A Hybrid Fuzzy-Based Multi-Objective PSO Algorithm for Conjunctive Water Use and Optimal Multi-Crop Pattern Planning

This paper focuses on extracting an optimal multi-crop pattern plan through multi-objective conjunctive surface-ground water use management. Minimizing shortages in meeting irrigation demands, maximizing groundwater resources sustainability and maximizing agricultural net benefits are the three main...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 31; no. 4; pp. 1139 - 1155
Main Authors Rezaei, Farshad, Safavi, Hamid R., Zekri, Maryam
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-016-1567-4

Cover

Abstract This paper focuses on extracting an optimal multi-crop pattern plan through multi-objective conjunctive surface-ground water use management. Minimizing shortages in meeting irrigation demands, maximizing groundwater resources sustainability and maximizing agricultural net benefits are the three main goals of the multi-objective optimization problem solved in this paper. A new robust fuzzy-based multi-objective PSO algorithm called f-MOPSO is adopted and modified to solve a three-objective real-world conjunctive use management problem presented in this paper after testing on standard test problems revealed f-MOPSO superiority as compared to the well-known multi-swarm vector evaluated PSO (VEPSO) algorithm. The f-MOPSO benefits from a well-organized Sugeno fuzzy inference system (SFIS) designed for handling multi-objective nature of the optimization problems. The unique performance of f-MOPSO is not only presenting the better final solutions, but also aggregating the capabilities for measurement of dominance and diversity of the solutions in one stage by one index named comprehensive dominance index, in contrast to a wide range of multi-objective algorithms that evaluate dominance and diversity in two separate stages resulting in excessive computational burden. The optimization model is carried out on a 10-year long-term simulation period, resulting in increasing irrigation efficiency i.e. decreasing water losses, decreasing water consumption per unit cultivated area and increasing water productivity compared to those similar criteria observed in actual operation in the study area. The wheat and rice crops were identified as the dominant crops, while the optimization model was the least interested to onion cultivation, assigning the least average cultivation area to this crop over the whole planning period.
AbstractList This paper focuses on extracting an optimal multi-crop pattern plan through multi-objective conjunctive surface-ground water use management. Minimizing shortages in meeting irrigation demands, maximizing groundwater resources sustainability and maximizing agricultural net benefits are the three main goals of the multi-objective optimization problem solved in this paper. A new robust fuzzy-based multi-objective PSO algorithm called f-MOPSO is adopted and modified to solve a three-objective real-world conjunctive use management problem presented in this paper after testing on standard test problems revealed f-MOPSO superiority as compared to the well-known multi-swarm vector evaluated PSO (VEPSO) algorithm. The f-MOPSO benefits from a well-organized Sugeno fuzzy inference system (SFIS) designed for handling multi-objective nature of the optimization problems. The unique performance of f-MOPSO is not only presenting the better final solutions, but also aggregating the capabilities for measurement of dominance and diversity of the solutions in one stage by one index named comprehensive dominance index, in contrast to a wide range of multi-objective algorithms that evaluate dominance and diversity in two separate stages resulting in excessive computational burden. The optimization model is carried out on a 10-year long-term simulation period, resulting in increasing irrigation efficiency i.e. decreasing water losses, decreasing water consumption per unit cultivated area and increasing water productivity compared to those similar criteria observed in actual operation in the study area. The wheat and rice crops were identified as the dominant crops, while the optimization model was the least interested to onion cultivation, assigning the least average cultivation area to this crop over the whole planning period.
Author Safavi, Hamid R.
Zekri, Maryam
Rezaei, Farshad
Author_xml – sequence: 1
  givenname: Farshad
  surname: Rezaei
  fullname: Rezaei, Farshad
  organization: Department of Civil Engineering, Isfahan University of Technology
– sequence: 2
  givenname: Hamid R.
  surname: Safavi
  fullname: Safavi, Hamid R.
  email: hasafavi@cc.iut.ac.ir
  organization: Department of Civil Engineering, Isfahan University of Technology
– sequence: 3
  givenname: Maryam
  surname: Zekri
  fullname: Zekri, Maryam
  organization: Department of Electrical and Computer Engineering, Isfahan University of Technology
BookMark eNqNkU9rHCEchqUk0E3SD9Cb0Esvtj8dR8fjdmmaQMouJKFHcWacrcusbtUpbD59TSaHEuifkwef5-XV9wyd-OAtQm8pfKAA8mOilAlFgApCayEJf4UWtJYVoaKGE7QAxYBwyelrdJbSDqBYChYoL_HVsY2ux5fTw8ORfDLJ9vjrNGZH1u3Odtn9tHhzu8bLcRuiy9_3eAgRr4LfTX6-_Wayjfg-WWx8j9eH7PZmfM5YxXDAG5ML4fFmNN47v71Ap4MZk33zfJ6j-8vPd6srcrP-cr1a3pCO0zqTDipTtQ1rYehVpVgzUNvWxvbSWCmF6vsa2q6SCgww00MLorMc2MAoWCGa6hy9n3MPMfyYbMp671Jnx1LDhilpBgBcVFzKf6K0KQ2gkOw_0IZKruhT6rsX6C5M0Zc3F0rWQlGmoFByproYUop20J3LJrvgczRu1BT048Z63liXjfXjxpoXk74wD7F8fjz-1WGzkwrrtzb-1umP0i9S2rlu
CitedBy_id crossref_primary_10_1016_j_compag_2021_106288
crossref_primary_10_1007_s11269_022_03064_w
crossref_primary_10_1080_15715124_2021_1879093
crossref_primary_10_2166_ws_2023_201
crossref_primary_10_1016_j_jclepro_2020_123548
crossref_primary_10_1038_s41598_024_69487_0
crossref_primary_10_1007_s00521_024_10635_y
crossref_primary_10_1007_s10661_022_09909_6
crossref_primary_10_1007_s41062_022_00750_x
crossref_primary_10_3390_jmse7080246
crossref_primary_10_1016_j_agwat_2020_106688
crossref_primary_10_1007_s11269_023_03557_2
crossref_primary_10_1016_j_agwat_2021_107116
crossref_primary_10_1016_j_jclepro_2019_06_165
crossref_primary_10_1016_j_agwat_2019_05_047
crossref_primary_10_1007_s10661_025_13856_3
crossref_primary_10_1016_j_aej_2024_07_022
crossref_primary_10_1007_s10661_020_08727_y
crossref_primary_10_1061__ASCE_WR_1943_5452_0001591
crossref_primary_10_1007_s11356_022_19762_2
crossref_primary_10_1016_j_agwat_2023_108181
crossref_primary_10_1016_j_jenvman_2017_12_006
crossref_primary_10_3390_w14020266
crossref_primary_10_3390_w9060414
crossref_primary_10_1007_s40974_021_00211_8
crossref_primary_10_1007_s11269_022_03206_0
crossref_primary_10_1007_s13253_024_00651_9
crossref_primary_10_1007_s41062_022_00992_9
crossref_primary_10_1007_s12205_023_2491_9
crossref_primary_10_1016_j_jhydrol_2021_126258
crossref_primary_10_1007_s11356_022_25089_9
crossref_primary_10_1016_j_jenvman_2021_112807
crossref_primary_10_1016_j_jhydrol_2018_08_078
crossref_primary_10_1007_s11269_019_02229_4
crossref_primary_10_1007_s13201_024_02295_z
crossref_primary_10_1016_j_agwat_2021_107068
Cites_doi 10.1007/s11269-014-0549-7
10.1109/ICNN.1995.488968
10.1007/s11047-009-9171-7
10.1061/(ASCE)0733-9496(2004)130:6(490)
10.1016/j.jher.2016.05.007
10.1145/508791.508907
10.1007/s10489-011-0328-6
10.1007/s11269-013-0307-2
10.1016/j.ejor.2015.06.071
10.1007/s11269-010-9750-5
10.2166/hydro.2010.105
10.3733/hilg.v36n02p031
10.1007/s11269-016-1426-3
10.1109/SIS.2003.1202243
10.1016/j.proeng.2016.11.093
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2017
Water Resources Management is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2017
– notice: Water Resources Management is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.0
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7TG
KL.
7S9
L.6
DOI 10.1007/s11269-016-1567-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database
Biological Science Database (Proquest)
ProQuest Engineering Database (NC LIVE)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
ProQuest Business Collection (Alumni Edition)
Technology Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1573-1650
EndPage 1155
ExternalDocumentID 4319894011
10_1007_s11269_016_1567_4
Genre Feature
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.0
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7TG
KL.
7S9
L.6
ID FETCH-LOGICAL-c415t-c03a3b82b0fd93928f1eb5aed7ae7769dd50bc3790a02ad0b06ce402f210e6683
IEDL.DBID BENPR
ISSN 0920-4741
IngestDate Fri Sep 05 07:41:46 EDT 2025
Fri Sep 05 08:08:31 EDT 2025
Tue Oct 07 09:54:06 EDT 2025
Sun Jul 13 04:27:23 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Wed Oct 01 01:44:53 EDT 2025
Fri Feb 21 02:26:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Fuzzy inference system
Conjunctive use
Multi-objective particle swarm optimization (MOPSO)
Multi-crop pattern planning
Artificial neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-c03a3b82b0fd93928f1eb5aed7ae7769dd50bc3790a02ad0b06ce402f210e6683
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1875691290
PQPubID 54174
PageCount 17
ParticipantIDs proquest_miscellaneous_2000463477
proquest_miscellaneous_1893904772
proquest_miscellaneous_1881749177
proquest_journals_1875691290
crossref_citationtrail_10_1007_s11269_016_1567_4
crossref_primary_10_1007_s11269_016_1567_4
springer_journals_10_1007_s11269_016_1567_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170300
2017-3-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 3
  year: 2017
  text: 20170300
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2017
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Safavi, Esmikhani (CR17) 2013; 27
CR4
Daneshmand, Karimi, Nikoo, Bazargan-Lari, Adamowski (CR3) 2014; 28
Rezaei, Safavi, Mirchi, Madani (CR16) 2017; 14
Safavi, Rezaei (CR18) 2015; 39
CR19
Fallah-Mehdipour, Bozorg Haddad, Marino (CR5) 2011; 13
Parsopoulos, Vrahatis (CR13) 2002
CR14
CR10
CR20
Abido (CR1) 2010; 9
Kennedy, Eberhart (CR7) 1995
Regulwar, Gurov (CR15) 2011; 25
McPhee, Yeh (CR9) 2004; 130
Heydari, Saghafian, Delavar (CR6) 2016
Burt (CR2) 1964; 36
Moubayed, Pertovski, McCall (CR11) 2010; 6239
Lin, Li, Du, Chen, Ming (CR8) 2015; 247
Zeleny, Cochrane, Zeleny (CR21) 1973
Norouzzadeh, Ahmadzadeh, Palhang (CR12) 2012; 37
OR Burt (1567_CR2) 1964; 36
J Kennedy (1567_CR7) 1995
J McPhee (1567_CR9) 2004; 130
MS Norouzzadeh (1567_CR12) 2012; 37
Q Lin (1567_CR8) 2015; 247
NAI Moubayed (1567_CR11) 2010; 6239
1567_CR19
M Zeleny (1567_CR21) 1973
F Rezaei (1567_CR16) 2017; 14
KE Parsopoulos (1567_CR13) 2002
1567_CR14
DG Regulwar (1567_CR15) 2011; 25
F Heydari (1567_CR6) 2016
1567_CR10
HR Safavi (1567_CR18) 2015; 39
1567_CR4
F Daneshmand (1567_CR3) 2014; 28
E Fallah-Mehdipour (1567_CR5) 2011; 13
MA Abido (1567_CR1) 2010; 9
1567_CR20
HR Safavi (1567_CR17) 2013; 27
References_xml – volume: 28
  start-page: 1517
  year: 2014
  end-page: 1529
  ident: CR3
  article-title: Mitigating socio-economic-environmental impacts during periods by optimizing the conjunctive management of water resources
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0549-7
– start-page: 263
  year: 1973
  end-page: 301
  ident: CR21
  article-title: Compromise programming, multiple criteria decision-making
  publication-title: Multiple criteria decision making
– ident: CR19
– year: 2016
  ident: CR6
  article-title: Coupled quantity-quality simulation-optimization model for conjunctive surface-groundwater use
  publication-title: Water Resour Manag
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: CR7
  article-title: Particle swarm optimization
  publication-title: Proc international conference on neural networks, Perth
  doi: 10.1109/ICNN.1995.488968
– volume: 9
  start-page: 747
  year: 2010
  end-page: 766
  ident: CR1
  article-title: Multiobjective particle swarm optimization with nondominated local and global sets
  publication-title: Nat Comput
  doi: 10.1007/s11047-009-9171-7
– ident: CR4
– ident: CR14
– volume: 130
  start-page: 490
  issue: 6
  year: 2004
  end-page: 497
  ident: CR9
  article-title: Multi objective optimization for sustainable groundwater management in semiarid regions
  publication-title: J Water Res Plan Manage ASCE
  doi: 10.1061/(ASCE)0733-9496(2004)130:6(490)
– volume: 6239
  start-page: 1
  year: 2010
  end-page: 10
  ident: CR11
  article-title: A novel smart multi-objective particle swarm optimization using decomposition
  publication-title: Parallel Problem Solving from Nature-PPSN XI, PTII, Lecture Notes in Computer Science
– volume: 14
  start-page: 1
  year: 2017
  end-page: 18
  ident: CR16
  article-title: F-MOPSO: an alternative multi-objective PSO algorithm for conjunctive water use management
  publication-title: J Hydro-Environ Res
  doi: 10.1016/j.jher.2016.05.007
– start-page: 603
  year: 2002
  end-page: 607
  ident: CR13
  article-title: Particle swarm optimization method in multiobjective problems
  publication-title: In Proc. 2002 ACM symposium on applied computing, Madrid, Spain
  doi: 10.1145/508791.508907
– volume: 37
  start-page: 290
  year: 2012
  end-page: 304
  ident: CR12
  article-title: LADPSO: using fuzzy logic to conduct PSO algorithm
  publication-title: Appl Intell
  doi: 10.1007/s10489-011-0328-6
– ident: CR10
– volume: 27
  start-page: 2623
  year: 2013
  end-page: 2644
  ident: CR17
  article-title: Conjunctive use of surface water and groundwater: application of support vector machines (SVMs) and genetic algorithms
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-013-0307-2
– volume: 247
  start-page: 732
  year: 2015
  end-page: 744
  ident: CR8
  article-title: A novel multi-objective particle swarm optimization with multiple search strategies
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.06.071
– volume: 25
  start-page: 1387
  year: 2011
  end-page: 1416
  ident: CR15
  article-title: Irrigation planning under uncertainty- a multi-objective fuzzy linear programming approach
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-010-9750-5
– volume: 39
  start-page: 365
  issue: C2
  year: 2015
  end-page: 377
  ident: CR18
  article-title: Conjunctive use of surface and ground water using fuzzy neural network and genetic algorithm
  publication-title: IJSTC
– volume: 13
  start-page: 794
  issue: 4
  year: 2011
  end-page: 811
  ident: CR5
  article-title: MOPSO algorithm and its application in multipurpose multireservoir operations
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2010.105
– volume: 36
  start-page: 25
  issue: 2
  year: 1964
  end-page: 41
  ident: CR2
  article-title: The economics of conjunctive use of ground and surface water
  publication-title: Hilgardia
  doi: 10.3733/hilg.v36n02p031
– ident: CR20
– start-page: 603
  volume-title: In Proc. 2002 ACM symposium on applied computing, Madrid, Spain
  year: 2002
  ident: 1567_CR13
  doi: 10.1145/508791.508907
– volume: 28
  start-page: 1517
  year: 2014
  ident: 1567_CR3
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0549-7
– volume: 6239
  start-page: 1
  year: 2010
  ident: 1567_CR11
  publication-title: Parallel Problem Solving from Nature-PPSN XI, PTII, Lecture Notes in Computer Science
– year: 2016
  ident: 1567_CR6
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-016-1426-3
– ident: 1567_CR20
– volume: 13
  start-page: 794
  issue: 4
  year: 2011
  ident: 1567_CR5
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2010.105
– volume: 9
  start-page: 747
  year: 2010
  ident: 1567_CR1
  publication-title: Nat Comput
  doi: 10.1007/s11047-009-9171-7
– volume: 39
  start-page: 365
  issue: C2
  year: 2015
  ident: 1567_CR18
  publication-title: IJSTC
– volume: 14
  start-page: 1
  year: 2017
  ident: 1567_CR16
  publication-title: J Hydro-Environ Res
  doi: 10.1016/j.jher.2016.05.007
– start-page: 263
  volume-title: Multiple criteria decision making
  year: 1973
  ident: 1567_CR21
– volume: 36
  start-page: 25
  issue: 2
  year: 1964
  ident: 1567_CR2
  publication-title: Hilgardia
– ident: 1567_CR10
  doi: 10.1109/SIS.2003.1202243
– ident: 1567_CR14
– volume: 130
  start-page: 490
  issue: 6
  year: 2004
  ident: 1567_CR9
  publication-title: J Water Res Plan Manage ASCE
  doi: 10.1061/(ASCE)0733-9496(2004)130:6(490)
– volume: 247
  start-page: 732
  year: 2015
  ident: 1567_CR8
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.06.071
– volume: 25
  start-page: 1387
  year: 2011
  ident: 1567_CR15
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-010-9750-5
– volume: 27
  start-page: 2623
  year: 2013
  ident: 1567_CR17
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-013-0307-2
– start-page: 1942
  volume-title: Proc international conference on neural networks, Perth
  year: 1995
  ident: 1567_CR7
  doi: 10.1109/ICNN.1995.488968
– volume: 37
  start-page: 290
  year: 2012
  ident: 1567_CR12
  publication-title: Appl Intell
  doi: 10.1007/s10489-011-0328-6
– ident: 1567_CR4
  doi: 10.1016/j.proeng.2016.11.093
– ident: 1567_CR19
SSID ssj0010090
Score 2.3252656
Snippet This paper focuses on extracting an optimal multi-crop pattern plan through multi-objective conjunctive surface-ground water use management. Minimizing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1139
SubjectTerms Agriculture
Algorithms
Allium cepa
Atmospheric Sciences
Cereal crops
Civil Engineering
Climate change
Crops
Cultivation
cultivation area
Dominance
Earth and Environmental Science
Earth Sciences
Environment
Geotechnical Engineering & Applied Earth Sciences
Groundwater
Groundwater irrigation
Hydrogeology
Hydrology/Water Resources
Irrigation
Irrigation efficiency
Mathematical models
Multiple objective
Multiple objective analysis
Neural networks
onions
Optimization
Optimization algorithms
Planning
Precipitation
rice
Simulation
Studies
Supply & demand
Surface water
system optimization
Triticum aestivum
Water consumption
Water resources
Water supply
Water use
wheat
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_MTplAg-KYH0K20f53AMQTfQ4t5K0qbq2NrRdQ_bX-8la7cpOvA512u4fNzvl8tdELqxJZOJ8BxCPekT2-Q-4SK2CLgKYLiJ4xk6y_XpmXUC-7Hv9Ms87kl1270KSeqdepXsZphM3e1hoEgV695GO46q5gWTODCby9ABgAZ9sOIDL7LBX1ahzN9UfHdGK4T5IyiqfU37AO2XIBE3F6N6iLZkeoT21koHHqOiiTszlW2F29P5fEbuwRvFWKfTkq4YLLYx3Hvp4ubwPcs_i48RBnyKW1k6AFemW98AZ-Y4mEjM0xh3YfMYwV8XOlp5NsY9XXwzxdXLRicoaD-8tjqkfEGBROCYCxJRi1vCMwVNYh-QkJcYUjhcxi6Xrsv8OHaoiCzXp5yaPKaCskgCo0yACErGPOsU1dIslWcIRwl3LZ9HDPASSNjCAmzHhcs4lRHw3DqilSnDqCwvrl65GIarwsjK-qG6UqasH9p1dLv8ZLyorbFJuFGNT1gus0loANtivjpKq6PrZTMsEBX14KnMpkrGA9YFrNTdJAPWoTYwjb9lTJ1oa9lKz101P9a68lfHz_8lfYF2TQUc9C23BqoV-VReAuwpxJWe5l9WGPfY
  priority: 102
  providerName: Springer Nature
Title A Hybrid Fuzzy-Based Multi-Objective PSO Algorithm for Conjunctive Water Use and Optimal Multi-Crop Pattern Planning
URI https://link.springer.com/article/10.1007/s11269-016-1567-4
https://www.proquest.com/docview/1875691290
https://www.proquest.com/docview/1881749177
https://www.proquest.com/docview/1893904772
https://www.proquest.com/docview/2000463477
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: PROQUEST
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BcimHqi9EWhptJU6tVmz8WNuHqjJRQtSKJGobASdrXwYhsNPgHODXd3ZjJ7QSOdoeW-N9zTc7O98AHAWGm1zGIWWxSWjgiYQKqX2KpgI93DyMey7L9WzMR7Pg-0V4sQPjJhfGHqts1kS3UOtS2T3y4x4Ca57YXZNv8z_UVo2y0dWmhIaoSyvor45ibBfanmXGakH7ZDCe_lzHFRBRuF2XBJ2mAI1pE-d0yXQ9j9uzQxwVtWTg_1qqDfz8L2LqDNHwFbysESRJV13-GnZM8Qb20qtFzaJh8OoJy-BbqFIyerCJWWS4fHx8oCdouDRxmbd0Im9WKx6Z_pqQ9PYKf7m6viMIZUm_LG7Q6rmn5whJF2R2b4goNJngOnOHOqy-0V-UczJ1PJ0FaYogvYPZcPC7P6J1sQWq0IZXVDFf-DL2JMt1gqApzntGhsLoSJgo4onWIZPKjxImmCc0k4wrg85njs1sOI_9fWgVZWEOgKhcRH4iFEdohRKB9BEGChlxwYxCl7gDrGnYTNVM5LYgxm224VC2fZHZ02e2L7KgA5_Xr8xXNBzbhA-b3srqGXmfbcZPBz6tH-NcsgESUZhyaWVidNDQgY22yWDrsACdkudlPJeT6wf2O1-a0fJElecUf79d8Q_wwrOgwp2AO4RWtViajwiJKtmF3Xh42oV2enr5Y9CtRz3enXnpXz1ECfE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbG9gA8oPFLFMYwEryALNzYceKHCXVlVce2toJV7C2zY2do2pLSpkLdH7e_bWc3aQfS-rbHKBfLOjt33-fz3SH0gVthMx2HhMZWEh4oSZQ2jICrAIabhXHTZ7ke9UR3yL-fhCdr6LrOhXHXKmub6A21KVJ3Rv6lCcBaSHdq8nX0h7iuUS66WrfQUFVrBbPjS4xViR0HdvYXKNxkZ_8brPfHIOjsHbe7pOoyQFJwXiVJKVNMx4GmmZGAFuKsaXWorImUjSIhjQmpTlkkqaKBMlRTkVpgXRmQJStEzGDcB2iDMy6B_G3s7vUGPxZxDEAw_pRHAknj4LzruKpP3msGwt1VEqAYV3z8X8-4hLv_RWi94-tsoicVYsWt-RZ7itZs_gw9bp2Nq6odFp5uVTV8jsoW7s5cIhjuTK-uZmQXHKXBPtOX9PX53MLiwc8-bl2cgYrL35cYoDNuF_k5eFn_9hdA4DEeTixWucF9sGuXMIf5GO1xMcIDXxc0x3XTpRdoeC9qf4nW8yK3rxBOMxUxqVIBUA4kuGYAO5WOhKI2BQreQLRWbJJWlc9dA46LZFmz2a1F4m67ubVIeAN9Wnwympf9WCW8Va9WUlmASbLcrw30fvEa_l0XkFG5LaZOJgZCCIQ5WiUD2qEcSNDdMoHPAWbcjfO53i23pnLXxF-vnvg79LB7fHSYHO73Dt6gR4EDNP723RZaL8dT-xbgWKm3qz2P0el9_2Y3yJxD2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkBA8ID5FYQMjwQvImpsPJ3lAU9cROgZrJajYW_BXhqYtKW0q1P1p_HW7c5J2IK1ve4x8sazz2fc73xchbwIrbK7ikPHYJizwZMKkMj4DVQEWbh7GXZfl-vVIDMbB5-PweIP8bXNhMKyyvRPdRW1KjW_kO10A1iLBV5OdvAmLGO2nu5PfDDtIoae1badRi8ihXfwB82324WAf9vqt56Ufv_cHrOkwwDQoropp7ktfxZ7iuUkAKcR516pQWhNJG0UiMSbkSvtRwiX3pOGKC23B4srBULJCxD7Me4vcjrCKO2app5-WHgzALu59JwHzLAC13XpUXdpe1xMYpSSAJVh2_F-duAK6__lmncpLH5D7DValvVq4HpINWzwi93on06Zeh4WvK_UMH5OqRwcLTAGj6fziYsH2QEUa6nJ82VCd1ncrHX0b0t7ZCTC0-nVOATTTflmcgn51oz8A_E7peGapLAwdwo12Dmuo5-hPywkduYqgBW3bLT0h4xth-lOyWZSFfUaozmXkJ1ILAHFAESgfAKdUkZDcajC-O4S3jM10U_McW2-cZatqzbgXGca54V5kQYe8W_4yqQt-rCPeancra87-LFtJaoe8Xg7DqUVXjCxsOUeaGExBMJWjdTTAHR6A-XM9jeeyf_0A53nfSsuVpVy38OfrF_6K3IHDlX05ODp8Qe56iGRc2N0W2aymc7sNOKxSL53AU_Lzpk_YJeBfQXI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Fuzzy-Based+Multi-Objective+PSO+Algorithm+for+Conjunctive+Water+Use+and+Optimal+Multi-Crop+Pattern+Planning&rft.jtitle=Water+resources+management&rft.au=Rezaei%2C+Farshad&rft.au=Safavi%2C+Hamid+R&rft.au=Zekri%2C+Maryam&rft.date=2017-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=31&rft.issue=4&rft.spage=1139&rft_id=info:doi/10.1007%2Fs11269-016-1567-4&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4319894011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon