Sectioning of the Anterolateral Ligaments in Anterior Cruciate Ligament Sectioned Knees Increases Internal Rotation of the Knee Joint: A Systematic Review and Meta-analysis of Cadaveric Studies
To investigate whether anterolateral ligament (ALL) sectioning (sALL) in the anterior cruciate ligament (ACL)-sectioned (sACL) knee increases the anterior tibial translation (ATT) or internal rotation (IR) of the knee from previous cadaveric biomechanical studies. Multiple comprehensive literature d...
Saved in:
Published in | Arthroscopy Vol. 39; no. 7; pp. 1692 - 1701 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0749-8063 1526-3231 1526-3231 |
DOI | 10.1016/j.arthro.2022.12.038 |
Cover
Abstract | To investigate whether anterolateral ligament (ALL) sectioning (sALL) in the anterior cruciate ligament (ACL)-sectioned (sACL) knee increases the anterior tibial translation (ATT) or internal rotation (IR) of the knee from previous cadaveric biomechanical studies.
Multiple comprehensive literature databases, including PubMed (MEDLINE), EMBASE, and Cochrane Library, were searched for studies evaluating the in vitro biomechanical function of ALL. This meta-analysis compared the increased ATT and IR between the sACL and sACL + sALL knees at 30°, 60°, and 90° of knee flexion. Thresholds of 2 mm for the difference in ATT and 2° for the difference in IR were considered to be clinically significant.
Thirteen cadaveric biomechanical studies were included. All 13 studies satisfied the threshold for a satisfactory methodological quality (Quality Appraisal for Cadaveric Studies score >75%). At 30° of knee flexion, the meta-analysis showed a greater increase in ATT in the sACL + sALL knees than in the sACL knees by 1.23 mm (95% confidence interval [CI], 0.62–1.84; P < .0001). However, the mean difference was less than the minimal clinically significant difference (<2 mm). The meta-analysis also showed a greater increase in IR in the sACL + sALL knees than in the sACL knees at 30° (mean difference [MD]: 2.24°; 95% CI: 1.39–3.09; P < .00001), 60° (MD: 2.77°; 95% CI: 1.88–3.67; P < .00001), and 90° (MD: 2.29°; 95% CI: 1.42–3.15; P < .00001) of knee flexion. The differences in IR at 30°, 60°, and 90° of knee flexion were clinically relevant (>2°).
Despite the different experimental setups and protocols between studies, the meta-analysis of biomechanical cadaveric studies showed that sectioning of the ALL in sACL knees increased IR at 30°, 60°, and 90° of knee flexion.
The results of this systematic review and meta-analysis suggest that ALL contributes to IR in ACL-deficient knees at 30°, 60°, and 90° of flexion. |
---|---|
AbstractList | To investigate whether anterolateral ligament (ALL) sectioning (sALL) in the anterior cruciate ligament (ACL)-sectioned (sACL) knee increases the anterior tibial translation (ATT) or internal rotation (IR) of the knee from previous cadaveric biomechanical studies.
Multiple comprehensive literature databases, including PubMed (MEDLINE), EMBASE, and Cochrane Library, were searched for studies evaluating the in vitro biomechanical function of ALL. This meta-analysis compared the increased ATT and IR between the sACL and sACL + sALL knees at 30°, 60°, and 90° of knee flexion. Thresholds of 2 mm for the difference in ATT and 2° for the difference in IR were considered to be clinically significant.
Thirteen cadaveric biomechanical studies were included. All 13 studies satisfied the threshold for a satisfactory methodological quality (Quality Appraisal for Cadaveric Studies score >75%). At 30° of knee flexion, the meta-analysis showed a greater increase in ATT in the sACL + sALL knees than in the sACL knees by 1.23 mm (95% confidence interval [CI], 0.62-1.84; P < .0001). However, the mean difference was less than the minimal clinically significant difference (<2 mm). The meta-analysis also showed a greater increase in IR in the sACL + sALL knees than in the sACL knees at 30° (mean difference [MD]: 2.24°; 95% CI: 1.39-3.09; P < .00001), 60° (MD: 2.77°; 95% CI: 1.88-3.67; P < .00001), and 90° (MD: 2.29°; 95% CI: 1.42-3.15; P < .00001) of knee flexion. The differences in IR at 30°, 60°, and 90° of knee flexion were clinically relevant (>2°).
Despite the different experimental setups and protocols between studies, the meta-analysis of biomechanical cadaveric studies showed that sectioning of the ALL in sACL knees increased IR at 30°, 60°, and 90° of knee flexion.
The results of this systematic review and meta-analysis suggest that ALL contributes to IR in ACL-deficient knees at 30°, 60°, and 90° of flexion. To investigate whether anterolateral ligament (ALL) sectioning (sALL) in the anterior cruciate ligament (ACL)-sectioned (sACL) knee increases the anterior tibial translation (ATT) or internal rotation (IR) of the knee from previous cadaveric biomechanical studies.PURPOSETo investigate whether anterolateral ligament (ALL) sectioning (sALL) in the anterior cruciate ligament (ACL)-sectioned (sACL) knee increases the anterior tibial translation (ATT) or internal rotation (IR) of the knee from previous cadaveric biomechanical studies.Multiple comprehensive literature databases, including PubMed (MEDLINE), EMBASE, and Cochrane Library, were searched for studies evaluating the in vitro biomechanical function of ALL. This meta-analysis compared the increased ATT and IR between the sACL and sACL + sALL knees at 30°, 60°, and 90° of knee flexion. Thresholds of 2 mm for the difference in ATT and 2° for the difference in IR were considered to be clinically significant.METHODSMultiple comprehensive literature databases, including PubMed (MEDLINE), EMBASE, and Cochrane Library, were searched for studies evaluating the in vitro biomechanical function of ALL. This meta-analysis compared the increased ATT and IR between the sACL and sACL + sALL knees at 30°, 60°, and 90° of knee flexion. Thresholds of 2 mm for the difference in ATT and 2° for the difference in IR were considered to be clinically significant.Thirteen cadaveric biomechanical studies were included. All 13 studies satisfied the threshold for a satisfactory methodological quality (Quality Appraisal for Cadaveric Studies score >75%). At 30° of knee flexion, the meta-analysis showed a greater increase in ATT in the sACL + sALL knees than in the sACL knees by 1.23 mm (95% confidence interval [CI], 0.62-1.84; P < .0001). However, the mean difference was less than the minimal clinically significant difference (<2 mm). The meta-analysis also showed a greater increase in IR in the sACL + sALL knees than in the sACL knees at 30° (mean difference [MD]: 2.24°; 95% CI: 1.39-3.09; P < .00001), 60° (MD: 2.77°; 95% CI: 1.88-3.67; P < .00001), and 90° (MD: 2.29°; 95% CI: 1.42-3.15; P < .00001) of knee flexion. The differences in IR at 30°, 60°, and 90° of knee flexion were clinically relevant (>2°).RESULTSThirteen cadaveric biomechanical studies were included. All 13 studies satisfied the threshold for a satisfactory methodological quality (Quality Appraisal for Cadaveric Studies score >75%). At 30° of knee flexion, the meta-analysis showed a greater increase in ATT in the sACL + sALL knees than in the sACL knees by 1.23 mm (95% confidence interval [CI], 0.62-1.84; P < .0001). However, the mean difference was less than the minimal clinically significant difference (<2 mm). The meta-analysis also showed a greater increase in IR in the sACL + sALL knees than in the sACL knees at 30° (mean difference [MD]: 2.24°; 95% CI: 1.39-3.09; P < .00001), 60° (MD: 2.77°; 95% CI: 1.88-3.67; P < .00001), and 90° (MD: 2.29°; 95% CI: 1.42-3.15; P < .00001) of knee flexion. The differences in IR at 30°, 60°, and 90° of knee flexion were clinically relevant (>2°).Despite the different experimental setups and protocols between studies, the meta-analysis of biomechanical cadaveric studies showed that sectioning of the ALL in sACL knees increased IR at 30°, 60°, and 90° of knee flexion.CONCLUSIONSDespite the different experimental setups and protocols between studies, the meta-analysis of biomechanical cadaveric studies showed that sectioning of the ALL in sACL knees increased IR at 30°, 60°, and 90° of knee flexion.The results of this systematic review and meta-analysis suggest that ALL contributes to IR in ACL-deficient knees at 30°, 60°, and 90° of flexion.CLINICAL RELEVANCEThe results of this systematic review and meta-analysis suggest that ALL contributes to IR in ACL-deficient knees at 30°, 60°, and 90° of flexion. |
Author | Kim, Tae Ho Kim, Sang-Gyun Kim, Chung-Hyun Lee, Dae-Hee |
Author_xml | – sequence: 1 givenname: Dae-Hee surname: Lee fullname: Lee, Dae-Hee organization: Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea – sequence: 2 givenname: Chung-Hyun surname: Kim fullname: Kim, Chung-Hyun organization: Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea – sequence: 3 givenname: Tae Ho surname: Kim fullname: Kim, Tae Ho organization: Department of Orthopaedic Surgery, National Medical Center, Seoul, Republic of Korea – sequence: 4 givenname: Sang-Gyun orcidid: 0000-0002-1808-1094 surname: Kim fullname: Kim, Sang-Gyun email: mup81@hotmail.com organization: Department of Orthopaedic Surgery, National Medical Center, Seoul, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36708744$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1u0zAYhi00xLrBHSDkQ04S7DiNnQkhVRU_gyKkFY4tx_myuST2sJ2hXh53hkNaDnbSE9uSn-e19b0X6Mw6Cwi9pCSnhFZvdrny8c67vCBFkdMiJ0w8QQu6LKqMFYyeoQXhZZ0JUrFzdBHCjhDCmGDP0DmrOBG8LBfozxZ0NM4ae4tdh-Md4JWN4F2v0qp6vDG3agAbAzZ2vjLO47UftUnE_2t8yIEWf7EAAV9b7UGFf6ck2RR146KamONDE4g_O2PjFV7h7T5EGBKg8Q08GPiNlW3xV4gqU8neBxMmca1a9ZA-ofE2jq2B8Bw97VQf4MVhv0Q_Prz_vv6Ubb59vF6vNpku6TJmTUXLmijaQUubkpCOt8tSCFoLQXglOsqAEQGiqjhjNW0obzgwpuuiqZcV79glej3n3nv3a4QQ5WCChr5XFtwYZME5KXktGE_oqwM6NgO08t6bQfm9PI49AVczoL0LwUMntZlnE70yvaRETh3LnZw7llPHkhYydZzk8pF8zD-hvZs1SENK8_UyaANWQ2t86k62zpwKePsoQPfGGq36n7A_rf8FmqDZXA |
CitedBy_id | crossref_primary_10_1016_j_arthro_2024_05_024 crossref_primary_10_1002_ksa_12262 crossref_primary_10_4055_jkoa_2025_60_1_30 crossref_primary_10_14517_aosm23013 crossref_primary_10_1016_j_arthro_2023_09_031 crossref_primary_10_1016_j_eats_2024_103060 |
Cites_doi | 10.1177/0363546515621554 10.5312/wjo.v8.i12.913 10.5435/JAAOS-D-16-00758 10.1177/23259671211009879 10.1177/0363546518759053 10.1016/j.arthro.2021.09.017 10.1177/0363546515618387 10.31782/IJCRR.2020.12061 10.1016/j.arthro.2021.03.058 10.1016/j.otsr.2022.103224 10.1016/j.arthro.2020.03.027 10.2106/JBJS.15.00344 10.1177/0363546515589166 10.1177/0363546515625282 10.1007/s00167-019-05839-y 10.1007/s12178-019-09587-x 10.1016/j.arthro.2014.12.009 10.1186/s43019-019-0021-3 10.1016/j.cct.2015.09.002 10.1186/s43019-022-00172-0 10.1016/j.arthro.2015.04.081 10.1177/0363546518815888 10.2106/JBJS.16.00199 10.1007/s00167-017-4500-3 10.1016/j.knee.2019.07.005 10.1016/j.jajs.2019.01.006 10.1177/2325967118789699 10.1007/s00167-015-3787-1 10.1186/s43019-021-00115-1 10.1177/0363546514561746 10.1186/s43019-022-00153-3 10.1177/0363546516682233 10.1002/jrsm.1332 10.1016/j.arthro.2017.09.042 |
ContentType | Journal Article |
Copyright | 2023 Arthroscopy Association of North America Copyright © 2023 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Arthroscopy Association of North America – notice: Copyright © 2023 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.arthro.2022.12.038 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1526-3231 |
EndPage | 1701 |
ExternalDocumentID | 36708744 10_1016_j_arthro_2022_12_038 S0749806323000397 |
Genre | Meta-Analysis Systematic Review Journal Article |
GroupedDBID | --K .1- .FO .GJ 0R~ 1B1 1P~ 1RT 1~5 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 AAEDT AAEDW AALRI AAQFI AAQQT AAQXK AAXUO AAYWO ABLJU ABMAC ABWVN ACRPL ADBBV ADMUD ADNMO AEVXI AFJKZ AFRHN AFTJW AGCQF AGQPQ AHHHB AITUG AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BELOY C5W CAG COF EBS EFJIC EFKBS EJD F5P FDB FEDTE FGOYB G-2 GBLVA HEE HEK HMK HMO HVGLF HZ~ IHE J1W KOM M28 M31 M41 MO0 N9A NQ- O9- OF~ OR- R2- ROL RPZ SAE SEL SES SEW SJN SSZ UHS UV1 WUQ XH2 Z5R ZXP AAIAV ADPAM AFCTW AGZHU ALXNB RIG YCJ ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c415t-b61490a1fed1b400f7d548819880768f13e308e86673391b17b7e33c92b9567f3 |
ISSN | 0749-8063 1526-3231 |
IngestDate | Thu Sep 04 22:54:52 EDT 2025 Sat Aug 02 01:41:09 EDT 2025 Tue Jul 01 03:56:52 EDT 2025 Thu Apr 24 22:58:38 EDT 2025 Fri Feb 23 02:35:47 EST 2024 Tue Aug 26 16:34:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Copyright © 2023 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-b61490a1fed1b400f7d548819880768f13e308e86673391b17b7e33c92b9567f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-1808-1094 |
PMID | 36708744 |
PQID | 2770479837 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2770479837 pubmed_primary_36708744 crossref_citationtrail_10_1016_j_arthro_2022_12_038 crossref_primary_10_1016_j_arthro_2022_12_038 elsevier_sciencedirect_doi_10_1016_j_arthro_2022_12_038 elsevier_clinicalkey_doi_10_1016_j_arthro_2022_12_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Arthroscopy |
PublicationTitleAlternate | Arthroscopy |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Noyes, Huser, Jurgensmeier, Walsh, Levy (bib23) 2017; 45 Prathap Kumar, Arun Kumar, Venkatesh (bib36) 2020; 12 DerSimonian, Laird (bib21) 2015; 45 Lee, Kim, Cho, Kim (bib11) 2019; 47 Rasmussen, Nitri, Williams (bib18) 2016; 44 Nielsen, Stentz-Olesen, de Raedt (bib17) 2018; 6 Thein, Boorman-Padgett, Stone, Wickiewicz, Imhauser, Pearle (bib15) 2016; 98 Jette, Gutierrez, Sastre, Llusa, Combalia (bib28) 2019; 26 Harms, Noyes, Grood (bib33) 2015; 31 Wiggins, Grandhi, Schneider, Stanfield, Webster, Myer (bib5) 2016; 44 Ahn, Koh, McGarry, Patel, Lin, Lee (bib12) 2022; 108 Fernandes, Ouanezar, Saithna, Sonnery-Cottet (bib2) 2018; 2018 Morgan, Bi, Kaplan, Alaia, Strauss, Jazrawi (bib8) 2022; 34 Ansah-Twum, Belk, Cannizzaro (bib20) 2021; 38 Abdelrazek, Gad, Abdel-Aziz (bib10) 2019; 6 Cumpston, Li, Page (bib22) 2019; 10 Ferretti, Pagnotta (bib35) 2022 Helito, da Silva, Guimarães, Sobrado, Pécora, Camanho (bib37) 2022; 34 Golan, Tisherman, Byrne, Diermeier, Vaswani, Musahl (bib1) 2019; 12 Lee, Seo, Jeong, Yang (bib7) 2020; 32 Miller, Kew, Quinn (bib4) 2021; 10 Claes, Vereecke, Maes, Victor, Verdonk, Bellemans (bib19) 2013; 223 Spencer, Burkhart, Tran (bib30) 2015; 43 Stentz-Olesen, Nielsen, de Raedt (bib31) 2017; 25 Kunze, Manzi, Richardson (bib39) 2021; 37 Noyes, Huser, Levy (bib24) 2017; 99 Pustejovsky, Rodgers (bib25) 2019; 10 Saiegh, Suero, Guenther (bib14) 2017; 25 Tashiro, Okazaki, Murakami (bib3) 2017; 8 Musahl, Herbst, Burnham, Fu (bib6) 2018; 26 Ariel de Lima, De Lima, De Souza (bib9) 2021; 33 Geeslin, Chahla, Moatshe (bib16) 2018; 46 Noyes, Jetter, Grood, Harms, Gardner, Levy (bib34) 2015; 43 Kelly, Cutter, Huish (bib38) 2021; 9 Sonnery-Cottet, Lutz, Daggett (bib27) 2016; 44 Delaloye, Hartog, Blatter (bib13) 2020; 36 Gardner, Noyes, Jetter, Grood, Harms, Levy (bib32) 2015; 31 Lagae, Robberecht, Athwal, Verdonk, Amis (bib29) 2020; 28 Monaco, Fabbri, Mazza (bib26) 2018; 34 Stentz-Olesen (10.1016/j.arthro.2022.12.038_bib31) 2017; 25 Ansah-Twum (10.1016/j.arthro.2022.12.038_bib20) 2021; 38 Kelly (10.1016/j.arthro.2022.12.038_bib38) 2021; 9 Rasmussen (10.1016/j.arthro.2022.12.038_bib18) 2016; 44 Abdelrazek (10.1016/j.arthro.2022.12.038_bib10) 2019; 6 Noyes (10.1016/j.arthro.2022.12.038_bib23) 2017; 45 Nielsen (10.1016/j.arthro.2022.12.038_bib17) 2018; 6 Sonnery-Cottet (10.1016/j.arthro.2022.12.038_bib27) 2016; 44 Claes (10.1016/j.arthro.2022.12.038_bib19) 2013; 223 Noyes (10.1016/j.arthro.2022.12.038_bib24) 2017; 99 DerSimonian (10.1016/j.arthro.2022.12.038_bib21) 2015; 45 Pustejovsky (10.1016/j.arthro.2022.12.038_bib25) 2019; 10 Miller (10.1016/j.arthro.2022.12.038_bib4) 2021; 10 Delaloye (10.1016/j.arthro.2022.12.038_bib13) 2020; 36 Golan (10.1016/j.arthro.2022.12.038_bib1) 2019; 12 Ahn (10.1016/j.arthro.2022.12.038_bib12) 2022; 108 Lee (10.1016/j.arthro.2022.12.038_bib11) 2019; 47 Morgan (10.1016/j.arthro.2022.12.038_bib8) 2022; 34 Tashiro (10.1016/j.arthro.2022.12.038_bib3) 2017; 8 Monaco (10.1016/j.arthro.2022.12.038_bib26) 2018; 34 Harms (10.1016/j.arthro.2022.12.038_bib33) 2015; 31 Wiggins (10.1016/j.arthro.2022.12.038_bib5) 2016; 44 Gardner (10.1016/j.arthro.2022.12.038_bib32) 2015; 31 Thein (10.1016/j.arthro.2022.12.038_bib15) 2016; 98 Prathap Kumar (10.1016/j.arthro.2022.12.038_bib36) 2020; 12 Helito (10.1016/j.arthro.2022.12.038_bib37) 2022; 34 Saiegh (10.1016/j.arthro.2022.12.038_bib14) 2017; 25 Lagae (10.1016/j.arthro.2022.12.038_bib29) 2020; 28 Musahl (10.1016/j.arthro.2022.12.038_bib6) 2018; 26 Ferretti (10.1016/j.arthro.2022.12.038_bib35) 2022 Geeslin (10.1016/j.arthro.2022.12.038_bib16) 2018; 46 Lee (10.1016/j.arthro.2022.12.038_bib7) 2020; 32 Cumpston (10.1016/j.arthro.2022.12.038_bib22) 2019; 10 Kunze (10.1016/j.arthro.2022.12.038_bib39) 2021; 37 Fernandes (10.1016/j.arthro.2022.12.038_bib2) 2018; 2018 Ariel de Lima (10.1016/j.arthro.2022.12.038_bib9) 2021; 33 Jette (10.1016/j.arthro.2022.12.038_bib28) 2019; 26 Noyes (10.1016/j.arthro.2022.12.038_bib34) 2015; 43 Spencer (10.1016/j.arthro.2022.12.038_bib30) 2015; 43 |
References_xml | – volume: 98 start-page: 937 year: 2016 end-page: 943 ident: bib15 article-title: Biomechanical assessment of the anterolateral ligament of the knee: A secondary restraint in simulated tests of the pivot shift and of anterior stability publication-title: J Bone Joint Surgry Am – volume: 6 start-page: 108 year: 2019 end-page: 113 ident: bib10 article-title: Rotational stability after ACL reconstruction using anatomic double bundle technique versus anatomic single bundle technique plus anterolateral ligament augmentation publication-title: J Arthrosc Jt Surg – volume: 108 start-page: 103224 year: 2022 ident: bib12 article-title: Synergistic effect of the anterolateral ligament and capsule injuries on the knee laxity in anterior cruciate ligament injured knees: A cadaveric study publication-title: Orthop Traumatol Surg Res – volume: 46 start-page: 1352 year: 2018 end-page: 1361 ident: bib16 article-title: Anterolateral knee extra-articular stabilizers: A robotic sectioning study of the anterolateral ligament and distal iliotibial band Kaplan fibers publication-title: Am J Sports Med – volume: 12 start-page: 472 year: 2019 end-page: 478 ident: bib1 article-title: Anterior cruciate ligament injury and the anterolateral complex of the knee-importance in rotatory knee instability? publication-title: Curr Rev Musculoskelet Med – volume: 34 start-page: 1 year: 2022 end-page: 8 ident: bib37 article-title: Functional results of multiple revision anterior cruciate ligament with anterolateral tibial tunnel associated with anterolateral ligament reconstruction publication-title: Knee Surg Relat Res – volume: 99 start-page: 305 year: 2017 end-page: 314 ident: bib24 article-title: Rotational knee instability in ACL-deficient knees: Role of the anterolateral ligament and iliotibial band as defined by tibiofemoral compartment translations and rotations publication-title: J Bone Joint Surg Am – volume: 44 start-page: 1861 year: 2016 end-page: 1876 ident: bib5 article-title: Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: A systematic review and meta-analysis publication-title: Am J Sports Med – volume: 36 start-page: 1942 year: 2020 end-page: 1950 ident: bib13 article-title: Anterolateral ligament reconstruction and modified Lemaire lateral extra-articular tenodesis similarly improve knee stability after anterior cruciate ligament reconstruction: A biomechanical study publication-title: Arthroscopy – volume: 6 year: 2018 ident: bib17 article-title: Influence of the anterolateral ligament on knee laxity: A biomechanical cadaveric study measuring knee kinematics in 6 degrees of freedom using dynamic radiostereometric analysis publication-title: Orthop J Sports Med – volume: 47 start-page: 324 year: 2019 end-page: 333 ident: bib11 article-title: Clinical outcomes of isolated revision anterior cruciate ligament reconstruction or in combination with anatomic anterolateral ligament reconstruction publication-title: Am J Sports Med – volume: 45 start-page: 1018 year: 2017 end-page: 1027 ident: bib23 article-title: Is an anterolateral ligament reconstruction required in ACL-reconstructed knees with associated injury to the anterolateral structures? A robotic analysis of rotational knee stability publication-title: Am J Sports Med – volume: 28 start-page: 1159 year: 2020 end-page: 1168 ident: bib29 article-title: ACL reconstruction combined with lateral monoloop tenodesis can restore intact knee laxity publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 12 start-page: 1 year: 2020 end-page: 8 ident: bib36 article-title: Healthy gait: Review of anatomy and physiology of knee joint publication-title: Int J Curr Res Rev – volume: 26 start-page: 1003 year: 2019 end-page: 1009 ident: bib28 article-title: Biomechanical comparison of anterolateral ligament anatomical reconstruction with a semi-anatomical lateral extra-articular tenodesis. A cadaveric study publication-title: Knee – volume: 31 start-page: 1981 year: 2015 end-page: 1990 ident: bib33 article-title: Anatomic single-graft anterior cruciate ligament reconstruction restores rotational stability: A robotic study in cadaveric knees publication-title: Arthroscopy – volume: 45 start-page: 139 year: 2015 end-page: 145 ident: bib21 article-title: Meta-analysis in clinical trials revisited publication-title: Contemp Clin Trials – volume: 32 start-page: 1 year: 2020 end-page: 6 ident: bib7 article-title: Biomechanical function of the anterolateral ligament of the knee: A systematic review publication-title: Knee Surg Relat Res – volume: 34 start-page: 1009 year: 2018 end-page: 1014 ident: bib26 article-title: The effect of sequential tearing of the anterior cruciate and anterolateral ligament on anterior translation and the pivot-shift phenomenon: A cadaveric study using navigation publication-title: Arthroscopy – start-page: 22 year: 2022 end-page: 32 ident: bib35 article-title: Biomechanics of anterolateral instability and pivot shift publication-title: Anterolateral rotatory instability in ACL-deficient knee – volume: 43 start-page: 2189 year: 2015 end-page: 2197 ident: bib30 article-title: Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee publication-title: Am J Sports Med – volume: 10 year: 2019 ident: bib22 article-title: Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions publication-title: Cochrane Database Syst Rev – volume: 31 start-page: 901 year: 2015 end-page: 910 ident: bib32 article-title: Effect of anteromedial and posterolateral anterior cruciate ligament bundles on resisting medial and lateral tibiofemoral compartment subluxations publication-title: Arthroscopy – volume: 2018 year: 2018 ident: bib2 article-title: Combined ACL reconstruction and Segond fracture fixation fails to abolish anterolateral rotatory instability publication-title: BMJ Case Rep – volume: 8 start-page: 913 year: 2017 end-page: 921 ident: bib3 article-title: Anterolateral rotatory instability in vivo correlates tunnel position after anterior cruciate ligament reconstruction using bone-patellar tendon-bone graft publication-title: World J Orthop – volume: 34 start-page: 1 year: 2022 end-page: 7 ident: bib8 article-title: An eponymous history of the anterolateral ligament complex of the knee publication-title: Knee Surg Relat Res – volume: 223 start-page: 321 year: 2013 end-page: 328 ident: bib19 article-title: Anatomy of the anterolateral ligament of the knee publication-title: J Anat – volume: 10 start-page: 5435 year: 2021 ident: bib4 article-title: Anterior cruciate ligament revision reconstruction publication-title: J Am Acad Orthop Surg – volume: 37 start-page: 2677 year: 2021 end-page: 2703 ident: bib39 article-title: Combined anterolateral and anterior cruciate ligament reconstruction improves pivot shift compared with isolated anterior cruciate ligament reconstruction: A systematic review and meta-analysis of randomized controlled trials publication-title: Arthroscopy – volume: 33 start-page: 1 year: 2021 end-page: 14 ident: bib9 article-title: Clinical outcomes of combined anterior cruciate ligament and anterolateral ligament reconstruction: A systematic review and meta-analysis publication-title: Knee Surg Relat Res – volume: 25 start-page: 1125 year: 2017 end-page: 1131 ident: bib31 article-title: Reconstructing the anterolateral ligament does not decrease rotational knee laxity in ACL-reconstructed knees publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 44 start-page: 1209 year: 2016 end-page: 1214 ident: bib27 article-title: The involvement of the anterolateral ligament in rotational control of the knee publication-title: Am J Sports Med – volume: 9 year: 2021 ident: bib38 article-title: Biomechanical effects of combined anterior cruciate ligament reconstruction and anterolateral ligament reconstruction: A systematic review and meta-analysis publication-title: Orthop J Sports Med – volume: 26 start-page: 261 year: 2018 end-page: 267 ident: bib6 article-title: The anterolateral complex and anterolateral ligament of the knee publication-title: J Am Acad Orthop Surg – volume: 43 start-page: 683 year: 2015 end-page: 692 ident: bib34 article-title: Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations publication-title: Am J Sports Med – volume: 10 start-page: 57 year: 2019 end-page: 71 ident: bib25 article-title: Testing for funnel plot asymmetry of standardized mean differences publication-title: Res Synth Methods – volume: 25 start-page: 1086 year: 2017 end-page: 1092 ident: bib14 article-title: Sectioning the anterolateral ligament did not increase tibiofemoral translation or rotation in an ACL-deficient cadaveric model publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 44 start-page: 585 year: 2016 end-page: 592 ident: bib18 article-title: An in vitro robotic assessment of the anterolateral ligament. Part 1: Secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury publication-title: Am J Sports Med – volume: 38 start-page: 1019 year: 2021 end-page: 1027 ident: bib20 article-title: Knotted transosseous-equivalent technique for rotator cuff repair shows superior biomechanical properties compared with a knotless technique: A systematic review and meta-analysis publication-title: Arthroscopy – volume: 10 year: 2019 ident: 10.1016/j.arthro.2022.12.038_bib22 article-title: Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions publication-title: Cochrane Database Syst Rev – volume: 44 start-page: 1861 year: 2016 ident: 10.1016/j.arthro.2022.12.038_bib5 article-title: Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: A systematic review and meta-analysis publication-title: Am J Sports Med doi: 10.1177/0363546515621554 – volume: 8 start-page: 913 year: 2017 ident: 10.1016/j.arthro.2022.12.038_bib3 article-title: Anterolateral rotatory instability in vivo correlates tunnel position after anterior cruciate ligament reconstruction using bone-patellar tendon-bone graft publication-title: World J Orthop doi: 10.5312/wjo.v8.i12.913 – volume: 26 start-page: 261 year: 2018 ident: 10.1016/j.arthro.2022.12.038_bib6 article-title: The anterolateral complex and anterolateral ligament of the knee publication-title: J Am Acad Orthop Surg doi: 10.5435/JAAOS-D-16-00758 – volume: 9 year: 2021 ident: 10.1016/j.arthro.2022.12.038_bib38 article-title: Biomechanical effects of combined anterior cruciate ligament reconstruction and anterolateral ligament reconstruction: A systematic review and meta-analysis publication-title: Orthop J Sports Med doi: 10.1177/23259671211009879 – volume: 46 start-page: 1352 year: 2018 ident: 10.1016/j.arthro.2022.12.038_bib16 article-title: Anterolateral knee extra-articular stabilizers: A robotic sectioning study of the anterolateral ligament and distal iliotibial band Kaplan fibers publication-title: Am J Sports Med doi: 10.1177/0363546518759053 – volume: 38 start-page: 1019 year: 2021 ident: 10.1016/j.arthro.2022.12.038_bib20 article-title: Knotted transosseous-equivalent technique for rotator cuff repair shows superior biomechanical properties compared with a knotless technique: A systematic review and meta-analysis publication-title: Arthroscopy doi: 10.1016/j.arthro.2021.09.017 – volume: 44 start-page: 585 year: 2016 ident: 10.1016/j.arthro.2022.12.038_bib18 article-title: An in vitro robotic assessment of the anterolateral ligament. Part 1: Secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury publication-title: Am J Sports Med doi: 10.1177/0363546515618387 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.arthro.2022.12.038_bib36 article-title: Healthy gait: Review of anatomy and physiology of knee joint publication-title: Int J Curr Res Rev doi: 10.31782/IJCRR.2020.12061 – volume: 37 start-page: 2677 year: 2021 ident: 10.1016/j.arthro.2022.12.038_bib39 article-title: Combined anterolateral and anterior cruciate ligament reconstruction improves pivot shift compared with isolated anterior cruciate ligament reconstruction: A systematic review and meta-analysis of randomized controlled trials publication-title: Arthroscopy doi: 10.1016/j.arthro.2021.03.058 – volume: 108 start-page: 103224 year: 2022 ident: 10.1016/j.arthro.2022.12.038_bib12 article-title: Synergistic effect of the anterolateral ligament and capsule injuries on the knee laxity in anterior cruciate ligament injured knees: A cadaveric study publication-title: Orthop Traumatol Surg Res doi: 10.1016/j.otsr.2022.103224 – volume: 36 start-page: 1942 year: 2020 ident: 10.1016/j.arthro.2022.12.038_bib13 article-title: Anterolateral ligament reconstruction and modified Lemaire lateral extra-articular tenodesis similarly improve knee stability after anterior cruciate ligament reconstruction: A biomechanical study publication-title: Arthroscopy doi: 10.1016/j.arthro.2020.03.027 – volume: 98 start-page: 937 year: 2016 ident: 10.1016/j.arthro.2022.12.038_bib15 article-title: Biomechanical assessment of the anterolateral ligament of the knee: A secondary restraint in simulated tests of the pivot shift and of anterior stability publication-title: J Bone Joint Surgry Am doi: 10.2106/JBJS.15.00344 – volume: 43 start-page: 2189 year: 2015 ident: 10.1016/j.arthro.2022.12.038_bib30 article-title: Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee publication-title: Am J Sports Med doi: 10.1177/0363546515589166 – volume: 44 start-page: 1209 year: 2016 ident: 10.1016/j.arthro.2022.12.038_bib27 article-title: The involvement of the anterolateral ligament in rotational control of the knee publication-title: Am J Sports Med doi: 10.1177/0363546515625282 – volume: 28 start-page: 1159 year: 2020 ident: 10.1016/j.arthro.2022.12.038_bib29 article-title: ACL reconstruction combined with lateral monoloop tenodesis can restore intact knee laxity publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-019-05839-y – volume: 12 start-page: 472 year: 2019 ident: 10.1016/j.arthro.2022.12.038_bib1 article-title: Anterior cruciate ligament injury and the anterolateral complex of the knee-importance in rotatory knee instability? publication-title: Curr Rev Musculoskelet Med doi: 10.1007/s12178-019-09587-x – volume: 31 start-page: 901 year: 2015 ident: 10.1016/j.arthro.2022.12.038_bib32 article-title: Effect of anteromedial and posterolateral anterior cruciate ligament bundles on resisting medial and lateral tibiofemoral compartment subluxations publication-title: Arthroscopy doi: 10.1016/j.arthro.2014.12.009 – volume: 32 start-page: 1 year: 2020 ident: 10.1016/j.arthro.2022.12.038_bib7 article-title: Biomechanical function of the anterolateral ligament of the knee: A systematic review publication-title: Knee Surg Relat Res doi: 10.1186/s43019-019-0021-3 – volume: 45 start-page: 139 year: 2015 ident: 10.1016/j.arthro.2022.12.038_bib21 article-title: Meta-analysis in clinical trials revisited publication-title: Contemp Clin Trials doi: 10.1016/j.cct.2015.09.002 – volume: 10 start-page: 5435 year: 2021 ident: 10.1016/j.arthro.2022.12.038_bib4 article-title: Anterior cruciate ligament revision reconstruction publication-title: J Am Acad Orthop Surg – volume: 34 start-page: 1 year: 2022 ident: 10.1016/j.arthro.2022.12.038_bib8 article-title: An eponymous history of the anterolateral ligament complex of the knee publication-title: Knee Surg Relat Res doi: 10.1186/s43019-022-00172-0 – volume: 31 start-page: 1981 year: 2015 ident: 10.1016/j.arthro.2022.12.038_bib33 article-title: Anatomic single-graft anterior cruciate ligament reconstruction restores rotational stability: A robotic study in cadaveric knees publication-title: Arthroscopy doi: 10.1016/j.arthro.2015.04.081 – volume: 47 start-page: 324 year: 2019 ident: 10.1016/j.arthro.2022.12.038_bib11 article-title: Clinical outcomes of isolated revision anterior cruciate ligament reconstruction or in combination with anatomic anterolateral ligament reconstruction publication-title: Am J Sports Med doi: 10.1177/0363546518815888 – volume: 99 start-page: 305 year: 2017 ident: 10.1016/j.arthro.2022.12.038_bib24 article-title: Rotational knee instability in ACL-deficient knees: Role of the anterolateral ligament and iliotibial band as defined by tibiofemoral compartment translations and rotations publication-title: J Bone Joint Surg Am doi: 10.2106/JBJS.16.00199 – volume: 25 start-page: 1125 year: 2017 ident: 10.1016/j.arthro.2022.12.038_bib31 article-title: Reconstructing the anterolateral ligament does not decrease rotational knee laxity in ACL-reconstructed knees publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-017-4500-3 – volume: 26 start-page: 1003 year: 2019 ident: 10.1016/j.arthro.2022.12.038_bib28 article-title: Biomechanical comparison of anterolateral ligament anatomical reconstruction with a semi-anatomical lateral extra-articular tenodesis. A cadaveric study publication-title: Knee doi: 10.1016/j.knee.2019.07.005 – volume: 6 start-page: 108 year: 2019 ident: 10.1016/j.arthro.2022.12.038_bib10 article-title: Rotational stability after ACL reconstruction using anatomic double bundle technique versus anatomic single bundle technique plus anterolateral ligament augmentation publication-title: J Arthrosc Jt Surg doi: 10.1016/j.jajs.2019.01.006 – volume: 6 year: 2018 ident: 10.1016/j.arthro.2022.12.038_bib17 article-title: Influence of the anterolateral ligament on knee laxity: A biomechanical cadaveric study measuring knee kinematics in 6 degrees of freedom using dynamic radiostereometric analysis publication-title: Orthop J Sports Med doi: 10.1177/2325967118789699 – volume: 25 start-page: 1086 year: 2017 ident: 10.1016/j.arthro.2022.12.038_bib14 article-title: Sectioning the anterolateral ligament did not increase tibiofemoral translation or rotation in an ACL-deficient cadaveric model publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-015-3787-1 – volume: 33 start-page: 1 year: 2021 ident: 10.1016/j.arthro.2022.12.038_bib9 article-title: Clinical outcomes of combined anterior cruciate ligament and anterolateral ligament reconstruction: A systematic review and meta-analysis publication-title: Knee Surg Relat Res doi: 10.1186/s43019-021-00115-1 – start-page: 22 year: 2022 ident: 10.1016/j.arthro.2022.12.038_bib35 article-title: Biomechanics of anterolateral instability and pivot shift – volume: 43 start-page: 683 year: 2015 ident: 10.1016/j.arthro.2022.12.038_bib34 article-title: Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations publication-title: Am J Sports Med doi: 10.1177/0363546514561746 – volume: 34 start-page: 1 year: 2022 ident: 10.1016/j.arthro.2022.12.038_bib37 article-title: Functional results of multiple revision anterior cruciate ligament with anterolateral tibial tunnel associated with anterolateral ligament reconstruction publication-title: Knee Surg Relat Res doi: 10.1186/s43019-022-00153-3 – volume: 45 start-page: 1018 year: 2017 ident: 10.1016/j.arthro.2022.12.038_bib23 article-title: Is an anterolateral ligament reconstruction required in ACL-reconstructed knees with associated injury to the anterolateral structures? A robotic analysis of rotational knee stability publication-title: Am J Sports Med doi: 10.1177/0363546516682233 – volume: 10 start-page: 57 year: 2019 ident: 10.1016/j.arthro.2022.12.038_bib25 article-title: Testing for funnel plot asymmetry of standardized mean differences publication-title: Res Synth Methods doi: 10.1002/jrsm.1332 – volume: 34 start-page: 1009 year: 2018 ident: 10.1016/j.arthro.2022.12.038_bib26 article-title: The effect of sequential tearing of the anterior cruciate and anterolateral ligament on anterior translation and the pivot-shift phenomenon: A cadaveric study using navigation publication-title: Arthroscopy doi: 10.1016/j.arthro.2017.09.042 – volume: 2018 year: 2018 ident: 10.1016/j.arthro.2022.12.038_bib2 article-title: Combined ACL reconstruction and Segond fracture fixation fails to abolish anterolateral rotatory instability publication-title: BMJ Case Rep – volume: 223 start-page: 321 year: 2013 ident: 10.1016/j.arthro.2022.12.038_bib19 article-title: Anatomy of the anterolateral ligament of the knee publication-title: J Anat |
SSID | ssj0003383 |
Score | 2.438151 |
SecondaryResourceType | review_article |
Snippet | To investigate whether anterolateral ligament (ALL) sectioning (sALL) in the anterior cruciate ligament (ACL)-sectioned (sACL) knee increases the anterior... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1692 |
SubjectTerms | Anterior Cruciate Ligament Anterior Cruciate Ligament Injuries Biomechanical Phenomena Cadaver Humans Joint Instability Knee Joint Range of Motion, Articular |
Title | Sectioning of the Anterolateral Ligaments in Anterior Cruciate Ligament Sectioned Knees Increases Internal Rotation of the Knee Joint: A Systematic Review and Meta-analysis of Cadaveric Studies |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0749806323000397 https://dx.doi.org/10.1016/j.arthro.2022.12.038 https://www.ncbi.nlm.nih.gov/pubmed/36708744 https://www.proquest.com/docview/2770479837 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK98IFgXiVl4zErXLVxEndcCsFtloeB9pFe4vsxFm6WiVoN0WCf8c_4acw41cf7GqXvURRbNdJ5otnPJ35hpBXiU6ErsqU8WEsWZIWBZNJmrKhLhWPlY7GFTr0P30ezQ6Tg6P0qNP5sxG1tGrVoPh1YV7JTaQK10CumCX7H5INPwoX4BzkC0eQMByvJeO5iaOqXeCySRLB9wS7VcwrPoUN97G0KWzo1cCmZXPWn4I4QSA6NPfd74Dt-aHW-hwXDYxVN2eWJLr_pWmDcYkTYcf-QbN0rkXHfG7oXx1Xv4ng0K1kcoP3ZCpL-cNE728GMAYWXCzagHkywc_v4oTeSs1mOmDQlYCefoOVis1-ruqdhoXU_Vmzc3EuofO-7-wcHTEPQbHO--YzcLYCRMECykDLukVSu0U8HjEeO-3iVnlLmeTQLDaW7Ghki_E59Y_89BeqFuvlOBlI8y4GcIexcSRbcpod0u453hfeFuzwMP1Z3CJ7sQDrrkv29t98_DoJ1gIPVLH2OXx6p4lB_Heuy8yny7ZHxkxa3CV33P6GTixY75GOru-T32ug0qaigB-6BVQagEqXNfVApR6ooZkGoFIDVBqASj1QqQeqnwg7UgPU13RC1zClFqYUYEq3YIoDA0ypg-kDcvj-3WI6Y652CCvAJG2ZArMzG8qo0mWkQE9VooS9OZi_oK9gh12h83841mOsesuzSEVCCc15kcUqS0ei4g9Jt4bneUyoLrgcCZUksQbznReqKFSV8aqsyqgcJrJHuBdJXjhifazvcpr7CMqT3AoyR0HmUZyDIHuEhVHfLbHMFf1TL-3cJ02Dms8BnleME2GcM6qtsXyNkS89qHLQOfhHoqx1szrPYyGwMsWYix55ZNEWngEJIbGkxpMbz_uU3F5__s9Itz1b6edg-bfqhft4_gJdTwqn |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sectioning+of+the+Anterolateral+Ligaments+in+Anterior+Cruciate+Ligament+Sectioned+Knees+Increases+Internal+Rotation+of+the+Knee+Joint%3A+A+Systematic+Review+and+Meta-analysis+of+Cadaveric+Studies&rft.jtitle=Arthroscopy&rft.au=Lee%2C+Dae-Hee&rft.au=Kim%2C+Chung-Hyun&rft.au=Kim%2C+Tae+Ho&rft.au=Kim%2C+Sang-Gyun&rft.date=2023-07-01&rft.pub=Elsevier+Inc&rft.issn=0749-8063&rft.eissn=1526-3231&rft.volume=39&rft.issue=7&rft.spage=1692&rft.epage=1701&rft_id=info:doi/10.1016%2Fj.arthro.2022.12.038&rft.externalDocID=S0749806323000397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-8063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-8063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-8063&client=summon |