EEG-Based Classification of Fast and Slow Hand Movements Using Wavelet-CSP Algorithm

A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)based BCI to identify brain signal features in regard...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 60; no. 8; pp. 2123 - 2132
Main Authors Robinson, Neethu, Vinod, A. P., Ang, Kai Keng, Tee, Keng Peng, Guan, Cuntai T.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2013.2248153

Cover

Abstract A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)based BCI to identify brain signal features in regard to actual hand movement speed. This provides a more refined control for a BCI system in terms of movement parameters. An experiment was performed to collect EEG data from subjects while they performed right-hand movement at two different speeds, namely fast and slow, in four different directions. The informative features from the data were obtained using the Wavelet-Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spatial-spectral resolution. The applicability of these features to classify the two speeds and to reconstruct the speed profile was studied. The results for classifying speed across seven subjects yielded a mean accuracy of 83.71% using a Fisher Linear Discriminant (FLD) classifier. The speed components were reconstructed using multiple linear regression and significant correlation of 0.52 (Pearson's linear correlation coefficient) was obtained between recorded and reconstructed velocities on an average. The spatial patterns of the W-CSP features obtained showed activations in parietal and motor areas of the brain. The results achieved promises to provide a more refined control in BCI by including control of movement speed.
AbstractList A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)-based BCI to identify brain signal features in regard to actual hand movement speed. This provides a more refined control for a BCI system in terms of movement parameters. An experiment was performed to collect EEG data from subjects while they performed right-hand movement at two different speeds, namely fast and slow, in four different directions. The informative features from the data were obtained using the Wavelet-Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spatial-spectral resolution. The applicability of these features to classify the two speeds and to reconstruct the speed profile was studied. The results for classifying speed across seven subjects yielded a mean accuracy of 83.71% using a Fisher Linear Discriminant (FLD) classifier. The speed components were reconstructed using multiple linear regression and significant correlation of 0.52 (Pearson's linear correlation coefficient) was obtained between recorded and reconstructed velocities on an average. The spatial patterns of the W-CSP features obtained showed activations in parietal and motor areas of the brain. The results achieved promises to provide a more refined control in BCI by including control of movement speed.
A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)-based BCI to identify brain signal features in regard to actual hand movement speed. This provides a more refined control for a BCI system in terms of movement parameters. An experiment was performed to collect EEG data from subjects while they performed right-hand movement at two different speeds, namely fast and slow, in four different directions. The informative features from the data were obtained using the Wavelet-Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spatial-spectral resolution. The applicability of these features to classify the two speeds and to reconstruct the speed profile was studied. The results for classifying speed across seven subjects yielded a mean accuracy of 83.71% using a Fisher Linear Discriminant (FLD) classifier. The speed components were reconstructed using multiple linear regression and significant correlation of 0.52 (Pearson's linear correlation coefficient) was obtained between recorded and reconstructed velocities on an average. The spatial patterns of the W-CSP features obtained showed activations in parietal and motor areas of the brain. The results achieved promises to provide a more refined control in BCI by including control of movement speed.A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)-based BCI to identify brain signal features in regard to actual hand movement speed. This provides a more refined control for a BCI system in terms of movement parameters. An experiment was performed to collect EEG data from subjects while they performed right-hand movement at two different speeds, namely fast and slow, in four different directions. The informative features from the data were obtained using the Wavelet-Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spatial-spectral resolution. The applicability of these features to classify the two speeds and to reconstruct the speed profile was studied. The results for classifying speed across seven subjects yielded a mean accuracy of 83.71% using a Fisher Linear Discriminant (FLD) classifier. The speed components were reconstructed using multiple linear regression and significant correlation of 0.52 (Pearson's linear correlation coefficient) was obtained between recorded and reconstructed velocities on an average. The spatial patterns of the W-CSP features obtained showed activations in parietal and motor areas of the brain. The results achieved promises to provide a more refined control in BCI by including control of movement speed.
Author Robinson, Neethu
Guan, Cuntai T.
Tee, Keng Peng
Vinod, A. P.
Ang, Kai Keng
Author_xml – sequence: 1
  givenname: Neethu
  surname: Robinson
  fullname: Robinson, Neethu
  email: neethu1@e.ntu.edu.sg
  organization: Nanyang Technological University, Singapore
– sequence: 2
  givenname: A. P.
  surname: Vinod
  fullname: Vinod, A. P.
  email: asvinod@ntu.edu.sg
  organization: Nanyang Technological University, Singapore
– sequence: 3
  givenname: Kai Keng
  surname: Ang
  fullname: Ang, Kai Keng
  email: kkang@i2r.a-star.edu.sg
  organization: Institute for Infocomm Research , Agency for Science, Technology and Research (A<formula formulatype="inline"><tex Notation="TeX">$^$</tex></formula> STAR), Singapore
– sequence: 4
  givenname: Keng Peng
  surname: Tee
  fullname: Tee, Keng Peng
  email: kptee@i2r.a-star.edu.sg
  organization: Institute for Infocomm Research , Agency for Science, Technology and Research (A<formula formulatype="inline"><tex Notation="TeX">$^$</tex></formula> STAR), Singapore
– sequence: 5
  givenname: Cuntai T.
  surname: Guan
  fullname: Guan, Cuntai T.
  email: ctguan@i2r.a-star.edu.sg
  organization: Institute for Infocomm Research , Agency for Science, Technology and Research (A<formula formulatype="inline"><tex Notation="TeX">$^$</tex></formula> STAR), Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23446029$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PGzEQxa0KBAnwAapKlSUuvWzwf3uPECWABCoSQRxXzno2Ndpd07VD1W9fh4QcOPQ0M9LvzTzNG6ODPvSA0FdKJpSS8mJxdT-bMEL5hDFhqORf0IhKaQomOT1AI0KoKUpWimM0jvElj8IIdYSOGRdCEVaO0GI2uy6ubASHp62N0Te-tsmHHocGz21M2PYOP7bhD77ZdPfhDTroU8RP0fcr_GzfoIVUTB8f8GW7CoNPv7pTdNjYNsLZrp6gp_lsMb0p7n5e304v74paUJkKrZ21hCtHJTDCsilealGCawxjFpbGlDwjrjS1WjoQDecNY6CgdqYGy_kJ-rHd-zqE32uIqep8rKFtbQ9hHSsquJbaKEkyev4JfQnroc_uMkW40FJpnanvO2q97MBVr4Pv7PC3-vhXBugWqIcQ4wDNHqGk2mRSbTKpNplUu0yyRn_S1D69_zgN1rf_VX7bKj0A7C8poQzJZv8B08CWkA
CODEN IEBEAX
CitedBy_id crossref_primary_10_1631_FITEE_1800083
crossref_primary_10_1109_JPROC_2015_2407272
crossref_primary_10_1109_TNSRE_2015_2441835
crossref_primary_10_1016_j_bspc_2023_105885
crossref_primary_10_1109_ACCESS_2023_3347336
crossref_primary_10_1007_s11571_022_09919_7
crossref_primary_10_1088_1741_2552_abca17
crossref_primary_10_1016_j_compbiomed_2015_06_022
crossref_primary_10_1109_MSMC_2016_2576638
crossref_primary_10_1109_THMS_2021_3056274
crossref_primary_10_3390_s20174749
crossref_primary_10_1088_1741_2560_12_6_066019
crossref_primary_10_3390_app122111255
crossref_primary_10_1109_ACCESS_2017_2771536
crossref_primary_10_1016_j_asoc_2014_01_029
crossref_primary_10_1007_s40430_019_1585_2
crossref_primary_10_3390_fi13050103
crossref_primary_10_1016_j_jestch_2016_04_009
crossref_primary_10_3390_s24030785
crossref_primary_10_3390_s22155860
crossref_primary_10_1038_s41598_021_90437_7
crossref_primary_10_3389_fnins_2020_00168
crossref_primary_10_1109_TBME_2020_3034112
crossref_primary_10_1038_s41598_021_98578_5
crossref_primary_10_1109_TNSRE_2023_3249831
crossref_primary_10_3389_fnbot_2022_845127
crossref_primary_10_1109_TNSRE_2019_2953121
crossref_primary_10_1109_TBCAS_2019_2916981
crossref_primary_10_1016_j_bspc_2021_103241
crossref_primary_10_1007_s00034_018_0829_1
crossref_primary_10_1007_s41870_023_01213_x
crossref_primary_10_1109_TBME_2016_2598875
crossref_primary_10_1109_TCDS_2021_3099988
crossref_primary_10_1109_TBME_2022_3187085
crossref_primary_10_1109_ACCESS_2016_2637401
crossref_primary_10_1088_1741_2552_ac8501
crossref_primary_10_1016_j_eswa_2017_09_017
crossref_primary_10_1109_ACCESS_2021_3102183
crossref_primary_10_1109_TNSRE_2019_2895064
crossref_primary_10_3389_fnhum_2014_00244
crossref_primary_10_1088_1741_2552_aadeed
crossref_primary_10_1016_j_neunet_2018_02_011
crossref_primary_10_1088_1741_2552_aa6baf
crossref_primary_10_1002_ecj_11916
crossref_primary_10_3389_fnins_2021_715855
crossref_primary_10_3390_s20216082
crossref_primary_10_1007_s00422_024_00984_1
crossref_primary_10_1109_TNSRE_2023_3330500
crossref_primary_10_3390_s23031235
crossref_primary_10_1109_TETCI_2022_3147225
crossref_primary_10_1109_TNSRE_2022_3221962
crossref_primary_10_1088_1742_6596_1748_2_022034
crossref_primary_10_1109_TNNLS_2023_3307470
crossref_primary_10_1177_15500594221148285
Cites_doi 10.1016/j.bspc.2010.08.003
10.1016/S0013-4694(97)00022-2
10.1088/1741-2560/2/4/001
10.1515/bmte.1997.42.6.162
10.1109/TNSRE.2004.834627
10.1523/JNEUROSCI.6107-09.2010
10.1109/86.895946
10.1007/978-3-642-02812-0_52
10.1016/j.clinph.2004.06.022
10.1007/11759966_207
10.1109/78.157221
10.1109/FSKD.2010.5569772
10.1016/j.irbm.2010.12.004
10.7551/mitpress/7493.001.0001
10.1016/j.jphysparis.2009.08.007
10.1088/1741-2560/6/1/016006
10.1109/ICICS.2011.6174210
10.1109/ROBIO.2010.5723516
10.1017/S0048577200980259
10.1109/86.662623
10.1016/S1388-2457(98)00038-8
10.1016/S1388-2457(02)00057-3
10.1088/1741-2560/7/2/026001
10.1016/S0013-4694(97)00080-1
10.3389/fnins.2011.00086
10.1523/JNEUROSCI.5171-07.2008
10.1016/j.neunet.2009.07.020
10.1016/j.clinph.2009.05.006
10.1073/pnas.0609632104
10.1016/j.medengphy.2006.01.009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2013.2248153
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2132
ExternalDocumentID 3023818561
23446029
10_1109_TBME_2013_2248153
6468077
Genre orig-research
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c415t-77daa036d15e20223439749edf822aeb88937dad98c6bde4f33f22e6ecd8cea33
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Oct 02 10:14:19 EDT 2025
Mon Jun 30 08:43:15 EDT 2025
Mon Jul 21 06:04:51 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Wed Oct 01 02:57:17 EDT 2025
Wed Aug 27 02:52:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-77daa036d15e20223439749edf822aeb88937dad98c6bde4f33f22e6ecd8cea33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 23446029
PQID 1403475677
PQPubID 85474
PageCount 10
ParticipantIDs proquest_journals_1403475677
crossref_citationtrail_10_1109_TBME_2013_2248153
pubmed_primary_23446029
ieee_primary_6468077
crossref_primary_10_1109_TBME_2013_2248153
proquest_miscellaneous_1437578650
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
wang (ref7) 2004; 115
ref14
ref31
ref11
ref32
ref10
dornhege (ref1) 2007
ref16
ref19
(ref33) 0
ref18
mallat (ref30) 1999
niredermeyer (ref4) 2004
ref24
ref26
ref25
ref20
ref22
ref21
wang (ref17) 2009; 5638
wolpaw (ref2) 2002; 113
ref27
ref29
ref8
zhang (ref23) 2010; 6
muller gerking (ref9) 1999; 110
ref3
ref6
ref5
ang (ref28) 2008
References_xml – year: 1999
  ident: ref30
  publication-title: A Wavelet Tour of Signal Processing
– ident: ref24
  doi: 10.1016/j.bspc.2010.08.003
– ident: ref32
  doi: 10.1016/S0013-4694(97)00022-2
– year: 0
  ident: ref33
– ident: ref27
  doi: 10.1088/1741-2560/2/4/001
– ident: ref8
  doi: 10.1515/bmte.1997.42.6.162
– ident: ref3
  doi: 10.1109/TNSRE.2004.834627
– ident: ref21
  doi: 10.1523/JNEUROSCI.6107-09.2010
– ident: ref10
  doi: 10.1109/86.895946
– volume: 5638
  start-page: 437
  year: 2009
  ident: ref17
  article-title: Predicting intended movement direction using EEG from human posterior parietal cortex
  publication-title: Proc 5th Int Conf Found Augmented Cognition Neuroergonomics Oper Neurosci
  doi: 10.1007/978-3-642-02812-0_52
– volume: 115
  start-page: 1
  year: 2004
  ident: ref7
  article-title: Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.06.022
– ident: ref31
  doi: 10.1007/11759966_207
– volume: 6
  start-page: 243
  year: 2010
  ident: ref23
  article-title: Wavelet and common spatial pattern for EEG signal feature extraction and classification
  publication-title: Proc Int Conf Comput Mechatron Control Electron Eng
– ident: ref29
  doi: 10.1109/78.157221
– ident: ref20
  doi: 10.1109/FSKD.2010.5569772
– ident: ref14
  doi: 10.1016/j.irbm.2010.12.004
– year: 2007
  ident: ref1
  publication-title: Towards Brain- Computer Interfacing
  doi: 10.7551/mitpress/7493.001.0001
– ident: ref12
  doi: 10.1016/j.jphysparis.2009.08.007
– ident: ref13
  doi: 10.1088/1741-2560/6/1/016006
– ident: ref25
  doi: 10.1109/ICICS.2011.6174210
– ident: ref19
  doi: 10.1109/ROBIO.2010.5723516
– start-page: 2390
  year: 2008
  ident: ref28
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: Proc IEEE Int Joint Conf Neural Netw
– ident: ref35
  doi: 10.1017/S0048577200980259
– ident: ref34
  doi: 10.1109/86.662623
– volume: 110
  start-page: 787
  year: 1999
  ident: ref9
  article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task
  publication-title: Electroencephalography Clin Neurophysiol
  doi: 10.1016/S1388-2457(98)00038-8
– volume: 113
  start-page: 767
  year: 2002
  ident: ref2
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref22
  doi: 10.1088/1741-2560/7/2/026001
– ident: ref5
  doi: 10.1016/S0013-4694(97)00080-1
– ident: ref11
  doi: 10.3389/fnins.2011.00086
– ident: ref16
  doi: 10.1523/JNEUROSCI.5171-07.2008
– ident: ref6
  doi: 10.1016/j.neunet.2009.07.020
– ident: ref18
  doi: 10.1016/j.clinph.2009.05.006
– year: 2004
  ident: ref4
  publication-title: Electroencephalography Basic Principles Clinical Applications and Related Fields
– ident: ref15
  doi: 10.1073/pnas.0609632104
– ident: ref26
  doi: 10.1016/j.medengphy.2006.01.009
SSID ssj0014846
Score 2.3890393
Snippet A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2123
SubjectTerms Algorithm design and analysis
Algorithms
Brain Mapping - methods
Brain-Computer Interfaces
Brain-computer interfaces (BCIs)
Classification algorithms
common spatial patterns (CSPs)
Correlation coefficient
discrete wavelet transform (DWT)
Discrete wavelet transforms
Electroencephalography
electroencephalography (EEG)
Electroencephalography - methods
Evoked Potentials, Motor - physiology
Feature extraction
Filter banks
Filtering algorithms
Hand - physiology
Humans
Male
Motor Cortex - physiology
Movement - physiology
movement-related parameters
multiple linear regression
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Wavelet Analysis
Young Adult
Title EEG-Based Classification of Fast and Slow Hand Movements Using Wavelet-CSP Algorithm
URI https://ieeexplore.ieee.org/document/6468077
https://www.ncbi.nlm.nih.gov/pubmed/23446029
https://www.proquest.com/docview/1403475677
https://www.proquest.com/docview/1437578650
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bh6o9QAsUtqWVK_VUkSUP53XcRbtdVQqqxCK4RU48BsSSVGxWlfrrmXGyoapK1ZslO87jm8l89oxnAD7LGKXyysgpJbsZ0dB_UJWFow0Jk5YqkXbrIjuLZhfy21V4tQHH_VkYRLTBZzjkpvXl67pc8VbZSSSjxI3jTdiMk6g9q9V7DGTSHspxPVJgP5WdB9Nz05P5OJtwEFcwJHuVkIpzBuCA1kGuJZZP5sjWV3mealqTM92BbP2wbaTJ3XDVFMPy1x95HP_3bV7Ddsc9xagVljewgdUuvPotI-EuvMg6X_sezCeTr86YjJwWtnImxxRZGEVtxFQtG6EqLc4X9U8x41ZW29TjzVLYMARxqbimReOcnn8Xo8V1_XDb3Nzvw8V0Mj-dOV0NBgLPCxsi31opsnLaC9Enex8wgZEpakPMQmGRMN_RSqdJGRUapQkC4_sYIeccQBUEb2Grqis8BBEaQ4RCodYyJRImaR63TAwRpELThO4A3DUUedklKOc6GYvcLlTcNGcgcwYy74AcwJf-kh9tdo5_Dd5jEPqB3fcfwNEa77zT32XOWQxlHEbc_anvJs1jd4qqsF7xmICLARDFHcBBKyf93Gvxevf3e76Hl74tq8GBhEew1Tys8AORm6b4aKX6ET0T8Pg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GgLLBQwEidEtnlMssmxrXZZoKmQuhW9RU48BsSSoG5WSPx6ZpxsQAgQN0t2nMc3k_nsGc8APMcJoQ6qxKtQ3Ixk-T-oq9IzloXJoE7RbV3kp8n8HN9cxBdb8HI4C0NELviMxtJ0vnzTVGvZKjtIMEn9yeQKXI0RMe5Oaw0-A0y7Yzl-wCocZtj7MAM_O1gc5VMJ44rGbLFSVnLJARzxSsh31PKnQXIVVv5ONp3Rmd2GfPO4XazJ5_G6LcfV998yOf7v-9yBWz37VIeduNyFLap34OYvOQl34Free9t3YTGdvvKO2MwZ5WpnSlSRA1I1Vs30qlW6Nups2XxTc2nljUs-3q6UC0RQ77VUtWi947N36nD5obn81H78sgfns-nieO71VRgYviBumX4brdnOmSCmkC1-JBQGMzKWuYWmMhXGY7TJ0iopDaGNIhuGlJBkHSAdRfdgu25qegAqtpYphSZjMGMahjyPX6WWKVJpeEJ_BP4GiqLqU5RLpYxl4ZYqflYIkIUAWfRAjuDFcMnXLj_HvwbvCgjDwP77j2B_g3fRa_CqkDyGOIkT6X42dLPuiUNF19SsZUwk5QCY5I7gficnw9wb8Xr453s-hevzRX5SnLw-ffsIboSuyIaEFe7Ddnu5psdMddryiZPwHwRF9EU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Classification+of+Fast+and+Slow+Hand+Movements+Using+Wavelet-CSP+Algorithm&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Robinson%2C+Neethu&rft.au=Vinod%2C+A.+P.&rft.au=Ang%2C+Kai+Keng&rft.au=Tee%2C+Keng+Peng&rft.date=2013-08-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=60&rft.issue=8&rft.spage=2123&rft.epage=2132&rft_id=info:doi/10.1109%2FTBME.2013.2248153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2013_2248153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon