A Hybrid Fuzzy-Based Multi-Objective PSO Algorithm for Conjunctive Water Use and Optimal Multi-Crop Pattern Planning
This paper focuses on extracting an optimal multi-crop pattern plan through multi-objective conjunctive surface-ground water use management. Minimizing shortages in meeting irrigation demands, maximizing groundwater resources sustainability and maximizing agricultural net benefits are the three main...
Saved in:
| Published in | Water resources management Vol. 31; no. 4; pp. 1139 - 1155 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.03.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-016-1567-4 |
Cover
| Abstract | This paper focuses on extracting an optimal multi-crop pattern plan through multi-objective conjunctive surface-ground water use management. Minimizing shortages in meeting irrigation demands, maximizing groundwater resources sustainability and maximizing agricultural net benefits are the three main goals of the multi-objective optimization problem solved in this paper. A new robust fuzzy-based multi-objective PSO algorithm called f-MOPSO is adopted and modified to solve a three-objective real-world conjunctive use management problem presented in this paper after testing on standard test problems revealed f-MOPSO superiority as compared to the well-known multi-swarm vector evaluated PSO (VEPSO) algorithm. The f-MOPSO benefits from a well-organized Sugeno fuzzy inference system (SFIS) designed for handling multi-objective nature of the optimization problems. The unique performance of f-MOPSO is not only presenting the better final solutions, but also aggregating the capabilities for measurement of dominance and diversity of the solutions in one stage by one index named comprehensive dominance index, in contrast to a wide range of multi-objective algorithms that evaluate dominance and diversity in two separate stages resulting in excessive computational burden. The optimization model is carried out on a 10-year long-term simulation period, resulting in increasing irrigation efficiency i.e. decreasing water losses, decreasing water consumption per unit cultivated area and increasing water productivity compared to those similar criteria observed in actual operation in the study area. The wheat and rice crops were identified as the dominant crops, while the optimization model was the least interested to onion cultivation, assigning the least average cultivation area to this crop over the whole planning period. |
|---|---|
| AbstractList | This paper focuses on extracting an optimal multi-crop pattern plan through multi-objective conjunctive surface-ground water use management. Minimizing shortages in meeting irrigation demands, maximizing groundwater resources sustainability and maximizing agricultural net benefits are the three main goals of the multi-objective optimization problem solved in this paper. A new robust fuzzy-based multi-objective PSO algorithm called f-MOPSO is adopted and modified to solve a three-objective real-world conjunctive use management problem presented in this paper after testing on standard test problems revealed f-MOPSO superiority as compared to the well-known multi-swarm vector evaluated PSO (VEPSO) algorithm. The f-MOPSO benefits from a well-organized Sugeno fuzzy inference system (SFIS) designed for handling multi-objective nature of the optimization problems. The unique performance of f-MOPSO is not only presenting the better final solutions, but also aggregating the capabilities for measurement of dominance and diversity of the solutions in one stage by one index named comprehensive dominance index, in contrast to a wide range of multi-objective algorithms that evaluate dominance and diversity in two separate stages resulting in excessive computational burden. The optimization model is carried out on a 10-year long-term simulation period, resulting in increasing irrigation efficiency i.e. decreasing water losses, decreasing water consumption per unit cultivated area and increasing water productivity compared to those similar criteria observed in actual operation in the study area. The wheat and rice crops were identified as the dominant crops, while the optimization model was the least interested to onion cultivation, assigning the least average cultivation area to this crop over the whole planning period. |
| Author | Safavi, Hamid R. Zekri, Maryam Rezaei, Farshad |
| Author_xml | – sequence: 1 givenname: Farshad surname: Rezaei fullname: Rezaei, Farshad organization: Department of Civil Engineering, Isfahan University of Technology – sequence: 2 givenname: Hamid R. surname: Safavi fullname: Safavi, Hamid R. email: hasafavi@cc.iut.ac.ir organization: Department of Civil Engineering, Isfahan University of Technology – sequence: 3 givenname: Maryam surname: Zekri fullname: Zekri, Maryam organization: Department of Electrical and Computer Engineering, Isfahan University of Technology |
| BookMark | eNqNkU9rHCEchqUk0E3SD9Cb0Esvtj8dR8fjdmmaQMouJKFHcWacrcusbtUpbD59TSaHEuifkwef5-XV9wyd-OAtQm8pfKAA8mOilAlFgApCayEJf4UWtJYVoaKGE7QAxYBwyelrdJbSDqBYChYoL_HVsY2ux5fTw8ORfDLJ9vjrNGZH1u3Odtn9tHhzu8bLcRuiy9_3eAgRr4LfTX6-_Wayjfg-WWx8j9eH7PZmfM5YxXDAG5ML4fFmNN47v71Ap4MZk33zfJ6j-8vPd6srcrP-cr1a3pCO0zqTDipTtQ1rYehVpVgzUNvWxvbSWCmF6vsa2q6SCgww00MLorMc2MAoWCGa6hy9n3MPMfyYbMp671Jnx1LDhilpBgBcVFzKf6K0KQ2gkOw_0IZKruhT6rsX6C5M0Zc3F0rWQlGmoFByproYUop20J3LJrvgczRu1BT048Z63liXjfXjxpoXk74wD7F8fjz-1WGzkwrrtzb-1umP0i9S2rlu |
| CitedBy_id | crossref_primary_10_1016_j_compag_2021_106288 crossref_primary_10_1007_s11269_022_03064_w crossref_primary_10_1080_15715124_2021_1879093 crossref_primary_10_2166_ws_2023_201 crossref_primary_10_1016_j_jclepro_2020_123548 crossref_primary_10_1038_s41598_024_69487_0 crossref_primary_10_1007_s00521_024_10635_y crossref_primary_10_1007_s10661_022_09909_6 crossref_primary_10_1007_s41062_022_00750_x crossref_primary_10_3390_jmse7080246 crossref_primary_10_1016_j_agwat_2020_106688 crossref_primary_10_1007_s11269_023_03557_2 crossref_primary_10_1016_j_agwat_2021_107116 crossref_primary_10_1016_j_jclepro_2019_06_165 crossref_primary_10_1016_j_agwat_2019_05_047 crossref_primary_10_1007_s10661_025_13856_3 crossref_primary_10_1016_j_aej_2024_07_022 crossref_primary_10_1007_s10661_020_08727_y crossref_primary_10_1061__ASCE_WR_1943_5452_0001591 crossref_primary_10_1007_s11356_022_19762_2 crossref_primary_10_1016_j_agwat_2023_108181 crossref_primary_10_1016_j_jenvman_2017_12_006 crossref_primary_10_3390_w14020266 crossref_primary_10_3390_w9060414 crossref_primary_10_1007_s40974_021_00211_8 crossref_primary_10_1007_s11269_022_03206_0 crossref_primary_10_1007_s13253_024_00651_9 crossref_primary_10_1007_s41062_022_00992_9 crossref_primary_10_1007_s12205_023_2491_9 crossref_primary_10_1016_j_jhydrol_2021_126258 crossref_primary_10_1007_s11356_022_25089_9 crossref_primary_10_1016_j_jenvman_2021_112807 crossref_primary_10_1016_j_jhydrol_2018_08_078 crossref_primary_10_1007_s11269_019_02229_4 crossref_primary_10_1007_s13201_024_02295_z crossref_primary_10_1016_j_agwat_2021_107068 |
| Cites_doi | 10.1007/s11269-014-0549-7 10.1109/ICNN.1995.488968 10.1007/s11047-009-9171-7 10.1061/(ASCE)0733-9496(2004)130:6(490) 10.1016/j.jher.2016.05.007 10.1145/508791.508907 10.1007/s10489-011-0328-6 10.1007/s11269-013-0307-2 10.1016/j.ejor.2015.06.071 10.1007/s11269-010-9750-5 10.2166/hydro.2010.105 10.3733/hilg.v36n02p031 10.1007/s11269-016-1426-3 10.1109/SIS.2003.1202243 10.1016/j.proeng.2016.11.093 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2017 Water Resources Management is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2017 – notice: Water Resources Management is a copyright of Springer, 2017. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.0 L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7TG KL. 7S9 L.6 |
| DOI | 10.1007/s11269-016-1567-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database Biological Science Database (Proquest) ProQuest Engineering Database (NC LIVE) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA ProQuest Business Collection (Alumni Edition) Technology Research Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 1573-1650 |
| EndPage | 1155 |
| ExternalDocumentID | 4319894011 10_1007_s11269_016_1567_4 |
| Genre | Feature |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.0 L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7TG KL. 7S9 L.6 |
| ID | FETCH-LOGICAL-c415t-c03a3b82b0fd93928f1eb5aed7ae7769dd50bc3790a02ad0b06ce402f210e6683 |
| IEDL.DBID | BENPR |
| ISSN | 0920-4741 |
| IngestDate | Fri Sep 05 07:41:46 EDT 2025 Fri Sep 05 08:08:31 EDT 2025 Tue Oct 07 09:54:06 EDT 2025 Sun Jul 13 04:27:23 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Wed Oct 01 01:44:53 EDT 2025 Fri Feb 21 02:26:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Fuzzy inference system Conjunctive use Multi-objective particle swarm optimization (MOPSO) Multi-crop pattern planning Artificial neural networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-c03a3b82b0fd93928f1eb5aed7ae7769dd50bc3790a02ad0b06ce402f210e6683 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1875691290 |
| PQPubID | 54174 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2000463477 proquest_miscellaneous_1893904772 proquest_miscellaneous_1881749177 proquest_journals_1875691290 crossref_citationtrail_10_1007_s11269_016_1567_4 crossref_primary_10_1007_s11269_016_1567_4 springer_journals_10_1007_s11269_016_1567_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20170300 2017-3-00 20170301 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 3 year: 2017 text: 20170300 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2017 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Safavi, Esmikhani (CR17) 2013; 27 CR4 Daneshmand, Karimi, Nikoo, Bazargan-Lari, Adamowski (CR3) 2014; 28 Rezaei, Safavi, Mirchi, Madani (CR16) 2017; 14 Safavi, Rezaei (CR18) 2015; 39 CR19 Fallah-Mehdipour, Bozorg Haddad, Marino (CR5) 2011; 13 Parsopoulos, Vrahatis (CR13) 2002 CR14 CR10 CR20 Abido (CR1) 2010; 9 Kennedy, Eberhart (CR7) 1995 Regulwar, Gurov (CR15) 2011; 25 McPhee, Yeh (CR9) 2004; 130 Heydari, Saghafian, Delavar (CR6) 2016 Burt (CR2) 1964; 36 Moubayed, Pertovski, McCall (CR11) 2010; 6239 Lin, Li, Du, Chen, Ming (CR8) 2015; 247 Zeleny, Cochrane, Zeleny (CR21) 1973 Norouzzadeh, Ahmadzadeh, Palhang (CR12) 2012; 37 OR Burt (1567_CR2) 1964; 36 J Kennedy (1567_CR7) 1995 J McPhee (1567_CR9) 2004; 130 MS Norouzzadeh (1567_CR12) 2012; 37 Q Lin (1567_CR8) 2015; 247 NAI Moubayed (1567_CR11) 2010; 6239 1567_CR19 M Zeleny (1567_CR21) 1973 F Rezaei (1567_CR16) 2017; 14 KE Parsopoulos (1567_CR13) 2002 1567_CR14 DG Regulwar (1567_CR15) 2011; 25 F Heydari (1567_CR6) 2016 1567_CR10 HR Safavi (1567_CR18) 2015; 39 1567_CR4 F Daneshmand (1567_CR3) 2014; 28 E Fallah-Mehdipour (1567_CR5) 2011; 13 MA Abido (1567_CR1) 2010; 9 1567_CR20 HR Safavi (1567_CR17) 2013; 27 |
| References_xml | – volume: 28 start-page: 1517 year: 2014 end-page: 1529 ident: CR3 article-title: Mitigating socio-economic-environmental impacts during periods by optimizing the conjunctive management of water resources publication-title: Water Resour Manag doi: 10.1007/s11269-014-0549-7 – start-page: 263 year: 1973 end-page: 301 ident: CR21 article-title: Compromise programming, multiple criteria decision-making publication-title: Multiple criteria decision making – ident: CR19 – year: 2016 ident: CR6 article-title: Coupled quantity-quality simulation-optimization model for conjunctive surface-groundwater use publication-title: Water Resour Manag – start-page: 1942 year: 1995 end-page: 1948 ident: CR7 article-title: Particle swarm optimization publication-title: Proc international conference on neural networks, Perth doi: 10.1109/ICNN.1995.488968 – volume: 9 start-page: 747 year: 2010 end-page: 766 ident: CR1 article-title: Multiobjective particle swarm optimization with nondominated local and global sets publication-title: Nat Comput doi: 10.1007/s11047-009-9171-7 – ident: CR4 – ident: CR14 – volume: 130 start-page: 490 issue: 6 year: 2004 end-page: 497 ident: CR9 article-title: Multi objective optimization for sustainable groundwater management in semiarid regions publication-title: J Water Res Plan Manage ASCE doi: 10.1061/(ASCE)0733-9496(2004)130:6(490) – volume: 6239 start-page: 1 year: 2010 end-page: 10 ident: CR11 article-title: A novel smart multi-objective particle swarm optimization using decomposition publication-title: Parallel Problem Solving from Nature-PPSN XI, PTII, Lecture Notes in Computer Science – volume: 14 start-page: 1 year: 2017 end-page: 18 ident: CR16 article-title: F-MOPSO: an alternative multi-objective PSO algorithm for conjunctive water use management publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2016.05.007 – start-page: 603 year: 2002 end-page: 607 ident: CR13 article-title: Particle swarm optimization method in multiobjective problems publication-title: In Proc. 2002 ACM symposium on applied computing, Madrid, Spain doi: 10.1145/508791.508907 – volume: 37 start-page: 290 year: 2012 end-page: 304 ident: CR12 article-title: LADPSO: using fuzzy logic to conduct PSO algorithm publication-title: Appl Intell doi: 10.1007/s10489-011-0328-6 – ident: CR10 – volume: 27 start-page: 2623 year: 2013 end-page: 2644 ident: CR17 article-title: Conjunctive use of surface water and groundwater: application of support vector machines (SVMs) and genetic algorithms publication-title: Water Resour Manag doi: 10.1007/s11269-013-0307-2 – volume: 247 start-page: 732 year: 2015 end-page: 744 ident: CR8 article-title: A novel multi-objective particle swarm optimization with multiple search strategies publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.06.071 – volume: 25 start-page: 1387 year: 2011 end-page: 1416 ident: CR15 article-title: Irrigation planning under uncertainty- a multi-objective fuzzy linear programming approach publication-title: Water Resour Manag doi: 10.1007/s11269-010-9750-5 – volume: 39 start-page: 365 issue: C2 year: 2015 end-page: 377 ident: CR18 article-title: Conjunctive use of surface and ground water using fuzzy neural network and genetic algorithm publication-title: IJSTC – volume: 13 start-page: 794 issue: 4 year: 2011 end-page: 811 ident: CR5 article-title: MOPSO algorithm and its application in multipurpose multireservoir operations publication-title: J Hydroinf doi: 10.2166/hydro.2010.105 – volume: 36 start-page: 25 issue: 2 year: 1964 end-page: 41 ident: CR2 article-title: The economics of conjunctive use of ground and surface water publication-title: Hilgardia doi: 10.3733/hilg.v36n02p031 – ident: CR20 – start-page: 603 volume-title: In Proc. 2002 ACM symposium on applied computing, Madrid, Spain year: 2002 ident: 1567_CR13 doi: 10.1145/508791.508907 – volume: 28 start-page: 1517 year: 2014 ident: 1567_CR3 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0549-7 – volume: 6239 start-page: 1 year: 2010 ident: 1567_CR11 publication-title: Parallel Problem Solving from Nature-PPSN XI, PTII, Lecture Notes in Computer Science – year: 2016 ident: 1567_CR6 publication-title: Water Resour Manag doi: 10.1007/s11269-016-1426-3 – ident: 1567_CR20 – volume: 13 start-page: 794 issue: 4 year: 2011 ident: 1567_CR5 publication-title: J Hydroinf doi: 10.2166/hydro.2010.105 – volume: 9 start-page: 747 year: 2010 ident: 1567_CR1 publication-title: Nat Comput doi: 10.1007/s11047-009-9171-7 – volume: 39 start-page: 365 issue: C2 year: 2015 ident: 1567_CR18 publication-title: IJSTC – volume: 14 start-page: 1 year: 2017 ident: 1567_CR16 publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2016.05.007 – start-page: 263 volume-title: Multiple criteria decision making year: 1973 ident: 1567_CR21 – volume: 36 start-page: 25 issue: 2 year: 1964 ident: 1567_CR2 publication-title: Hilgardia – ident: 1567_CR10 doi: 10.1109/SIS.2003.1202243 – ident: 1567_CR14 – volume: 130 start-page: 490 issue: 6 year: 2004 ident: 1567_CR9 publication-title: J Water Res Plan Manage ASCE doi: 10.1061/(ASCE)0733-9496(2004)130:6(490) – volume: 247 start-page: 732 year: 2015 ident: 1567_CR8 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.06.071 – volume: 25 start-page: 1387 year: 2011 ident: 1567_CR15 publication-title: Water Resour Manag doi: 10.1007/s11269-010-9750-5 – volume: 27 start-page: 2623 year: 2013 ident: 1567_CR17 publication-title: Water Resour Manag doi: 10.1007/s11269-013-0307-2 – start-page: 1942 volume-title: Proc international conference on neural networks, Perth year: 1995 ident: 1567_CR7 doi: 10.1109/ICNN.1995.488968 – volume: 37 start-page: 290 year: 2012 ident: 1567_CR12 publication-title: Appl Intell doi: 10.1007/s10489-011-0328-6 – ident: 1567_CR4 doi: 10.1016/j.proeng.2016.11.093 – ident: 1567_CR19 |
| SSID | ssj0010090 |
| Score | 2.3252656 |
| Snippet | This paper focuses on extracting an optimal multi-crop pattern plan through multi-objective conjunctive surface-ground water use management. Minimizing... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1139 |
| SubjectTerms | Agriculture Algorithms Allium cepa Atmospheric Sciences Cereal crops Civil Engineering Climate change Crops Cultivation cultivation area Dominance Earth and Environmental Science Earth Sciences Environment Geotechnical Engineering & Applied Earth Sciences Groundwater Groundwater irrigation Hydrogeology Hydrology/Water Resources Irrigation Irrigation efficiency Mathematical models Multiple objective Multiple objective analysis Neural networks onions Optimization Optimization algorithms Planning Precipitation rice Simulation Studies Supply & demand Surface water system optimization Triticum aestivum Water consumption Water resources Water supply Water use wheat |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_MTplAg-KYH0K20f53AMQTfQ4t5K0qbq2NrRdQ_bX-8la7cpOvA512u4fNzvl8tdELqxJZOJ8BxCPekT2-Q-4SK2CLgKYLiJ4xk6y_XpmXUC-7Hv9Ms87kl1270KSeqdepXsZphM3e1hoEgV695GO46q5gWTODCby9ABgAZ9sOIDL7LBX1ahzN9UfHdGK4T5IyiqfU37AO2XIBE3F6N6iLZkeoT21koHHqOiiTszlW2F29P5fEbuwRvFWKfTkq4YLLYx3Hvp4ubwPcs_i48RBnyKW1k6AFemW98AZ-Y4mEjM0xh3YfMYwV8XOlp5NsY9XXwzxdXLRicoaD-8tjqkfEGBROCYCxJRi1vCMwVNYh-QkJcYUjhcxi6Xrsv8OHaoiCzXp5yaPKaCskgCo0yACErGPOsU1dIslWcIRwl3LZ9HDPASSNjCAmzHhcs4lRHw3DqilSnDqCwvrl65GIarwsjK-qG6UqasH9p1dLv8ZLyorbFJuFGNT1gus0loANtivjpKq6PrZTMsEBX14KnMpkrGA9YFrNTdJAPWoTYwjb9lTJ1oa9lKz101P9a68lfHz_8lfYF2TQUc9C23BqoV-VReAuwpxJWe5l9WGPfY priority: 102 providerName: Springer Nature |
| Title | A Hybrid Fuzzy-Based Multi-Objective PSO Algorithm for Conjunctive Water Use and Optimal Multi-Crop Pattern Planning |
| URI | https://link.springer.com/article/10.1007/s11269-016-1567-4 https://www.proquest.com/docview/1875691290 https://www.proquest.com/docview/1881749177 https://www.proquest.com/docview/1893904772 https://www.proquest.com/docview/2000463477 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: PROQUEST customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BcimHqi9EWhptJU6tVmz8WNuHqjJRQtSKJGobASdrXwYhsNPgHODXd3ZjJ7QSOdoeW-N9zTc7O98AHAWGm1zGIWWxSWjgiYQKqX2KpgI93DyMey7L9WzMR7Pg-0V4sQPjJhfGHqts1kS3UOtS2T3y4x4Ca57YXZNv8z_UVo2y0dWmhIaoSyvor45ibBfanmXGakH7ZDCe_lzHFRBRuF2XBJ2mAI1pE-d0yXQ9j9uzQxwVtWTg_1qqDfz8L2LqDNHwFbysESRJV13-GnZM8Qb20qtFzaJh8OoJy-BbqFIyerCJWWS4fHx8oCdouDRxmbd0Im9WKx6Z_pqQ9PYKf7m6viMIZUm_LG7Q6rmn5whJF2R2b4goNJngOnOHOqy-0V-UczJ1PJ0FaYogvYPZcPC7P6J1sQWq0IZXVDFf-DL2JMt1gqApzntGhsLoSJgo4onWIZPKjxImmCc0k4wrg85njs1sOI_9fWgVZWEOgKhcRH4iFEdohRKB9BEGChlxwYxCl7gDrGnYTNVM5LYgxm224VC2fZHZ02e2L7KgA5_Xr8xXNBzbhA-b3srqGXmfbcZPBz6tH-NcsgESUZhyaWVidNDQgY22yWDrsACdkudlPJeT6wf2O1-a0fJElecUf79d8Q_wwrOgwp2AO4RWtViajwiJKtmF3Xh42oV2enr5Y9CtRz3enXnpXz1ECfE |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbG9gA8oPFLFMYwEryALNzYceKHCXVlVce2toJV7C2zY2do2pLSpkLdH7e_bWc3aQfS-rbHKBfLOjt33-fz3SH0gVthMx2HhMZWEh4oSZQ2jICrAIabhXHTZ7ke9UR3yL-fhCdr6LrOhXHXKmub6A21KVJ3Rv6lCcBaSHdq8nX0h7iuUS66WrfQUFVrBbPjS4xViR0HdvYXKNxkZ_8brPfHIOjsHbe7pOoyQFJwXiVJKVNMx4GmmZGAFuKsaXWorImUjSIhjQmpTlkkqaKBMlRTkVpgXRmQJStEzGDcB2iDMy6B_G3s7vUGPxZxDEAw_pRHAknj4LzruKpP3msGwt1VEqAYV3z8X8-4hLv_RWi94-tsoicVYsWt-RZ7itZs_gw9bp2Nq6odFp5uVTV8jsoW7s5cIhjuTK-uZmQXHKXBPtOX9PX53MLiwc8-bl2cgYrL35cYoDNuF_k5eFn_9hdA4DEeTixWucF9sGuXMIf5GO1xMcIDXxc0x3XTpRdoeC9qf4nW8yK3rxBOMxUxqVIBUA4kuGYAO5WOhKI2BQreQLRWbJJWlc9dA46LZFmz2a1F4m67ubVIeAN9Wnwympf9WCW8Va9WUlmASbLcrw30fvEa_l0XkFG5LaZOJgZCCIQ5WiUD2qEcSNDdMoHPAWbcjfO53i23pnLXxF-vnvg79LB7fHSYHO73Dt6gR4EDNP723RZaL8dT-xbgWKm3qz2P0el9_2Y3yJxD2A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkBA8ID5FYQMjwQvImpsPJ3lAU9cROgZrJajYW_BXhqYtKW0q1P1p_HW7c5J2IK1ve4x8sazz2fc73xchbwIrbK7ikPHYJizwZMKkMj4DVQEWbh7GXZfl-vVIDMbB5-PweIP8bXNhMKyyvRPdRW1KjW_kO10A1iLBV5OdvAmLGO2nu5PfDDtIoae1badRi8ihXfwB82324WAf9vqt56Ufv_cHrOkwwDQoropp7ktfxZ7iuUkAKcR516pQWhNJG0UiMSbkSvtRwiX3pOGKC23B4srBULJCxD7Me4vcjrCKO2app5-WHgzALu59JwHzLAC13XpUXdpe1xMYpSSAJVh2_F-duAK6__lmncpLH5D7DValvVq4HpINWzwi93on06Zeh4WvK_UMH5OqRwcLTAGj6fziYsH2QEUa6nJ82VCd1ncrHX0b0t7ZCTC0-nVOATTTflmcgn51oz8A_E7peGapLAwdwo12Dmuo5-hPywkduYqgBW3bLT0h4xth-lOyWZSFfUaozmXkJ1ILAHFAESgfAKdUkZDcajC-O4S3jM10U_McW2-cZatqzbgXGca54V5kQYe8W_4yqQt-rCPeancra87-LFtJaoe8Xg7DqUVXjCxsOUeaGExBMJWjdTTAHR6A-XM9jeeyf_0A53nfSsuVpVy38OfrF_6K3IHDlX05ODp8Qe56iGRc2N0W2aymc7sNOKxSL53AU_Lzpk_YJeBfQXI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Fuzzy-Based+Multi-Objective+PSO+Algorithm+for+Conjunctive+Water+Use+and+Optimal+Multi-Crop+Pattern+Planning&rft.jtitle=Water+resources+management&rft.au=Rezaei%2C+Farshad&rft.au=Safavi%2C+Hamid+R&rft.au=Zekri%2C+Maryam&rft.date=2017-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=31&rft.issue=4&rft.spage=1139&rft_id=info:doi/10.1007%2Fs11269-016-1567-4&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4319894011 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |