Implementation and test of an RSSI-based indoor target localization system: Human movement effects on the accuracy
•An RSSI-based indoor target localization system is implemented and tested.•How the human movement affects the RSSI and localization accuracy is studied.•Results show that the localization error increases during the human movement.•A span thresholding filter reduces the RSSI variation caused by the...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 133; pp. 370 - 382 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.02.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0263-2241 1873-412X |
DOI | 10.1016/j.measurement.2018.10.031 |
Cover
Abstract | •An RSSI-based indoor target localization system is implemented and tested.•How the human movement affects the RSSI and localization accuracy is studied.•Results show that the localization error increases during the human movement.•A span thresholding filter reduces the RSSI variation caused by the human movement.
The movement of humans in wireless networks is one of major effects leading to significant received signal strength indicator (RSSI) variation. Using fluctuated RSSI on estimating the target position in the RSSI-based indoor localization system can give large error and poor decision of the system. In this paper, how the human movement affects the accuracy of an implemented indoor target localization system is explored by experiments, and a proposed simple RSSI filtering solution as the guideline solution to directly handle such a research problem is also presented. For our purpose, firstly, the RSSI-based indoor target localization system, which consists of design communication operations for measuring the RSSI in the wireless network and selected well-known localization methods (i.e. the min-max and the trilateration methods) for estimating the target position, is implemented and tested. Secondly, selected well-known filtering methods (i.e. the moving average and the exponentially weighted moving average filters) and the span thresholding filter (i.e. the proposed solution) are applied for reducing the RSSI variation and the estimated position error caused by the human movement. Our experiments have been carried out in an indoor environment. An LPC2103F microcontroller interfacing with a 2.4 GHz CC2500 RF module is developed and employed as the wireless node. Experimental results reveal that the estimated position error determined by the min-max and the trilateration methods significantly increases during the human movement, and converts according to human movement patterns and numbers of movement people. Also, the results demonstrate that by applying the moving average filter with a high window size and the exponentially weighted moving average filter with an optimal weighting factor to raw RSSI data, the estimated position error is not much improved. In contrast, the span thresholding filter gives better results and can directly cope with the human movement problem. In average, the localization error and the standard deviation decrease 11.921% and 42.086% in the case of the min-max method, and they decrease 44.535% and 87.154% in the case of the trilateration method. |
---|---|
AbstractList | The movement of humans in wireless networks is one of major effects leading to significant received signal strength indicator (RSSI) variation. Using fluctuated RSSI on estimating the target position in the RSSI-based indoor localization system can give large error and poor decision of the system. In this paper, how the human movement affects the accuracy of an implemented indoor target localization system is explored by experiments, and a proposed simple RSSI filtering solution as the guideline solution to directly handle such a research problem is also presented. For our purpose, firstly, the RSSI-based indoor target localization system, which consists of design communication operations for measuring the RSSI in the wireless network and selected well-known localization methods (i.e. the min-max and the trilateration methods) for estimating the target position, is implemented and tested. Secondly, selected well-known filtering methods (i.e. the moving average and the exponentially weighted moving average filters) and the span thresholding filter (i.e. the proposed solution) are applied for reducing the RSSI variation and the estimated position error caused by the human movement. Our experiments have been carried out in an indoor environment. An LPC2103F microcontroller interfacing with a 2.4 GHz CC2500 RF module is developed and employed as the wireless node. Experimental results reveal that the estimated position error determined by the min-max and the trilateration methods significantly increases during the human movement, and converts according to human movement patterns and numbers of movement people. Also, the results demonstrate that by applying the moving average filter with a high window size and the exponentially weighted moving average filter with an optimal weighting factor to raw RSSI data, the estimated position error is not much improved. In contrast, the span thresholding filter gives better results and can directly cope with the human movement problem. In average, the localization error and the standard deviation decrease 11.921% and 42.086% in the case of the min-max method, and they decrease 44.535% and 87.154% in the case of the trilateration method. •An RSSI-based indoor target localization system is implemented and tested.•How the human movement affects the RSSI and localization accuracy is studied.•Results show that the localization error increases during the human movement.•A span thresholding filter reduces the RSSI variation caused by the human movement. The movement of humans in wireless networks is one of major effects leading to significant received signal strength indicator (RSSI) variation. Using fluctuated RSSI on estimating the target position in the RSSI-based indoor localization system can give large error and poor decision of the system. In this paper, how the human movement affects the accuracy of an implemented indoor target localization system is explored by experiments, and a proposed simple RSSI filtering solution as the guideline solution to directly handle such a research problem is also presented. For our purpose, firstly, the RSSI-based indoor target localization system, which consists of design communication operations for measuring the RSSI in the wireless network and selected well-known localization methods (i.e. the min-max and the trilateration methods) for estimating the target position, is implemented and tested. Secondly, selected well-known filtering methods (i.e. the moving average and the exponentially weighted moving average filters) and the span thresholding filter (i.e. the proposed solution) are applied for reducing the RSSI variation and the estimated position error caused by the human movement. Our experiments have been carried out in an indoor environment. An LPC2103F microcontroller interfacing with a 2.4 GHz CC2500 RF module is developed and employed as the wireless node. Experimental results reveal that the estimated position error determined by the min-max and the trilateration methods significantly increases during the human movement, and converts according to human movement patterns and numbers of movement people. Also, the results demonstrate that by applying the moving average filter with a high window size and the exponentially weighted moving average filter with an optimal weighting factor to raw RSSI data, the estimated position error is not much improved. In contrast, the span thresholding filter gives better results and can directly cope with the human movement problem. In average, the localization error and the standard deviation decrease 11.921% and 42.086% in the case of the min-max method, and they decrease 44.535% and 87.154% in the case of the trilateration method. |
Author | Jindapetch, Nattha Sengchuai, Kiattisak Booranawong, Apidet |
Author_xml | – sequence: 1 givenname: Apidet surname: Booranawong fullname: Booranawong, Apidet – sequence: 2 givenname: Kiattisak surname: Sengchuai fullname: Sengchuai, Kiattisak – sequence: 3 givenname: Nattha surname: Jindapetch fullname: Jindapetch, Nattha email: nattha.s@psu.ac.th |
BookMark | eNqNkF1rHCEUhqUk0E3S_2Do9Ww86nzYmxKWpFkIBJoWeieOc6Z1mRm36gS2v75uJhchV7lR0fd5Dz5n5GTyExJyCWwNDKqr3XpEE-eAI05pzRk0-X7NBHwgK2hqUUjgv07IivFKFJxL-EjOYtwxxiqhqhUJ23E_PMMmOT9RM3U0YUzU9_lMvz8-bovWROyomzrvA00m_MZEB2_N4P4tUDzEhOMXejePmRn903Mhxb5HmyLNifQHqbF2DsYeLshpb4aIn172c_Lz9ubH5q64f_i23VzfF1ZCmfJagrLYWlAgGtmIvu6qWpVtXcrKSmPaSlhbN6CEtAy5aIXBxnDZ1QoApTgnn5feffB_5_wnvfNzmPJIzaFUSoDkLKfUkrLBxxiw1_vgRhMOGpg-KtY7_UqxPio-PmXFmf36hrVu8ZiCccO7GjZLA2YRTw6DjtbhZLFzIbvTnXfvaPkPamGj8Q |
CitedBy_id | crossref_primary_10_1007_s42835_022_01070_x crossref_primary_10_5937_jemc1802113D crossref_primary_10_1109_ACCESS_2019_2932718 crossref_primary_10_1016_j_measurement_2024_115874 crossref_primary_10_1109_ACCESS_2022_3165029 crossref_primary_10_1109_JSEN_2020_2994739 crossref_primary_10_3390_s23177599 crossref_primary_10_1007_s42835_020_00457_y crossref_primary_10_1016_j_compeleceng_2021_107233 crossref_primary_10_3390_s22165936 crossref_primary_10_3390_rs11091072 crossref_primary_10_1007_s11227_019_03110_2 crossref_primary_10_1007_s40860_019_00094_x crossref_primary_10_1109_JIOT_2020_3019732 crossref_primary_10_1007_s42835_022_01188_y crossref_primary_10_1109_TIM_2021_3126014 crossref_primary_10_1007_s11220_020_00296_1 crossref_primary_10_1007_s11517_021_02489_6 crossref_primary_10_3390_s19245546 crossref_primary_10_1109_ACCESS_2021_3068295 crossref_primary_10_1016_j_eij_2025_100643 crossref_primary_10_1007_s42835_020_00483_w crossref_primary_10_1007_s11220_023_00437_2 crossref_primary_10_1002_dac_5751 crossref_primary_10_3390_s23094352 |
Cites_doi | 10.1007/978-3-642-04385-7_12 10.4108/ICST.INFOSCALE2008.3484 10.1016/j.adhoc.2012.04.006 10.1109/TMC.2012.106 10.1155/2010/142092 10.1016/j.aei.2010.09.003 10.1109/MNET.2006.1637931 10.1109/ACCESS.2017.2688279 10.1109/WOWMOM.2007.4351751 10.1016/S1389-1286(03)00356-6 10.1109/MASCOT.2000.876429 10.3390/s90402836 10.1109/MOBIQ.2004.1331706 10.1109/WONS.2008.4459362 10.3390/s16030307 10.1155/2017/9243019 10.1109/ECTICon.2015.7207057 10.1109/TWC.2002.804190 10.1109/MSP.2005.1458287 10.1109/LCN.2013.6761255 10.1145/570738.570755 10.1109/CNSR.2008.94 10.1109/ICWISE.2013.6728775 10.1109/EW.2010.5483396 10.1109/TSMCC.2007.905750 10.3390/s130708303 10.1109/TCE.2012.6311323 10.1155/2012/790374 10.1007/978-3-319-24584-3_99 10.1109/JSEN.2018.2795747 10.1109/WOWMOM.2010.5534913 10.1145/1435473.1435475 10.1007/s11227-011-0693-2 10.1109/ECTICON.2009.5137213 10.1109/GLOCOM.2009.5425405 10.1109/JSEN.2013.2285411 10.4236/wsn.2011.31003 10.3390/s16040577 10.1109/TMC.2010.175 10.1109/AINA.2012.11 10.1109/TMC.2009.174 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier Science Ltd. Feb 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Feb 2019 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2018.10.031 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
EndPage | 382 |
ExternalDocumentID | 10_1016_j_measurement_2018_10_031 S0263224118309680 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c415t-c4519cebc19138483f7d6795b7546c4aab63cc781934c0e23b3ae8a24d7911e43 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Wed Aug 13 07:37:39 EDT 2025 Thu Apr 24 23:02:14 EDT 2025 Tue Jul 01 04:37:29 EDT 2025 Fri Feb 23 02:26:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RSSI variation RSSI filtering Indoor target localization Human movement Implementation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-c4519cebc19138483f7d6795b7546c4aab63cc781934c0e23b3ae8a24d7911e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2159931420 |
PQPubID | 2047460 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2159931420 crossref_primary_10_1016_j_measurement_2018_10_031 crossref_citationtrail_10_1016_j_measurement_2018_10_031 elsevier_sciencedirect_doi_10_1016_j_measurement_2018_10_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Y. Chapre, P. Mohapatra, S. Jha, A. Seneviratne, Received signal strength indicator and its analysis in a typical WLAN system, in: Proc. of the 38th IEEE Conference on Local Computer Networks, 2013, pp. 304–307. E. Goldoni, A. Savioli, M. Risi, P. Gamba, Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4, in: Proc. of the European Wireless Conference, 2010, pp. 71–77. S. Kellner, M. Pink, D. Meier, E.O. BlaB, Towards a realistic energy model for wireless sensor networks, in: Proc. of the Fifth Annual Conference on Wireless on Demand Network Systems and Services, 2008, pp. 97–100. Heinzelman, Chandrakasan, Balakrishnan (b0200) 2002; 1 Botta, Simek (b0135) 2013; 22 B. Rattanalert, W. Jindamaneepon, K. Sengchuai, A. Booranawong, N. Jindapetch, Problem investigation of min-max method for RSSI based indoor localization, in: Proc. of the 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2015, pp.1–5. Seifeldin, Saeed, Kosba, El-Keyi, Youssef (b0185) 2013; 12 J.C. Cano, P. Manzoni, A performance comparison of energy consumption for mobile ad hoc networks routing protocols, in: Proc. of the 8th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000. Booranawong, Jindapetch, Saito (b0195) 2018; 18 Alshami, Ahmad, Sahibuddin (b0110) 2015; 77 Patwari, Ash, Kyperountas, Hero, Moses, Correal (b0005) 2005; 22 T. Cheng, P. Li, S. Zhu, An algorithm for jammer localization in wireless sensor networks, in: Proc. of IEEE 26th International Conference on Advanced Information Networking and Applications, 2012, pp. 724–731. M. Çakiroǧlu, A.T. Özcerit, Jamming detection mechanisms for wireless sensor networks, in: Proc. of the 3rd International Conference on Scalable Information Systems, 2008, pp. 1–8. Pahtma, Preden, Ager, Pikk (b0070) 2009; 5 J.S.C. Turner, M.F. Ramli, L.M. Kamarudin, A. Zakaria, A.Y.M. Shakaff, D.L. Ndzi, C.M. Nor, N. Hassan, S.M. Mamduh, The study of human movement effect on signal strength for indoor WSN deployment, in: Proc. of the IEEE Conference on Wireless Sensors, 2013, pp.30–35. A. Booranawong, W. Teerapabkajorndet, Impact of radio propagation on the performance of directed diffusion routing in mobile wireless sensor networks, in: Proc. of the International Conference on Embedded Systems and Intelligent Technology, 2009. . Zhou, Luo, Gao, Zuo (b0230) 2011; 3 Soldovieri, Gennarelli (b0165) 2016; 16 Booranawong, Teerapabkajorndet, Limsakul (b0055) 2013; 13 K. Muthukrishnan, B.J. van der Zwaag, P. Havinga, Inferring motion and location using WLAN RSSI, in: Proc. 2nd International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments, Lecture Notes in Computer Sciences, 2009, pp. 163–182. Wang, Huang, Yang (b0035) 2010; 2010 Xu, Ma, Trappe, Zhang (b0235) 2006; 20 Vilajosana, Wang, Chraim, Watteyne, Chang, Pister (b0210) 2014; 14 A. Nafarieh, J. Ilow, A testbed for localizing wireless LAN devices using received signal strength, in: Proc. of the 6th Annual Communication Networks and Services Research Conference, 2008, pp. 481–487. Redondi, Chirico, Borsani, Cesana, Tagliasacchi (b0015) 2013; 11 Lei, Zhang, Sun, Tang (b0170) 2016; 16 Morin, Maman, Guizzetti, Duda (b0215) 2017; 5 A. Savvides, H. Park, M. Srivastava,The bits and flops of the N-hop multilateration primitive for node localization problems, in: Proc. of the First ACM International Workshop on Wireless Sensor Networks and Application, 2002, pp. 112–121. W. Jindamaneepon, B. Rattanalert, K. Sengchuai, A. Booranawong, N. Jindapetch, A novel FPGA-based multi-channel multi-interface wireless node: implementation and preliminary test, in: Advanced Computer and Communication Engineering Technology, Lecture Notes in Electrical Engineering, 2016, pp. 1163–1173. Liu, Darabi, Banerjee, Liu (b0010) 2007; 37 W.C. Lin, W.K.G. Seah, W. Li, Exploiting radio irregularity in the Internet of Things for automated people counting, in: Proc. of the 22nd IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC2011), 2011, pp. 1015–1019. Wilson, Patwari (b0190) 2010; 9 Yang (b0155) 2011 Luo, Brien, Julien (b0030) 2011; 25 Chen, Xia, Huang, Bu, Wang (b0050) 2013; 63 Mrazovac, Bjelica, Kukolj, Todorovic, Samardzija (b0045) 2012; 58 K. Kaemarungsi, P. Krishnamurthy, Properties of indoor received signal strength for WLAN location fingerprinting, in: Proc. of the first Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004, pp. 14–23. Wilson, Patwari (b0175) 2011; 10 Bitew, Hsiao, Lin, Lin (b0105) 2015; 2015 O. Chughtai, N. Badruddin, M. Rehan, A. Khan, Congestion detection and alleviation in multihop wireless sensor networks, in: Wireless Communications & Mobile Computing, 2017. Pei, Deng, Xu, Xu (b0040) 2009; 2009 Mautz (b0025) 2012 G. Zanca, F. Zorzi, A. Zanella, M. Zorzi, Experimental comparison of RSSI-based localization algorithms for indoor wireless sensor networks, in: Proc. of the Workshop on Real-word Wireless Sensor Networks, 2008, pp. 1–5. Halder, Kim (b0100) 2012; 2012 K. Pelechrinis, I. Koutsopoulos, I. Broustis, S.V. Krishnamurthy, Lightweight jammer localization in wireless networks: system design and implementation, in: Proc. of the IEEE GLOBECOM, 2009. R. Severino, M. Alves, Engineering a search and rescue application with a wireless sensor network-based localization mechanism, in: Proc. of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2007, pp.1–4. E.B. Hamida, G. Chaliue, Investigating the impact of human activity on the performance of wireless networks-an experimental approach, in: Proc. of the IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks, 2010, pp. 1–8. Q. Dong, W. Dargie, Evaluation of the reliability of RSSI for indoor localization, in: Proc. of the International Conference on Wireless Communications in Unusual and Confined Areas, 2012, pp. 1–6. Langendoen, Reijers (b0145) 2003; 43 T. Instrument, CC2500 Datasheet, Retrieved November 27, 2015 10.1016/j.measurement.2018.10.031_b0115 10.1016/j.measurement.2018.10.031_b0075 Alshami (10.1016/j.measurement.2018.10.031_b0110) 2015; 77 10.1016/j.measurement.2018.10.031_b0150 Wilson (10.1016/j.measurement.2018.10.031_b0190) 2010; 9 Pei (10.1016/j.measurement.2018.10.031_b0040) 2009; 2009 Luo (10.1016/j.measurement.2018.10.031_b0030) 2011; 25 Langendoen (10.1016/j.measurement.2018.10.031_b0145) 2003; 43 Chen (10.1016/j.measurement.2018.10.031_b0050) 2013; 63 Heinzelman (10.1016/j.measurement.2018.10.031_b0200) 2002; 1 10.1016/j.measurement.2018.10.031_b0120 Botta (10.1016/j.measurement.2018.10.031_b0135) 2013; 22 10.1016/j.measurement.2018.10.031_b0245 10.1016/j.measurement.2018.10.031_b0125 10.1016/j.measurement.2018.10.031_b0080 10.1016/j.measurement.2018.10.031_b0085 10.1016/j.measurement.2018.10.031_b0240 10.1016/j.measurement.2018.10.031_b0160 Yang (10.1016/j.measurement.2018.10.031_b0155) 2011 Lei (10.1016/j.measurement.2018.10.031_b0170) 2016; 16 Bitew (10.1016/j.measurement.2018.10.031_b0105) 2015; 2015 Xu (10.1016/j.measurement.2018.10.031_b0235) 2006; 20 Wang (10.1016/j.measurement.2018.10.031_b0035) 2010; 2010 Booranawong (10.1016/j.measurement.2018.10.031_b0055) 2013; 13 Morin (10.1016/j.measurement.2018.10.031_b0215) 2017; 5 Redondi (10.1016/j.measurement.2018.10.031_b0015) 2013; 11 Soldovieri (10.1016/j.measurement.2018.10.031_b0165) 2016; 16 Mautz (10.1016/j.measurement.2018.10.031_b0025) 2012 10.1016/j.measurement.2018.10.031_b0090 Vilajosana (10.1016/j.measurement.2018.10.031_b0210) 2014; 14 10.1016/j.measurement.2018.10.031_b0250 10.1016/j.measurement.2018.10.031_b0130 10.1016/j.measurement.2018.10.031_b0095 Liu (10.1016/j.measurement.2018.10.031_b0010) 2007; 37 Booranawong (10.1016/j.measurement.2018.10.031_b0195) 2018; 18 Pahtma (10.1016/j.measurement.2018.10.031_b0070) 2009; 5 10.1016/j.measurement.2018.10.031_b0205 Halder (10.1016/j.measurement.2018.10.031_b0100) 2012; 2012 Mrazovac (10.1016/j.measurement.2018.10.031_b0045) 2012; 58 Zhou (10.1016/j.measurement.2018.10.031_b0230) 2011; 3 10.1016/j.measurement.2018.10.031_b0065 10.1016/j.measurement.2018.10.031_b0220 10.1016/j.measurement.2018.10.031_b0225 10.1016/j.measurement.2018.10.031_b0180 10.1016/j.measurement.2018.10.031_b0060 10.1016/j.measurement.2018.10.031_b0140 10.1016/j.measurement.2018.10.031_b0020 Seifeldin (10.1016/j.measurement.2018.10.031_b0185) 2013; 12 Patwari (10.1016/j.measurement.2018.10.031_b0005) 2005; 22 Wilson (10.1016/j.measurement.2018.10.031_b0175) 2011; 10 |
References_xml | – reference: Q. Dong, W. Dargie, Evaluation of the reliability of RSSI for indoor localization, in: Proc. of the International Conference on Wireless Communications in Unusual and Confined Areas, 2012, pp. 1–6. – volume: 3 start-page: 18 year: 2011 end-page: 23 ident: b0230 article-title: Modeling of node energy consumption for wireless sensor networks publication-title: Wireless Sens. Network – volume: 20 start-page: 41 year: 2006 end-page: 47 ident: b0235 article-title: Jamming sensor networks publication-title: IEEE Network – reference: Y. Chapre, P. Mohapatra, S. Jha, A. Seneviratne, Received signal strength indicator and its analysis in a typical WLAN system, in: Proc. of the 38th IEEE Conference on Local Computer Networks, 2013, pp. 304–307. – volume: 43 start-page: 499 year: 2003 end-page: 518 ident: b0145 article-title: Distributed localization in wireless sensor networks: a quantitative comparison publication-title: Comput. Networks – reference: E. Goldoni, A. Savioli, M. Risi, P. Gamba, Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4, in: Proc. of the European Wireless Conference, 2010, pp. 71–77. – volume: 18 start-page: 2531 year: 2018 end-page: 2544 ident: b0195 article-title: A system for detection and tracking of human movements using RSSI signals publication-title: IEEE Sens. J. – volume: 22 start-page: 54 year: 2005 end-page: 69 ident: b0005 article-title: Locating the nodes: cooperative localization in wireless sensor networks publication-title: IEEE Signal Process Mag. – volume: 11 start-page: 29 year: 2013 end-page: 53 ident: b0015 article-title: An integrated system based on wireless senor networks for patient monitoring, localization and tracking publication-title: Ad-Hoc Networks – volume: 58 start-page: 819 year: 2012 end-page: 824 ident: b0045 article-title: A human detection method for residential smart energy based on Zigbee RSSI changes publication-title: IEEE Trans. Consum. Electron. – volume: 1 start-page: 660 year: 2002 end-page: 670 ident: b0200 article-title: An application-specific protocol architecture for wireless microsensor networks publication-title: IEEE Trans. Wireless Commun. – volume: 5 start-page: 7097 year: 2017 end-page: 7114 ident: b0215 article-title: Comparison of the device lifetime in wireless networks for the Internet of things publication-title: IEEE Access – reference: W.C. Lin, W.K.G. Seah, W. Li, Exploiting radio irregularity in the Internet of Things for automated people counting, in: Proc. of the 22nd IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC2011), 2011, pp. 1015–1019. – volume: 14 start-page: 482 year: 2014 end-page: 489 ident: b0210 article-title: A realistic energy consumption model for tsch networks publication-title: IEEE Sens. J. – reference: A. Nafarieh, J. Ilow, A testbed for localizing wireless LAN devices using received signal strength, in: Proc. of the 6th Annual Communication Networks and Services Research Conference, 2008, pp. 481–487. – reference: T. Cheng, P. Li, S. Zhu, An algorithm for jammer localization in wireless sensor networks, in: Proc. of IEEE 26th International Conference on Advanced Information Networking and Applications, 2012, pp. 724–731. – reference: T. Instrument, CC2500 Datasheet, Retrieved November 27, 2015, – volume: 25 start-page: 355 year: 2011 end-page: 363 ident: b0030 article-title: Comparative evaluation of received signal-strength index (RSSI) based indoor localization techniques for construction jobsites publication-title: Adv. Eng. Inf. – reference: A. Booranawong, W. Teerapabkajorndet, Impact of radio propagation on the performance of directed diffusion routing in mobile wireless sensor networks, in: Proc. of the International Conference on Embedded Systems and Intelligent Technology, 2009. – volume: 2010 start-page: 1 year: 2010 end-page: 14 ident: b0035 article-title: A novel real-time coal miner localization and tracking system based on self-organized sensor networks publication-title: EURASIP J. Wireless Commun. Networking – volume: 10 start-page: 612 year: 2011 end-page: 621 ident: b0175 article-title: See through walls: motion tracking using variance-based radio tomography networks publication-title: IEEE Trans. Mob. Comput. – volume: 12 start-page: 1321 year: 2013 end-page: 1334 ident: b0185 article-title: Nuzzer: a large-scale device-free passive localization system for wireless environments publication-title: IEEE Trans. Mob. Comput. – reference: K. Pelechrinis, I. Koutsopoulos, I. Broustis, S.V. Krishnamurthy, Lightweight jammer localization in wireless networks: system design and implementation, in: Proc. of the IEEE GLOBECOM, 2009. – volume: 77 start-page: 173 year: 2015 end-page: 178 ident: b0110 article-title: People’s presence effect on WLAN-based IPs accuracy publication-title: J. Teknol. – volume: 2009 start-page: 2836 year: 2009 end-page: 2850 ident: b0040 article-title: Anchor-free localization method for mobile targets in coal mine wireless sensor networks publication-title: Sensors – volume: 2015 start-page: 1 year: 2015 end-page: 9 ident: b0105 article-title: Hybrid indoor human localization system for addressing the issue of RSS variation in fingerprinting publication-title: Int. J. Distrib. Sens. Networks – reference: G. Zanca, F. Zorzi, A. Zanella, M. Zorzi, Experimental comparison of RSSI-based localization algorithms for indoor wireless sensor networks, in: Proc. of the Workshop on Real-word Wireless Sensor Networks, 2008, pp. 1–5. – year: 2011 ident: b0155 article-title: Implementation of a wireless sensor network with EZ430-RF2500 development tools and MSP430FG4618/F2013 experimenter boards from Texas instruments – volume: 9 start-page: 621 year: 2010 end-page: 632 ident: b0190 article-title: Radio tomographic imaging with wireless networks publication-title: IEEE Trans. Mob. Comput. – reference: J.S.C. Turner, M.F. Ramli, L.M. Kamarudin, A. Zakaria, A.Y.M. Shakaff, D.L. Ndzi, C.M. Nor, N. Hassan, S.M. Mamduh, The study of human movement effect on signal strength for indoor WSN deployment, in: Proc. of the IEEE Conference on Wireless Sensors, 2013, pp.30–35. – reference: A. Savvides, H. Park, M. Srivastava,The bits and flops of the N-hop multilateration primitive for node localization problems, in: Proc. of the First ACM International Workshop on Wireless Sensor Networks and Application, 2002, pp. 112–121. – reference: J.C. Cano, P. Manzoni, A performance comparison of energy consumption for mobile ad hoc networks routing protocols, in: Proc. of the 8th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000. – volume: 16 start-page: 1 year: 2016 end-page: 13 ident: b0165 article-title: Exploitation of ubiquitous Wi-Fi devices as building blocks for improvised motion detection systems publication-title: Sensors – volume: 22 start-page: 1162 year: 2013 end-page: 1168 ident: b0135 article-title: Adaptive distance estimation based on RSSI in 802.15.4 network publication-title: Int. J. Radio Eng. – volume: 37 start-page: 1067 year: 2007 end-page: 1080 ident: b0010 article-title: Survey of wireless indoor positioning techniques and systems publication-title: IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev. – volume: 13 start-page: 8303 year: 2013 end-page: 8330 ident: b0055 article-title: Energy consumption and control response evaluations of AODV routing in WSANs for building-temperature control publication-title: Sensors – year: 2012 ident: b0025 article-title: Indoor Positioning Technologies – reference: M. Çakiroǧlu, A.T. Özcerit, Jamming detection mechanisms for wireless sensor networks, in: Proc. of the 3rd International Conference on Scalable Information Systems, 2008, pp. 1–8. – reference: B. Rattanalert, W. Jindamaneepon, K. Sengchuai, A. Booranawong, N. Jindapetch, Problem investigation of min-max method for RSSI based indoor localization, in: Proc. of the 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2015, pp.1–5. – reference: K. Muthukrishnan, B.J. van der Zwaag, P. Havinga, Inferring motion and location using WLAN RSSI, in: Proc. 2nd International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments, Lecture Notes in Computer Sciences, 2009, pp. 163–182. – reference: W. Jindamaneepon, B. Rattanalert, K. Sengchuai, A. Booranawong, N. Jindapetch, A novel FPGA-based multi-channel multi-interface wireless node: implementation and preliminary test, in: Advanced Computer and Communication Engineering Technology, Lecture Notes in Electrical Engineering, 2016, pp. 1163–1173. – reference: E.B. Hamida, G. Chaliue, Investigating the impact of human activity on the performance of wireless networks-an experimental approach, in: Proc. of the IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks, 2010, pp. 1–8. – volume: 63 start-page: 657 year: 2013 end-page: 674 ident: b0050 article-title: A localization method for the internet of things publication-title: J. Supercomput. – reference: S. Kellner, M. Pink, D. Meier, E.O. BlaB, Towards a realistic energy model for wireless sensor networks, in: Proc. of the Fifth Annual Conference on Wireless on Demand Network Systems and Services, 2008, pp. 97–100. – reference: O. Chughtai, N. Badruddin, M. Rehan, A. Khan, Congestion detection and alleviation in multihop wireless sensor networks, in: Wireless Communications & Mobile Computing, 2017. – reference: K. Kaemarungsi, P. Krishnamurthy, Properties of indoor received signal strength for WLAN location fingerprinting, in: Proc. of the first Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004, pp. 14–23. – volume: 2012 start-page: 1 year: 2012 end-page: 10 ident: b0100 article-title: A fusion approach of RSSI and LQI for indoor localization system using adaptive smoothers publication-title: J. Comput. Networks Commun. – reference: . – volume: 5 start-page: 39 year: 2009 end-page: 43 ident: b0070 article-title: Utilization of received signal strength indication by embedded nodes publication-title: Elektronika ir Elektrotechnika – reference: R. Severino, M. Alves, Engineering a search and rescue application with a wireless sensor network-based localization mechanism, in: Proc. of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2007, pp.1–4. – volume: 16 start-page: 1 year: 2016 end-page: 12 ident: b0170 article-title: A new Elliptical model for device-free localization publication-title: Sensors – ident: 10.1016/j.measurement.2018.10.031_b0130 doi: 10.1007/978-3-642-04385-7_12 – ident: 10.1016/j.measurement.2018.10.031_b0240 doi: 10.4108/ICST.INFOSCALE2008.3484 – volume: 11 start-page: 29 year: 2013 ident: 10.1016/j.measurement.2018.10.031_b0015 article-title: An integrated system based on wireless senor networks for patient monitoring, localization and tracking publication-title: Ad-Hoc Networks doi: 10.1016/j.adhoc.2012.04.006 – volume: 12 start-page: 1321 issue: 7 year: 2013 ident: 10.1016/j.measurement.2018.10.031_b0185 article-title: Nuzzer: a large-scale device-free passive localization system for wireless environments publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2012.106 – volume: 2010 start-page: 1 year: 2010 ident: 10.1016/j.measurement.2018.10.031_b0035 article-title: A novel real-time coal miner localization and tracking system based on self-organized sensor networks publication-title: EURASIP J. Wireless Commun. Networking doi: 10.1155/2010/142092 – year: 2012 ident: 10.1016/j.measurement.2018.10.031_b0025 – volume: 25 start-page: 355 issue: 2 year: 2011 ident: 10.1016/j.measurement.2018.10.031_b0030 article-title: Comparative evaluation of received signal-strength index (RSSI) based indoor localization techniques for construction jobsites publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2010.09.003 – volume: 20 start-page: 41 year: 2006 ident: 10.1016/j.measurement.2018.10.031_b0235 article-title: Jamming sensor networks: attacks and defense strategies publication-title: IEEE Network doi: 10.1109/MNET.2006.1637931 – volume: 5 start-page: 7097 year: 2017 ident: 10.1016/j.measurement.2018.10.031_b0215 article-title: Comparison of the device lifetime in wireless networks for the Internet of things publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2688279 – ident: 10.1016/j.measurement.2018.10.031_b0020 doi: 10.1109/WOWMOM.2007.4351751 – volume: 77 start-page: 173 issue: 9 year: 2015 ident: 10.1016/j.measurement.2018.10.031_b0110 article-title: People’s presence effect on WLAN-based IPs accuracy publication-title: J. Teknol. – volume: 43 start-page: 499 issue: 4 year: 2003 ident: 10.1016/j.measurement.2018.10.031_b0145 article-title: Distributed localization in wireless sensor networks: a quantitative comparison publication-title: Comput. Networks doi: 10.1016/S1389-1286(03)00356-6 – ident: 10.1016/j.measurement.2018.10.031_b0205 doi: 10.1109/MASCOT.2000.876429 – volume: 2009 start-page: 2836 year: 2009 ident: 10.1016/j.measurement.2018.10.031_b0040 article-title: Anchor-free localization method for mobile targets in coal mine wireless sensor networks publication-title: Sensors doi: 10.3390/s90402836 – year: 2011 ident: 10.1016/j.measurement.2018.10.031_b0155 – ident: 10.1016/j.measurement.2018.10.031_b0090 doi: 10.1109/MOBIQ.2004.1331706 – ident: 10.1016/j.measurement.2018.10.031_b0225 doi: 10.1109/WONS.2008.4459362 – volume: 16 start-page: 1 issue: 3 year: 2016 ident: 10.1016/j.measurement.2018.10.031_b0165 article-title: Exploitation of ubiquitous Wi-Fi devices as building blocks for improvised motion detection systems publication-title: Sensors doi: 10.3390/s16030307 – ident: 10.1016/j.measurement.2018.10.031_b0220 doi: 10.1155/2017/9243019 – ident: 10.1016/j.measurement.2018.10.031_b0120 doi: 10.1109/ECTICon.2015.7207057 – volume: 1 start-page: 660 issue: 4 year: 2002 ident: 10.1016/j.measurement.2018.10.031_b0200 article-title: An application-specific protocol architecture for wireless microsensor networks publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2002.804190 – volume: 22 start-page: 54 issue: 4 year: 2005 ident: 10.1016/j.measurement.2018.10.031_b0005 article-title: Locating the nodes: cooperative localization in wireless sensor networks publication-title: IEEE Signal Process Mag. doi: 10.1109/MSP.2005.1458287 – volume: 5 start-page: 39 issue: 93 year: 2009 ident: 10.1016/j.measurement.2018.10.031_b0070 article-title: Utilization of received signal strength indication by embedded nodes publication-title: Elektronika ir Elektrotechnika – ident: 10.1016/j.measurement.2018.10.031_b0075 doi: 10.1109/LCN.2013.6761255 – ident: 10.1016/j.measurement.2018.10.031_b0140 doi: 10.1145/570738.570755 – ident: 10.1016/j.measurement.2018.10.031_b0065 doi: 10.1109/CNSR.2008.94 – ident: 10.1016/j.measurement.2018.10.031_b0095 doi: 10.1109/ICWISE.2013.6728775 – ident: 10.1016/j.measurement.2018.10.031_b0115 doi: 10.1109/EW.2010.5483396 – volume: 37 start-page: 1067 issue: 6 year: 2007 ident: 10.1016/j.measurement.2018.10.031_b0010 article-title: Survey of wireless indoor positioning techniques and systems publication-title: IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev. doi: 10.1109/TSMCC.2007.905750 – volume: 13 start-page: 8303 issue: 7 year: 2013 ident: 10.1016/j.measurement.2018.10.031_b0055 article-title: Energy consumption and control response evaluations of AODV routing in WSANs for building-temperature control publication-title: Sensors doi: 10.3390/s130708303 – volume: 58 start-page: 819 issue: 3 year: 2012 ident: 10.1016/j.measurement.2018.10.031_b0045 article-title: A human detection method for residential smart energy based on Zigbee RSSI changes publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2012.6311323 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.measurement.2018.10.031_b0100 article-title: A fusion approach of RSSI and LQI for indoor localization system using adaptive smoothers publication-title: J. Comput. Networks Commun. doi: 10.1155/2012/790374 – ident: 10.1016/j.measurement.2018.10.031_b0150 – ident: 10.1016/j.measurement.2018.10.031_b0160 doi: 10.1007/978-3-319-24584-3_99 – volume: 18 start-page: 2531 issue: 6 year: 2018 ident: 10.1016/j.measurement.2018.10.031_b0195 article-title: A system for detection and tracking of human movements using RSSI signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2795747 – ident: 10.1016/j.measurement.2018.10.031_b0080 doi: 10.1109/WOWMOM.2010.5534913 – ident: 10.1016/j.measurement.2018.10.031_b0060 doi: 10.1145/1435473.1435475 – volume: 63 start-page: 657 issue: 3 year: 2013 ident: 10.1016/j.measurement.2018.10.031_b0050 article-title: A localization method for the internet of things publication-title: J. Supercomput. doi: 10.1007/s11227-011-0693-2 – ident: 10.1016/j.measurement.2018.10.031_b0180 doi: 10.1109/ECTICON.2009.5137213 – ident: 10.1016/j.measurement.2018.10.031_b0245 doi: 10.1109/GLOCOM.2009.5425405 – volume: 14 start-page: 482 issue: 2 year: 2014 ident: 10.1016/j.measurement.2018.10.031_b0210 article-title: A realistic energy consumption model for tsch networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2285411 – ident: 10.1016/j.measurement.2018.10.031_b0125 – ident: 10.1016/j.measurement.2018.10.031_b0085 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.measurement.2018.10.031_b0105 article-title: Hybrid indoor human localization system for addressing the issue of RSS variation in fingerprinting publication-title: Int. J. Distrib. Sens. Networks – volume: 3 start-page: 18 year: 2011 ident: 10.1016/j.measurement.2018.10.031_b0230 article-title: Modeling of node energy consumption for wireless sensor networks publication-title: Wireless Sens. Network doi: 10.4236/wsn.2011.31003 – volume: 22 start-page: 1162 issue: 4 year: 2013 ident: 10.1016/j.measurement.2018.10.031_b0135 article-title: Adaptive distance estimation based on RSSI in 802.15.4 network publication-title: Int. J. Radio Eng. – volume: 16 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.measurement.2018.10.031_b0170 article-title: A new Elliptical model for device-free localization publication-title: Sensors doi: 10.3390/s16040577 – volume: 10 start-page: 612 issue: 5 year: 2011 ident: 10.1016/j.measurement.2018.10.031_b0175 article-title: See through walls: motion tracking using variance-based radio tomography networks publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2010.175 – ident: 10.1016/j.measurement.2018.10.031_b0250 doi: 10.1109/AINA.2012.11 – volume: 9 start-page: 621 issue: 5 year: 2010 ident: 10.1016/j.measurement.2018.10.031_b0190 article-title: Radio tomographic imaging with wireless networks publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2009.174 |
SSID | ssj0006396 |
Score | 2.3473976 |
Snippet | •An RSSI-based indoor target localization system is implemented and tested.•How the human movement affects the RSSI and localization accuracy is... The movement of humans in wireless networks is one of major effects leading to significant received signal strength indicator (RSSI) variation. Using... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 370 |
SubjectTerms | Accuracy Calculus of variations Communications systems Effects Errors Estimation Filtration Human mechanics Human motion Human movement Implementation Indoor environments Indoor target localization Localization Measurement Microcontrollers Position indicators RSSI filtering RSSI variation Signal strength Wireless communications Wireless networks |
Title | Implementation and test of an RSSI-based indoor target localization system: Human movement effects on the accuracy |
URI | https://dx.doi.org/10.1016/j.measurement.2018.10.031 https://www.proquest.com/docview/2159931420 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6MiaIP4hWnc0TwtVvbpG0mvozhmAo-eAHfSpKmMHHt2LoHX_ztnrSpU0EQhNJrUkrO6fm-hC8nAOcpclRuhsCUpr7DhPAcKdGXzRILHk1FgJtRW9yF4yd28xw8N2BYz4Uxskob-6uYXkZre6dnW7M3m0x6D65JNY4AhE6JPJybfrvJ_oU-3X1fyTwQgcNqnIU6pvQGnK00XtPVOJxRefGuEXpR7zeM-hGtSwga7cC25Y5kUH3eLjR0tgdbXzIK7sF6qehUi32Yl3l_p3ZqUUZElhCklQXJUzwn9xhFHQNhCcFeeZ7PSaUJJyW42cmZpMrzfEHKoX4yzcvk4gWxIhCCJZA_EqHUci7U2wE8ja4eh2PHLrDgKMTtAvfI35SWCjttlDNO0ygJo34go4CFCg0nQ6pUhKSBMuVqn0oqNBc-SyKMkZrRQ2hmeaaPgGCsSqmrPdnvJ4xLJXQQuRoPGCOC1OMt4HWTxspmHzeLYLzGtczsJf5ijdhYwzxCa7TA_6w6q1Jw_KXSZW23-Js_xQgVf6nerm0d2596ESM7QjbnMd89_t_bT2ATr_qV-LsNzWK-1KfIbQrZKZ23A2uD69vx3QcMUPvK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB5kF68H8cRj1Qi-1m2btM2KLyLKrsc-eIBvIUlTWHFbWeuD_95Jm64HCIJQ2tJ2SslMv_kSvkwADjPkqNwOgWlDQ49JGXhKYSzbJRYCmskIN6u2GMb9B3b5GD3OwFkzF8bKKh3215heobW70nWt2X0Zjbp3vi01jgkIgxJ5OMd-e5tFiMktaJ8OrvrDKSBjEo7roRbqWYM5OPiUeY0_h-Ks0IsfWa0XDX5LUz8Au8pCF8uw5OgjOa2_cAVmTL4Ki1-KCq7CbCXq1K9rMKlK_47d7KKcyDwlyCxLUmR4Tm4RSD2bxVKCHfOimJBaFk6q_ObmZ5K61PMxqUb7ybio6ouXxOlACD6BFJJIrd8mUr-vw8PF-f1Z33NrLHgaU3eJe6Rw2iiN_TbKGadZksZJL1JJxGKNvlMx1TpB3kCZ9k1IFZWGy5ClCcKkYXQDWnmRm00gCFcZ9U2ger2UcaWliRLf4AFhIsoCvgW8aVKhXQFyuw7Gs2iUZk_iizeE9Ya9hd7YgnBq-lJX4fiL0UnjN_EtpARmi7-YdxpfC_dfvwokSEjoAhb62_97-z7M9-9vrsX1YHi1Awt4p1drwTvQKidvZhepTqn2XCh_AJFQ_nU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+and+test+of+an+RSSI-based+indoor+target+localization+system%3A+Human+movement+effects+on+the+accuracy&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Booranawong%2C+Apidet&rft.au=Sengchuai%2C+Kiattisak&rft.au=Jindapetch%2C+Nattha&rft.date=2019-02-01&rft.issn=0263-2241&rft.volume=133&rft.spage=370&rft.epage=382&rft_id=info:doi/10.1016%2Fj.measurement.2018.10.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2018_10_031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |