Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring
Goal: Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based o...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 64; no. 4; pp. 859 - 869 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2016.2580904 |
Cover
| Abstract | Goal: Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values. Methods: The proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally, the regression algorithms are employed for the BP estimation. Although the proposed algorithm works reliably without any need for calibration, an optional calibration procedure is also suggested, which can improve the system's accuracy even further. Results: The proposed method is evaluated on about a thousand subjects using the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. The method complies with the AAMI standard in the estimation of DBP and MAP values. Regarding the BHS protocol, the results achieve grade A for the estimation of DBP and grade B for the estimation of MAP. Conclusion: We conclude that by using the PAT in combination with informative features from the vital signals, the BP can be accurately and reliably estimated in a noninvasive fashion. Significance: The results indicate that the proposed algorithm for the cuffless estimation of the BP can potentially enable mobile health-care gadgets to monitor the BP continuously. |
|---|---|
| AbstractList | Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values.
The proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally, the regression algorithms are employed for the BP estimation. Although the proposed algorithm works reliably without any need for calibration, an optional calibration procedure is also suggested, which can improve the system's accuracy even further.
The proposed method is evaluated on about a thousand subjects using the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. The method complies with the AAMI standard in the estimation of DBP and MAP values. Regarding the BHS protocol, the results achieve grade A for the estimation of DBP and grade B for the estimation of MAP.
We conclude that by using the PAT in combination with informative features from the vital signals, the BP can be accurately and reliably estimated in a noninvasive fashion.
The results indicate that the proposed algorithm for the cuffless estimation of the BP can potentially enable mobile health-care gadgets to monitor the BP continuously. Goal: Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values. Methods: The proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally, the regression algorithms are employed for the BP estimation. Although the proposed algorithm works reliably without any need for calibration, an optional calibration procedure is also suggested, which can improve the system's accuracy even further. Results: The proposed method is evaluated on about a thousand subjects using the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. The method complies with the AAMI standard in the estimation of DBP and MAP values. Regarding the BHS protocol, the results achieve grade A for the estimation of DBP and grade B for the estimation of MAP. Conclusion: We conclude that by using the PAT in combination with informative features from the vital signals, the BP can be accurately and reliably estimated in a noninvasive fashion. Significance: The results indicate that the proposed algorithm for the cuffless estimation of the BP can potentially enable mobile health-care gadgets to monitor the BP continuously. Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values.GOALContinuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values.The proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally, the regression algorithms are employed for the BP estimation. Although the proposed algorithm works reliably without any need for calibration, an optional calibration procedure is also suggested, which can improve the system's accuracy even further.METHODSThe proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally, the regression algorithms are employed for the BP estimation. Although the proposed algorithm works reliably without any need for calibration, an optional calibration procedure is also suggested, which can improve the system's accuracy even further.The proposed method is evaluated on about a thousand subjects using the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. The method complies with the AAMI standard in the estimation of DBP and MAP values. Regarding the BHS protocol, the results achieve grade A for the estimation of DBP and grade B for the estimation of MAP.RESULTSThe proposed method is evaluated on about a thousand subjects using the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. The method complies with the AAMI standard in the estimation of DBP and MAP values. Regarding the BHS protocol, the results achieve grade A for the estimation of DBP and grade B for the estimation of MAP.We conclude that by using the PAT in combination with informative features from the vital signals, the BP can be accurately and reliably estimated in a noninvasive fashion.CONCLUSIONWe conclude that by using the PAT in combination with informative features from the vital signals, the BP can be accurately and reliably estimated in a noninvasive fashion.The results indicate that the proposed algorithm for the cuffless estimation of the BP can potentially enable mobile health-care gadgets to monitor the BP continuously.SIGNIFICANCEThe results indicate that the proposed algorithm for the cuffless estimation of the BP can potentially enable mobile health-care gadgets to monitor the BP continuously. |
| Author | Kachuee, Mohammad Mohammadzade, Hoda Kiani, Mohammad Mahdi Shabany, Mahdi |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Kachuee fullname: Kachuee, Mohammad organization: Department of Electrical EngineeringSharif University of Technology – sequence: 2 givenname: Mohammad Mahdi surname: Kiani fullname: Kiani, Mohammad Mahdi organization: Department of Electrical EngineeringSharif University of Technology – sequence: 3 givenname: Hoda surname: Mohammadzade fullname: Mohammadzade, Hoda organization: Department of Electrical EngineeringSharif University of Technology – sequence: 4 givenname: Mahdi orcidid: 0000-0002-8625-9034 surname: Shabany fullname: Shabany, Mahdi email: mahdi@sharif.edu organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27323356$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9LHDEYxoNYdLV-gFKQAS-9zDb_MznqsK0FpYXqOWRn3mhkNtEkc_DbN9vdevDQU_7w-yUvz3OCDkMMgNAngpeEYP317up2taSYyCUVHdaYH6AFEaJrqWDkEC0wJl2rqebH6CTnp3rkHZdH6JgqRhkTcoF-97NzE-TcXE0xjs2vVPdzgmaVi9_Y4mNoLqeHmHx53OTGxdT0MRQf5jjn5hrsVB7b3lbhNgZfKhcePqIPzk4ZzvbrKbr_trrrr9ubn99_9Jc37cCJKC0MowQ8ALfWWSGpBe1Gjp0GyVlHBmrtGteLTkuq7KiYI0qA4mKtLRaDYqfoy-7d5xRfZsjFbHweYJpsgDqdIR2VCnPOdUUv3qFPcU6hTmcoUZzVwDiv1PmemtcbGM1zqhGkV_MvrgqQHTCkmHMC94YQbLaVmG0lZluJ2VdSHfXOGXz5G2xJ1k__NT_vTA8Abz8prgmVjP0Bj8qYPA |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109076 crossref_primary_10_3390_healthcare10102113 crossref_primary_10_1016_j_bspc_2019_02_028 crossref_primary_10_1007_s13534_019_00096_x crossref_primary_10_1088_1742_6596_1544_1_012137 crossref_primary_10_3390_s22166195 crossref_primary_10_1109_JSEN_2022_3211993 crossref_primary_10_2215_CJN_03680320 crossref_primary_10_1016_j_bspc_2025_107820 crossref_primary_10_3390_s21206886 crossref_primary_10_1109_JSEN_2017_2725638 crossref_primary_10_1371_journal_pone_0283094 crossref_primary_10_3390_s21186022 crossref_primary_10_1016_j_aej_2021_04_035 crossref_primary_10_1016_j_bspc_2022_103616 crossref_primary_10_1016_j_neucom_2023_127215 crossref_primary_10_1109_JSYST_2022_3140546 crossref_primary_10_1007_s11760_021_01952_z crossref_primary_10_1371_journal_pone_0311654 crossref_primary_10_3390_bioengineering10040400 crossref_primary_10_1080_23744235_2022_2080249 crossref_primary_10_1109_TIM_2022_3212750 crossref_primary_10_32604_cmc_2022_022679 crossref_primary_10_3390_s23125744 crossref_primary_10_1109_ACCESS_2025_3540440 crossref_primary_10_1587_transcom_2020HMI0002 crossref_primary_10_1016_j_inffus_2023_02_019 crossref_primary_10_1016_j_procs_2022_09_177 crossref_primary_10_1109_JSEN_2024_3404355 crossref_primary_10_1177_03000605211016145 crossref_primary_10_1080_08037051_2024_2304190 crossref_primary_10_1109_JSEN_2024_3515893 crossref_primary_10_1109_TCYB_2022_3141380 crossref_primary_10_1038_s41378_023_00590_4 crossref_primary_10_1016_j_eswa_2023_122812 crossref_primary_10_1109_JSEN_2019_2961411 crossref_primary_10_3390_app11093923 crossref_primary_10_3390_s21103525 crossref_primary_10_1016_j_matpr_2020_10_767 crossref_primary_10_1039_D3RA05932D crossref_primary_10_1007_s00542_018_3877_3 crossref_primary_10_1109_TIM_2022_3205679 crossref_primary_10_1007_s42979_022_01391_8 crossref_primary_10_1016_j_bspc_2023_105862 crossref_primary_10_1016_j_artmed_2020_101919 crossref_primary_10_1109_JBHI_2020_3009658 crossref_primary_10_1016_j_bspc_2021_103001 crossref_primary_10_3390_diagnostics12020408 crossref_primary_10_1016_j_jksuci_2023_101568 crossref_primary_10_3390_s19112585 crossref_primary_10_1016_j_bspc_2020_102198 crossref_primary_10_1016_j_scs_2019_101660 crossref_primary_10_1109_ACCESS_2022_3175436 crossref_primary_10_1109_JBHI_2019_2901724 crossref_primary_10_1016_j_cmpb_2021_106191 crossref_primary_10_1109_TBME_2021_3087105 crossref_primary_10_1088_1757_899X_1084_1_012031 crossref_primary_10_3390_s22030919 crossref_primary_10_1002_adma_201902062 crossref_primary_10_1016_j_bspc_2022_103891 crossref_primary_10_3390_s24092721 crossref_primary_10_1109_ACCESS_2020_2981300 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_3390_app14062470 crossref_primary_10_1016_j_bspc_2023_104757 crossref_primary_10_1109_TBME_2024_3434344 crossref_primary_10_1007_s12652_020_02539_1 crossref_primary_10_1016_j_cmpbup_2023_100097 crossref_primary_10_1016_j_bspc_2018_08_022 crossref_primary_10_1088_1361_6579_abc8dd crossref_primary_10_1109_ACCESS_2020_2965082 crossref_primary_10_1016_j_bspc_2021_102813 crossref_primary_10_1109_ACCESS_2021_3103268 crossref_primary_10_1615_TelecomRadEng_2022037783 crossref_primary_10_1007_s12265_023_10462_x crossref_primary_10_1097_MBP_0000000000000534 crossref_primary_10_1364_BOE_444535 crossref_primary_10_1021_acsnano_4c04291 crossref_primary_10_1109_JSEN_2021_3126744 crossref_primary_10_1088_1361_6579_ace414 crossref_primary_10_7717_peerj_11479 crossref_primary_10_1088_1361_6579_ab755d crossref_primary_10_3390_bioengineering9110692 crossref_primary_10_3390_s21051595 crossref_primary_10_3390_s21010096 crossref_primary_10_1016_j_bspc_2020_101870 crossref_primary_10_1109_TIM_2020_3035578 crossref_primary_10_1016_j_bspc_2024_106378 crossref_primary_10_1016_j_compeleceng_2024_109319 crossref_primary_10_1145_3699512 crossref_primary_10_1038_s41746_023_00853_4 crossref_primary_10_1016_j_knosys_2024_111798 crossref_primary_10_3390_mi14040804 crossref_primary_10_3390_s20082205 crossref_primary_10_4236_jbise_2019_122011 crossref_primary_10_1109_JBHI_2022_3172514 crossref_primary_10_1016_j_procs_2020_04_056 crossref_primary_10_1016_j_cmpb_2017_08_005 crossref_primary_10_3390_s21217207 crossref_primary_10_1007_s13246_023_01322_8 crossref_primary_10_1016_j_bspc_2023_105791 crossref_primary_10_3390_technologies12050070 crossref_primary_10_1161_HYPERTENSIONAHA_121_17747 crossref_primary_10_1109_ACCESS_2020_2968967 crossref_primary_10_1109_JBHI_2024_3400961 crossref_primary_10_1109_TBCAS_2019_2946661 crossref_primary_10_1016_j_bspc_2022_104364 crossref_primary_10_1038_s41598_021_01358_4 crossref_primary_10_1109_ACCESS_2024_3443688 crossref_primary_10_1109_TIM_2021_3109986 crossref_primary_10_1109_TIM_2023_3346527 crossref_primary_10_3389_fnins_2022_883693 crossref_primary_10_1016_j_bspc_2021_103404 crossref_primary_10_1016_j_sna_2024_115084 crossref_primary_10_1152_ajpheart_00392_2021 crossref_primary_10_1021_acsnano_3c09766 crossref_primary_10_1109_ACCESS_2021_3103763 crossref_primary_10_1109_LSENS_2025_3541397 crossref_primary_10_1109_JBHI_2022_3206477 crossref_primary_10_1016_j_bspc_2019_101682 crossref_primary_10_1038_s41569_025_01127_0 crossref_primary_10_1109_LES_2024_3443449 crossref_primary_10_1007_s11082_020_2260_7 crossref_primary_10_1088_2057_1976_ac2ea8 crossref_primary_10_1007_s11277_021_08954_7 crossref_primary_10_1007_s11082_020_02667_0 crossref_primary_10_2174_1386207324666210705113121 crossref_primary_10_1109_JSEN_2023_3282590 crossref_primary_10_3390_electronics10232896 crossref_primary_10_1016_j_compbiomed_2022_106299 crossref_primary_10_1007_s11760_019_01460_1 crossref_primary_10_1016_j_eswa_2022_116788 crossref_primary_10_1038_s41598_019_44348_3 crossref_primary_10_3233_THC_209022 crossref_primary_10_1088_1361_6579_abeae8 crossref_primary_10_1109_JSEN_2020_2990864 crossref_primary_10_1587_transele_2018CDI0001 crossref_primary_10_1007_s13239_023_00695_x crossref_primary_10_3389_fdgth_2022_1090854 crossref_primary_10_1007_s10916_018_1138_8 crossref_primary_10_1007_s10462_022_10353_8 crossref_primary_10_1109_TBME_2017_2756018 crossref_primary_10_1016_j_bspc_2022_103850 crossref_primary_10_3233_THC_202626 crossref_primary_10_1155_2022_3549238 crossref_primary_10_1016_j_compbiomed_2023_107558 crossref_primary_10_1109_ACCESS_2020_2981903 crossref_primary_10_3390_healthcare11243107 crossref_primary_10_2139_ssrn_3999278 crossref_primary_10_1007_s10489_024_05354_9 crossref_primary_10_1016_j_compbiomed_2023_107795 crossref_primary_10_1109_TBME_2018_2855639 crossref_primary_10_3390_bioengineering9090446 crossref_primary_10_1109_JSEN_2020_3041072 crossref_primary_10_1039_D3SD00201B crossref_primary_10_1039_D2EE01590K crossref_primary_10_2478_jce_2023_0019 crossref_primary_10_3390_s19030595 crossref_primary_10_1016_j_bspc_2021_102772 crossref_primary_10_1088_1361_6579_ab7d78 crossref_primary_10_1109_TIM_2023_3311052 crossref_primary_10_1007_s13534_023_00296_6 crossref_primary_10_1109_JSEN_2023_3267695 crossref_primary_10_1109_JIOT_2019_2946359 crossref_primary_10_3390_s20195606 crossref_primary_10_3390_s21062167 crossref_primary_10_1109_JBHI_2021_3128383 crossref_primary_10_3390_jcm8010012 crossref_primary_10_3390_s21134315 crossref_primary_10_3390_diagnostics13040736 crossref_primary_10_1109_JTEHM_2019_2938506 crossref_primary_10_3390_s20040958 crossref_primary_10_1007_s13246_021_00989_1 crossref_primary_10_1016_j_neunet_2022_04_017 crossref_primary_10_3390_s21186311 crossref_primary_10_1002_cnm_3905 crossref_primary_10_1088_1361_6579_aadf17 crossref_primary_10_1016_j_bspc_2024_106860 crossref_primary_10_1088_1361_6579_ac7841 crossref_primary_10_1016_j_bspc_2021_102760 crossref_primary_10_1016_j_bspc_2023_105354 crossref_primary_10_1109_JBHI_2022_3181328 crossref_primary_10_1109_JBHI_2023_3278168 crossref_primary_10_1016_j_bspc_2024_106741 crossref_primary_10_3390_s23218877 crossref_primary_10_1016_j_cmpb_2022_107131 crossref_primary_10_3390_jcdd10020074 crossref_primary_10_3390_mi13081225 crossref_primary_10_1109_JBHI_2019_2922178 crossref_primary_10_1109_TCE_2022_3174689 crossref_primary_10_3390_s21010156 crossref_primary_10_1109_TII_2019_2962546 crossref_primary_10_1038_s41467_023_40763_3 crossref_primary_10_3390_jcm13237145 crossref_primary_10_1016_j_eswa_2024_124689 crossref_primary_10_1007_s11517_024_03157_1 crossref_primary_10_1109_ACCESS_2023_3284458 crossref_primary_10_1109_ACCESS_2024_3525152 crossref_primary_10_1038_s41598_022_10244_6 crossref_primary_10_35784_iapgos_5326 crossref_primary_10_3390_s22031175 crossref_primary_10_3934_mbe_2023045 crossref_primary_10_1002_adma_202104178 crossref_primary_10_1002_adma_202110291 crossref_primary_10_3390_sym13040686 crossref_primary_10_1007_s10015_018_0450_1 crossref_primary_10_1016_j_artmed_2018_12_005 crossref_primary_10_1109_TMC_2023_3316145 crossref_primary_10_1016_j_bspc_2020_101942 crossref_primary_10_1109_JSEN_2022_3177205 crossref_primary_10_1109_JSEN_2021_3073850 crossref_primary_10_3390_bioengineering10010027 crossref_primary_10_1109_ACCESS_2019_2942936 crossref_primary_10_1016_j_medntd_2022_100195 crossref_primary_10_1109_JTEHM_2020_3000327 crossref_primary_10_17780_ksujes_1376860 crossref_primary_10_3390_jcm8111773 crossref_primary_10_1088_1361_6579_aa996d crossref_primary_10_3390_s20082338 crossref_primary_10_1109_TIM_2019_2947103 crossref_primary_10_2139_ssrn_4132904 crossref_primary_10_1109_TIM_2022_3224534 crossref_primary_10_1109_ACCESS_2020_3040257 crossref_primary_10_1038_s41598_021_03612_1 crossref_primary_10_1109_ACCESS_2021_3065576 crossref_primary_10_3390_jcm8030337 crossref_primary_10_1016_j_bspc_2023_105287 crossref_primary_10_1088_1361_6579_acd164 crossref_primary_10_1088_1361_6439_ac87ba crossref_primary_10_3390_s18124227 crossref_primary_10_1109_JSEN_2019_2960370 crossref_primary_10_1515_bmt_2020_0197 crossref_primary_10_3390_jcm9041203 crossref_primary_10_1109_JBHI_2021_3054597 crossref_primary_10_12677_MOS_2023_123238 crossref_primary_10_1007_s11517_021_02362_6 crossref_primary_10_1007_s13534_023_00271_1 crossref_primary_10_1038_s41598_022_12087_7 crossref_primary_10_1145_3610918 crossref_primary_10_3390_diagnostics8030065 crossref_primary_10_1002_cnm_3303 crossref_primary_10_3390_jcdd9120440 crossref_primary_10_1016_j_heliyon_2024_e27779 crossref_primary_10_1109_JSEN_2023_3335309 crossref_primary_10_1016_j_bspc_2019_101736 crossref_primary_10_1016_j_bspc_2024_106662 crossref_primary_10_1016_j_mtcomm_2025_112096 crossref_primary_10_1109_TIM_2017_2745081 crossref_primary_10_3390_s23198342 crossref_primary_10_1007_s13246_024_01445_6 crossref_primary_10_1002_adfm_202418318 crossref_primary_10_1016_j_asoc_2023_110520 crossref_primary_10_1016_j_imed_2021_11_001 crossref_primary_10_3390_bioengineering11080842 crossref_primary_10_3390_s23031259 crossref_primary_10_1109_ACCESS_2019_2960844 crossref_primary_10_1186_s12911_023_02215_2 crossref_primary_10_23919_ICS_2024_3513261 crossref_primary_10_1109_TIM_2025_3548805 crossref_primary_10_1155_2021_8016525 crossref_primary_10_3390_s19153420 crossref_primary_10_1097_HJH_0000000000003224 crossref_primary_10_1016_j_bspc_2023_105142 crossref_primary_10_3390_app13137473 crossref_primary_10_1038_s41598_018_25681_5 crossref_primary_10_1109_TCE_2023_3316514 crossref_primary_10_1016_j_bspc_2023_105029 crossref_primary_10_1016_j_patcog_2022_108551 crossref_primary_10_3390_s20072108 crossref_primary_10_1002_adhm_201900978 crossref_primary_10_1016_j_bspc_2020_102301 crossref_primary_10_1016_j_bspc_2019_101842 crossref_primary_10_1016_j_bspc_2021_102984 crossref_primary_10_3390_bioengineering10121439 crossref_primary_10_3390_computers13050125 crossref_primary_10_1097_MCC_0000000000000496 crossref_primary_10_1007_s11760_023_02646_4 crossref_primary_10_3390_technologies5020021 crossref_primary_10_1088_1361_6579_abf889 crossref_primary_10_1016_j_apacoust_2020_107534 crossref_primary_10_1038_s41746_019_0136_7 crossref_primary_10_1109_ACCESS_2021_3117969 crossref_primary_10_1016_j_bspc_2024_106070 crossref_primary_10_3390_s20195668 crossref_primary_10_3390_su12229646 crossref_primary_10_1016_j_bspc_2024_106087 crossref_primary_10_1016_j_measurement_2024_115446 crossref_primary_10_1097_HJH_0000000000002922 crossref_primary_10_3390_s21092952 crossref_primary_10_1109_TBME_2020_2976989 crossref_primary_10_1016_j_bspc_2021_103035 crossref_primary_10_1016_j_bspc_2025_107598 crossref_primary_10_1109_JSEN_2022_3215597 crossref_primary_10_1109_JBHI_2022_3207947 crossref_primary_10_1109_TNNLS_2018_2880403 crossref_primary_10_3390_electronics13030511 crossref_primary_10_1016_j_bspc_2021_102853 crossref_primary_10_3390_s19040848 crossref_primary_10_1016_j_knosys_2022_109151 crossref_primary_10_1109_TIM_2025_3545993 crossref_primary_10_3390_s22051873 crossref_primary_10_3389_fphys_2023_1126957 |
| Cites_doi | 10.1109/BSN.2009.35 10.1007/s00421-011-1983-3 10.1097/00004872-199007000-00004 10.1109/ULTSYM.1978.197054 10.1109/TBME.2015.2440291 10.1007/s10558-009-9070-7 10.1007/978-3-662-03321-0 10.1109/TBME.2015.2441951 10.1109/ACCT.2015.87 10.3758/BF03205360 10.1109/TBME.2011.2180019 10.1152/japplphysiol.00657.2005 10.1016/j.dsp.2005.12.003 10.1109/IEMBS.2005.1615827 10.2307/2337118 10.1023/A:1010933404324 10.1109/JSEN.2014.2329676 10.1109/IEMBS.2006.260590 10.1109/ICBME.2014.7043896 10.1145/1961189.1961199 10.2174/157340312801215782 10.1161/01.CIR.101.23.e215 10.1109/ICACCI.2014.6968642 10.1016/j.jacc.2006.12.050 10.1016/j.irbm.2014.07.002 10.1109/ISCAS.2015.7168806 10.1109/18.382009 10.1016/j.ccl.2010.07.006 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TBME.2016.2580904 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 869 |
| ExternalDocumentID | 27323356 10_1109_TBME_2016_2580904 7491263 |
| Genre | orig-research Validation Studies Evaluation Studies Journal Article |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c415t-ecd6e0ce4aafa562ae9fd40f9e64381c2aab0d4089627ad73f175e745b9a05c73 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Sep 28 08:26:09 EDT 2025 Mon Jun 30 08:37:01 EDT 2025 Wed Feb 19 02:40:58 EST 2025 Thu Apr 24 23:12:39 EDT 2025 Wed Oct 01 04:08:44 EDT 2025 Wed Aug 27 02:53:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-ecd6e0ce4aafa562ae9fd40f9e64381c2aab0d4089627ad73f175e745b9a05c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| ORCID | 0000-0002-8625-9034 |
| PMID | 27323356 |
| PQID | 2174325344 |
| PQPubID | 85474 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TBME_2016_2580904 proquest_journals_2174325344 pubmed_primary_27323356 proquest_miscellaneous_1826704449 ieee_primary_7491263 crossref_citationtrail_10_1109_TBME_2016_2580904 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref30 ref11 ref32 ref10 ref17 ref19 ref18 xuan (ref6) 2011 douniama (ref33) 0 (ref31) 2014 (ref1) 2015 goldberger (ref20) 2000; 101 hughes (ref16) 1978 (ref37) 2002 ref24 ref23 ref26 ref25 ref22 ref29 (ref2) 2014 ref8 ref7 ref9 (ref21) 1997 ref4 drucker (ref28) 0 pedregosa (ref27) 2011; 12 ref3 ref5 |
| References_xml | – start-page: 107 year: 0 ident: ref28 article-title: Improving regressors using boosting techniques publication-title: Proc 14th Int Conf Mach Learn – ident: ref13 doi: 10.1109/BSN.2009.35 – ident: ref12 doi: 10.1007/s00421-011-1983-3 – ident: ref36 doi: 10.1097/00004872-199007000-00004 – year: 2015 ident: ref1 publication-title: World Health Statistics 2015 – start-page: 326 year: 1978 ident: ref16 article-title: measurements of young's modulus of the canine aorta in-vivo with 10 mhz ultrasound publication-title: 1978 Ultrasonics Symposium doi: 10.1109/ULTSYM.1978.197054 – ident: ref19 doi: 10.1109/TBME.2015.2440291 – volume: 12 start-page: 2825 year: 2011 ident: ref27 article-title: Scikit-learn: Machine learning in Python – year: 2002 ident: ref37 publication-title: American national standard for electronic or automated sphygmomanometers – ident: ref11 doi: 10.1007/s10558-009-9070-7 – year: 2011 ident: ref6 article-title: An exploration on real-time cuffless blood pressure estimation for e-home healthcare – ident: ref17 doi: 10.1007/978-3-662-03321-0 – ident: ref7 doi: 10.1109/TBME.2015.2441951 – ident: ref22 doi: 10.1109/ACCT.2015.87 – ident: ref18 doi: 10.3758/BF03205360 – ident: ref5 doi: 10.1109/TBME.2011.2180019 – ident: ref34 doi: 10.1152/japplphysiol.00657.2005 – ident: ref23 doi: 10.1016/j.dsp.2005.12.003 – start-page: 1 year: 2014 ident: ref31 publication-title: IEEE Standard for Wearable Cuffless Blood Pressure – year: 1997 ident: ref21 – ident: ref8 doi: 10.1109/IEMBS.2005.1615827 – ident: ref24 doi: 10.2307/2337118 – ident: ref30 doi: 10.1023/A:1010933404324 – ident: ref35 doi: 10.1109/JSEN.2014.2329676 – ident: ref10 doi: 10.1109/IEMBS.2006.260590 – ident: ref14 doi: 10.1109/ICBME.2014.7043896 – year: 2014 ident: ref2 publication-title: A Global Brief on Hypertension Silent Killer Global Public Health Crisis – ident: ref26 doi: 10.1145/1961189.1961199 – ident: ref29 doi: 10.2174/157340312801215782 – start-page: 201 year: 0 ident: ref33 article-title: Blood pressure tracking capabilities of pulse transit times in different arterial segments: A clinical evaluation publication-title: Proc 36th Annu Comput Cardiol Conf – volume: 101 start-page: 215e year: 2000 ident: ref20 article-title: PhysioBank, PhysioToolkit, and PhysioNet : Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref9 doi: 10.1109/ICACCI.2014.6968642 – ident: ref15 doi: 10.1016/j.jacc.2006.12.050 – ident: ref4 doi: 10.1016/j.irbm.2014.07.002 – ident: ref32 doi: 10.1109/ISCAS.2015.7168806 – ident: ref25 doi: 10.1109/18.382009 – ident: ref3 doi: 10.1016/j.ccl.2010.07.006 |
| SSID | ssj0014846 |
| Score | 2.6656473 |
| Snippet | Goal: Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured... Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 859 |
| SubjectTerms | Algorithms Arteries Biomedical monitoring Blood pressure Blood Pressure - physiology Blood Pressure Determination - instrumentation Blood Pressure Determination - methods Blood Pressure Monitors Calibration Diagnosis, Computer-Assisted - instrumentation Diagnosis, Computer-Assisted - methods electrocardiograph (ECG) Electrocardiography Equipment Design Equipment Failure Analysis Estimation Feature extraction Health Health care Humans Hypertension Information processing Instrumentation Machine Learning mobile health Monitoring Monitoring, Ambulatory - instrumentation Monitoring, Ambulatory - methods photoplethysmograph (PPG) pulse arrival time (PAT) Pulse Wave Analysis - instrumentation Pulse Wave Analysis - methods Reproducibility of Results Sensitivity and Specificity Signal processing |
| Title | Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring |
| URI | https://ieeexplore.ieee.org/document/7491263 https://www.ncbi.nlm.nih.gov/pubmed/27323356 https://www.proquest.com/docview/2174325344 https://www.proquest.com/docview/1826704449 |
| Volume | 64 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4VDggOy_LaLS8ZiRMixUmch4-AiiqkcgEkbpGd2FBR0lWbXPbX70ycRggB2puV2LHjGdvfeF4Ap8QpsVSBp9OEbqu4xFJkPa0LKyIK8lSQc_L4Lh49itun6KkH550vjDGmMT4zAyo2uvxiltd0VXaRCOkHcbgCK0kaO1-tTmMgUueUw31cwIEUrQbT5_Li4Wo8JCOueBBEOBhOuXjw1A7CkNJWvzuOmvwqX0PN5si52YTxcrDO0uR1UFd6kP_9EMfxf__mJ_xosSe7dMyyBT1TbsPGu4iE27A2bnXtO3B_XVs7xY2QXZFxO3OOhHPDhrgrOIdHdjl9ns0n1cvbgiH4ZRTqalLWs3rBnHuTR-5NzO0b1MEuPN4MH65HXpuCwcvxZK88kxex4bkRSlmFUEkZaQvBrTQxxQbLA6U0xwcp5fBRRRJahCMmEZGWikd5Eu7BajkrzW9g2ldSR6nyCSVKH1sjNEN5SGiEoKlVfeBLSmR5G5-c0mRMs0ZO4TIjOmZEx6ylYx_OuiZ_XHCO7yrvEA26iu309-FwSe6sXb6LrJHTgigU2Oqke40Lj7QpqjQ4jxkJZglF25N9-OXYpPv2krv2P-_zANYDQgeNAdAhrFbz2hwhtqn0ccPU_wB46fEy |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GgLLBQwEidEtk5iJ_GxrbZaoOmFrdSbZSc2VCxZtJtc-PXMxNmoQoC4WYkdO56x_Y3nBfCWOCVTJolskdNtFVdYkj6ytvZCUpCnmpyTy4tsfik-XsmrHXg_-sI453rjMzelYq_Lr1dVR1dlR7lQcZKlt-C2FELI4K016gxEEdxyeIxLOFFi0GHGXB0tTsoZmXFl00TicDhl48FzO0lTSlx940DqM6z8HWz2h87ZQyi3ww22Jt-mXWun1c_fIjn-7_88ggcD-mTHgV0ew45r9uD-jZiEe3CnHLTt-_D5tPN-iVshOyHzdhZcCdeOzXBfCC6P7Hj5ZbW-br9-3zCEv4yCXV033arbsODgFJGDEws7B3VwAJdns8XpPBqSMEQVnu1t5Ko6c7xywhhvECwZp3wtuFcuo-hgVWKM5figoCw-ps5Tj4DE5UJaZbis8vQJ7Darxj0DZmOjrCxMTDhRxdgawRlKRMIiCC28mQDfUkJXQ4RySpSx1L2kwpUmOmqiox7oOIF3Y5MfITzHvyrvEw3GisP0T-BwS249LOCN7iW1RKYCW70ZX-PSI32KaRzOoybRLKd4e2oCTwObjN_ectfzP_f5Gu7OF-W5Pv9w8ekF3EsIK_TmQIew26479xKRTmtf9Qz-C0Ga9H8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cuffless+Blood+Pressure+Estimation+Algorithms+for+Continuous+Health-Care+Monitoring&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kachuee%2C+Mohammad&rft.au=Kiani%2C+Mohammad+Mahdi&rft.au=Mohammadzade%2C+Hoda&rft.au=Shabany%2C+Mahdi&rft.date=2017-04-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=64&rft.issue=4&rft.spage=859&rft.epage=869&rft_id=info:doi/10.1109%2FTBME.2016.2580904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2016_2580904 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |