  doi: 10.1021/acs.jpcc.7b08702
– ident: e_1_2_9_31_3
  doi: 10.1016/j.msec.2017.11.034
– ident: e_1_2_9_88_1
  doi: 10.1016/j.talanta.2019.02.098
– ident: e_1_2_9_101_1
  doi: 10.1016/j.carbon.2016.12.035
– volume: 12
  start-page: 322
  year: 2019
  ident: e_1_2_9_80_1
  publication-title: Environ. Sci. Technol. Lett.
– ident: e_1_2_9_58_1
  doi: 10.1103/PhysRevLett.95.205501
– ident: e_1_2_9_129_1
  doi: 10.1039/C7GC03218H
– ident: e_1_2_9_159_1
  doi: 10.1002/anie.202013985
– ident: e_1_2_9_166_1
  doi: 10.1016/j.electacta.2016.07.119
– volume: 22
  start-page: 24230
  year: 2012
  ident: e_1_2_9_154_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_9_19_1
  doi: 10.1016/j.carbon.2016.12.033
– ident: e_1_2_9_147_1
  doi: 10.1016/j.nanoen.2019.104038
– ident: e_1_2_9_50_1
  doi: 10.1021/ac3012126
– ident: e_1_2_9_122_3
  doi: 10.1016/j.diamond.2018.11.002
– ident: e_1_2_9_134_1
  doi: 10.1016/j.apsusc.2017.05.189
– ident: e_1_2_9_146_1
  doi: 10.1039/C6NJ04118C
– ident: e_1_2_9_163_1
  doi: 10.1039/C9QI00217K
– ident: e_1_2_9_45_2
  doi: 10.1021/jp905912n
– ident: e_1_2_9_44_1
  doi: 10.1016/j.talanta.2018.12.042
– ident: e_1_2_9_68_1
  doi: 10.1038/nmat2378
– ident: e_1_2_9_41_3
  doi: 10.1016/j.msec.2019.110376
– ident: e_1_2_9_53_1
  doi: 10.1016/j.carbon.2012.06.002
– volume-title: Handbook of Non‐Ferrous Metal Powders
  year: 2019
  ident: e_1_2_9_5_1
– ident: e_1_2_9_20_1
  doi: 10.1016/B978-0-08-097774-4.00416-2
– ident: e_1_2_9_28_3
  doi: 10.1002/bio.2927
– ident: e_1_2_9_40_3
  doi: 10.1039/C4TC01991A
– ident: e_1_2_9_38_1
  doi: 10.1016/j.cej.2019.122745
– ident: e_1_2_9_90_1
  doi: 10.1021/ac500289c
– ident: e_1_2_9_162_2
  doi: 10.1039/c2jm30935a
– ident: e_1_2_9_23_1
  doi: 10.1021/ar300128j
– ident: e_1_2_9_3_1
  doi: 10.1039/C4RA00601A
– ident: e_1_2_9_59_2
  doi: 10.1038/ncomms2141
– ident: e_1_2_9_95_1
  doi: 10.1039/C9NH00608G
– ident: e_1_2_9_57_1
  doi: 10.1002/adma.201102866
– ident: e_1_2_9_148_1
  doi: 10.1021/jacs.5b03799
– ident: e_1_2_9_69_1
  doi: 10.1039/c2cc31201h
– ident: e_1_2_9_121_1
  doi: 10.1002/advs.201801432
– ident: e_1_2_9_120_2
  doi: 10.1016/j.jelechem.2018.10.050
– ident: e_1_2_9_12_1
  doi: 10.1016/j.carbon.2017.01.005
– ident: e_1_2_9_117_1
  doi: 10.1039/C5NR05549K
– ident: e_1_2_9_153_1
  doi: 10.1021/cs300691m
– ident: e_1_2_9_156_1
  doi: 10.1021/ja404523s
– ident: e_1_2_9_12_4
  doi: 10.1016/j.ijhydene.2017.11.157
– ident: e_1_2_9_14_1
  doi: 10.1002/chem.201802793
– ident: e_1_2_9_107_3
  doi: 10.1016/j.microc.2019.04.015
– ident: e_1_2_9_132_1
  doi: 10.1039/C6RA11579A
– ident: e_1_2_9_34_1
  doi: 10.3389/fchem.2019.00671
– ident: e_1_2_9_123_1
  doi: 10.1002/slct.201700100
– ident: e_1_2_9_157_1
  doi: 10.1021/acsami.7b06231
– ident: e_1_2_9_30_1
  doi: 10.1021/acsami.7b07267
– ident: e_1_2_9_114_1
  doi: 10.1039/C6NJ01753C
– ident: e_1_2_9_13_2
  doi: 10.1002/smll.201901803
– ident: e_1_2_9_96_1
  doi: 10.1039/C4TA05483K
– ident: e_1_2_9_125_1
  doi: 10.1016/j.seppur.2018.10.057
– ident: e_1_2_9_12_2
  doi: 10.1016/j.mtener.2019.01.013
– ident: e_1_2_9_85_1
  doi: 10.1039/C8NJ06069J
– ident: e_1_2_9_36_1
  doi: 10.1002/chem.201901748
– ident: e_1_2_9_144_1
  doi: 10.1021/acsomega.8b03490
– ident: e_1_2_9_28_2
  doi: 10.1016/j.carbon.2019.09.079
– ident: e_1_2_9_151_1
  doi: 10.1016/j.jallcom.2020.154308
– ident: e_1_2_9_82_1
  doi: 10.1021/ez400137j
– ident: e_1_2_9_28_1
  doi: 10.1039/C3NR05380F
– ident: e_1_2_9_62_1
  doi: 10.1021/nn4053342
– ident: e_1_2_9_72_1
  doi: 10.1002/adma.201705913
– ident: e_1_2_9_6_2
  doi: 10.1103/PhysRevLett.90.037401
– ident: e_1_2_9_17_1
  doi: 10.1002/anie.201504951
– ident: e_1_2_9_4_1
  doi: 10.1021/ja040082h
– ident: e_1_2_9_155_1
  doi: 10.1039/C5TA04867B
– ident: e_1_2_9_25_1
  doi: 10.1016/j.cej.2019.123260
– ident: e_1_2_9_107_2
  doi: 10.1016/j.snb.2015.09.081
– ident: e_1_2_9_131_1
  doi: 10.1039/C9TC03632F
– ident: e_1_2_9_156_2
  doi: 10.1021/ja503372r
– ident: e_1_2_9_74_1
  doi: 10.1021/acsami.5b05509
– ident: e_1_2_9_139_1
  doi: 10.1016/j.cej.2017.05.127
– ident: e_1_2_9_162_1
  doi: 10.1021/ja409445p
– ident: e_1_2_9_135_1
  doi: 10.1016/j.cej.2017.08.070
– ident: e_1_2_9_33_4
  doi: 10.1039/c1cc11122a
– ident: e_1_2_9_93_1
  doi: 10.1039/C3AN02222F
– ident: e_1_2_9_61_1
  doi: 10.1038/ncomms6357
– ident: e_1_2_9_109_1
  doi: 10.1039/C6CC01078D
– ident: e_1_2_9_133_1
  doi: 10.1038/nmat2297
– ident: e_1_2_9_165_1
  doi: 10.1039/C0EE00197J
– ident: e_1_2_9_11_2
  doi: 10.1016/j.carbon.2017.06.076
– ident: e_1_2_9_52_1
  doi: 10.1016/j.biomaterials.2012.01.052
– ident: e_1_2_9_139_2
  doi: 10.1002/smll.201602164
– ident: e_1_2_9_152_1
  doi: 10.1002/smll.201903610
– ident: e_1_2_9_64_1
  doi: 10.1002/adfm.201203441
– ident: e_1_2_9_9_2
  doi: 10.1016/j.apsusc.2018.10.104
– ident: e_1_2_9_98_1
  doi: 10.1039/c3tb00583f
– ident: e_1_2_9_120_3
  doi: 10.1016/j.apsusc.2018.09.026
– ident: e_1_2_9_10_1
  doi: 10.1016/j.nanoen.2019.104093
– ident: e_1_2_9_140_1
  doi: 10.1016/j.carbon.2019.01.078
– ident: e_1_2_9_124_1
  doi: 10.1016/j.apcatb.2018.01.033
– ident: e_1_2_9_60_1
  doi: 10.1039/C4CC08735F
– ident: e_1_2_9_1_1
  doi: 10.1002/adma.200901545
– ident: e_1_2_9_6_1
  doi: 10.1021/ja206030c
– ident: e_1_2_9_57_2
  doi: 10.1002/adma.200901996
– ident: e_1_2_9_168_1
  doi: 10.1016/j.jpowsour.2015.10.092
– ident: e_1_2_9_31_1
  doi: 10.1016/j.snb.2019.01.117
– ident: e_1_2_9_111_1
  doi: 10.1016/j.snb.2019.127383
– ident: e_1_2_9_122_2
  doi: 10.1016/j.cej.2019.123016
– ident: e_1_2_9_130_1
  doi: 10.1002/aenm.201902736
– ident: e_1_2_9_37_1
  doi: 10.1038/s41598-018-37479-6
– ident: e_1_2_9_42_1
  doi: 10.1186/s12951-019-0525-8
– ident: e_1_2_9_126_1
  doi: 10.1016/j.jcis.2018.11.024
– ident: e_1_2_9_41_1
  doi: 10.1016/j.jcis.2020.01.092
– ident: e_1_2_9_105_1
  doi: 10.1007/s00604-017-2196-1
– ident: e_1_2_9_110_1
  doi: 10.1039/C5NR02427G
– ident: e_1_2_9_66_1
  doi: 10.1002/aenm.201802042
– ident: e_1_2_9_76_1
  doi: 10.1002/anie.201301114
– ident: e_1_2_9_51_1
  doi: 10.1002/smll.201401328
– ident: e_1_2_9_54_1
  doi: 10.1021/acsami.8b00323
– ident: e_1_2_9_32_1
  doi: 10.1021/acsomega.7b01539
– ident: e_1_2_9_145_1
  doi: 10.1039/C9RA01488H
– ident: e_1_2_9_38_2
  doi: 10.1016/j.ijhydene.2018.05.053
– ident: e_1_2_9_128_1
  doi: 10.1021/nn504637y
– ident: e_1_2_9_149_1
  doi: 10.1016/j.ijhydene.2017.01.029
– ident: e_1_2_9_7_1
  doi: 10.1002/adma.201200164
– ident: e_1_2_9_161_1
  doi: 10.1039/C3CS60323G
– ident: e_1_2_9_45_1
  doi: 10.1016/j.talanta.2015.12.047
– ident: e_1_2_9_133_2
  doi: 10.1039/C1CS15060J
– ident: e_1_2_9_31_2
  doi: 10.1016/j.talanta.2019.120538
– ident: e_1_2_9_142_1
  doi: 10.1039/C7TA11050B
– ident: e_1_2_9_100_1
  doi: 10.1021/acsami.7b16002
– ident: e_1_2_9_125_2
  doi: 10.1016/j.jcis.2019.12.030
– ident: e_1_2_9_143_1
  doi: 10.1039/C5TA03610K
– ident: e_1_2_9_70_1
  doi: 10.1016/j.apsusc.2016.08.106
– ident: e_1_2_9_37_2
  doi: 10.1016/j.matchemphys.2018.12.031
– ident: e_1_2_9_87_1
  doi: 10.1002/anie.201300519
– ident: e_1_2_9_48_1
  doi: 10.1021/ac100852z
– ident: e_1_2_9_137_1
  doi: 10.1002/adfm.201501250
– ident: e_1_2_9_59_1
  doi: 10.1016/j.carbon.2016.08.023
– ident: e_1_2_9_120_1
  doi: 10.1016/j.carbon.2016.08.002
– ident: e_1_2_9_79_1
  doi: 10.1039/c0cp00789g
– ident: e_1_2_9_43_1
  doi: 10.1039/C8CS00750K
– ident: e_1_2_9_162_3
  doi: 10.1021/jacs.8b01868
– ident: e_1_2_9_1_2
  doi: 10.1016/j.progpolymsci.2010.11.003
– ident: e_1_2_9_18_1
  doi: 10.1002/anie.201000982
– ident: e_1_2_9_141_1
  doi: 10.1016/j.apsusc.2019.02.243
– ident: e_1_2_9_91_1
  doi: 10.1039/c3nr00006k
– ident: e_1_2_9_138_1
  doi: 10.1021/nl504038s
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jiec.2018.10.007
– ident: e_1_2_9_21_1
  doi: 10.1038/ncomms1945
– ident: e_1_2_9_86_1
  doi: 10.1016/j.carbon.2017.10.097
– ident: e_1_2_9_9_1
  doi: 10.1039/c3nr33954h
– ident: e_1_2_9_116_1
  doi: 10.1021/acsami.6b01325
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jlumin.2019.116827
– ident: e_1_2_9_112_1
  doi: 10.1039/c3nr04402e
– ident: e_1_2_9_78_1
  doi: 10.1016/j.snb.2017.03.158
– ident: e_1_2_9_65_1
  doi: 10.1002/adma.201602912
– ident: e_1_2_9_113_1
  doi: 10.1039/C4NR04267K
– ident: e_1_2_9_107_1
  doi: 10.1016/j.carbon.2013.07.095
– ident: e_1_2_9_16_1
  doi: 10.1002/adfm.201203771
– ident: e_1_2_9_75_1
  doi: 10.1016/j.saa.2019.117211
– ident: e_1_2_9_106_1
  doi: 10.1016/j.electacta.2019.135391
– ident: e_1_2_9_33_2
  doi: 10.1039/C9NJ02359C
– ident: e_1_2_9_167_1
  doi: 10.1016/j.apsusc.2017.09.060
– ident: e_1_2_9_13_1
  doi: 10.1039/C8GC02736F
– ident: e_1_2_9_56_1
  doi: 10.1002/adma.201606459
– ident: e_1_2_9_136_1
  doi: 10.1039/C8NR06986G
– ident: e_1_2_9_160_1
  doi: 10.1002/anie.202017102
– ident: e_1_2_9_84_1
  doi: 10.1016/j.bios.2015.11.085
– ident: e_1_2_9_73_1
  doi: 10.1016/j.mtcomm.2016.11.002
– ident: e_1_2_9_22_1
  doi: 10.1002/cphc.201500837
– ident: e_1_2_9_15_1
  doi: 10.1002/advs.201901316
– ident: e_1_2_9_33_3
  doi: 10.1016/j.snb.2017.09.155
– ident: e_1_2_9_40_1
  doi: 10.1039/c3cc45215h
– ident: e_1_2_9_127_1
  doi: 10.1016/j.materresbull.2019.03.021
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jphotobiol.2016.05.017
SSID ssj0031247
Score 2.5955808
SecondaryResourceType review_article
Snippet Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2102091
SubjectTerms batteries
Carbon
Carbon dots
carbon dot‐based composites
electrocatalysis
Electrocatalysts
Electron transfer
Energy storage
Fluorescence
Functional groups
Nanomaterials
Nanotechnology
Storage batteries
Title Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202102091
https://www.proquest.com/docview/2579308226
https://www.proquest.com/docview/2555973120
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMCD7KQHv8XqlAiCp279zNrj2AdDNg_OwfBS8nlxtrJuF_9689KPbYIIemtpQtu8vLz3kpdfELr3IyVlTACF2AnsQMduNqVU2XGs4oi6nAsK85CTJzKaBY_zcL61i7_gQ9QTbqAZZrwGBacsb2-gofn7ApYOIGRxzPZ11ycAz-8_1_woXxsvc7qKtlk2gLcqaqPjtXer71qljau57bAaizM8QrT61iLR5K21XrEW__yGcfzPzxyjw9Idxd2i_5ygPZmeooMtSOEZep0axOx6KTFNBTZTiIpyiSeZgDwjI1qcKdyjS6av-tkqx9oVxoPihB1eIgnwwGwzxN3Nkvk5mg0HL72RXZ7IYHMIhOxIhMJzIi5ih_KOIyBvyoeQMdKm1mce41JFQShDQgnpSOpKqcAjMpS1gLn-BWqkWSovEfa4ipXikWI-rL2KiIhABA6nlISCeMJCdiWRhJe4cjg1Y5EUoGUvgTZL6jaz0ENd_qMAdfxYslkJOCkVNk_0yBUDuccjFrqrH2tVg_UTmspsDWUg_NKdyrGQZ6T5y5uS6WQ8ru-u_lLpGu3DdZE-2EQNLXF5o92gFbs1Xf0L9BMAMw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH5CZQAGbkQ5jYTElDbN4SYjgqICCQNtJcQSOT4WSoJ6LPx6_JyjgISQYMthK46fn9_p7wGcu4GSMqQIhdj1LE_bbhZjTFlhqMKAdTgXDP2Q8QPtj7y7J7_KJsSzMAU-RO1wQ84w-zUyODqk2wvU0OnrGGMHaLPYeH592QTpUC96rBGkXC2-TH0VLbUshN6qcBttp_21_1e5tFA2P6usRubcbEBajbZINXlpzWdpi79_A3L81-9swnqpkZLLYgltwZLMtmHtE07hDjwPDMrsfCIJywQxXkTFuCRxLjDVyFCX5IpcsUmqr67z2ZRobZj0iiI7vEQlID1z0pBcLqLmuzC66Q2v-lZZlMHiaAtZgfCFYwdchDbjXVtg6pSLVmOgpa2bOimXKvB86VNGaVeyjpQKlSIDtOalHXcPGlmeyX0gDlehUjxQqYvhVxFQ4QnP5oxRX1BHNMGqSJLwErEcC2eMkwJr2UlwzpJ6zppwUbd_K7A6fmx5VFE4KXl2mujNK0TwHoc24ax-rbkNQygsk_kc26AFpleV3QTHkPOXLyWDOIrqu4O_dDqFlf4wjpLo9uH-EFbxeZFNeAQNTX15rLWiWXpi1v0HAXMEUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kgujBt1ituoLgKTbNY5scSx9UbUXUgngJm31crEnp4-Kvd2eTpq0ggt7y2CXJzk7mm53ZbwCu3EBJGVKkQqx7lqd9N4sxpqwwVGHAapwLhuuQ_QfaHXh3r_7r0i7-jB-iWHBDzTD_a1TwkVDVBWno5GOIoQN0WWzcvr7uUW0rERY9FQRSrrZepryKNloWMm_NaRttp7raf9UsLbDmMmI1JqezA2z-slmmyfvNbBrf8M9vPI7_-Zpd2M7xKGlkE2gP1mSyD1tLLIUH8PZsOGZnY0lYIohZQ1SMS9JPBSYaGdmSVJEmG8f6qJVOJ0RjYdLOSuzwnJOAtM0-Q9JYxMwPYdBpvzS7Vl6SweLoCVmB8IVjB1yENuN1W2DilIs-Y6BtrRs7MZcq8HzpU0ZpXbKalAohkaFZ8-KaewSlJE3kMRCHq1ApHqjYxeCrCKjwhGdzxqgvqCPKYM0lEvGcrxzLZgyjjGnZiXDMomLMynBdtB9lTB0_tqzMBRzlGjuJ9K8rROoeh5bhsritdQ0DKCyR6QzboP-lJ5VdBsdI85cnRc_9Xq84O_lLpwvYeGx1ot7tw_0pbOLlLJWwAiUtfHmmIdE0Pjez_gvtMwMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+Interface+Modification+of+Carbon+Dots+for+Electrochemical+Energy+Application&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cheng%2C+Ruiqi&rft.au=Xiang%2C+Yinger&rft.au=Guo%2C+Ruiting&rft.au=Li%2C+Lin&rft.date=2021-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=40&rft_id=info:doi/10.1002%2Fsmll.202102091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202102091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon