An Accurate UAV 3-D Path Planning Method for Disaster Emergency Response Based on an Improved Multiobjective Swarm Intelligence Algorithm
Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision making in disaster emergency response. The ideal flight path is expected to balance the total flight path length and the terrain threat, to shorte...
        Saved in:
      
    
          | Published in | IEEE transactions on cybernetics Vol. 53; no. 4; pp. 2658 - 2671 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.04.2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2267 2168-2275 2168-2275  | 
| DOI | 10.1109/TCYB.2022.3170580 | 
Cover
| Abstract | Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision making in disaster emergency response. The ideal flight path is expected to balance the total flight path length and the terrain threat, to shorten the flight time and reduce the possibility of collision. However, in the traditional methods, the tradeoff between these concerns is difficult to achieve, and practical constraints are lacking in the optimized objective functions, which leads to inaccurate modeling. In addition, the traditional methods based on gradient optimization lack an accurate optimization capability in the complex multimodal objective space, resulting in a nonoptimal path. Thus, in this article, an accurate UAV 3-D path planning approach in accordance with an enhanced multiobjective swarm intelligence algorithm is proposed (APPMS). In the APPMS method, the path planning mission is converted into a multiobjective optimization task with multiple constraints, and the objectives based on the total flight path length and degree of terrain threat are simultaneously optimized. In addition, to obtain the optimal UAV 3-D flight path, an accurate swarm intelligence search approach based on improved ant colony optimization is introduced, which can improve the global and local search capabilities by using the preferred search direction and random neighborhood search mechanism. The effectiveness of the proposed APPMS method was demonstrated in three groups of simulated experiments with different degrees of terrain threat, and a real-data experiment with 3-D terrain data from an actual emergency situation. | 
    
|---|---|
| AbstractList | Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision making in disaster emergency response. The ideal flight path is expected to balance the total flight path length and the terrain threat, to shorten the flight time and reduce the possibility of collision. However, in the traditional methods, the tradeoff between these concerns is difficult to achieve, and practical constraints are lacking in the optimized objective functions, which leads to inaccurate modeling. In addition, the traditional methods based on gradient optimization lack an accurate optimization capability in the complex multimodal objective space, resulting in a nonoptimal path. Thus, in this article, an accurate UAV 3-D path planning approach in accordance with an enhanced multiobjective swarm intelligence algorithm is proposed (APPMS). In the APPMS method, the path planning mission is converted into a multiobjective optimization task with multiple constraints, and the objectives based on the total flight path length and degree of terrain threat are simultaneously optimized. In addition, to obtain the optimal UAV 3-D flight path, an accurate swarm intelligence search approach based on improved ant colony optimization is introduced, which can improve the global and local search capabilities by using the preferred search direction and random neighborhood search mechanism. The effectiveness of the proposed APPMS method was demonstrated in three groups of simulated experiments with different degrees of terrain threat, and a real-data experiment with 3-D terrain data from an actual emergency situation.Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision making in disaster emergency response. The ideal flight path is expected to balance the total flight path length and the terrain threat, to shorten the flight time and reduce the possibility of collision. However, in the traditional methods, the tradeoff between these concerns is difficult to achieve, and practical constraints are lacking in the optimized objective functions, which leads to inaccurate modeling. In addition, the traditional methods based on gradient optimization lack an accurate optimization capability in the complex multimodal objective space, resulting in a nonoptimal path. Thus, in this article, an accurate UAV 3-D path planning approach in accordance with an enhanced multiobjective swarm intelligence algorithm is proposed (APPMS). In the APPMS method, the path planning mission is converted into a multiobjective optimization task with multiple constraints, and the objectives based on the total flight path length and degree of terrain threat are simultaneously optimized. In addition, to obtain the optimal UAV 3-D flight path, an accurate swarm intelligence search approach based on improved ant colony optimization is introduced, which can improve the global and local search capabilities by using the preferred search direction and random neighborhood search mechanism. The effectiveness of the proposed APPMS method was demonstrated in three groups of simulated experiments with different degrees of terrain threat, and a real-data experiment with 3-D terrain data from an actual emergency situation. Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision making in disaster emergency response. The ideal flight path is expected to balance the total flight path length and the terrain threat, to shorten the flight time and reduce the possibility of collision. However, in the traditional methods, the tradeoff between these concerns is difficult to achieve, and practical constraints are lacking in the optimized objective functions, which leads to inaccurate modeling. In addition, the traditional methods based on gradient optimization lack an accurate optimization capability in the complex multimodal objective space, resulting in a nonoptimal path. Thus, in this article, an accurate UAV 3-D path planning approach in accordance with an enhanced multiobjective swarm intelligence algorithm is proposed (APPMS). In the APPMS method, the path planning mission is converted into a multiobjective optimization task with multiple constraints, and the objectives based on the total flight path length and degree of terrain threat are simultaneously optimized. In addition, to obtain the optimal UAV 3-D flight path, an accurate swarm intelligence search approach based on improved ant colony optimization is introduced, which can improve the global and local search capabilities by using the preferred search direction and random neighborhood search mechanism. The effectiveness of the proposed APPMS method was demonstrated in three groups of simulated experiments with different degrees of terrain threat, and a real-data experiment with 3-D terrain data from an actual emergency situation.  | 
    
| Author | Ma, Ailong Zhang, Liangpei Zhong, Yanfei Wan, Yuting  | 
    
| Author_xml | – sequence: 1 givenname: Yuting orcidid: 0000-0002-4366-809X surname: Wan fullname: Wan, Yuting email: wanyuting@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing and the Hubei Provincial Engineering Research Center of Natural Resources Remote Sensing Monitoring, Wuhan University, Wuhan, China – sequence: 2 givenname: Yanfei orcidid: 0000-0001-9446-5850 surname: Zhong fullname: Zhong, Yanfei email: zhongyanfei@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing and the Hubei Provincial Engineering Research Center of Natural Resources Remote Sensing Monitoring, Wuhan University, Wuhan, China – sequence: 3 givenname: Ailong orcidid: 0000-0003-3692-6473 surname: Ma fullname: Ma, Ailong email: maailong007@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing and the Hubei Provincial Engineering Research Center of Natural Resources Remote Sensing Monitoring, Wuhan University, Wuhan, China – sequence: 4 givenname: Liangpei orcidid: 0000-0001-6890-3650 surname: Zhang fullname: Zhang, Liangpei email: zlp62@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing and the Hubei Provincial Engineering Research Center of Natural Resources Remote Sensing Monitoring, Wuhan University, Wuhan, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35604984$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kc1u1DAUhSNUREvpAyAkZIkNmwz-SexkmU4LjNSKClokVpbj3Mx4lNiD7RT1EXhrHM20iy7wxr7Wd46O7nmdHVlnIcveErwgBNefbpe_zhcUU7pgROCywi-yE0p4lVMqyqOnNxfH2VkIW5xOlb7q6lV2zEqOi7oqTrK_jUWN1pNXEdBd8xOx_ALdqLhBN4Oy1tg1uoa4cR3qnUcXJqgQwaPLEfwarH5A3yHsnA2AzlWADjmLlEWrcefdfRqvpyEa125BR3MP6Mcf5Ue0shGGwcx6QM2wdt7Ezfgme9mrIcDZ4T7N7j5f3i6_5lffvqyWzVWuC1LGHArcEegpraDXpC1JQbpaYOh5q9uW8o4XTNRlyUitWtxjXnBWl21JNSc1YYydZh_3vini7wlClKMJOgVSFtwUJOW8ojTZkoR-eIZu3eRtSiepqITAoqhnw_cHampH6OTOm1H5B_m45ASIPaC9C8FDL7WJKu3FRq_MIAmWc6NyblTOjcpDo0lJnikfzf-nebfXGAB44mtRYVpW7B9jAano | 
    
| CODEN | ITCEB8 | 
    
| CitedBy_id | crossref_primary_10_1109_TITS_2024_3505929 crossref_primary_10_1016_j_dcan_2024_09_001 crossref_primary_10_1016_j_neunet_2025_107182 crossref_primary_10_1016_j_swevo_2024_101680 crossref_primary_10_3390_app13116795 crossref_primary_10_3390_drones7100633 crossref_primary_10_1109_TCYB_2024_3435029 crossref_primary_10_1016_j_engappai_2025_110392 crossref_primary_10_1109_JIOT_2024_3382120 crossref_primary_10_1016_j_suscom_2024_100961 crossref_primary_10_20965_jaciii_2024_p1195 crossref_primary_10_1002_rnc_7483 crossref_primary_10_1109_TGRS_2025_3530934 crossref_primary_10_1016_j_adhoc_2025_103801 crossref_primary_10_1109_JIOT_2023_3340432 crossref_primary_10_1109_ACCESS_2023_3339227 crossref_primary_10_1109_ACCESS_2024_3401129 crossref_primary_10_3390_drones7120687 crossref_primary_10_1016_j_heliyon_2024_e37286 crossref_primary_10_1007_s13042_024_02393_z crossref_primary_10_1109_TCYB_2025_3535544 crossref_primary_10_3390_ijgi12060232 crossref_primary_10_1109_TGRS_2022_3216685 crossref_primary_10_3390_drones9030219 crossref_primary_10_1109_TIM_2024_3470997 crossref_primary_10_3390_drones8040149 crossref_primary_10_1109_TCYB_2024_3361880 crossref_primary_10_1007_s40747_025_01846_4 crossref_primary_10_1016_j_swevo_2024_101626 crossref_primary_10_3390_app14156516 crossref_primary_10_3390_drones9010064 crossref_primary_10_1109_TNET_2024_3450489 crossref_primary_10_17798_bitlisfen_1494562 crossref_primary_10_1016_j_knosys_2024_111409 crossref_primary_10_3390_drones7010010 crossref_primary_10_1109_TCYB_2025_3535159 crossref_primary_10_1109_OJCOMS_2025_3525483 crossref_primary_10_3390_electronics11172683 crossref_primary_10_1109_TAES_2024_3449795 crossref_primary_10_3390_biomimetics10030180 crossref_primary_10_1007_s10489_023_04711_4 crossref_primary_10_1016_j_paerosci_2024_101005 crossref_primary_10_1016_j_engappai_2023_106672 crossref_primary_10_1016_j_swevo_2024_101574 crossref_primary_10_1007_s42405_025_00913_x crossref_primary_10_1109_TEM_2023_3299693 crossref_primary_10_1109_TSUSC_2022_3224442 crossref_primary_10_1007_s11227_025_07002_6 crossref_primary_10_1109_JIOT_2024_3350525 crossref_primary_10_1109_TCYB_2024_3367884 crossref_primary_10_1109_TGRS_2024_3358303 crossref_primary_10_1109_JIOT_2024_3364230 crossref_primary_10_1016_j_aej_2023_10_063 crossref_primary_10_1109_OJVT_2025_3540174 crossref_primary_10_1016_j_jksuci_2023_101811 crossref_primary_10_1109_TCYB_2023_3312476 crossref_primary_10_1109_JIOT_2024_3449634 crossref_primary_10_1016_j_asoc_2024_112306 crossref_primary_10_3390_drones7030211 crossref_primary_10_1109_TSMC_2024_3448453 crossref_primary_10_1016_j_asoc_2025_112927 crossref_primary_10_1016_j_cja_2023_06_014 crossref_primary_10_1109_TAES_2023_3234455  | 
    
| Cites_doi | 10.1080/01691864.2013.756386 10.1007/978-3-319-54558-5_18 10.1007/s00521-015-1870-7 10.1016/j.knosys.2020.106209 10.1109/TEVC.2020.2964705 10.1109/ICUAS.2016.7502621 10.1109/TGRS.2016.2585184 10.1109/TITS.2020.2983491 10.1109/TCYB.2016.2550502 10.1016/j.proeng.2014.12.098 10.1109/TAES.2018.2807558 10.1109/TITS.2020.3030444 10.15607/RSS.2010.VI.034 10.1016/j.ast.2017.09.007 10.1109/CSCWD.2017.8066751 10.1109/TITS.2017.2673778 10.1109/4235.996017 10.1109/TCYB.2019.2935466 10.1016/j.isprsjprs.2018.10.016 10.1109/TEVC.2014.2378512 10.1109/4235.585892 10.1109/TCYB.2018.2881190 10.1109/CDC.2016.7798509 10.1504/IJBIC.2021.114079 10.1007/s00521-021-05939-2 10.1016/j.knosys.2018.05.033 10.14569/IJACSA.2016.071114 10.1007/s11633-013-0750-9 10.1109/TCYB.2019.2894664 10.1109/TII.2021.3056425 10.1109/TCYB.2016.2535153 10.1007/BF02941133 10.1007/s00500-016-2376-7 10.1016/j.robot.2017.07.012 10.1016/j.ast.2011.02.006 10.1016/j.swevo.2019.100575 10.1145/2480741.2480752 10.1155/2018/8420294 10.1109/TCYB.2021.3090662 10.1016/j.autcon.2017.04.013 10.1109/ACCESS.2018.2857503 10.1109/IDC.1999.754187 10.1109/CEC.2017.7969578 10.1016/j.ast.2015.12.021 10.1007/978-3-642-16138-4_22 10.1016/j.ejor.2017.08.022 10.1142/s0218213017600089 10.1109/ACCESS.2020.2992217 10.1109/TCYB.2020.3027962 10.1109/IECON.2016.7793243 10.1109/TCYB.2021.3069184 10.1109/TGRS.2018.2872875 10.1109/IICITA.2019.8808834 10.1142/S0218001418590085 10.1109/CCDC.2016.7531079 10.1007/s11370-018-0254-0 10.2991/ijcis.11.1.81 10.1109/TEVC.2018.2881153 10.1007/978-3-319-59147-6_50 10.3182/20110828-6-IT-1002.01770  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8  | 
    
| DOI | 10.1109/TCYB.2022.3170580 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 2168-2275 | 
    
| EndPage | 2671 | 
    
| ExternalDocumentID | 35604984 10_1109_TCYB_2022_3170580 9780258  | 
    
| Genre | orig-research Journal Article  | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42071350; 42171336 funderid: 10.13039/501100001809 – fundername: LIESMARS Special Research Funding  | 
    
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8  | 
    
| ID | FETCH-LOGICAL-c415t-e40d1ef228efc1b5141d970ef6bcbb26d6437955319ab0f0646395b52c6191333 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2168-2267 2168-2275  | 
    
| IngestDate | Mon Sep 29 06:19:08 EDT 2025 Mon Jun 30 06:41:59 EDT 2025 Thu Jan 02 22:51:39 EST 2025 Wed Oct 01 01:36:44 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Wed Aug 27 02:14:19 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c415t-e40d1ef228efc1b5141d970ef6bcbb26d6437955319ab0f0646395b52c6191333 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-3692-6473 0000-0001-9446-5850 0000-0002-4366-809X 0000-0001-6890-3650  | 
    
| PMID | 35604984 | 
    
| PQID | 2787707493 | 
    
| PQPubID | 85422 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_miscellaneous_2668221411 ieee_primary_9780258 pubmed_primary_35604984 crossref_primary_10_1109_TCYB_2022_3170580 crossref_citationtrail_10_1109_TCYB_2022_3170580 proquest_journals_2787707493  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-04-01 | 
    
| PublicationDateYYYYMMDD | 2023-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Piscataway  | 
    
| PublicationTitle | IEEE transactions on cybernetics | 
    
| PublicationTitleAbbrev | TCYB | 
    
| PublicationTitleAlternate | IEEE Trans Cybern | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Schott (ref63) 1995 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Colorni (ref53) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61  | 
    
| References_xml | – ident: ref14 doi: 10.1080/01691864.2013.756386 – ident: ref7 doi: 10.1007/978-3-319-54558-5_18 – ident: ref31 doi: 10.1007/s00521-015-1870-7 – ident: ref47 doi: 10.1016/j.knosys.2020.106209 – ident: ref61 doi: 10.1109/TEVC.2020.2964705 – ident: ref29 doi: 10.1109/ICUAS.2016.7502621 – ident: ref34 doi: 10.1109/TGRS.2016.2585184 – ident: ref3 doi: 10.1109/TITS.2020.2983491 – ident: ref62 doi: 10.1109/TCYB.2016.2550502 – volume-title: Fault tolerant design using single and multicriteria genetic algorithm optimization year: 1995 ident: ref63 – ident: ref9 doi: 10.1016/j.proeng.2014.12.098 – ident: ref23 doi: 10.1109/TAES.2018.2807558 – ident: ref2 doi: 10.1109/TITS.2020.3030444 – ident: ref15 doi: 10.15607/RSS.2010.VI.034 – ident: ref38 doi: 10.1016/j.ast.2017.09.007 – ident: ref19 doi: 10.1109/CSCWD.2017.8066751 – ident: ref12 doi: 10.1109/TITS.2017.2673778 – ident: ref56 doi: 10.1109/4235.996017 – ident: ref1 doi: 10.1109/TCYB.2019.2935466 – ident: ref11 doi: 10.1016/j.isprsjprs.2018.10.016 – ident: ref57 doi: 10.1109/TEVC.2014.2378512 – ident: ref54 doi: 10.1109/4235.585892 – ident: ref8 doi: 10.1109/TCYB.2018.2881190 – ident: ref21 doi: 10.1109/CDC.2016.7798509 – ident: ref43 doi: 10.1504/IJBIC.2021.114079 – ident: ref59 doi: 10.1007/s00521-021-05939-2 – ident: ref35 doi: 10.1016/j.knosys.2018.05.033 – ident: ref16 doi: 10.14569/IJACSA.2016.071114 – ident: ref18 doi: 10.1007/s11633-013-0750-9 – ident: ref58 doi: 10.1109/TCYB.2019.2894664 – ident: ref51 doi: 10.1109/TII.2021.3056425 – ident: ref10 doi: 10.1109/TCYB.2016.2535153 – ident: ref33 doi: 10.1007/BF02941133 – ident: ref5 doi: 10.1007/s00500-016-2376-7 – ident: ref25 doi: 10.1016/j.robot.2017.07.012 – ident: ref13 doi: 10.1016/j.ast.2011.02.006 – ident: ref50 doi: 10.1016/j.swevo.2019.100575 – ident: ref46 doi: 10.1145/2480741.2480752 – ident: ref39 doi: 10.1155/2018/8420294 – ident: ref4 doi: 10.1109/TCYB.2021.3090662 – ident: ref40 doi: 10.1016/j.autcon.2017.04.013 – ident: ref6 doi: 10.1109/ACCESS.2018.2857503 – ident: ref32 doi: 10.1109/IDC.1999.754187 – ident: ref41 doi: 10.1109/CEC.2017.7969578 – ident: ref22 doi: 10.1016/j.ast.2015.12.021 – ident: ref20 doi: 10.1007/978-3-642-16138-4_22 – ident: ref52 doi: 10.1016/j.ejor.2017.08.022 – ident: ref24 doi: 10.1142/s0218213017600089 – ident: ref28 doi: 10.1109/ACCESS.2020.2992217 – ident: ref42 doi: 10.1016/j.knosys.2020.106209 – ident: ref45 doi: 10.1109/TCYB.2020.3027962 – ident: ref36 doi: 10.1109/IECON.2016.7793243 – start-page: 134 volume-title: Proc. 1st Eur. Conf. Artif. Life ident: ref53 article-title: Distributed optimization by ant colonies – ident: ref49 doi: 10.1109/TCYB.2021.3069184 – ident: ref44 doi: 10.1109/TGRS.2018.2872875 – ident: ref30 doi: 10.1109/IICITA.2019.8808834 – ident: ref27 doi: 10.1142/S0218001418590085 – ident: ref37 doi: 10.1109/CCDC.2016.7531079 – ident: ref26 doi: 10.1007/s11370-018-0254-0 – ident: ref60 doi: 10.2991/ijcis.11.1.81 – ident: ref55 doi: 10.1109/TEVC.2018.2881153 – ident: ref17 doi: 10.1007/978-3-319-59147-6_50 – ident: ref48 doi: 10.3182/20110828-6-IT-1002.01770  | 
    
| SSID | ssj0000816898 | 
    
| Score | 2.6372054 | 
    
| Snippet | Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision... | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2658 | 
    
| SubjectTerms | Algorithms Ant colony optimization Ant colony optimization (ACO) Autonomous aerial vehicles Decision making Disasters Emergency response Flight paths Flight time Linear programming multiobjective optimization Multiple objective analysis Optimization Particle swarm optimization Path planning Planning Searching Swarm intelligence Task analysis Terrain three-dimensional (3-D) terrain unmanned aerial vehicle (UAV) path planning Unmanned aerial vehicles  | 
    
| Title | An Accurate UAV 3-D Path Planning Method for Disaster Emergency Response Based on an Improved Multiobjective Swarm Intelligence Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/9780258 https://www.ncbi.nlm.nih.gov/pubmed/35604984 https://www.proquest.com/docview/2787707493 https://www.proquest.com/docview/2668221411  | 
    
| Volume | 53 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrgApTyWFjRIHACRxXHsJD6mLxWkRQi6qJwi23Gg0CbVbiIk_gH_mrHjRIAAcUsUJ3EyM55vbM98hDxWgrOaJ0lkhKQR12kVqUQmUVzzlHIrNPf5FYvX6cmSvzoTZxvk-ZQLY631m8_s3B36tfyqNb2bKnPVYNFF55tkM8vTIVdrmk_xBBKe-pbhQYSoIguLmDGVL04PPuxjMMgYxqgZFbkjgEvQ2XOZ8188kqdY-Tva9F7n-AZZjP0dNpt8mfednptvv5Vy_N8PukmuB_gJxaAv22TDNrfIdjDwNTwJVaif7pDvRQOFMb0rJQHL4j0k0SG8QbwII88RLDz7NCDshcPztXIlF-BoTOeEt8PuWwv76CgraBtQDQxzGHjqE39b_XkYb-HdV7W6hJc_1QeF4uJjuzrvPl3eJsvjo9ODkyjwNkQG4UAXWU6r2NaM5bY2sUZIFlcyo7ZOtdGapZVbLJTCWb_StEZQhDBJaMEMRnMYMyd3yFbTNvYeAcV1JWWtjaoZF7xWPKFVrg1HHTN5Hs8IHWVXmlDU3HFrXJQ-uKGydJIvneTLIPkZeTbdcjVU9PhX4x0ntalhENiM7I0KUgabX5cMx74MEZlMZuTRdBmt1S3BqMa2PbZJU0Rk-EOw53cHxZqePerj_T-_c5dcc1T3w66hPbLVrXr7AAFRpx96S_gB17MCzA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcAFKOWxUGCQOAAii-PY2fiYvrSFboVgF7WnyHacttAmaDcREv-Af83YeQgQIG6J4iROZsbzje2Zj5BnSnBW8CgKjJA04DrOAxXJKAgLHlNuheY-v2J2FE8X_M2xOF4jr4ZcGGut33xmx-7Qr-XnlWncVJmrBosuOrlCrgrOuWiztYYZFU8h4clvGR4EiCsm3TJmSOXr-c7JNoaDjGGUOqEicRRwEbp7LhP-i0_yJCt_x5ve7-zfJLO-x-12k8_jptZj8-23Yo7_-0m3yI0OgELaaswGWbPlbbLRmfgKnnd1qF9sku9pCakxjSsmAYv0I0TBLrxDxAg90xHMPP80IPCF3fOVckUXYK9P6IT37f5bC9voKnOoSlAltLMYeOpTfyv9qR1x4cNXtbyEg58qhEJ6cVotz-uzyztksb8335kGHXNDYBAQ1IHlNA9twVhiCxNqBGVhLifUFrE2WrM4d8uFUjj7V5oWCIsQKAktmMF4DqPm6C5ZL6vS3ieguM6lLLRRBeOCF4pHNE-04ahlJknCEaG97DLTlTV37BoXmQ9vqMyc5DMn-ayT_Ii8HG750tb0-FfjTSe1oWEnsBHZ6hUk66x-lTEc_SaIyWQ0Ik-Hy2ivbhFGlbZqsE0cIybDH4I9v9cq1vDsXh8f_PmdT8i16Xx2mB0eHL19SK474vt2D9EWWa-XjX2E8KjWj71V_ACG0gYZ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Accurate+UAV+3-D+Path+Planning+Method+for+Disaster+Emergency+Response+Based+on+an+Improved+Multiobjective+Swarm+Intelligence+Algorithm&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wan%2C+Yuting&rft.au=Zhong%2C+Yanfei&rft.au=Ma%2C+Ailong&rft.au=Zhang%2C+Liangpei&rft.date=2023-04-01&rft.eissn=2168-2275&rft.volume=53&rft.issue=4&rft.spage=2658&rft_id=info:doi/10.1109%2FTCYB.2022.3170580&rft_id=info%3Apmid%2F35604984&rft.externalDocID=35604984 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |