Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization
This paper considers a class of constrained stochastic composite optimization problems whose objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a certain non-differentiable (but convex) component. In order to solve these problems, we propos...
Saved in:
| Published in | Mathematical programming Vol. 155; no. 1-2; pp. 267 - 305 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2016
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0025-5610 1436-4646 |
| DOI | 10.1007/s10107-014-0846-1 |
Cover
| Summary: | This paper considers a class of constrained stochastic composite optimization problems whose objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a certain non-differentiable (but convex) component. In order to solve these problems, we propose a randomized stochastic projected gradient (RSPG) algorithm, in which proper mini-batch of samples are taken at each iteration depending on the total budget of stochastic samples allowed. The RSPG algorithm also employs a general distance function to allow taking advantage of the geometry of the feasible region. Complexity of this algorithm is established in a unified setting, which shows nearly optimal complexity of the algorithm for convex stochastic programming. A post-optimization phase is also proposed to significantly reduce the variance of the solutions returned by the algorithm. In addition, based on the RSPG algorithm, a stochastic gradient free algorithm, which only uses the stochastic zeroth-order information, has been also discussed. Some preliminary numerical results are also provided. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-014-0846-1 |