An Accurate UAV 3-D Path Planning Method for Disaster Emergency Response Based on an Improved Multiobjective Swarm Intelligence Algorithm

Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision making in disaster emergency response. The ideal flight path is expected to balance the total flight path length and the terrain threat, to shorte...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 4; pp. 2658 - 2671
Main Authors Wan, Yuting, Zhong, Yanfei, Ma, Ailong, Zhang, Liangpei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2022.3170580

Cover

Abstract Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision making in disaster emergency response. The ideal flight path is expected to balance the total flight path length and the terrain threat, to shorten the flight time and reduce the possibility of collision. However, in the traditional methods, the tradeoff between these concerns is difficult to achieve, and practical constraints are lacking in the optimized objective functions, which leads to inaccurate modeling. In addition, the traditional methods based on gradient optimization lack an accurate optimization capability in the complex multimodal objective space, resulting in a nonoptimal path. Thus, in this article, an accurate UAV 3-D path planning approach in accordance with an enhanced multiobjective swarm intelligence algorithm is proposed (APPMS). In the APPMS method, the path planning mission is converted into a multiobjective optimization task with multiple constraints, and the objectives based on the total flight path length and degree of terrain threat are simultaneously optimized. In addition, to obtain the optimal UAV 3-D flight path, an accurate swarm intelligence search approach based on improved ant colony optimization is introduced, which can improve the global and local search capabilities by using the preferred search direction and random neighborhood search mechanism. The effectiveness of the proposed APPMS method was demonstrated in three groups of simulated experiments with different degrees of terrain threat, and a real-data experiment with 3-D terrain data from an actual emergency situation.
AbstractList Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision making in disaster emergency response. The ideal flight path is expected to balance the total flight path length and the terrain threat, to shorten the flight time and reduce the possibility of collision. However, in the traditional methods, the tradeoff between these concerns is difficult to achieve, and practical constraints are lacking in the optimized objective functions, which leads to inaccurate modeling. In addition, the traditional methods based on gradient optimization lack an accurate optimization capability in the complex multimodal objective space, resulting in a nonoptimal path. Thus, in this article, an accurate UAV 3-D path planning approach in accordance with an enhanced multiobjective swarm intelligence algorithm is proposed (APPMS). In the APPMS method, the path planning mission is converted into a multiobjective optimization task with multiple constraints, and the objectives based on the total flight path length and degree of terrain threat are simultaneously optimized. In addition, to obtain the optimal UAV 3-D flight path, an accurate swarm intelligence search approach based on improved ant colony optimization is introduced, which can improve the global and local search capabilities by using the preferred search direction and random neighborhood search mechanism. The effectiveness of the proposed APPMS method was demonstrated in three groups of simulated experiments with different degrees of terrain threat, and a real-data experiment with 3-D terrain data from an actual emergency situation.Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision making in disaster emergency response. The ideal flight path is expected to balance the total flight path length and the terrain threat, to shorten the flight time and reduce the possibility of collision. However, in the traditional methods, the tradeoff between these concerns is difficult to achieve, and practical constraints are lacking in the optimized objective functions, which leads to inaccurate modeling. In addition, the traditional methods based on gradient optimization lack an accurate optimization capability in the complex multimodal objective space, resulting in a nonoptimal path. Thus, in this article, an accurate UAV 3-D path planning approach in accordance with an enhanced multiobjective swarm intelligence algorithm is proposed (APPMS). In the APPMS method, the path planning mission is converted into a multiobjective optimization task with multiple constraints, and the objectives based on the total flight path length and degree of terrain threat are simultaneously optimized. In addition, to obtain the optimal UAV 3-D flight path, an accurate swarm intelligence search approach based on improved ant colony optimization is introduced, which can improve the global and local search capabilities by using the preferred search direction and random neighborhood search mechanism. The effectiveness of the proposed APPMS method was demonstrated in three groups of simulated experiments with different degrees of terrain threat, and a real-data experiment with 3-D terrain data from an actual emergency situation.
Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision making in disaster emergency response. The ideal flight path is expected to balance the total flight path length and the terrain threat, to shorten the flight time and reduce the possibility of collision. However, in the traditional methods, the tradeoff between these concerns is difficult to achieve, and practical constraints are lacking in the optimized objective functions, which leads to inaccurate modeling. In addition, the traditional methods based on gradient optimization lack an accurate optimization capability in the complex multimodal objective space, resulting in a nonoptimal path. Thus, in this article, an accurate UAV 3-D path planning approach in accordance with an enhanced multiobjective swarm intelligence algorithm is proposed (APPMS). In the APPMS method, the path planning mission is converted into a multiobjective optimization task with multiple constraints, and the objectives based on the total flight path length and degree of terrain threat are simultaneously optimized. In addition, to obtain the optimal UAV 3-D flight path, an accurate swarm intelligence search approach based on improved ant colony optimization is introduced, which can improve the global and local search capabilities by using the preferred search direction and random neighborhood search mechanism. The effectiveness of the proposed APPMS method was demonstrated in three groups of simulated experiments with different degrees of terrain threat, and a real-data experiment with 3-D terrain data from an actual emergency situation.
Author Ma, Ailong
Zhang, Liangpei
Zhong, Yanfei
Wan, Yuting
Author_xml – sequence: 1
  givenname: Yuting
  orcidid: 0000-0002-4366-809X
  surname: Wan
  fullname: Wan, Yuting
  email: wanyuting@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing and the Hubei Provincial Engineering Research Center of Natural Resources Remote Sensing Monitoring, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Yanfei
  orcidid: 0000-0001-9446-5850
  surname: Zhong
  fullname: Zhong, Yanfei
  email: zhongyanfei@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing and the Hubei Provincial Engineering Research Center of Natural Resources Remote Sensing Monitoring, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Ailong
  orcidid: 0000-0003-3692-6473
  surname: Ma
  fullname: Ma, Ailong
  email: maailong007@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing and the Hubei Provincial Engineering Research Center of Natural Resources Remote Sensing Monitoring, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Liangpei
  orcidid: 0000-0001-6890-3650
  surname: Zhang
  fullname: Zhang, Liangpei
  email: zlp62@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing and the Hubei Provincial Engineering Research Center of Natural Resources Remote Sensing Monitoring, Wuhan University, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35604984$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhSNUREvpAyAkZIkNmwz-SexkmU4LjNSKClokVpbj3Mx4lNiD7RT1EXhrHM20iy7wxr7Wd46O7nmdHVlnIcveErwgBNefbpe_zhcUU7pgROCywi-yE0p4lVMqyqOnNxfH2VkIW5xOlb7q6lV2zEqOi7oqTrK_jUWN1pNXEdBd8xOx_ALdqLhBN4Oy1tg1uoa4cR3qnUcXJqgQwaPLEfwarH5A3yHsnA2AzlWADjmLlEWrcefdfRqvpyEa125BR3MP6Mcf5Ue0shGGwcx6QM2wdt7Ezfgme9mrIcDZ4T7N7j5f3i6_5lffvqyWzVWuC1LGHArcEegpraDXpC1JQbpaYOh5q9uW8o4XTNRlyUitWtxjXnBWl21JNSc1YYydZh_3vini7wlClKMJOgVSFtwUJOW8ojTZkoR-eIZu3eRtSiepqITAoqhnw_cHampH6OTOm1H5B_m45ASIPaC9C8FDL7WJKu3FRq_MIAmWc6NyblTOjcpDo0lJnikfzf-nebfXGAB44mtRYVpW7B9jAano
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TITS_2024_3505929
crossref_primary_10_1016_j_dcan_2024_09_001
crossref_primary_10_1016_j_neunet_2025_107182
crossref_primary_10_1016_j_swevo_2024_101680
crossref_primary_10_3390_app13116795
crossref_primary_10_3390_drones7100633
crossref_primary_10_1109_TCYB_2024_3435029
crossref_primary_10_1016_j_engappai_2025_110392
crossref_primary_10_1109_JIOT_2024_3382120
crossref_primary_10_1016_j_suscom_2024_100961
crossref_primary_10_20965_jaciii_2024_p1195
crossref_primary_10_1002_rnc_7483
crossref_primary_10_1109_TGRS_2025_3530934
crossref_primary_10_1016_j_adhoc_2025_103801
crossref_primary_10_1109_JIOT_2023_3340432
crossref_primary_10_1109_ACCESS_2023_3339227
crossref_primary_10_1109_ACCESS_2024_3401129
crossref_primary_10_3390_drones7120687
crossref_primary_10_1016_j_heliyon_2024_e37286
crossref_primary_10_1007_s13042_024_02393_z
crossref_primary_10_1109_TCYB_2025_3535544
crossref_primary_10_3390_ijgi12060232
crossref_primary_10_1109_TGRS_2022_3216685
crossref_primary_10_3390_drones9030219
crossref_primary_10_1109_TIM_2024_3470997
crossref_primary_10_3390_drones8040149
crossref_primary_10_1109_TCYB_2024_3361880
crossref_primary_10_1007_s40747_025_01846_4
crossref_primary_10_1016_j_swevo_2024_101626
crossref_primary_10_3390_app14156516
crossref_primary_10_3390_drones9010064
crossref_primary_10_1109_TNET_2024_3450489
crossref_primary_10_17798_bitlisfen_1494562
crossref_primary_10_1016_j_knosys_2024_111409
crossref_primary_10_3390_drones7010010
crossref_primary_10_1109_TCYB_2025_3535159
crossref_primary_10_1109_OJCOMS_2025_3525483
crossref_primary_10_3390_electronics11172683
crossref_primary_10_1109_TAES_2024_3449795
crossref_primary_10_3390_biomimetics10030180
crossref_primary_10_1007_s10489_023_04711_4
crossref_primary_10_1016_j_paerosci_2024_101005
crossref_primary_10_1016_j_engappai_2023_106672
crossref_primary_10_1016_j_swevo_2024_101574
crossref_primary_10_1007_s42405_025_00913_x
crossref_primary_10_1109_TEM_2023_3299693
crossref_primary_10_1109_TSUSC_2022_3224442
crossref_primary_10_1007_s11227_025_07002_6
crossref_primary_10_1109_JIOT_2024_3350525
crossref_primary_10_1109_TCYB_2024_3367884
crossref_primary_10_1109_TGRS_2024_3358303
crossref_primary_10_1109_JIOT_2024_3364230
crossref_primary_10_1016_j_aej_2023_10_063
crossref_primary_10_1109_OJVT_2025_3540174
crossref_primary_10_1016_j_jksuci_2023_101811
crossref_primary_10_1109_TCYB_2023_3312476
crossref_primary_10_1109_JIOT_2024_3449634
crossref_primary_10_1016_j_asoc_2024_112306
crossref_primary_10_3390_drones7030211
crossref_primary_10_1109_TSMC_2024_3448453
crossref_primary_10_1016_j_asoc_2025_112927
crossref_primary_10_1016_j_cja_2023_06_014
crossref_primary_10_1109_TAES_2023_3234455
Cites_doi 10.1080/01691864.2013.756386
10.1007/978-3-319-54558-5_18
10.1007/s00521-015-1870-7
10.1016/j.knosys.2020.106209
10.1109/TEVC.2020.2964705
10.1109/ICUAS.2016.7502621
10.1109/TGRS.2016.2585184
10.1109/TITS.2020.2983491
10.1109/TCYB.2016.2550502
10.1016/j.proeng.2014.12.098
10.1109/TAES.2018.2807558
10.1109/TITS.2020.3030444
10.15607/RSS.2010.VI.034
10.1016/j.ast.2017.09.007
10.1109/CSCWD.2017.8066751
10.1109/TITS.2017.2673778
10.1109/4235.996017
10.1109/TCYB.2019.2935466
10.1016/j.isprsjprs.2018.10.016
10.1109/TEVC.2014.2378512
10.1109/4235.585892
10.1109/TCYB.2018.2881190
10.1109/CDC.2016.7798509
10.1504/IJBIC.2021.114079
10.1007/s00521-021-05939-2
10.1016/j.knosys.2018.05.033
10.14569/IJACSA.2016.071114
10.1007/s11633-013-0750-9
10.1109/TCYB.2019.2894664
10.1109/TII.2021.3056425
10.1109/TCYB.2016.2535153
10.1007/BF02941133
10.1007/s00500-016-2376-7
10.1016/j.robot.2017.07.012
10.1016/j.ast.2011.02.006
10.1016/j.swevo.2019.100575
10.1145/2480741.2480752
10.1155/2018/8420294
10.1109/TCYB.2021.3090662
10.1016/j.autcon.2017.04.013
10.1109/ACCESS.2018.2857503
10.1109/IDC.1999.754187
10.1109/CEC.2017.7969578
10.1016/j.ast.2015.12.021
10.1007/978-3-642-16138-4_22
10.1016/j.ejor.2017.08.022
10.1142/s0218213017600089
10.1109/ACCESS.2020.2992217
10.1109/TCYB.2020.3027962
10.1109/IECON.2016.7793243
10.1109/TCYB.2021.3069184
10.1109/TGRS.2018.2872875
10.1109/IICITA.2019.8808834
10.1142/S0218001418590085
10.1109/CCDC.2016.7531079
10.1007/s11370-018-0254-0
10.2991/ijcis.11.1.81
10.1109/TEVC.2018.2881153
10.1007/978-3-319-59147-6_50
10.3182/20110828-6-IT-1002.01770
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2022.3170580
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2671
ExternalDocumentID 35604984
10_1109_TCYB_2022_3170580
9780258
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42071350; 42171336
  funderid: 10.13039/501100001809
– fundername: LIESMARS Special Research Funding
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c415t-e40d1ef228efc1b5141d970ef6bcbb26d6437955319ab0f0646395b52c6191333
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Mon Sep 29 06:19:08 EDT 2025
Mon Jun 30 06:41:59 EDT 2025
Thu Jan 02 22:51:39 EST 2025
Wed Oct 01 01:36:44 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Wed Aug 27 02:14:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-e40d1ef228efc1b5141d970ef6bcbb26d6437955319ab0f0646395b52c6191333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3692-6473
0000-0001-9446-5850
0000-0002-4366-809X
0000-0001-6890-3650
PMID 35604984
PQID 2787707493
PQPubID 85422
PageCount 14
ParticipantIDs proquest_miscellaneous_2668221411
ieee_primary_9780258
pubmed_primary_35604984
crossref_primary_10_1109_TCYB_2022_3170580
crossref_citationtrail_10_1109_TCYB_2022_3170580
proquest_journals_2787707493
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Schott (ref63) 1995
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Colorni (ref53)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref14
  doi: 10.1080/01691864.2013.756386
– ident: ref7
  doi: 10.1007/978-3-319-54558-5_18
– ident: ref31
  doi: 10.1007/s00521-015-1870-7
– ident: ref47
  doi: 10.1016/j.knosys.2020.106209
– ident: ref61
  doi: 10.1109/TEVC.2020.2964705
– ident: ref29
  doi: 10.1109/ICUAS.2016.7502621
– ident: ref34
  doi: 10.1109/TGRS.2016.2585184
– ident: ref3
  doi: 10.1109/TITS.2020.2983491
– ident: ref62
  doi: 10.1109/TCYB.2016.2550502
– volume-title: Fault tolerant design using single and multicriteria genetic algorithm optimization
  year: 1995
  ident: ref63
– ident: ref9
  doi: 10.1016/j.proeng.2014.12.098
– ident: ref23
  doi: 10.1109/TAES.2018.2807558
– ident: ref2
  doi: 10.1109/TITS.2020.3030444
– ident: ref15
  doi: 10.15607/RSS.2010.VI.034
– ident: ref38
  doi: 10.1016/j.ast.2017.09.007
– ident: ref19
  doi: 10.1109/CSCWD.2017.8066751
– ident: ref12
  doi: 10.1109/TITS.2017.2673778
– ident: ref56
  doi: 10.1109/4235.996017
– ident: ref1
  doi: 10.1109/TCYB.2019.2935466
– ident: ref11
  doi: 10.1016/j.isprsjprs.2018.10.016
– ident: ref57
  doi: 10.1109/TEVC.2014.2378512
– ident: ref54
  doi: 10.1109/4235.585892
– ident: ref8
  doi: 10.1109/TCYB.2018.2881190
– ident: ref21
  doi: 10.1109/CDC.2016.7798509
– ident: ref43
  doi: 10.1504/IJBIC.2021.114079
– ident: ref59
  doi: 10.1007/s00521-021-05939-2
– ident: ref35
  doi: 10.1016/j.knosys.2018.05.033
– ident: ref16
  doi: 10.14569/IJACSA.2016.071114
– ident: ref18
  doi: 10.1007/s11633-013-0750-9
– ident: ref58
  doi: 10.1109/TCYB.2019.2894664
– ident: ref51
  doi: 10.1109/TII.2021.3056425
– ident: ref10
  doi: 10.1109/TCYB.2016.2535153
– ident: ref33
  doi: 10.1007/BF02941133
– ident: ref5
  doi: 10.1007/s00500-016-2376-7
– ident: ref25
  doi: 10.1016/j.robot.2017.07.012
– ident: ref13
  doi: 10.1016/j.ast.2011.02.006
– ident: ref50
  doi: 10.1016/j.swevo.2019.100575
– ident: ref46
  doi: 10.1145/2480741.2480752
– ident: ref39
  doi: 10.1155/2018/8420294
– ident: ref4
  doi: 10.1109/TCYB.2021.3090662
– ident: ref40
  doi: 10.1016/j.autcon.2017.04.013
– ident: ref6
  doi: 10.1109/ACCESS.2018.2857503
– ident: ref32
  doi: 10.1109/IDC.1999.754187
– ident: ref41
  doi: 10.1109/CEC.2017.7969578
– ident: ref22
  doi: 10.1016/j.ast.2015.12.021
– ident: ref20
  doi: 10.1007/978-3-642-16138-4_22
– ident: ref52
  doi: 10.1016/j.ejor.2017.08.022
– ident: ref24
  doi: 10.1142/s0218213017600089
– ident: ref28
  doi: 10.1109/ACCESS.2020.2992217
– ident: ref42
  doi: 10.1016/j.knosys.2020.106209
– ident: ref45
  doi: 10.1109/TCYB.2020.3027962
– ident: ref36
  doi: 10.1109/IECON.2016.7793243
– start-page: 134
  volume-title: Proc. 1st Eur. Conf. Artif. Life
  ident: ref53
  article-title: Distributed optimization by ant colonies
– ident: ref49
  doi: 10.1109/TCYB.2021.3069184
– ident: ref44
  doi: 10.1109/TGRS.2018.2872875
– ident: ref30
  doi: 10.1109/IICITA.2019.8808834
– ident: ref27
  doi: 10.1142/S0218001418590085
– ident: ref37
  doi: 10.1109/CCDC.2016.7531079
– ident: ref26
  doi: 10.1007/s11370-018-0254-0
– ident: ref60
  doi: 10.2991/ijcis.11.1.81
– ident: ref55
  doi: 10.1109/TEVC.2018.2881153
– ident: ref17
  doi: 10.1007/978-3-319-59147-6_50
– ident: ref48
  doi: 10.3182/20110828-6-IT-1002.01770
SSID ssj0000816898
Score 2.6372054
Snippet Planning a practical three-dimensional (3-D) flight path for unmanned aerial vehicles (UAVs) is a key challenge for the follow-up management and decision...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2658
SubjectTerms Algorithms
Ant colony optimization
Ant colony optimization (ACO)
Autonomous aerial vehicles
Decision making
Disasters
Emergency response
Flight paths
Flight time
Linear programming
multiobjective optimization
Multiple objective analysis
Optimization
Particle swarm optimization
Path planning
Planning
Searching
Swarm intelligence
Task analysis
Terrain
three-dimensional (3-D) terrain
unmanned aerial vehicle (UAV) path planning
Unmanned aerial vehicles
Title An Accurate UAV 3-D Path Planning Method for Disaster Emergency Response Based on an Improved Multiobjective Swarm Intelligence Algorithm
URI https://ieeexplore.ieee.org/document/9780258
https://www.ncbi.nlm.nih.gov/pubmed/35604984
https://www.proquest.com/docview/2787707493
https://www.proquest.com/docview/2668221411
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrgApTyWFjRIHACRxXHsJD6mLxWkRQi6qJwi23Gg0CbVbiIk_gH_mrHjRIAAcUsUJ3EyM55vbM98hDxWgrOaJ0lkhKQR12kVqUQmUVzzlHIrNPf5FYvX6cmSvzoTZxvk-ZQLY631m8_s3B36tfyqNb2bKnPVYNFF55tkM8vTIVdrmk_xBBKe-pbhQYSoIguLmDGVL04PPuxjMMgYxqgZFbkjgEvQ2XOZ8188kqdY-Tva9F7n-AZZjP0dNpt8mfednptvv5Vy_N8PukmuB_gJxaAv22TDNrfIdjDwNTwJVaif7pDvRQOFMb0rJQHL4j0k0SG8QbwII88RLDz7NCDshcPztXIlF-BoTOeEt8PuWwv76CgraBtQDQxzGHjqE39b_XkYb-HdV7W6hJc_1QeF4uJjuzrvPl3eJsvjo9ODkyjwNkQG4UAXWU6r2NaM5bY2sUZIFlcyo7ZOtdGapZVbLJTCWb_StEZQhDBJaMEMRnMYMyd3yFbTNvYeAcV1JWWtjaoZF7xWPKFVrg1HHTN5Hs8IHWVXmlDU3HFrXJQ-uKGydJIvneTLIPkZeTbdcjVU9PhX4x0ntalhENiM7I0KUgabX5cMx74MEZlMZuTRdBmt1S3BqMa2PbZJU0Rk-EOw53cHxZqePerj_T-_c5dcc1T3w66hPbLVrXr7AAFRpx96S_gB17MCzA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcAFKOWxUGCQOAAii-PY2fiYvrSFboVgF7WnyHacttAmaDcREv-Af83YeQgQIG6J4iROZsbzje2Zj5BnSnBW8CgKjJA04DrOAxXJKAgLHlNuheY-v2J2FE8X_M2xOF4jr4ZcGGut33xmx-7Qr-XnlWncVJmrBosuOrlCrgrOuWiztYYZFU8h4clvGR4EiCsm3TJmSOXr-c7JNoaDjGGUOqEicRRwEbp7LhP-i0_yJCt_x5ve7-zfJLO-x-12k8_jptZj8-23Yo7_-0m3yI0OgELaaswGWbPlbbLRmfgKnnd1qF9sku9pCakxjSsmAYv0I0TBLrxDxAg90xHMPP80IPCF3fOVckUXYK9P6IT37f5bC9voKnOoSlAltLMYeOpTfyv9qR1x4cNXtbyEg58qhEJ6cVotz-uzyztksb8335kGHXNDYBAQ1IHlNA9twVhiCxNqBGVhLifUFrE2WrM4d8uFUjj7V5oWCIsQKAktmMF4DqPm6C5ZL6vS3ieguM6lLLRRBeOCF4pHNE-04ahlJknCEaG97DLTlTV37BoXmQ9vqMyc5DMn-ayT_Ii8HG750tb0-FfjTSe1oWEnsBHZ6hUk66x-lTEc_SaIyWQ0Ik-Hy2ivbhFGlbZqsE0cIybDH4I9v9cq1vDsXh8f_PmdT8i16Xx2mB0eHL19SK474vt2D9EWWa-XjX2E8KjWj71V_ACG0gYZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Accurate+UAV+3-D+Path+Planning+Method+for+Disaster+Emergency+Response+Based+on+an+Improved+Multiobjective+Swarm+Intelligence+Algorithm&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wan%2C+Yuting&rft.au=Zhong%2C+Yanfei&rft.au=Ma%2C+Ailong&rft.au=Zhang%2C+Liangpei&rft.date=2023-04-01&rft.eissn=2168-2275&rft.volume=53&rft.issue=4&rft.spage=2658&rft_id=info:doi/10.1109%2FTCYB.2022.3170580&rft_id=info%3Apmid%2F35604984&rft.externalDocID=35604984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon