SemBioNLQA: A semantic biomedical question answering system for retrieving exact and ideal answers to natural language questions

[Display omitted] •A new semantic biomedical question answering system named SemBioNLQA for retrieving exact and ideal answers to natural language questions is presented.•SemBioNLQA, a fully automatic system, integrates NLP methods in question classification, document retrieval, passage retrieval an...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 102; p. 101767
Main Authors Sarrouti, Mourad, Ouatik El Alaoui, Said
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2020
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2019.101767

Cover

Abstract [Display omitted] •A new semantic biomedical question answering system named SemBioNLQA for retrieving exact and ideal answers to natural language questions is presented.•SemBioNLQA, a fully automatic system, integrates NLP methods in question classification, document retrieval, passage retrieval and answer extraction modules.•It is able to accept a variety of natural language questions and to generate appropriate natural language answers.•Experimental evaluations performed on biomedical questions provided by the BioASQ challenge show that SemBioNLQA achieves good performances compared with the current state-of-the-art systems.•The SemBioNLQA source code is available at https://github.com/sarrouti/sembionlqa. Question answering (QA), the identification of short accurate answers to users questions written in natural language expressions, is a longstanding issue widely studied over the last decades in the open-domain. However, it still remains a real challenge in the biomedical domain as the most of the existing systems support a limited amount of question and answer types as well as still require further efforts in order to improve their performance in terms of precision for the supported questions. Here, we present a semantic biomedical QA system named SemBioNLQA which has the ability to handle the kinds of yes/no, factoid, list, and summary natural language questions. This paper describes the system architecture and an evaluation of the developed end-to-end biomedical QA system named SemBioNLQA, which consists of question classification, document retrieval, passage retrieval and answer extraction modules. It takes natural language questions as input, and outputs both short precise answers and summaries as results. The SemBioNLQA system, dealing with four types of questions, is based on (1) handcrafted lexico-syntactic patterns and a machine learning algorithm for question classification, (2) PubMed search engine and UMLS similarity for document retrieval, (3) the BM25 model, stemmed words and UMLS concepts for passage retrieval, and (4) UMLS metathesaurus, BioPortal synonyms, sentiment analysis and term frequency metric for answer extraction. Compared with the current state-of-the-art biomedical QA systems, SemBioNLQA, a fully automated system, has the potential to deal with a large amount of question and answer types. SemBioNLQA retrieves quickly users’ information needs by returning exact answers (e.g., “yes”, “no”, a biomedical entity name, etc.) and ideal answers (i.e., paragraph-sized summaries of relevant information) for yes/no, factoid and list questions, whereas it provides only the ideal answers for summary questions. Moreover, experimental evaluations performed on biomedical questions and answers provided by the BioASQ challenge especially in 2015, 2016 and 2017 (as part of our participation), show that SemBioNLQA achieves good performances compared with the most current state-of-the-art systems and allows a practical and competitive alternative to help information seekers find exact and ideal answers to their biomedical questions. The SemBioNLQA source code is publicly available at https://github.com/sarrouti/sembionlqa.
AbstractList Question answering (QA), the identification of short accurate answers to users questions written in natural language expressions, is a longstanding issue widely studied over the last decades in the open-domain. However, it still remains a real challenge in the biomedical domain as the most of the existing systems support a limited amount of question and answer types as well as still require further efforts in order to improve their performance in terms of precision for the supported questions. Here, we present a semantic biomedical QA system named SemBioNLQA which has the ability to handle the kinds of yes/no, factoid, list, and summary natural language questions. This paper describes the system architecture and an evaluation of the developed end-to-end biomedical QA system named SemBioNLQA, which consists of question classification, document retrieval, passage retrieval and answer extraction modules. It takes natural language questions as input, and outputs both short precise answers and summaries as results. The SemBioNLQA system, dealing with four types of questions, is based on (1) handcrafted lexico-syntactic patterns and a machine learning algorithm for question classification, (2) PubMed search engine and UMLS similarity for document retrieval, (3) the BM25 model, stemmed words and UMLS concepts for passage retrieval, and (4) UMLS metathesaurus, BioPortal synonyms, sentiment analysis and term frequency metric for answer extraction. Compared with the current state-of-the-art biomedical QA systems, SemBioNLQA, a fully automated system, has the potential to deal with a large amount of question and answer types. SemBioNLQA retrieves quickly users' information needs by returning exact answers (e.g., "yes", "no", a biomedical entity name, etc.) and ideal answers (i.e., paragraph-sized summaries of relevant information) for yes/no, factoid and list questions, whereas it provides only the ideal answers for summary questions. Moreover, experimental evaluations performed on biomedical questions and answers provided by the BioASQ challenge especially in 2015, 2016 and 2017 (as part of our participation), show that SemBioNLQA achieves good performances compared with the most current state-of-the-art systems and allows a practical and competitive alternative to help information seekers find exact and ideal answers to their biomedical questions. The SemBioNLQA source code is publicly available at https://github.com/sarrouti/sembionlqa.
Question answering (QA), the identification of short accurate answers to users questions written in natural language expressions, is a longstanding issue widely studied over the last decades in the open-domain. However, it still remains a real challenge in the biomedical domain as the most of the existing systems support a limited amount of question and answer types as well as still require further efforts in order to improve their performance in terms of precision for the supported questions. Here, we present a semantic biomedical QA system named SemBioNLQA which has the ability to handle the kinds of yes/no, factoid, list, and summary natural language questions.BACKGROUND AND OBJECTIVEQuestion answering (QA), the identification of short accurate answers to users questions written in natural language expressions, is a longstanding issue widely studied over the last decades in the open-domain. However, it still remains a real challenge in the biomedical domain as the most of the existing systems support a limited amount of question and answer types as well as still require further efforts in order to improve their performance in terms of precision for the supported questions. Here, we present a semantic biomedical QA system named SemBioNLQA which has the ability to handle the kinds of yes/no, factoid, list, and summary natural language questions.This paper describes the system architecture and an evaluation of the developed end-to-end biomedical QA system named SemBioNLQA, which consists of question classification, document retrieval, passage retrieval and answer extraction modules. It takes natural language questions as input, and outputs both short precise answers and summaries as results. The SemBioNLQA system, dealing with four types of questions, is based on (1) handcrafted lexico-syntactic patterns and a machine learning algorithm for question classification, (2) PubMed search engine and UMLS similarity for document retrieval, (3) the BM25 model, stemmed words and UMLS concepts for passage retrieval, and (4) UMLS metathesaurus, BioPortal synonyms, sentiment analysis and term frequency metric for answer extraction.METHODSThis paper describes the system architecture and an evaluation of the developed end-to-end biomedical QA system named SemBioNLQA, which consists of question classification, document retrieval, passage retrieval and answer extraction modules. It takes natural language questions as input, and outputs both short precise answers and summaries as results. The SemBioNLQA system, dealing with four types of questions, is based on (1) handcrafted lexico-syntactic patterns and a machine learning algorithm for question classification, (2) PubMed search engine and UMLS similarity for document retrieval, (3) the BM25 model, stemmed words and UMLS concepts for passage retrieval, and (4) UMLS metathesaurus, BioPortal synonyms, sentiment analysis and term frequency metric for answer extraction.Compared with the current state-of-the-art biomedical QA systems, SemBioNLQA, a fully automated system, has the potential to deal with a large amount of question and answer types. SemBioNLQA retrieves quickly users' information needs by returning exact answers (e.g., "yes", "no", a biomedical entity name, etc.) and ideal answers (i.e., paragraph-sized summaries of relevant information) for yes/no, factoid and list questions, whereas it provides only the ideal answers for summary questions. Moreover, experimental evaluations performed on biomedical questions and answers provided by the BioASQ challenge especially in 2015, 2016 and 2017 (as part of our participation), show that SemBioNLQA achieves good performances compared with the most current state-of-the-art systems and allows a practical and competitive alternative to help information seekers find exact and ideal answers to their biomedical questions. The SemBioNLQA source code is publicly available at https://github.com/sarrouti/sembionlqa.RESULTS AND CONCLUSIONCompared with the current state-of-the-art biomedical QA systems, SemBioNLQA, a fully automated system, has the potential to deal with a large amount of question and answer types. SemBioNLQA retrieves quickly users' information needs by returning exact answers (e.g., "yes", "no", a biomedical entity name, etc.) and ideal answers (i.e., paragraph-sized summaries of relevant information) for yes/no, factoid and list questions, whereas it provides only the ideal answers for summary questions. Moreover, experimental evaluations performed on biomedical questions and answers provided by the BioASQ challenge especially in 2015, 2016 and 2017 (as part of our participation), show that SemBioNLQA achieves good performances compared with the most current state-of-the-art systems and allows a practical and competitive alternative to help information seekers find exact and ideal answers to their biomedical questions. The SemBioNLQA source code is publicly available at https://github.com/sarrouti/sembionlqa.
[Display omitted] •A new semantic biomedical question answering system named SemBioNLQA for retrieving exact and ideal answers to natural language questions is presented.•SemBioNLQA, a fully automatic system, integrates NLP methods in question classification, document retrieval, passage retrieval and answer extraction modules.•It is able to accept a variety of natural language questions and to generate appropriate natural language answers.•Experimental evaluations performed on biomedical questions provided by the BioASQ challenge show that SemBioNLQA achieves good performances compared with the current state-of-the-art systems.•The SemBioNLQA source code is available at https://github.com/sarrouti/sembionlqa. Question answering (QA), the identification of short accurate answers to users questions written in natural language expressions, is a longstanding issue widely studied over the last decades in the open-domain. However, it still remains a real challenge in the biomedical domain as the most of the existing systems support a limited amount of question and answer types as well as still require further efforts in order to improve their performance in terms of precision for the supported questions. Here, we present a semantic biomedical QA system named SemBioNLQA which has the ability to handle the kinds of yes/no, factoid, list, and summary natural language questions. This paper describes the system architecture and an evaluation of the developed end-to-end biomedical QA system named SemBioNLQA, which consists of question classification, document retrieval, passage retrieval and answer extraction modules. It takes natural language questions as input, and outputs both short precise answers and summaries as results. The SemBioNLQA system, dealing with four types of questions, is based on (1) handcrafted lexico-syntactic patterns and a machine learning algorithm for question classification, (2) PubMed search engine and UMLS similarity for document retrieval, (3) the BM25 model, stemmed words and UMLS concepts for passage retrieval, and (4) UMLS metathesaurus, BioPortal synonyms, sentiment analysis and term frequency metric for answer extraction. Compared with the current state-of-the-art biomedical QA systems, SemBioNLQA, a fully automated system, has the potential to deal with a large amount of question and answer types. SemBioNLQA retrieves quickly users’ information needs by returning exact answers (e.g., “yes”, “no”, a biomedical entity name, etc.) and ideal answers (i.e., paragraph-sized summaries of relevant information) for yes/no, factoid and list questions, whereas it provides only the ideal answers for summary questions. Moreover, experimental evaluations performed on biomedical questions and answers provided by the BioASQ challenge especially in 2015, 2016 and 2017 (as part of our participation), show that SemBioNLQA achieves good performances compared with the most current state-of-the-art systems and allows a practical and competitive alternative to help information seekers find exact and ideal answers to their biomedical questions. The SemBioNLQA source code is publicly available at https://github.com/sarrouti/sembionlqa.
ArticleNumber 101767
Author Sarrouti, Mourad
Ouatik El Alaoui, Said
Author_xml – sequence: 1
  givenname: Mourad
  surname: Sarrouti
  fullname: Sarrouti, Mourad
  email: sarrouti.mourad@gmail.com
  organization: Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine, U.S. National Institutes of Health, Bethesda, MD
– sequence: 2
  givenname: Said
  surname: Ouatik El Alaoui
  fullname: Ouatik El Alaoui, Said
  organization: National School of Applied Sciences, Ibn Tofail University, Kenitra, Morocco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31980104$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAUhC1URLeFf4CQj1yytePETiqEtK2gIK1ACDhbjv2y8pLYxXYKe-On45DSQy97sjT6Zp41c4ZOnHeA0EtK1pRQfrFfq5BGMOuS0HaWBBdP0Io2ghVlw8kJWpGWsYLxWpyisxj3hBBRUf4MnTLaNoSSaoX-fIXxyvpP2y-bS7zBEUblktW4sz5nW60G_HOCmKx3WLn4C4J1OxwPMcGIex9wgBQs3M0q_FY6ZcpgayAbFz7i5LFTaQpZGpTbTWoHD6HxOXraqyHCi_v3HH1__-7b9Ydi-_nm4_VmW-iK1qnouqZrNNeaKCV62rdQG2j6mtaloVxRoXrDqqpnXVd2QghllO6U4bXihkHJ2Tl6veTeBv_vuBxt1DDkH4GfoixZVdekqdoyo6_u0anLJcjbYEcVDvJ_axmoFkAHH2OA_gGhRM7jyL1cxpHzOHIZJ9suH9m0TWpuIQVlh2Pmt4sZckl3FoKM2oLTeaQAOknj7bGAN48C9GDdvPAPOBy3_wVT6sRl
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3296911
crossref_primary_10_1016_j_artmed_2023_102498
crossref_primary_10_3390_electronics12132913
crossref_primary_10_1016_j_patrec_2020_12_013
crossref_primary_10_2139_ssrn_4197944
crossref_primary_10_1007_s10115_024_02199_z
crossref_primary_10_1016_j_bspc_2024_107325
crossref_primary_10_1109_TCSS_2023_3281492
crossref_primary_10_1186_s12911_023_02161_z
crossref_primary_10_2139_ssrn_3999263
crossref_primary_10_1016_j_eswa_2023_120841
crossref_primary_10_1016_j_ipm_2023_103367
crossref_primary_10_3390_su15054216
crossref_primary_10_1016_j_artmed_2021_102160
crossref_primary_10_1016_j_ipm_2020_102473
crossref_primary_10_1109_ACCESS_2024_3463717
crossref_primary_10_1109_ACCESS_2021_3067942
crossref_primary_10_1007_s10115_023_01918_2
crossref_primary_10_1016_j_jbi_2023_104486
crossref_primary_10_1093_bib_bbaa054
crossref_primary_10_1109_ACCESS_2023_3272056
crossref_primary_10_1186_s40494_024_01231_3
crossref_primary_10_1016_j_oregeorev_2023_105294
crossref_primary_10_3390_app13158623
crossref_primary_10_3390_info12080334
crossref_primary_10_3389_fdgth_2020_585559
crossref_primary_10_1016_j_jbi_2020_103525
crossref_primary_10_1088_1742_6596_2068_1_012051
crossref_primary_10_1016_j_eswa_2023_120210
crossref_primary_10_1016_j_asoc_2022_109029
crossref_primary_10_1093_jamia_ocae015
crossref_primary_10_1016_j_artmed_2021_102053
crossref_primary_10_3390_app11125456
crossref_primary_10_3390_app112311251
crossref_primary_10_3389_fmed_2022_906554
crossref_primary_10_4018_IJIRR_300333
Cites_doi 10.1016/j.jbi.2017.06.003
10.1093/nar/gkx363
10.1613/jair.1523
10.18653/v1/W17-2337
10.1016/j.artmed.2017.09.001
10.1016/j.jbi.2011.01.004
10.1016/j.jbi.2017.03.001
10.1186/s12859-014-0365-3
10.1093/nar/gkh061
10.1016/j.ipm.2015.04.006
10.1002/asi.20583
10.1136/jamia.2009.002733
10.1016/j.artmed.2017.08.001
10.1016/j.ipm.2008.06.004
10.1016/j.jbi.2015.11.010
10.3414/ME16-01-0057
10.1016/j.jbi.2017.01.013
10.1186/s12859-015-0564-6
10.1016/j.artmed.2017.03.001
10.3115/v1/P14-5010
10.1145/763693.763694
10.1016/j.artmed.2017.07.002
10.1016/j.jbi.2016.11.004
10.1016/j.jbi.2011.11.008
10.18653/v1/W17-2344
10.1016/j.jbi.2017.03.007
10.4018/IJHISI.2017070104
10.1016/j.jbi.2017.02.016
10.1016/j.ymeth.2014.10.023
10.1136/bmj.321.7258.429
10.1016/j.jbi.2010.07.007
10.1093/nar/gkt441
10.1108/eb046814
10.3414/ME16-01-0116
10.1197/jamia.M0996
10.1016/j.cmpb.2009.10.003
10.1186/1479-7364-6-17
10.1504/IJBRA.2017.083150
10.1162/coli.2007.33.1.63
ContentType Journal Article
Copyright 2019
Published by Elsevier B.V.
Copyright_xml – notice: 2019
– notice: Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.artmed.2019.101767
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
ExternalDocumentID 31980104
10_1016_j_artmed_2019_101767
S0933365718302756
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c415t-bb8b8c6cc0aa7f1f9e5de8f5152d16a17afd344f3bb2b777adacbad65a6d3e263
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Sat Sep 27 21:56:32 EDT 2025
Wed Feb 19 02:29:02 EST 2025
Thu Apr 24 23:08:45 EDT 2025
Sat Oct 25 05:18:19 EDT 2025
Fri Feb 23 02:47:32 EST 2024
Tue Oct 14 19:30:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Biomedical question answering
Passage retrieval
Biomedical informatics
Machine learning
Information retrieval
Natural language processing
BioASQ
Language English
License Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-bb8b8c6cc0aa7f1f9e5de8f5152d16a17afd344f3bb2b777adacbad65a6d3e263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31980104
PQID 2345508492
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2345508492
pubmed_primary_31980104
crossref_primary_10_1016_j_artmed_2019_101767
crossref_citationtrail_10_1016_j_artmed_2019_101767
elsevier_sciencedirect_doi_10_1016_j_artmed_2019_101767
elsevier_clinicalkey_doi_10_1016_j_artmed_2019_101767
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Yu (bib0045) 2017; 68
Lee, Cimino, Zhu, Sable, Shanker, Ely, Yu (bib0075) 2006
Baccianella, Esuli, Sebastiani (bib0295) 2010
Ely (bib0065) 2000; 321
M. Sarrouti, S.O. E. Alaoui, A machine learning-based method for question type classification in biomedical question answering, Methods of Information in Medicine 56 (3). doi:10.3414/me16-01-0116. URL https://doi.org/10.3414%2Fme16-01-0116.
Bauer, Berleant (bib0115) 2012; 6
Cao, Liu, Simpson, Antieau, Bennett, Cimino, Ely, Yu (bib0130) 2011; 44
Cao, Cimino, Ely, Yu (bib0215) 2010; 43
Moldovan, Paşca, Harabagiu, Surdeanu (bib0210) 2003; 21
Kaisser (bib0110) 2008
Nentidis, Bougiatiotis, Krithara, Paliouras, Kakadiaris (bib0280) 2017
Cohen, Demner-Fushman, Ananiadou, Tsujii (bib0285) 2017
Sarrouti, Alaoui (bib0175) 2017; 68
Lamy (bib0050) 2017; 80
Kraus, Niedermeier, Jankrift, Tietbohl, Stachewicz, Folkerts, Uflacker, Neves (bib0190) 2017; 45
Sarrouti, Lachkar (bib0230) 2017; 13
Wang, Fiol, Bray, Haug (bib0040) 2017; 65
Balikas, Partalas, Kosmopoulos, Petridis, Malakasiotis, Pavlopoulos, Androutsopoulos, Baskiotis, Gaussier, Artiere, Gallinari (bib0300) 2013
Krithara, Nentidis, Paliouras, Kakadiaris (bib0310) 2016
Cruchet, Gaudinat, Rindflesch, Boyer (bib0120) 2009
Kropf, Krücken, Mueller, Denecke (bib0025) 2017; 56
Gobeill, Patsche, Theodoro, Veuthey, Lovis, Ruch (bib0125) 2009
Balikas, Kosmopoulos, Krithara, Paliouras, Kakadiaris (bib0305) 2015
Hanauer, Wu, Yang, Mei, Murkowski-Steffy, Vydiswaran, Zheng (bib0245) 2017; 67
Sarrouti, Alaoui (bib0180) 2017
Neves (bib0155) 2015
Manning, Surdeanu, Bauer, Finkel, Bethard, McClosky (bib0265) 2014
Wei, Kao, Lu (bib0195) 2013; 41
Patrick, Li (bib0220) 2012; 45
Frasca (bib0015) 2017; 82
Aronson, Lang (bib0275) 2010; 17
McInnes, Pedersen, Pakhomov (bib0255) 2009
Ji, Ritter, Yen (bib0010) 2017; 69
Roberts, Kilicoglu, Fiszman, Demner-Fushman (bib0225) 2014
Kopanitsa (bib0020) 2017; 56
D. Hristovski, D. Dinevski, A. Kastrin, T.C. Rindflesch, Biomedical question answering using semantic relations, BMC Bioinformatics 16 (1). doi:10.1186/s12859-014-0365-3. URL https://doi.org/10.1186%2Fs12859-014-0365-3.
Green, Wolf, Chomsky, Laughery (bib0095) 1961
Kannampallil, Patel (bib0030) 2017; 71
Porter (bib0270) 1980; 14
Erkan, Radev (bib0200) 2004; 22
Sarrouti, Alaoui (bib0290) 2017; 12
Tsatsaronis, Balikas, Malakasiotis, Partalas, Zschunke, Alvers, Weissenborn, Krithara, Petridis, Polychronopoulos, Almirantis, Pavlopoulos, Baskiotis, Gallinari, Artiéres, Ngomo, Heino, Gaussier, Barrio-Alvers, Schroeder, Androutsopoulos, Paliouras (bib0205) 2015; 16
Katz, Felshin, Yuret, Ibrahim, Lin, Marton, McFarland, Temelkuran (bib0105) 2002
Neves, Eckert, Folkerts, Uflacker (bib0135) 2017
Bodenreider (bib0240) 2004; 32
Sarrouti, Alaoui (bib0170) 2016
Otterbacher, Erkan, Radev (bib0260) 2009; 45
Demner-Fushman, Lin (bib0250) 2007; 33
Woods (bib0100) 1973
Schulze, Schuler, Draeger, Dummer, Ernst, Flemming, Perscheid, Neves (bib0160) 2016
Abacha, Zweigenbaum (bib0090) 2015; 51
Yang, Gupta, Sun, Xu, Zhang, Nyberg (bib0140) 2015
Goldstein, Shahar, Orenbuch, Cohen (bib0055) 2017; 82
Athenikos, Han (bib0080) 2010; 99
Neves, Leser (bib0085) 2015; 74
Wei, Xing, Zeng, Chen, Su, Guo (bib0035) 2017; 83
Sarker, Mollá, Paris (bib0005) 2016; 59
Vicedo, Gómez (bib0185) 2007; 58
Aronson (bib0235) 2001
Hersh, Crabtree, Hickam, Sacherek, Friedman, Tidmarsh, Mosbaek, Kraemer (bib0070) 2002; 9
Zhang, Peng, You, Xie, Wang, Zhu (bib0145) 2015
Choi (bib0150) 2015
Sarrouti (10.1016/j.artmed.2019.101767_bib0175) 2017; 68
Bodenreider (10.1016/j.artmed.2019.101767_bib0240) 2004; 32
Lamy (10.1016/j.artmed.2019.101767_bib0050) 2017; 80
Katz (10.1016/j.artmed.2019.101767_bib0105) 2002
Erkan (10.1016/j.artmed.2019.101767_bib0200) 2004; 22
Bauer (10.1016/j.artmed.2019.101767_bib0115) 2012; 6
Sarker (10.1016/j.artmed.2019.101767_bib0005) 2016; 59
Choi (10.1016/j.artmed.2019.101767_bib0150) 2015
Kopanitsa (10.1016/j.artmed.2019.101767_bib0020) 2017; 56
Cohen (10.1016/j.artmed.2019.101767_bib0285) 2017
Kropf (10.1016/j.artmed.2019.101767_bib0025) 2017; 56
Wang (10.1016/j.artmed.2019.101767_bib0040) 2017; 65
Porter (10.1016/j.artmed.2019.101767_bib0270) 1980; 14
Cruchet (10.1016/j.artmed.2019.101767_bib0120) 2009
10.1016/j.artmed.2019.101767_bib0165
Schulze (10.1016/j.artmed.2019.101767_bib0160) 2016
Wei (10.1016/j.artmed.2019.101767_bib0195) 2013; 41
Cao (10.1016/j.artmed.2019.101767_bib0215) 2010; 43
Demner-Fushman (10.1016/j.artmed.2019.101767_bib0250) 2007; 33
Kraus (10.1016/j.artmed.2019.101767_bib0190) 2017; 45
Sarrouti (10.1016/j.artmed.2019.101767_bib0230) 2017; 13
Otterbacher (10.1016/j.artmed.2019.101767_bib0260) 2009; 45
10.1016/j.artmed.2019.101767_bib0060
Athenikos (10.1016/j.artmed.2019.101767_bib0080) 2010; 99
Neves (10.1016/j.artmed.2019.101767_bib0085) 2015; 74
Balikas (10.1016/j.artmed.2019.101767_bib0305) 2015
Neves (10.1016/j.artmed.2019.101767_bib0135) 2017
Kaisser (10.1016/j.artmed.2019.101767_bib0110) 2008
Tsatsaronis (10.1016/j.artmed.2019.101767_bib0205) 2015; 16
Sarrouti (10.1016/j.artmed.2019.101767_bib0290) 2017; 12
Green (10.1016/j.artmed.2019.101767_bib0095) 1961
Baccianella (10.1016/j.artmed.2019.101767_bib0295) 2010
Neves (10.1016/j.artmed.2019.101767_bib0155) 2015
Ji (10.1016/j.artmed.2019.101767_bib0010) 2017; 69
Hersh (10.1016/j.artmed.2019.101767_bib0070) 2002; 9
Sarrouti (10.1016/j.artmed.2019.101767_bib0170) 2016
Sarrouti (10.1016/j.artmed.2019.101767_bib0180) 2017
Lee (10.1016/j.artmed.2019.101767_bib0075) 2006
Manning (10.1016/j.artmed.2019.101767_bib0265) 2014
McInnes (10.1016/j.artmed.2019.101767_bib0255) 2009
Moldovan (10.1016/j.artmed.2019.101767_bib0210) 2003; 21
Zhang (10.1016/j.artmed.2019.101767_bib0145) 2015
Woods (10.1016/j.artmed.2019.101767_bib0100) 1973
Vicedo (10.1016/j.artmed.2019.101767_bib0185) 2007; 58
Roberts (10.1016/j.artmed.2019.101767_bib0225) 2014
Kannampallil (10.1016/j.artmed.2019.101767_bib0030) 2017; 71
Nentidis (10.1016/j.artmed.2019.101767_bib0280) 2017
Chen (10.1016/j.artmed.2019.101767_bib0045) 2017; 68
Aronson (10.1016/j.artmed.2019.101767_bib0275) 2010; 17
Yang (10.1016/j.artmed.2019.101767_bib0140) 2015
Ely (10.1016/j.artmed.2019.101767_bib0065) 2000; 321
Frasca (10.1016/j.artmed.2019.101767_bib0015) 2017; 82
Cao (10.1016/j.artmed.2019.101767_bib0130) 2011; 44
Patrick (10.1016/j.artmed.2019.101767_bib0220) 2012; 45
Aronson (10.1016/j.artmed.2019.101767_bib0235) 2001
Goldstein (10.1016/j.artmed.2019.101767_bib0055) 2017; 82
Balikas (10.1016/j.artmed.2019.101767_bib0300) 2013
Wei (10.1016/j.artmed.2019.101767_bib0035) 2017; 83
Abacha (10.1016/j.artmed.2019.101767_bib0090) 2015; 51
Gobeill (10.1016/j.artmed.2019.101767_bib0125) 2009
Krithara (10.1016/j.artmed.2019.101767_bib0310) 2016
Hanauer (10.1016/j.artmed.2019.101767_bib0245) 2017; 67
References_xml – reference: D. Hristovski, D. Dinevski, A. Kastrin, T.C. Rindflesch, Biomedical question answering using semantic relations, BMC Bioinformatics 16 (1). doi:10.1186/s12859-014-0365-3. URL https://doi.org/10.1186%2Fs12859-014-0365-3.
– volume: 82
  start-page: 34
  year: 2017
  end-page: 46
  ident: bib0015
  article-title: Gene2disco: Gene to disease using disease commonalities
  publication-title: Artificial Intelligence in Medicine
– volume: 9
  start-page: 283
  year: 2002
  end-page: 293
  ident: bib0070
  article-title: Factors associated with success in searching medline and applying evidence to answer clinical questions
  publication-title: Journal of the American Medical Informatics Association
– volume: 83
  start-page: 67
  year: 2017
  end-page: 74
  ident: bib0035
  article-title: Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier
  publication-title: Artificial Intelligence in Medicine
– volume: 51
  start-page: 570
  year: 2015
  end-page: 594
  ident: bib0090
  article-title: MEANS: A medical question-answering system combining NLP techniques and semantic Web technologies
  publication-title: Information Processing & Management
– volume: 32
  start-page: 267D
  year: 2004
  end-page: 270D
  ident: bib0240
  article-title: The unified medical language system (UMLS): integrating biomedical terminology
  publication-title: Nucleic Acids Research
– year: 2009
  ident: bib0120
  article-title: What about trust in the question answering world
  publication-title: AMIA 2009 annual symposium
– year: 2015
  ident: bib0150
  article-title: Snumedinfo at CLEF QA track BioASQ 2015
  publication-title: Working Notes for the Conference and Labs of the Evaluation Forum (CLEF), Toulouse, France
– volume: 69
  start-page: 33
  year: 2017
  end-page: 42
  ident: bib0010
  article-title: Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews
  publication-title: Journal of Biomedical Informatics
– volume: 68
  start-page: 121
  year: 2017
  end-page: 131
  ident: bib0045
  article-title: Unsupervised ensemble ranking of terms in electronic health record notes based on their importance to patients
  publication-title: Journal of Biomedical Informatics
– start-page: 38
  year: 2016
  end-page: 44
  ident: bib0160
  article-title: HPI question answering system in BioASQ 2016
  publication-title: Proceedings of the Fourth BioASQ workshop at the Conference of the Association for Computational Linguistics
– volume: 17
  start-page: 229
  year: 2010
  end-page: 236
  ident: bib0275
  article-title: An overview of MetaMap: historical perspective and recent advances
  publication-title: Journal of the American Medical Informatics Association
– volume: 82
  start-page: 20
  year: 2017
  end-page: 33
  ident: bib0055
  article-title: Evaluation of an automated knowledge-based textual summarization system for longitudinal clinical data, in the intensive care domain
  publication-title: Artificial Intelligence in Medicine
– volume: 14
  start-page: 130
  year: 1980
  end-page: 137
  ident: bib0270
  article-title: An algorithm for suffix stripping
  publication-title: Program: electronic library and information systems
– start-page: 2200
  year: 2010
  end-page: 2204
  ident: bib0295
  article-title: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining
  publication-title: LREC, Vol. 10
– volume: 22
  start-page: 457
  year: 2004
  end-page: 479
  ident: bib0200
  article-title: Lexrank: Graph-based lexical centrality as salience in text summarization
  publication-title: Journal of Artificial Intelligence Research
– volume: 21
  start-page: 133
  year: 2003
  end-page: 154
  ident: bib0210
  article-title: Performance issues and error analysis in an open-domain question answering system
  publication-title: ACM Transactions on Information Systems (TOIS)
– year: 2014
  ident: bib0265
  article-title: The stanford CoreNLP natural language processing toolkit
  publication-title: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations
– year: 2008
  ident: bib0110
  article-title: The QuALiM question answering demo
  publication-title: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies Demo Session - HLT 08
– volume: 45
  start-page: W478
  year: 2017
  end-page: W483
  ident: bib0190
  article-title: Olelo: a web application for intuitive exploration of biomedical literature
  publication-title: Nucleic Acids Research
– start-page: 1018
  year: 2014
  end-page: 1027
  ident: bib0225
  article-title: Automatically classifying question types for consumer health questions
  publication-title: AMIA Annu Symp Proc
– start-page: 431
  year: 2009
  ident: bib0255
  article-title: UMLS-interface and UMLS-similarity: open source software for measuring paths and semantic similarity
  publication-title: AMIA Annual Symposium Proceedings, Vol. 2009
– volume: 65
  start-page: 46
  year: 2017
  end-page: 57
  ident: bib0040
  article-title: Generating disease-pertinent treatment vocabularies from MEDLINE citations
  publication-title: Journal of Biomedical Informatics
– start-page: 1
  year: 2009
  end-page: 5
  ident: bib0125
  article-title: Question answering for biology and medicine
  publication-title: 9th International Conference on Information Technology and Applications in Biomedicine
– volume: 99
  start-page: 1
  year: 2010
  end-page: 24
  ident: bib0080
  article-title: Biomedical question answering: A survey
  publication-title: Computer Methods and Programs in Biomedicine
– year: 2015
  ident: bib0155
  article-title: HPI question answering system in the BioASQ 2015 challenge
  publication-title: Working Notes for the Conference and Labs of the Evaluation Forum (CLEF)
– volume: 58
  start-page: 910
  year: 2007
  end-page: 911
  ident: bib0185
  article-title: TREC: Experiment and evaluation in information retrieval
  publication-title: Journal of the American Society for Information Science and Technology
– year: 2015
  ident: bib0145
  article-title: The fudan participation in the 2015 bioasq challenge: Large-scale biomedical semantic indexing and question answering
  publication-title: In Working Notes for the Conference and Labs of the Evaluation Forum (CLEF)
– volume: 321
  start-page: 429
  year: 2000
  end-page: 432
  ident: bib0065
  article-title: A taxonomy of generic clinical questions: classification study
  publication-title: BMJ
– year: 1973
  ident: bib0100
  article-title: Progress in natural language understanding
  publication-title: Proceedings of national computer conference and exposition- AFIPS, June 4-8
– year: 2013
  ident: bib0300
  article-title: Evaluation framework specifications
– volume: 44
  start-page: 277
  year: 2011
  end-page: 288
  ident: bib0130
  article-title: AskHERMES: An online question answering system for complex clinical questions
  publication-title: Journal of Biomedical Informatics
– start-page: 230
  year: 2002
  end-page: 234
  ident: bib0105
  article-title: Omnibase: Uniform access to heterogeneous data for question answering
  publication-title: Natural Language Processing and Information Systems
– year: 1961
  ident: bib0095
  article-title: Baseball
  publication-title: Proceedings of the western joint IRE-AIEE-ACM computer conference, Los Angeles, May 9-11
– year: 2015
  ident: bib0140
  article-title: Learning to answer biomedical factoid & list questions: OAQA at BioASQ 3B
  publication-title: CLEF (Working Notes)
– volume: 16
  start-page: 1
  year: 2015
  end-page: 28
  ident: bib0205
  article-title: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition
  publication-title: BMC Bioinformatics
– volume: 67
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0245
  article-title: Development and empirical user-centered evaluation of semantically-based query recommendation for an electronic health record search engine
  publication-title: Journal of Biomedical Informatics
– volume: 59
  start-page: 169
  year: 2016
  end-page: 184
  ident: bib0005
  article-title: Query-oriented evidence extraction to support evidence-based medicine practice
  publication-title: Journal of Biomedical Informatics
– year: 2017
  ident: bib0135
  article-title: Assessing the performance of olelo, a real-time biomedical question answering application
  publication-title: BioNLP 2017, Association for Computational Linguistics
– volume: 41
  start-page: W518
  year: 2013
  end-page: W522
  ident: bib0195
  article-title: PubTator: a web-based text mining tool for assisting biocuration
  publication-title: Nucleic Acids Research
– reference: M. Sarrouti, S.O. E. Alaoui, A machine learning-based method for question type classification in biomedical question answering, Methods of Information in Medicine 56 (3). doi:10.3414/me16-01-0116. URL https://doi.org/10.3414%2Fme16-01-0116.
– year: 2017
  ident: bib0180
  article-title: A biomedical question answering system in BioASQ 2017
  publication-title: BioNLP 2017, Association for Computational Linguistics
– start-page: 17
  year: 2001
  ident: bib0235
  article-title: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program
  publication-title: Proceedings of the AMIA Symposium
– volume: 12
  start-page: 62
  year: 2017
  end-page: 74
  ident: bib0290
  article-title: A yes/no answer generator based on sentiment-word scores in biomedical question answering
  publication-title: International Journal of Healthcare Information Systems and Informatics
– volume: 74
  start-page: 36
  year: 2015
  end-page: 46
  ident: bib0085
  article-title: Question answering for Biology
  publication-title: Methods
– volume: 13
  start-page: 161
  year: 2017
  end-page: 177
  ident: bib0230
  article-title: A new and efficient method based on syntactic dependency relations features for ad hoc clinical question classification
  publication-title: International Journal of Bioinformatics Research and Applications
– start-page: 469
  year: 2006
  end-page: 473
  ident: bib0075
  article-title: Beyond information retrieval-medical question answering
  publication-title: AMIA Annual Symposium Proceedings, Vol. 2006
– year: 2016
  ident: bib0310
  article-title: Results of the 4th edition of BioASQ challenge
  publication-title: Proceedings of the Fourth BioASQ workshop
– volume: 33
  start-page: 63
  year: 2007
  end-page: 103
  ident: bib0250
  article-title: Answering clinical questions with knowledge-based and statistical techniques
  publication-title: Computational Linguistics
– volume: 80
  start-page: 11
  year: 2017
  end-page: 28
  ident: bib0050
  article-title: Owlready: Ontology-oriented programming in python with automatic classification and high level constructs for biomedical ontologies
  publication-title: Artificial Intelligence in Medicine
– volume: 43
  start-page: 962
  year: 2010
  end-page: 971
  ident: bib0215
  article-title: Automatically extracting information needs from complex clinical questions
  publication-title: Journal of biomedical informatics
– year: 2017
  ident: bib0280
  article-title: Results of the fifth edition of the BioASQ challenge
  publication-title: BioNLP 2017
– volume: 56
  start-page: 238
  year: 2017
  end-page: 247
  ident: bib0020
  article-title: Integration of hospital information and clinical decision support systems to enable the reuse of electronic health record data
  publication-title: Methods of Information in Medicine
– volume: 6
  start-page: 17
  year: 2012
  ident: bib0115
  article-title: Usability survey of biomedical question answering systems
  publication-title: Human Genomics
– start-page: 207
  year: 2016
  end-page: 216
  ident: bib0170
  article-title: A generic document retrieval framework based on UMLS similarity for biomedical question answering system
  publication-title: Intelligent Decision Technologies 2016
– year: 2017
  ident: bib0285
  article-title: Proceedings of the 16th BioNLP workshop
– start-page: 2015
  year: 2015
  ident: bib0305
  article-title: Results of the BioASQ tasks of the question answering lab at CLEF 2015
  publication-title: CLEF
– volume: 56
  start-page: 230
  year: 2017
  end-page: 237
  ident: bib0025
  article-title: Structuring legacy pathology reports by openEHR archetypes to enable semantic querying
  publication-title: Methods of Information in Medicine
– volume: 68
  start-page: 96
  year: 2017
  end-page: 103
  ident: bib0175
  article-title: A passage retrieval method based on probabilistic information retrieval and UMLS concepts in biomedical question answering
  publication-title: Journal of Biomedical Informatics
– volume: 71
  start-page: 207
  year: 2017
  end-page: 210
  ident: bib0030
  article-title: Special issue on cognitive informatics methods for interactive clinical systems
  publication-title: Journal of Biomedical Informatics
– volume: 45
  start-page: 42
  year: 2009
  end-page: 54
  ident: bib0260
  article-title: Biased LexRank: Passage retrieval using random walks with question-based priors
  publication-title: Information Processing & Management
– volume: 45
  start-page: 292
  year: 2012
  end-page: 306
  ident: bib0220
  article-title: An ontology for clinical questions about the contents of patient notes
  publication-title: Journal of Biomedical Informatics
– start-page: 207
  year: 2016
  ident: 10.1016/j.artmed.2019.101767_bib0170
  article-title: A generic document retrieval framework based on UMLS similarity for biomedical question answering system
– volume: 71
  start-page: 207
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0030
  article-title: Special issue on cognitive informatics methods for interactive clinical systems
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2017.06.003
– volume: 45
  start-page: W478
  issue: W1
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0190
  article-title: Olelo: a web application for intuitive exploration of biomedical literature
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx363
– volume: 22
  start-page: 457
  year: 2004
  ident: 10.1016/j.artmed.2019.101767_bib0200
  article-title: Lexrank: Graph-based lexical centrality as salience in text summarization
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1523
– year: 2015
  ident: 10.1016/j.artmed.2019.101767_bib0140
  article-title: Learning to answer biomedical factoid & list questions: OAQA at BioASQ 3B
  publication-title: CLEF (Working Notes)
– year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0180
  article-title: A biomedical question answering system in BioASQ 2017
  publication-title: BioNLP 2017, Association for Computational Linguistics
  doi: 10.18653/v1/W17-2337
– volume: 82
  start-page: 20
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0055
  article-title: Evaluation of an automated knowledge-based textual summarization system for longitudinal clinical data, in the intensive care domain
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2017.09.001
– volume: 44
  start-page: 277
  issue: 2
  year: 2011
  ident: 10.1016/j.artmed.2019.101767_bib0130
  article-title: AskHERMES: An online question answering system for complex clinical questions
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2011.01.004
– start-page: 431
  year: 2009
  ident: 10.1016/j.artmed.2019.101767_bib0255
  article-title: UMLS-interface and UMLS-similarity: open source software for measuring paths and semantic similarity
  publication-title: AMIA Annual Symposium Proceedings, Vol. 2009
– start-page: 17
  year: 2001
  ident: 10.1016/j.artmed.2019.101767_bib0235
  article-title: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program
– year: 2009
  ident: 10.1016/j.artmed.2019.101767_bib0120
  article-title: What about trust in the question answering world
  publication-title: AMIA 2009 annual symposium
– volume: 68
  start-page: 96
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0175
  article-title: A passage retrieval method based on probabilistic information retrieval and UMLS concepts in biomedical question answering
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2017.03.001
– year: 1961
  ident: 10.1016/j.artmed.2019.101767_bib0095
  article-title: Baseball
  publication-title: Proceedings of the western joint IRE-AIEE-ACM computer conference, Los Angeles, May 9-11
– year: 1973
  ident: 10.1016/j.artmed.2019.101767_bib0100
  article-title: Progress in natural language understanding
  publication-title: Proceedings of national computer conference and exposition- AFIPS, June 4-8
– ident: 10.1016/j.artmed.2019.101767_bib0060
  doi: 10.1186/s12859-014-0365-3
– year: 2015
  ident: 10.1016/j.artmed.2019.101767_bib0155
  article-title: HPI question answering system in the BioASQ 2015 challenge
  publication-title: Working Notes for the Conference and Labs of the Evaluation Forum (CLEF)
– volume: 32
  start-page: 267D
  issue: 90001
  year: 2004
  ident: 10.1016/j.artmed.2019.101767_bib0240
  article-title: The unified medical language system (UMLS): integrating biomedical terminology
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkh061
– volume: 51
  start-page: 570
  issue: 5
  year: 2015
  ident: 10.1016/j.artmed.2019.101767_bib0090
  article-title: MEANS: A medical question-answering system combining NLP techniques and semantic Web technologies
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2015.04.006
– volume: 58
  start-page: 910
  issue: 6
  year: 2007
  ident: 10.1016/j.artmed.2019.101767_bib0185
  article-title: TREC: Experiment and evaluation in information retrieval
  publication-title: Journal of the American Society for Information Science and Technology
  doi: 10.1002/asi.20583
– start-page: 230
  year: 2002
  ident: 10.1016/j.artmed.2019.101767_bib0105
  article-title: Omnibase: Uniform access to heterogeneous data for question answering
– volume: 17
  start-page: 229
  issue: 3
  year: 2010
  ident: 10.1016/j.artmed.2019.101767_bib0275
  article-title: An overview of MetaMap: historical perspective and recent advances
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2009.002733
– volume: 82
  start-page: 34
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0015
  article-title: Gene2disco: Gene to disease using disease commonalities
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2017.08.001
– volume: 45
  start-page: 42
  issue: 1
  year: 2009
  ident: 10.1016/j.artmed.2019.101767_bib0260
  article-title: Biased LexRank: Passage retrieval using random walks with question-based priors
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2008.06.004
– volume: 59
  start-page: 169
  year: 2016
  ident: 10.1016/j.artmed.2019.101767_bib0005
  article-title: Query-oriented evidence extraction to support evidence-based medicine practice
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2015.11.010
– volume: 56
  start-page: 238
  issue: 3
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0020
  article-title: Integration of hospital information and clinical decision support systems to enable the reuse of electronic health record data
  publication-title: Methods of Information in Medicine
  doi: 10.3414/ME16-01-0057
– start-page: 1
  year: 2009
  ident: 10.1016/j.artmed.2019.101767_bib0125
  article-title: Question answering for biology and medicine
  publication-title: 9th International Conference on Information Technology and Applications in Biomedicine
– volume: 67
  start-page: 1
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0245
  article-title: Development and empirical user-centered evaluation of semantically-based query recommendation for an electronic health record search engine
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2017.01.013
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.artmed.2019.101767_bib0205
  article-title: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0564-6
– year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0280
  article-title: Results of the fifth edition of the BioASQ challenge
– start-page: 2200
  year: 2010
  ident: 10.1016/j.artmed.2019.101767_bib0295
  article-title: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining
  publication-title: LREC, Vol. 10
– start-page: 469
  year: 2006
  ident: 10.1016/j.artmed.2019.101767_bib0075
  article-title: Beyond information retrieval-medical question answering
  publication-title: AMIA Annual Symposium Proceedings, Vol. 2006
– volume: 83
  start-page: 67
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0035
  article-title: Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2017.03.001
– year: 2014
  ident: 10.1016/j.artmed.2019.101767_bib0265
  article-title: The stanford CoreNLP natural language processing toolkit
  publication-title: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations
  doi: 10.3115/v1/P14-5010
– volume: 21
  start-page: 133
  issue: 2
  year: 2003
  ident: 10.1016/j.artmed.2019.101767_bib0210
  article-title: Performance issues and error analysis in an open-domain question answering system
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/763693.763694
– volume: 80
  start-page: 11
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0050
  article-title: Owlready: Ontology-oriented programming in python with automatic classification and high level constructs for biomedical ontologies
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2017.07.002
– volume: 65
  start-page: 46
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0040
  article-title: Generating disease-pertinent treatment vocabularies from MEDLINE citations
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2016.11.004
– volume: 45
  start-page: 292
  issue: 2
  year: 2012
  ident: 10.1016/j.artmed.2019.101767_bib0220
  article-title: An ontology for clinical questions about the contents of patient notes
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2011.11.008
– year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0135
  article-title: Assessing the performance of olelo, a real-time biomedical question answering application
  publication-title: BioNLP 2017, Association for Computational Linguistics
  doi: 10.18653/v1/W17-2344
– volume: 69
  start-page: 33
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0010
  article-title: Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2017.03.007
– start-page: 2015
  year: 2015
  ident: 10.1016/j.artmed.2019.101767_bib0305
  article-title: Results of the BioASQ tasks of the question answering lab at CLEF 2015
  publication-title: CLEF
– volume: 56
  start-page: 230
  issue: 2
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0025
  article-title: Structuring legacy pathology reports by openEHR archetypes to enable semantic querying
  publication-title: Methods of Information in Medicine
– volume: 12
  start-page: 62
  issue: 3
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0290
  article-title: A yes/no answer generator based on sentiment-word scores in biomedical question answering
  publication-title: International Journal of Healthcare Information Systems and Informatics
  doi: 10.4018/IJHISI.2017070104
– volume: 68
  start-page: 121
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0045
  article-title: Unsupervised ensemble ranking of terms in electronic health record notes based on their importance to patients
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2017.02.016
– year: 2008
  ident: 10.1016/j.artmed.2019.101767_bib0110
  article-title: The QuALiM question answering demo
– volume: 74
  start-page: 36
  year: 2015
  ident: 10.1016/j.artmed.2019.101767_bib0085
  article-title: Question answering for Biology
  publication-title: Methods
  doi: 10.1016/j.ymeth.2014.10.023
– year: 2015
  ident: 10.1016/j.artmed.2019.101767_bib0150
  article-title: Snumedinfo at CLEF QA track BioASQ 2015
  publication-title: Working Notes for the Conference and Labs of the Evaluation Forum (CLEF), Toulouse, France
– year: 2016
  ident: 10.1016/j.artmed.2019.101767_bib0310
  article-title: Results of the 4th edition of BioASQ challenge
– year: 2013
  ident: 10.1016/j.artmed.2019.101767_bib0300
– volume: 321
  start-page: 429
  issue: 7258
  year: 2000
  ident: 10.1016/j.artmed.2019.101767_bib0065
  article-title: A taxonomy of generic clinical questions: classification study
  publication-title: BMJ
  doi: 10.1136/bmj.321.7258.429
– volume: 43
  start-page: 962
  issue: 6
  year: 2010
  ident: 10.1016/j.artmed.2019.101767_bib0215
  article-title: Automatically extracting information needs from complex clinical questions
  publication-title: Journal of biomedical informatics
  doi: 10.1016/j.jbi.2010.07.007
– volume: 41
  start-page: W518
  issue: W1
  year: 2013
  ident: 10.1016/j.artmed.2019.101767_bib0195
  article-title: PubTator: a web-based text mining tool for assisting biocuration
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkt441
– volume: 14
  start-page: 130
  issue: 3
  year: 1980
  ident: 10.1016/j.artmed.2019.101767_bib0270
  article-title: An algorithm for suffix stripping
  publication-title: Program: electronic library and information systems
  doi: 10.1108/eb046814
– year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0285
– ident: 10.1016/j.artmed.2019.101767_bib0165
  doi: 10.3414/ME16-01-0116
– volume: 9
  start-page: 283
  issue: 3
  year: 2002
  ident: 10.1016/j.artmed.2019.101767_bib0070
  article-title: Factors associated with success in searching medline and applying evidence to answer clinical questions
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1197/jamia.M0996
– start-page: 1018
  year: 2014
  ident: 10.1016/j.artmed.2019.101767_bib0225
  article-title: Automatically classifying question types for consumer health questions
  publication-title: AMIA Annu Symp Proc
– volume: 99
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.artmed.2019.101767_bib0080
  article-title: Biomedical question answering: A survey
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2009.10.003
– volume: 6
  start-page: 17
  issue: 1
  year: 2012
  ident: 10.1016/j.artmed.2019.101767_bib0115
  article-title: Usability survey of biomedical question answering systems
  publication-title: Human Genomics
  doi: 10.1186/1479-7364-6-17
– start-page: 38
  year: 2016
  ident: 10.1016/j.artmed.2019.101767_bib0160
  article-title: HPI question answering system in BioASQ 2016
  publication-title: Proceedings of the Fourth BioASQ workshop at the Conference of the Association for Computational Linguistics
– year: 2015
  ident: 10.1016/j.artmed.2019.101767_bib0145
  article-title: The fudan participation in the 2015 bioasq challenge: Large-scale biomedical semantic indexing and question answering
  publication-title: In Working Notes for the Conference and Labs of the Evaluation Forum (CLEF)
– volume: 13
  start-page: 161
  issue: 2
  year: 2017
  ident: 10.1016/j.artmed.2019.101767_bib0230
  article-title: A new and efficient method based on syntactic dependency relations features for ad hoc clinical question classification
  publication-title: International Journal of Bioinformatics Research and Applications
  doi: 10.1504/IJBRA.2017.083150
– volume: 33
  start-page: 63
  issue: 1
  year: 2007
  ident: 10.1016/j.artmed.2019.101767_bib0250
  article-title: Answering clinical questions with knowledge-based and statistical techniques
  publication-title: Computational Linguistics
  doi: 10.1162/coli.2007.33.1.63
SSID ssj0007416
Score 2.5142224
Snippet [Display omitted] •A new semantic biomedical question answering system named SemBioNLQA for retrieving exact and ideal answers to natural language questions is...
Question answering (QA), the identification of short accurate answers to users questions written in natural language expressions, is a longstanding issue...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101767
SubjectTerms Algorithms
Automation
BioASQ
Biomedical informatics
Biomedical question answering
Biomedical Technology - methods
Humans
Information retrieval
Information Storage and Retrieval
Machine Learning
Medical Informatics - methods
Natural Language Processing
Passage retrieval
PubMed
Unified Medical Language System
Title SemBioNLQA: A semantic biomedical question answering system for retrieving exact and ideal answers to natural language questions
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365718302756
https://dx.doi.org/10.1016/j.artmed.2019.101767
https://www.ncbi.nlm.nih.gov/pubmed/31980104
https://www.proquest.com/docview/2345508492
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AKRWK
  dateStart: 19890101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxwhEJeQQuhLP9Kva9Jgoa_2uqurbt4uoeHydVDSQN7ET9jS3IXchvap9E_v6OqVQkNCXsXRXUdnxnHmNwh9YJJpzy0jIWhHmOCeSFdVRBprLI2A5qlM5-mMT8_Z0UVzsYb2Sy5MDKvMsn-Q6Ula55ZxXs3xVdeNz-JdnPIGhGt6e4uw24yJWMXg46-_YR7R4kh4e5SS2Lukz6UYLxgPdE4M8GoT4FCqNv9f9XSb-ZnU0MEz9CTbj3gyfOJztObnm-hpqc2A81HdRBun-dH8Bfp95i_3usXs5MtkF0_w0l_CanYWD5n3kUk4zQkcwqC4fiRwQjxAPGOwafF1qroVPQ_Y_9S2h14Odw5MzNx_ifsFThCh0FQ8oKtBly_R-cHnr_tTkgsvEAv6vCfGSCMtt_aT1iJUofWN8zKA6VO7iutK6OAoY4EaUxshhHbaGu14o7mjvub0FVqfL-b-DcKtCxU3QO1CYLQOxjPTtkxTaUItPB0hWtZb2YxKHotjfFcl_OybGrikIpfUwKURIiuqqwGV447-TWGlKhmnICMVqI076MSK7p9deQ_K92XHKDiw8RVGz_3iZqlqGhPJJWvrEXo9bKXVP4A8lPGC_PbB826hx3X0CCQn0TZa769v_Dswm3qzk87FDno0OTyezv4AMIwakw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1gvpitX6dnxF8jedusknWt2uxnHp3IG2hbyGfsKW9K70t-iT-6U6yyYmgVHwNmWQ3k8xMJjO_QegNk0x7bhkJQTvCBPdEuqoi0lhjaQQ0T2U65ws-PWafTpqTLbRfcmFiWGWW_YNMT9I6t4zzao4vum58GO_ilDcgXNPbG7-BbrKmFvEG9vb7rziPaHIkwD1KSexe8udSkBcMCEonRni1CXEolZv_o376m_2Z9NDBPXQ3G5B4MnzjfbTll7topxRnwPms7qJb8_xq_gD9OPTne91qMfsyeY8neO3PYTk7i4fU-8glnOYEFmHQXF8TOiEeMJ4xGLX4MpXdiq4H7L9p20MvhzsHNmbuv8b9CieMUGgqLtDNoOuH6Pjgw9H-lOTKC8SCQu-JMdJIy619p7UIVWh947wMYPvUruK6Ejo4yligxtRGCKGdtkY73mjuqK85fYS2l6ulf4Jw60LFDVC7EBitg_HMtC3TVJpQC09HiJb1VjbDksfqGGeqxJ-dqoFLKnJJDVwaIbKhuhhgOa7p3xRWqpJyCkJSgd64hk5s6H7blv9A-brsGAUnNj7D6KVfXa1VTWMmuWRtPUKPh620-QcQiDLekJ_-97yv0O3p0XymZh8Xn5-hO3V0DySP0XO03V9e-RdgQ_XmZTojPwGJjxwo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SemBioNLQA%3A+A+semantic+biomedical+question+answering+system+for+retrieving+exact+and+ideal+answers+to+natural+language+questions&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Sarrouti%2C+Mourad&rft.au=Ouatik+El+Alaoui%2C+Said&rft.date=2020-01-01&rft.eissn=1873-2860&rft.volume=102&rft.spage=101767&rft_id=info:doi/10.1016%2Fj.artmed.2019.101767&rft_id=info%3Apmid%2F31980104&rft.externalDocID=31980104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon