Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring

Goal: Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 64; no. 4; pp. 859 - 869
Main Authors Kachuee, Mohammad, Kiani, Mohammad Mahdi, Mohammadzade, Hoda, Shabany, Mahdi
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2016.2580904

Cover

Abstract Goal: Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values. Methods: The proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally, the regression algorithms are employed for the BP estimation. Although the proposed algorithm works reliably without any need for calibration, an optional calibration procedure is also suggested, which can improve the system's accuracy even further. Results: The proposed method is evaluated on about a thousand subjects using the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. The method complies with the AAMI standard in the estimation of DBP and MAP values. Regarding the BHS protocol, the results achieve grade A for the estimation of DBP and grade B for the estimation of MAP. Conclusion: We conclude that by using the PAT in combination with informative features from the vital signals, the BP can be accurately and reliably estimated in a noninvasive fashion. Significance: The results indicate that the proposed algorithm for the cuffless estimation of the BP can potentially enable mobile health-care gadgets to monitor the BP continuously.
AbstractList Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values. The proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally, the regression algorithms are employed for the BP estimation. Although the proposed algorithm works reliably without any need for calibration, an optional calibration procedure is also suggested, which can improve the system's accuracy even further. The proposed method is evaluated on about a thousand subjects using the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. The method complies with the AAMI standard in the estimation of DBP and MAP values. Regarding the BHS protocol, the results achieve grade A for the estimation of DBP and grade B for the estimation of MAP. We conclude that by using the PAT in combination with informative features from the vital signals, the BP can be accurately and reliably estimated in a noninvasive fashion. The results indicate that the proposed algorithm for the cuffless estimation of the BP can potentially enable mobile health-care gadgets to monitor the BP continuously.
Goal: Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values. Methods: The proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally, the regression algorithms are employed for the BP estimation. Although the proposed algorithm works reliably without any need for calibration, an optional calibration procedure is also suggested, which can improve the system's accuracy even further. Results: The proposed method is evaluated on about a thousand subjects using the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. The method complies with the AAMI standard in the estimation of DBP and MAP values. Regarding the BHS protocol, the results achieve grade A for the estimation of DBP and grade B for the estimation of MAP. Conclusion: We conclude that by using the PAT in combination with informative features from the vital signals, the BP can be accurately and reliably estimated in a noninvasive fashion. Significance: The results indicate that the proposed algorithm for the cuffless estimation of the BP can potentially enable mobile health-care gadgets to monitor the BP continuously.
Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values.GOALContinuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values.The proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally, the regression algorithms are employed for the BP estimation. Although the proposed algorithm works reliably without any need for calibration, an optional calibration procedure is also suggested, which can improve the system's accuracy even further.METHODSThe proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally, the regression algorithms are employed for the BP estimation. Although the proposed algorithm works reliably without any need for calibration, an optional calibration procedure is also suggested, which can improve the system's accuracy even further.The proposed method is evaluated on about a thousand subjects using the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. The method complies with the AAMI standard in the estimation of DBP and MAP values. Regarding the BHS protocol, the results achieve grade A for the estimation of DBP and grade B for the estimation of MAP.RESULTSThe proposed method is evaluated on about a thousand subjects using the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. The method complies with the AAMI standard in the estimation of DBP and MAP values. Regarding the BHS protocol, the results achieve grade A for the estimation of DBP and grade B for the estimation of MAP.We conclude that by using the PAT in combination with informative features from the vital signals, the BP can be accurately and reliably estimated in a noninvasive fashion.CONCLUSIONWe conclude that by using the PAT in combination with informative features from the vital signals, the BP can be accurately and reliably estimated in a noninvasive fashion.The results indicate that the proposed algorithm for the cuffless estimation of the BP can potentially enable mobile health-care gadgets to monitor the BP continuously.SIGNIFICANCEThe results indicate that the proposed algorithm for the cuffless estimation of the BP can potentially enable mobile health-care gadgets to monitor the BP continuously.
Author Kachuee, Mohammad
Mohammadzade, Hoda
Kiani, Mohammad Mahdi
Shabany, Mahdi
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Kachuee
  fullname: Kachuee, Mohammad
  organization: Department of Electrical EngineeringSharif University of Technology
– sequence: 2
  givenname: Mohammad Mahdi
  surname: Kiani
  fullname: Kiani, Mohammad Mahdi
  organization: Department of Electrical EngineeringSharif University of Technology
– sequence: 3
  givenname: Hoda
  surname: Mohammadzade
  fullname: Mohammadzade, Hoda
  organization: Department of Electrical EngineeringSharif University of Technology
– sequence: 4
  givenname: Mahdi
  orcidid: 0000-0002-8625-9034
  surname: Shabany
  fullname: Shabany, Mahdi
  email: mahdi@sharif.edu
  organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27323356$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LHDEYxoNYdLV-gFKQAS-9zDb_MznqsK0FpYXqOWRn3mhkNtEkc_DbN9vdevDQU_7w-yUvz3OCDkMMgNAngpeEYP317up2taSYyCUVHdaYH6AFEaJrqWDkEC0wJl2rqebH6CTnp3rkHZdH6JgqRhkTcoF-97NzE-TcXE0xjs2vVPdzgmaVi9_Y4mNoLqeHmHx53OTGxdT0MRQf5jjn5hrsVB7b3lbhNgZfKhcePqIPzk4ZzvbrKbr_trrrr9ubn99_9Jc37cCJKC0MowQ8ALfWWSGpBe1Gjp0GyVlHBmrtGteLTkuq7KiYI0qA4mKtLRaDYqfoy-7d5xRfZsjFbHweYJpsgDqdIR2VCnPOdUUv3qFPcU6hTmcoUZzVwDiv1PmemtcbGM1zqhGkV_MvrgqQHTCkmHMC94YQbLaVmG0lZluJ2VdSHfXOGXz5G2xJ1k__NT_vTA8Abz8prgmVjP0Bj8qYPA
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109076
crossref_primary_10_3390_healthcare10102113
crossref_primary_10_1016_j_bspc_2019_02_028
crossref_primary_10_1007_s13534_019_00096_x
crossref_primary_10_1088_1742_6596_1544_1_012137
crossref_primary_10_3390_s22166195
crossref_primary_10_1109_JSEN_2022_3211993
crossref_primary_10_2215_CJN_03680320
crossref_primary_10_1016_j_bspc_2025_107820
crossref_primary_10_3390_s21206886
crossref_primary_10_1109_JSEN_2017_2725638
crossref_primary_10_1371_journal_pone_0283094
crossref_primary_10_3390_s21186022
crossref_primary_10_1016_j_aej_2021_04_035
crossref_primary_10_1016_j_bspc_2022_103616
crossref_primary_10_1016_j_neucom_2023_127215
crossref_primary_10_1109_JSYST_2022_3140546
crossref_primary_10_1007_s11760_021_01952_z
crossref_primary_10_1371_journal_pone_0311654
crossref_primary_10_3390_bioengineering10040400
crossref_primary_10_1080_23744235_2022_2080249
crossref_primary_10_1109_TIM_2022_3212750
crossref_primary_10_32604_cmc_2022_022679
crossref_primary_10_3390_s23125744
crossref_primary_10_1109_ACCESS_2025_3540440
crossref_primary_10_1587_transcom_2020HMI0002
crossref_primary_10_1016_j_inffus_2023_02_019
crossref_primary_10_1016_j_procs_2022_09_177
crossref_primary_10_1109_JSEN_2024_3404355
crossref_primary_10_1177_03000605211016145
crossref_primary_10_1080_08037051_2024_2304190
crossref_primary_10_1109_JSEN_2024_3515893
crossref_primary_10_1109_TCYB_2022_3141380
crossref_primary_10_1038_s41378_023_00590_4
crossref_primary_10_1016_j_eswa_2023_122812
crossref_primary_10_1109_JSEN_2019_2961411
crossref_primary_10_3390_app11093923
crossref_primary_10_3390_s21103525
crossref_primary_10_1016_j_matpr_2020_10_767
crossref_primary_10_1039_D3RA05932D
crossref_primary_10_1007_s00542_018_3877_3
crossref_primary_10_1109_TIM_2022_3205679
crossref_primary_10_1007_s42979_022_01391_8
crossref_primary_10_1016_j_bspc_2023_105862
crossref_primary_10_1016_j_artmed_2020_101919
crossref_primary_10_1109_JBHI_2020_3009658
crossref_primary_10_1016_j_bspc_2021_103001
crossref_primary_10_3390_diagnostics12020408
crossref_primary_10_1016_j_jksuci_2023_101568
crossref_primary_10_3390_s19112585
crossref_primary_10_1016_j_bspc_2020_102198
crossref_primary_10_1016_j_scs_2019_101660
crossref_primary_10_1109_ACCESS_2022_3175436
crossref_primary_10_1109_JBHI_2019_2901724
crossref_primary_10_1016_j_cmpb_2021_106191
crossref_primary_10_1109_TBME_2021_3087105
crossref_primary_10_1088_1757_899X_1084_1_012031
crossref_primary_10_3390_s22030919
crossref_primary_10_1002_adma_201902062
crossref_primary_10_1016_j_bspc_2022_103891
crossref_primary_10_3390_s24092721
crossref_primary_10_1109_ACCESS_2020_2981300
crossref_primary_10_1021_acs_chemrev_4c00049
crossref_primary_10_3390_app14062470
crossref_primary_10_1016_j_bspc_2023_104757
crossref_primary_10_1109_TBME_2024_3434344
crossref_primary_10_1007_s12652_020_02539_1
crossref_primary_10_1016_j_cmpbup_2023_100097
crossref_primary_10_1016_j_bspc_2018_08_022
crossref_primary_10_1088_1361_6579_abc8dd
crossref_primary_10_1109_ACCESS_2020_2965082
crossref_primary_10_1016_j_bspc_2021_102813
crossref_primary_10_1109_ACCESS_2021_3103268
crossref_primary_10_1615_TelecomRadEng_2022037783
crossref_primary_10_1007_s12265_023_10462_x
crossref_primary_10_1097_MBP_0000000000000534
crossref_primary_10_1364_BOE_444535
crossref_primary_10_1021_acsnano_4c04291
crossref_primary_10_1109_JSEN_2021_3126744
crossref_primary_10_1088_1361_6579_ace414
crossref_primary_10_7717_peerj_11479
crossref_primary_10_1088_1361_6579_ab755d
crossref_primary_10_3390_bioengineering9110692
crossref_primary_10_3390_s21051595
crossref_primary_10_3390_s21010096
crossref_primary_10_1016_j_bspc_2020_101870
crossref_primary_10_1109_TIM_2020_3035578
crossref_primary_10_1016_j_bspc_2024_106378
crossref_primary_10_1016_j_compeleceng_2024_109319
crossref_primary_10_1145_3699512
crossref_primary_10_1038_s41746_023_00853_4
crossref_primary_10_1016_j_knosys_2024_111798
crossref_primary_10_3390_mi14040804
crossref_primary_10_3390_s20082205
crossref_primary_10_4236_jbise_2019_122011
crossref_primary_10_1109_JBHI_2022_3172514
crossref_primary_10_1016_j_procs_2020_04_056
crossref_primary_10_1016_j_cmpb_2017_08_005
crossref_primary_10_3390_s21217207
crossref_primary_10_1007_s13246_023_01322_8
crossref_primary_10_1016_j_bspc_2023_105791
crossref_primary_10_3390_technologies12050070
crossref_primary_10_1161_HYPERTENSIONAHA_121_17747
crossref_primary_10_1109_ACCESS_2020_2968967
crossref_primary_10_1109_JBHI_2024_3400961
crossref_primary_10_1109_TBCAS_2019_2946661
crossref_primary_10_1016_j_bspc_2022_104364
crossref_primary_10_1038_s41598_021_01358_4
crossref_primary_10_1109_ACCESS_2024_3443688
crossref_primary_10_1109_TIM_2021_3109986
crossref_primary_10_1109_TIM_2023_3346527
crossref_primary_10_3389_fnins_2022_883693
crossref_primary_10_1016_j_bspc_2021_103404
crossref_primary_10_1016_j_sna_2024_115084
crossref_primary_10_1152_ajpheart_00392_2021
crossref_primary_10_1021_acsnano_3c09766
crossref_primary_10_1109_ACCESS_2021_3103763
crossref_primary_10_1109_LSENS_2025_3541397
crossref_primary_10_1109_JBHI_2022_3206477
crossref_primary_10_1016_j_bspc_2019_101682
crossref_primary_10_1038_s41569_025_01127_0
crossref_primary_10_1109_LES_2024_3443449
crossref_primary_10_1007_s11082_020_2260_7
crossref_primary_10_1088_2057_1976_ac2ea8
crossref_primary_10_1007_s11277_021_08954_7
crossref_primary_10_1007_s11082_020_02667_0
crossref_primary_10_2174_1386207324666210705113121
crossref_primary_10_1109_JSEN_2023_3282590
crossref_primary_10_3390_electronics10232896
crossref_primary_10_1016_j_compbiomed_2022_106299
crossref_primary_10_1007_s11760_019_01460_1
crossref_primary_10_1016_j_eswa_2022_116788
crossref_primary_10_1038_s41598_019_44348_3
crossref_primary_10_3233_THC_209022
crossref_primary_10_1088_1361_6579_abeae8
crossref_primary_10_1109_JSEN_2020_2990864
crossref_primary_10_1587_transele_2018CDI0001
crossref_primary_10_1007_s13239_023_00695_x
crossref_primary_10_3389_fdgth_2022_1090854
crossref_primary_10_1007_s10916_018_1138_8
crossref_primary_10_1007_s10462_022_10353_8
crossref_primary_10_1109_TBME_2017_2756018
crossref_primary_10_1016_j_bspc_2022_103850
crossref_primary_10_3233_THC_202626
crossref_primary_10_1155_2022_3549238
crossref_primary_10_1016_j_compbiomed_2023_107558
crossref_primary_10_1109_ACCESS_2020_2981903
crossref_primary_10_3390_healthcare11243107
crossref_primary_10_2139_ssrn_3999278
crossref_primary_10_1007_s10489_024_05354_9
crossref_primary_10_1016_j_compbiomed_2023_107795
crossref_primary_10_1109_TBME_2018_2855639
crossref_primary_10_3390_bioengineering9090446
crossref_primary_10_1109_JSEN_2020_3041072
crossref_primary_10_1039_D3SD00201B
crossref_primary_10_1039_D2EE01590K
crossref_primary_10_2478_jce_2023_0019
crossref_primary_10_3390_s19030595
crossref_primary_10_1016_j_bspc_2021_102772
crossref_primary_10_1088_1361_6579_ab7d78
crossref_primary_10_1109_TIM_2023_3311052
crossref_primary_10_1007_s13534_023_00296_6
crossref_primary_10_1109_JSEN_2023_3267695
crossref_primary_10_1109_JIOT_2019_2946359
crossref_primary_10_3390_s20195606
crossref_primary_10_3390_s21062167
crossref_primary_10_1109_JBHI_2021_3128383
crossref_primary_10_3390_jcm8010012
crossref_primary_10_3390_s21134315
crossref_primary_10_3390_diagnostics13040736
crossref_primary_10_1109_JTEHM_2019_2938506
crossref_primary_10_3390_s20040958
crossref_primary_10_1007_s13246_021_00989_1
crossref_primary_10_1016_j_neunet_2022_04_017
crossref_primary_10_3390_s21186311
crossref_primary_10_1002_cnm_3905
crossref_primary_10_1088_1361_6579_aadf17
crossref_primary_10_1016_j_bspc_2024_106860
crossref_primary_10_1088_1361_6579_ac7841
crossref_primary_10_1016_j_bspc_2021_102760
crossref_primary_10_1016_j_bspc_2023_105354
crossref_primary_10_1109_JBHI_2022_3181328
crossref_primary_10_1109_JBHI_2023_3278168
crossref_primary_10_1016_j_bspc_2024_106741
crossref_primary_10_3390_s23218877
crossref_primary_10_1016_j_cmpb_2022_107131
crossref_primary_10_3390_jcdd10020074
crossref_primary_10_3390_mi13081225
crossref_primary_10_1109_JBHI_2019_2922178
crossref_primary_10_1109_TCE_2022_3174689
crossref_primary_10_3390_s21010156
crossref_primary_10_1109_TII_2019_2962546
crossref_primary_10_1038_s41467_023_40763_3
crossref_primary_10_3390_jcm13237145
crossref_primary_10_1016_j_eswa_2024_124689
crossref_primary_10_1007_s11517_024_03157_1
crossref_primary_10_1109_ACCESS_2023_3284458
crossref_primary_10_1109_ACCESS_2024_3525152
crossref_primary_10_1038_s41598_022_10244_6
crossref_primary_10_35784_iapgos_5326
crossref_primary_10_3390_s22031175
crossref_primary_10_3934_mbe_2023045
crossref_primary_10_1002_adma_202104178
crossref_primary_10_1002_adma_202110291
crossref_primary_10_3390_sym13040686
crossref_primary_10_1007_s10015_018_0450_1
crossref_primary_10_1016_j_artmed_2018_12_005
crossref_primary_10_1109_TMC_2023_3316145
crossref_primary_10_1016_j_bspc_2020_101942
crossref_primary_10_1109_JSEN_2022_3177205
crossref_primary_10_1109_JSEN_2021_3073850
crossref_primary_10_3390_bioengineering10010027
crossref_primary_10_1109_ACCESS_2019_2942936
crossref_primary_10_1016_j_medntd_2022_100195
crossref_primary_10_1109_JTEHM_2020_3000327
crossref_primary_10_17780_ksujes_1376860
crossref_primary_10_3390_jcm8111773
crossref_primary_10_1088_1361_6579_aa996d
crossref_primary_10_3390_s20082338
crossref_primary_10_1109_TIM_2019_2947103
crossref_primary_10_2139_ssrn_4132904
crossref_primary_10_1109_TIM_2022_3224534
crossref_primary_10_1109_ACCESS_2020_3040257
crossref_primary_10_1038_s41598_021_03612_1
crossref_primary_10_1109_ACCESS_2021_3065576
crossref_primary_10_3390_jcm8030337
crossref_primary_10_1016_j_bspc_2023_105287
crossref_primary_10_1088_1361_6579_acd164
crossref_primary_10_1088_1361_6439_ac87ba
crossref_primary_10_3390_s18124227
crossref_primary_10_1109_JSEN_2019_2960370
crossref_primary_10_1515_bmt_2020_0197
crossref_primary_10_3390_jcm9041203
crossref_primary_10_1109_JBHI_2021_3054597
crossref_primary_10_12677_MOS_2023_123238
crossref_primary_10_1007_s11517_021_02362_6
crossref_primary_10_1007_s13534_023_00271_1
crossref_primary_10_1038_s41598_022_12087_7
crossref_primary_10_1145_3610918
crossref_primary_10_3390_diagnostics8030065
crossref_primary_10_1002_cnm_3303
crossref_primary_10_3390_jcdd9120440
crossref_primary_10_1016_j_heliyon_2024_e27779
crossref_primary_10_1109_JSEN_2023_3335309
crossref_primary_10_1016_j_bspc_2019_101736
crossref_primary_10_1016_j_bspc_2024_106662
crossref_primary_10_1016_j_mtcomm_2025_112096
crossref_primary_10_1109_TIM_2017_2745081
crossref_primary_10_3390_s23198342
crossref_primary_10_1007_s13246_024_01445_6
crossref_primary_10_1002_adfm_202418318
crossref_primary_10_1016_j_asoc_2023_110520
crossref_primary_10_1016_j_imed_2021_11_001
crossref_primary_10_3390_bioengineering11080842
crossref_primary_10_3390_s23031259
crossref_primary_10_1109_ACCESS_2019_2960844
crossref_primary_10_1186_s12911_023_02215_2
crossref_primary_10_23919_ICS_2024_3513261
crossref_primary_10_1109_TIM_2025_3548805
crossref_primary_10_1155_2021_8016525
crossref_primary_10_3390_s19153420
crossref_primary_10_1097_HJH_0000000000003224
crossref_primary_10_1016_j_bspc_2023_105142
crossref_primary_10_3390_app13137473
crossref_primary_10_1038_s41598_018_25681_5
crossref_primary_10_1109_TCE_2023_3316514
crossref_primary_10_1016_j_bspc_2023_105029
crossref_primary_10_1016_j_patcog_2022_108551
crossref_primary_10_3390_s20072108
crossref_primary_10_1002_adhm_201900978
crossref_primary_10_1016_j_bspc_2020_102301
crossref_primary_10_1016_j_bspc_2019_101842
crossref_primary_10_1016_j_bspc_2021_102984
crossref_primary_10_3390_bioengineering10121439
crossref_primary_10_3390_computers13050125
crossref_primary_10_1097_MCC_0000000000000496
crossref_primary_10_1007_s11760_023_02646_4
crossref_primary_10_3390_technologies5020021
crossref_primary_10_1088_1361_6579_abf889
crossref_primary_10_1016_j_apacoust_2020_107534
crossref_primary_10_1038_s41746_019_0136_7
crossref_primary_10_1109_ACCESS_2021_3117969
crossref_primary_10_1016_j_bspc_2024_106070
crossref_primary_10_3390_s20195668
crossref_primary_10_3390_su12229646
crossref_primary_10_1016_j_bspc_2024_106087
crossref_primary_10_1016_j_measurement_2024_115446
crossref_primary_10_1097_HJH_0000000000002922
crossref_primary_10_3390_s21092952
crossref_primary_10_1109_TBME_2020_2976989
crossref_primary_10_1016_j_bspc_2021_103035
crossref_primary_10_1016_j_bspc_2025_107598
crossref_primary_10_1109_JSEN_2022_3215597
crossref_primary_10_1109_JBHI_2022_3207947
crossref_primary_10_1109_TNNLS_2018_2880403
crossref_primary_10_3390_electronics13030511
crossref_primary_10_1016_j_bspc_2021_102853
crossref_primary_10_3390_s19040848
crossref_primary_10_1016_j_knosys_2022_109151
crossref_primary_10_1109_TIM_2025_3545993
crossref_primary_10_3390_s22051873
crossref_primary_10_3389_fphys_2023_1126957
Cites_doi 10.1109/BSN.2009.35
10.1007/s00421-011-1983-3
10.1097/00004872-199007000-00004
10.1109/ULTSYM.1978.197054
10.1109/TBME.2015.2440291
10.1007/s10558-009-9070-7
10.1007/978-3-662-03321-0
10.1109/TBME.2015.2441951
10.1109/ACCT.2015.87
10.3758/BF03205360
10.1109/TBME.2011.2180019
10.1152/japplphysiol.00657.2005
10.1016/j.dsp.2005.12.003
10.1109/IEMBS.2005.1615827
10.2307/2337118
10.1023/A:1010933404324
10.1109/JSEN.2014.2329676
10.1109/IEMBS.2006.260590
10.1109/ICBME.2014.7043896
10.1145/1961189.1961199
10.2174/157340312801215782
10.1161/01.CIR.101.23.e215
10.1109/ICACCI.2014.6968642
10.1016/j.jacc.2006.12.050
10.1016/j.irbm.2014.07.002
10.1109/ISCAS.2015.7168806
10.1109/18.382009
10.1016/j.ccl.2010.07.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2016.2580904
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 869
ExternalDocumentID 27323356
10_1109_TBME_2016_2580904
7491263
Genre orig-research
Validation Studies
Evaluation Studies
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c415t-ecd6e0ce4aafa562ae9fd40f9e64381c2aab0d4089627ad73f175e745b9a05c73
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sun Sep 28 08:26:09 EDT 2025
Mon Jun 30 08:37:01 EDT 2025
Wed Feb 19 02:40:58 EST 2025
Thu Apr 24 23:12:39 EDT 2025
Wed Oct 01 04:08:44 EDT 2025
Wed Aug 27 02:53:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-ecd6e0ce4aafa562ae9fd40f9e64381c2aab0d4089627ad73f175e745b9a05c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-8625-9034
PMID 27323356
PQID 2174325344
PQPubID 85474
PageCount 11
ParticipantIDs crossref_primary_10_1109_TBME_2016_2580904
proquest_journals_2174325344
pubmed_primary_27323356
proquest_miscellaneous_1826704449
ieee_primary_7491263
crossref_citationtrail_10_1109_TBME_2016_2580904
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref30
ref11
ref32
ref10
ref17
ref19
ref18
xuan (ref6) 2011
douniama (ref33) 0
(ref31) 2014
(ref1) 2015
goldberger (ref20) 2000; 101
hughes (ref16) 1978
(ref37) 2002
ref24
ref23
ref26
ref25
ref22
ref29
(ref2) 2014
ref8
ref7
ref9
(ref21) 1997
ref4
drucker (ref28) 0
pedregosa (ref27) 2011; 12
ref3
ref5
References_xml – start-page: 107
  year: 0
  ident: ref28
  article-title: Improving regressors using boosting techniques
  publication-title: Proc 14th Int Conf Mach Learn
– ident: ref13
  doi: 10.1109/BSN.2009.35
– ident: ref12
  doi: 10.1007/s00421-011-1983-3
– ident: ref36
  doi: 10.1097/00004872-199007000-00004
– year: 2015
  ident: ref1
  publication-title: World Health Statistics 2015
– start-page: 326
  year: 1978
  ident: ref16
  article-title: measurements of young's modulus of the canine aorta in-vivo with 10 mhz ultrasound
  publication-title: 1978 Ultrasonics Symposium
  doi: 10.1109/ULTSYM.1978.197054
– ident: ref19
  doi: 10.1109/TBME.2015.2440291
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref27
  article-title: Scikit-learn: Machine learning in Python
– year: 2002
  ident: ref37
  publication-title: American national standard for electronic or automated sphygmomanometers
– ident: ref11
  doi: 10.1007/s10558-009-9070-7
– year: 2011
  ident: ref6
  article-title: An exploration on real-time cuffless blood pressure estimation for e-home healthcare
– ident: ref17
  doi: 10.1007/978-3-662-03321-0
– ident: ref7
  doi: 10.1109/TBME.2015.2441951
– ident: ref22
  doi: 10.1109/ACCT.2015.87
– ident: ref18
  doi: 10.3758/BF03205360
– ident: ref5
  doi: 10.1109/TBME.2011.2180019
– ident: ref34
  doi: 10.1152/japplphysiol.00657.2005
– ident: ref23
  doi: 10.1016/j.dsp.2005.12.003
– start-page: 1
  year: 2014
  ident: ref31
  publication-title: IEEE Standard for Wearable Cuffless Blood Pressure
– year: 1997
  ident: ref21
– ident: ref8
  doi: 10.1109/IEMBS.2005.1615827
– ident: ref24
  doi: 10.2307/2337118
– ident: ref30
  doi: 10.1023/A:1010933404324
– ident: ref35
  doi: 10.1109/JSEN.2014.2329676
– ident: ref10
  doi: 10.1109/IEMBS.2006.260590
– ident: ref14
  doi: 10.1109/ICBME.2014.7043896
– year: 2014
  ident: ref2
  publication-title: A Global Brief on Hypertension Silent Killer Global Public Health Crisis
– ident: ref26
  doi: 10.1145/1961189.1961199
– ident: ref29
  doi: 10.2174/157340312801215782
– start-page: 201
  year: 0
  ident: ref33
  article-title: Blood pressure tracking capabilities of pulse transit times in different arterial segments: A clinical evaluation
  publication-title: Proc 36th Annu Comput Cardiol Conf
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref20
  article-title: PhysioBank, PhysioToolkit, and PhysioNet : Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref9
  doi: 10.1109/ICACCI.2014.6968642
– ident: ref15
  doi: 10.1016/j.jacc.2006.12.050
– ident: ref4
  doi: 10.1016/j.irbm.2014.07.002
– ident: ref32
  doi: 10.1109/ISCAS.2015.7168806
– ident: ref25
  doi: 10.1109/18.382009
– ident: ref3
  doi: 10.1016/j.ccl.2010.07.006
SSID ssj0014846
Score 2.6656473
Snippet Goal: Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured...
Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 859
SubjectTerms Algorithms
Arteries
Biomedical monitoring
Blood pressure
Blood Pressure - physiology
Blood Pressure Determination - instrumentation
Blood Pressure Determination - methods
Blood Pressure Monitors
Calibration
Diagnosis, Computer-Assisted - instrumentation
Diagnosis, Computer-Assisted - methods
electrocardiograph (ECG)
Electrocardiography
Equipment Design
Equipment Failure Analysis
Estimation
Feature extraction
Health
Health care
Humans
Hypertension
Information processing
Instrumentation
Machine Learning
mobile health
Monitoring
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
photoplethysmograph (PPG)
pulse arrival time (PAT)
Pulse Wave Analysis - instrumentation
Pulse Wave Analysis - methods
Reproducibility of Results
Sensitivity and Specificity
Signal processing
Title Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring
URI https://ieeexplore.ieee.org/document/7491263
https://www.ncbi.nlm.nih.gov/pubmed/27323356
https://www.proquest.com/docview/2174325344
https://www.proquest.com/docview/1826704449
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4VDggOy_LaLS8ZiRMixUmch4-AiiqkcgEkbpGd2FBR0lWbXPbX70ycRggB2puV2LHjGdvfeF4Ap8QpsVSBp9OEbqu4xFJkPa0LKyIK8lSQc_L4Lh49itun6KkH550vjDGmMT4zAyo2uvxiltd0VXaRCOkHcbgCK0kaO1-tTmMgUueUw31cwIEUrQbT5_Li4Wo8JCOueBBEOBhOuXjw1A7CkNJWvzuOmvwqX0PN5si52YTxcrDO0uR1UFd6kP_9EMfxf__mJ_xosSe7dMyyBT1TbsPGu4iE27A2bnXtO3B_XVs7xY2QXZFxO3OOhHPDhrgrOIdHdjl9ns0n1cvbgiH4ZRTqalLWs3rBnHuTR-5NzO0b1MEuPN4MH65HXpuCwcvxZK88kxex4bkRSlmFUEkZaQvBrTQxxQbLA6U0xwcp5fBRRRJahCMmEZGWikd5Eu7BajkrzW9g2ldSR6nyCSVKH1sjNEN5SGiEoKlVfeBLSmR5G5-c0mRMs0ZO4TIjOmZEx6ylYx_OuiZ_XHCO7yrvEA26iu309-FwSe6sXb6LrJHTgigU2Oqke40Lj7QpqjQ4jxkJZglF25N9-OXYpPv2krv2P-_zANYDQgeNAdAhrFbz2hwhtqn0ccPU_wB46fEy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GgLLBQwEidEtk5iJ_GxrbZaoOmFrdSbZSc2VCxZtJtc-PXMxNmoQoC4WYkdO56x_Y3nBfCWOCVTJolskdNtFVdYkj6ytvZCUpCnmpyTy4tsfik-XsmrHXg_-sI453rjMzelYq_Lr1dVR1dlR7lQcZKlt-C2FELI4K016gxEEdxyeIxLOFFi0GHGXB0tTsoZmXFl00TicDhl48FzO0lTSlx940DqM6z8HWz2h87ZQyi3ww22Jt-mXWun1c_fIjn-7_88ggcD-mTHgV0ew45r9uD-jZiEe3CnHLTt-_D5tPN-iVshOyHzdhZcCdeOzXBfCC6P7Hj5ZbW-br9-3zCEv4yCXV033arbsODgFJGDEws7B3VwAJdns8XpPBqSMEQVnu1t5Ko6c7xywhhvECwZp3wtuFcuo-hgVWKM5figoCw-ps5Tj4DE5UJaZbis8vQJ7Darxj0DZmOjrCxMTDhRxdgawRlKRMIiCC28mQDfUkJXQ4RySpSx1L2kwpUmOmqiox7oOIF3Y5MfITzHvyrvEw3GisP0T-BwS249LOCN7iW1RKYCW70ZX-PSI32KaRzOoybRLKd4e2oCTwObjN_ectfzP_f5Gu7OF-W5Pv9w8ekF3EsIK_TmQIew26479xKRTmtf9Qz-C0Ga9H8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cuffless+Blood+Pressure+Estimation+Algorithms+for+Continuous+Health-Care+Monitoring&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kachuee%2C+Mohammad&rft.au=Kiani%2C+Mohammad+Mahdi&rft.au=Mohammadzade%2C+Hoda&rft.au=Shabany%2C+Mahdi&rft.date=2017-04-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=64&rft.issue=4&rft.spage=859&rft.epage=869&rft_id=info:doi/10.1109%2FTBME.2016.2580904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2016_2580904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon