EEG-Based Classification of Fast and Slow Hand Movements Using Wavelet-CSP Algorithm
A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)based BCI to identify brain signal features in regard...
        Saved in:
      
    
          | Published in | IEEE transactions on biomedical engineering Vol. 60; no. 8; pp. 2123 - 2132 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.08.2013
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9294 1558-2531 1558-2531  | 
| DOI | 10.1109/TBME.2013.2248153 | 
Cover
| Abstract | A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)based BCI to identify brain signal features in regard to actual hand movement speed. This provides a more refined control for a BCI system in terms of movement parameters. An experiment was performed to collect EEG data from subjects while they performed right-hand movement at two different speeds, namely fast and slow, in four different directions. The informative features from the data were obtained using the Wavelet-Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spatial-spectral resolution. The applicability of these features to classify the two speeds and to reconstruct the speed profile was studied. The results for classifying speed across seven subjects yielded a mean accuracy of 83.71% using a Fisher Linear Discriminant (FLD) classifier. The speed components were reconstructed using multiple linear regression and significant correlation of 0.52 (Pearson's linear correlation coefficient) was obtained between recorded and reconstructed velocities on an average. The spatial patterns of the W-CSP features obtained showed activations in parietal and motor areas of the brain. The results achieved promises to provide a more refined control in BCI by including control of movement speed. | 
    
|---|---|
| AbstractList | A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)-based BCI to identify brain signal features in regard to actual hand movement speed. This provides a more refined control for a BCI system in terms of movement parameters. An experiment was performed to collect EEG data from subjects while they performed right-hand movement at two different speeds, namely fast and slow, in four different directions. The informative features from the data were obtained using the Wavelet-Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spatial-spectral resolution. The applicability of these features to classify the two speeds and to reconstruct the speed profile was studied. The results for classifying speed across seven subjects yielded a mean accuracy of 83.71% using a Fisher Linear Discriminant (FLD) classifier. The speed components were reconstructed using multiple linear regression and significant correlation of 0.52 (Pearson's linear correlation coefficient) was obtained between recorded and reconstructed velocities on an average. The spatial patterns of the W-CSP features obtained showed activations in parietal and motor areas of the brain. The results achieved promises to provide a more refined control in BCI by including control of movement speed. A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)-based BCI to identify brain signal features in regard to actual hand movement speed. This provides a more refined control for a BCI system in terms of movement parameters. An experiment was performed to collect EEG data from subjects while they performed right-hand movement at two different speeds, namely fast and slow, in four different directions. The informative features from the data were obtained using the Wavelet-Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spatial-spectral resolution. The applicability of these features to classify the two speeds and to reconstruct the speed profile was studied. The results for classifying speed across seven subjects yielded a mean accuracy of 83.71% using a Fisher Linear Discriminant (FLD) classifier. The speed components were reconstructed using multiple linear regression and significant correlation of 0.52 (Pearson's linear correlation coefficient) was obtained between recorded and reconstructed velocities on an average. The spatial patterns of the W-CSP features obtained showed activations in parietal and motor areas of the brain. The results achieved promises to provide a more refined control in BCI by including control of movement speed.A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)-based BCI to identify brain signal features in regard to actual hand movement speed. This provides a more refined control for a BCI system in terms of movement parameters. An experiment was performed to collect EEG data from subjects while they performed right-hand movement at two different speeds, namely fast and slow, in four different directions. The informative features from the data were obtained using the Wavelet-Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spatial-spectral resolution. The applicability of these features to classify the two speeds and to reconstruct the speed profile was studied. The results for classifying speed across seven subjects yielded a mean accuracy of 83.71% using a Fisher Linear Discriminant (FLD) classifier. The speed components were reconstructed using multiple linear regression and significant correlation of 0.52 (Pearson's linear correlation coefficient) was obtained between recorded and reconstructed velocities on an average. The spatial patterns of the W-CSP features obtained showed activations in parietal and motor areas of the brain. The results achieved promises to provide a more refined control in BCI by including control of movement speed.  | 
    
| Author | Robinson, Neethu Guan, Cuntai T. Tee, Keng Peng Vinod, A. P. Ang, Kai Keng  | 
    
| Author_xml | – sequence: 1 givenname: Neethu surname: Robinson fullname: Robinson, Neethu email: neethu1@e.ntu.edu.sg organization: Nanyang Technological University, Singapore – sequence: 2 givenname: A. P. surname: Vinod fullname: Vinod, A. P. email: asvinod@ntu.edu.sg organization: Nanyang Technological University, Singapore – sequence: 3 givenname: Kai Keng surname: Ang fullname: Ang, Kai Keng email: kkang@i2r.a-star.edu.sg organization: Institute for Infocomm Research , Agency for Science, Technology and Research (A<formula formulatype="inline"><tex Notation="TeX">$^$</tex></formula> STAR), Singapore – sequence: 4 givenname: Keng Peng surname: Tee fullname: Tee, Keng Peng email: kptee@i2r.a-star.edu.sg organization: Institute for Infocomm Research , Agency for Science, Technology and Research (A<formula formulatype="inline"><tex Notation="TeX">$^$</tex></formula> STAR), Singapore – sequence: 5 givenname: Cuntai T. surname: Guan fullname: Guan, Cuntai T. email: ctguan@i2r.a-star.edu.sg organization: Institute for Infocomm Research , Agency for Science, Technology and Research (A<formula formulatype="inline"><tex Notation="TeX">$^$</tex></formula> STAR), Singapore  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23446029$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU9PGzEQxa0KBAnwAapKlSUuvWzwf3uPECWABCoSQRxXzno2Ndpd07VD1W9fh4QcOPQ0M9LvzTzNG6ODPvSA0FdKJpSS8mJxdT-bMEL5hDFhqORf0IhKaQomOT1AI0KoKUpWimM0jvElj8IIdYSOGRdCEVaO0GI2uy6ubASHp62N0Te-tsmHHocGz21M2PYOP7bhD77ZdPfhDTroU8RP0fcr_GzfoIVUTB8f8GW7CoNPv7pTdNjYNsLZrp6gp_lsMb0p7n5e304v74paUJkKrZ21hCtHJTDCsilealGCawxjFpbGlDwjrjS1WjoQDecNY6CgdqYGy_kJ-rHd-zqE32uIqep8rKFtbQ9hHSsquJbaKEkyev4JfQnroc_uMkW40FJpnanvO2q97MBVr4Pv7PC3-vhXBugWqIcQ4wDNHqGk2mRSbTKpNplUu0yyRn_S1D69_zgN1rf_VX7bKj0A7C8poQzJZv8B08CWkA | 
    
| CODEN | IEBEAX | 
    
| CitedBy_id | crossref_primary_10_1631_FITEE_1800083 crossref_primary_10_1109_JPROC_2015_2407272 crossref_primary_10_1109_TNSRE_2015_2441835 crossref_primary_10_1016_j_bspc_2023_105885 crossref_primary_10_1109_ACCESS_2023_3347336 crossref_primary_10_1007_s11571_022_09919_7 crossref_primary_10_1088_1741_2552_abca17 crossref_primary_10_1016_j_compbiomed_2015_06_022 crossref_primary_10_1109_MSMC_2016_2576638 crossref_primary_10_1109_THMS_2021_3056274 crossref_primary_10_3390_s20174749 crossref_primary_10_1088_1741_2560_12_6_066019 crossref_primary_10_3390_app122111255 crossref_primary_10_1109_ACCESS_2017_2771536 crossref_primary_10_1016_j_asoc_2014_01_029 crossref_primary_10_1007_s40430_019_1585_2 crossref_primary_10_3390_fi13050103 crossref_primary_10_1016_j_jestch_2016_04_009 crossref_primary_10_3390_s24030785 crossref_primary_10_3390_s22155860 crossref_primary_10_1038_s41598_021_90437_7 crossref_primary_10_3389_fnins_2020_00168 crossref_primary_10_1109_TBME_2020_3034112 crossref_primary_10_1038_s41598_021_98578_5 crossref_primary_10_1109_TNSRE_2023_3249831 crossref_primary_10_3389_fnbot_2022_845127 crossref_primary_10_1109_TNSRE_2019_2953121 crossref_primary_10_1109_TBCAS_2019_2916981 crossref_primary_10_1016_j_bspc_2021_103241 crossref_primary_10_1007_s00034_018_0829_1 crossref_primary_10_1007_s41870_023_01213_x crossref_primary_10_1109_TBME_2016_2598875 crossref_primary_10_1109_TCDS_2021_3099988 crossref_primary_10_1109_TBME_2022_3187085 crossref_primary_10_1109_ACCESS_2016_2637401 crossref_primary_10_1088_1741_2552_ac8501 crossref_primary_10_1016_j_eswa_2017_09_017 crossref_primary_10_1109_ACCESS_2021_3102183 crossref_primary_10_1109_TNSRE_2019_2895064 crossref_primary_10_3389_fnhum_2014_00244 crossref_primary_10_1088_1741_2552_aadeed crossref_primary_10_1016_j_neunet_2018_02_011 crossref_primary_10_1088_1741_2552_aa6baf crossref_primary_10_1002_ecj_11916 crossref_primary_10_3389_fnins_2021_715855 crossref_primary_10_3390_s20216082 crossref_primary_10_1007_s00422_024_00984_1 crossref_primary_10_1109_TNSRE_2023_3330500 crossref_primary_10_3390_s23031235 crossref_primary_10_1109_TETCI_2022_3147225 crossref_primary_10_1109_TNSRE_2022_3221962 crossref_primary_10_1088_1742_6596_1748_2_022034 crossref_primary_10_1109_TNNLS_2023_3307470 crossref_primary_10_1177_15500594221148285  | 
    
| Cites_doi | 10.1016/j.bspc.2010.08.003 10.1016/S0013-4694(97)00022-2 10.1088/1741-2560/2/4/001 10.1515/bmte.1997.42.6.162 10.1109/TNSRE.2004.834627 10.1523/JNEUROSCI.6107-09.2010 10.1109/86.895946 10.1007/978-3-642-02812-0_52 10.1016/j.clinph.2004.06.022 10.1007/11759966_207 10.1109/78.157221 10.1109/FSKD.2010.5569772 10.1016/j.irbm.2010.12.004 10.7551/mitpress/7493.001.0001 10.1016/j.jphysparis.2009.08.007 10.1088/1741-2560/6/1/016006 10.1109/ICICS.2011.6174210 10.1109/ROBIO.2010.5723516 10.1017/S0048577200980259 10.1109/86.662623 10.1016/S1388-2457(98)00038-8 10.1016/S1388-2457(02)00057-3 10.1088/1741-2560/7/2/026001 10.1016/S0013-4694(97)00080-1 10.3389/fnins.2011.00086 10.1523/JNEUROSCI.5171-07.2008 10.1016/j.neunet.2009.07.020 10.1016/j.clinph.2009.05.006 10.1073/pnas.0609632104 10.1016/j.medengphy.2006.01.009  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013 | 
    
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8  | 
    
| DOI | 10.1109/TBME.2013.2248153 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering  | 
    
| EISSN | 1558-2531 | 
    
| EndPage | 2132 | 
    
| ExternalDocumentID | 3023818561 23446029 10_1109_TBME_2013_2248153 6468077  | 
    
| Genre | orig-research Evaluation Studies Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8  | 
    
| ID | FETCH-LOGICAL-c415t-77daa036d15e20223439749edf822aeb88937dad98c6bde4f33f22e6ecd8cea33 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9294 1558-2531  | 
    
| IngestDate | Thu Oct 02 10:14:19 EDT 2025 Mon Jun 30 08:43:15 EDT 2025 Mon Jul 21 06:04:51 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Wed Oct 01 02:57:17 EDT 2025 Wed Aug 27 02:52:57 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c415t-77daa036d15e20223439749edf822aeb88937dad98c6bde4f33f22e6ecd8cea33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23  | 
    
| PMID | 23446029 | 
    
| PQID | 1403475677 | 
    
| PQPubID | 85474 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_journals_1403475677 crossref_citationtrail_10_1109_TBME_2013_2248153 pubmed_primary_23446029 ieee_primary_6468077 crossref_primary_10_1109_TBME_2013_2248153 proquest_miscellaneous_1437578650  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-08-01 | 
    
| PublicationDateYYYYMMDD | 2013-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on biomedical engineering | 
    
| PublicationTitleAbbrev | TBME | 
    
| PublicationTitleAlternate | IEEE Trans Biomed Eng | 
    
| PublicationYear | 2013 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref13 ref34 ref12 ref15 wang (ref7) 2004; 115 ref14 ref31 ref11 ref32 ref10 dornhege (ref1) 2007 ref16 ref19 (ref33) 0 ref18 mallat (ref30) 1999 niredermeyer (ref4) 2004 ref24 ref26 ref25 ref20 ref22 ref21 wang (ref17) 2009; 5638 wolpaw (ref2) 2002; 113 ref27 ref29 ref8 zhang (ref23) 2010; 6 muller gerking (ref9) 1999; 110 ref3 ref6 ref5 ang (ref28) 2008  | 
    
| References_xml | – year: 1999 ident: ref30 publication-title: A Wavelet Tour of Signal Processing – ident: ref24 doi: 10.1016/j.bspc.2010.08.003 – ident: ref32 doi: 10.1016/S0013-4694(97)00022-2 – year: 0 ident: ref33 – ident: ref27 doi: 10.1088/1741-2560/2/4/001 – ident: ref8 doi: 10.1515/bmte.1997.42.6.162 – ident: ref3 doi: 10.1109/TNSRE.2004.834627 – ident: ref21 doi: 10.1523/JNEUROSCI.6107-09.2010 – ident: ref10 doi: 10.1109/86.895946 – volume: 5638 start-page: 437 year: 2009 ident: ref17 article-title: Predicting intended movement direction using EEG from human posterior parietal cortex publication-title: Proc 5th Int Conf Found Augmented Cognition Neuroergonomics Oper Neurosci doi: 10.1007/978-3-642-02812-0_52 – volume: 115 start-page: 1 year: 2004 ident: ref7 article-title: Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.06.022 – ident: ref31 doi: 10.1007/11759966_207 – volume: 6 start-page: 243 year: 2010 ident: ref23 article-title: Wavelet and common spatial pattern for EEG signal feature extraction and classification publication-title: Proc Int Conf Comput Mechatron Control Electron Eng – ident: ref29 doi: 10.1109/78.157221 – ident: ref20 doi: 10.1109/FSKD.2010.5569772 – ident: ref14 doi: 10.1016/j.irbm.2010.12.004 – year: 2007 ident: ref1 publication-title: Towards Brain- Computer Interfacing doi: 10.7551/mitpress/7493.001.0001 – ident: ref12 doi: 10.1016/j.jphysparis.2009.08.007 – ident: ref13 doi: 10.1088/1741-2560/6/1/016006 – ident: ref25 doi: 10.1109/ICICS.2011.6174210 – ident: ref19 doi: 10.1109/ROBIO.2010.5723516 – start-page: 2390 year: 2008 ident: ref28 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: Proc IEEE Int Joint Conf Neural Netw – ident: ref35 doi: 10.1017/S0048577200980259 – ident: ref34 doi: 10.1109/86.662623 – volume: 110 start-page: 787 year: 1999 ident: ref9 article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task publication-title: Electroencephalography Clin Neurophysiol doi: 10.1016/S1388-2457(98)00038-8 – volume: 113 start-page: 767 year: 2002 ident: ref2 article-title: Brain-computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – ident: ref22 doi: 10.1088/1741-2560/7/2/026001 – ident: ref5 doi: 10.1016/S0013-4694(97)00080-1 – ident: ref11 doi: 10.3389/fnins.2011.00086 – ident: ref16 doi: 10.1523/JNEUROSCI.5171-07.2008 – ident: ref6 doi: 10.1016/j.neunet.2009.07.020 – ident: ref18 doi: 10.1016/j.clinph.2009.05.006 – year: 2004 ident: ref4 publication-title: Electroencephalography Basic Principles Clinical Applications and Related Fields – ident: ref15 doi: 10.1073/pnas.0609632104 – ident: ref26 doi: 10.1016/j.medengphy.2006.01.009  | 
    
| SSID | ssj0014846 | 
    
| Score | 2.3890393 | 
    
| Snippet | A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external... | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2123 | 
    
| SubjectTerms | Algorithm design and analysis Algorithms Brain Mapping - methods Brain-Computer Interfaces Brain-computer interfaces (BCIs) Classification algorithms common spatial patterns (CSPs) Correlation coefficient discrete wavelet transform (DWT) Discrete wavelet transforms Electroencephalography electroencephalography (EEG) Electroencephalography - methods Evoked Potentials, Motor - physiology Feature extraction Filter banks Filtering algorithms Hand - physiology Humans Male Motor Cortex - physiology Movement - physiology movement-related parameters multiple linear regression Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Wavelet Analysis Young Adult  | 
    
| Title | EEG-Based Classification of Fast and Slow Hand Movements Using Wavelet-CSP Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/6468077 https://www.ncbi.nlm.nih.gov/pubmed/23446029 https://www.proquest.com/docview/1403475677 https://www.proquest.com/docview/1437578650  | 
    
| Volume | 60 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bh6o9QAsUtqWVK_VUkSUP53XcRbtdVQqqxCK4RU48BsSSVGxWlfrrmXGyoapK1ZslO87jm8l89oxnAD7LGKXyysgpJbsZ0dB_UJWFow0Jk5YqkXbrIjuLZhfy21V4tQHH_VkYRLTBZzjkpvXl67pc8VbZSSSjxI3jTdiMk6g9q9V7DGTSHspxPVJgP5WdB9Nz05P5OJtwEFcwJHuVkIpzBuCA1kGuJZZP5sjWV3mealqTM92BbP2wbaTJ3XDVFMPy1x95HP_3bV7Ddsc9xagVljewgdUuvPotI-EuvMg6X_sezCeTr86YjJwWtnImxxRZGEVtxFQtG6EqLc4X9U8x41ZW29TjzVLYMARxqbimReOcnn8Xo8V1_XDb3Nzvw8V0Mj-dOV0NBgLPCxsi31opsnLaC9Enex8wgZEpakPMQmGRMN_RSqdJGRUapQkC4_sYIeccQBUEb2Grqis8BBEaQ4RCodYyJRImaR63TAwRpELThO4A3DUUedklKOc6GYvcLlTcNGcgcwYy74AcwJf-kh9tdo5_Dd5jEPqB3fcfwNEa77zT32XOWQxlHEbc_anvJs1jd4qqsF7xmICLARDFHcBBKyf93Gvxevf3e76Hl74tq8GBhEew1Tys8AORm6b4aKX6ET0T8Pg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GgLLBQwEidEtnlMssmxrXZZoKmQuhW9RU48BsSSoG5WSPx6ZpxsQAgQN0t2nMc3k_nsGc8APMcJoQ6qxKtQ3Ixk-T-oq9IzloXJoE7RbV3kp8n8HN9cxBdb8HI4C0NELviMxtJ0vnzTVGvZKjtIMEn9yeQKXI0RMe5Oaw0-A0y7Yzl-wCocZtj7MAM_O1gc5VMJ44rGbLFSVnLJARzxSsh31PKnQXIVVv5ONp3Rmd2GfPO4XazJ5_G6LcfV998yOf7v-9yBWz37VIeduNyFLap34OYvOQl34Free9t3YTGdvvKO2MwZ5WpnSlSRA1I1Vs30qlW6Nups2XxTc2nljUs-3q6UC0RQ77VUtWi947N36nD5obn81H78sgfns-nieO71VRgYviBumX4brdnOmSCmkC1-JBQGMzKWuYWmMhXGY7TJ0iopDaGNIhuGlJBkHSAdRfdgu25qegAqtpYphSZjMGMahjyPX6WWKVJpeEJ_BP4GiqLqU5RLpYxl4ZYqflYIkIUAWfRAjuDFcMnXLj_HvwbvCgjDwP77j2B_g3fRa_CqkDyGOIkT6X42dLPuiUNF19SsZUwk5QCY5I7gficnw9wb8Xr453s-hevzRX5SnLw-ffsIboSuyIaEFe7Ddnu5psdMddryiZPwHwRF9EU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Classification+of+Fast+and+Slow+Hand+Movements+Using+Wavelet-CSP+Algorithm&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Robinson%2C+Neethu&rft.au=Vinod%2C+A.+P.&rft.au=Ang%2C+Kai+Keng&rft.au=Tee%2C+Keng+Peng&rft.date=2013-08-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=60&rft.issue=8&rft.spage=2123&rft.epage=2132&rft_id=info:doi/10.1109%2FTBME.2013.2248153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2013_2248153 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |