Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms

Objective : Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a cha...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 64; no. 4; pp. 735 - 742
Main Authors Corrado, Cesare, Whitaker, John, Chubb, Henry, Williams, Steven, Wright, Matthew, Gill, Jaswinder, O'Neill, Mark D., Niederer, Steven A.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
DOI10.1109/TBME.2016.2574619

Cover

Abstract Objective : Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods : We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a <inline-formula><tex-math notation="LaTeX">s_\text{1}\_ s_\text{2}</tex-math></inline-formula> pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of <inline-formula><tex-math notation="LaTeX">21.9\pm 16.1\%</tex-math></inline-formula> and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of <inline-formula><tex-math notation="LaTeX">4.4\pm 6.9\%</tex-math></inline-formula>. Results : We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of <inline-formula><tex-math notation="LaTeX">\sim 5\%</tex-math></inline-formula> and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance : We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable protocol to characterize cellular properties and predict tissue electrophysiological function.
AbstractList Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods: We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s1-s2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. Results: We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance: We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable
Objective : Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods : We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a <inline-formula><tex-math notation="LaTeX">s_\text{1}\_ s_\text{2}</tex-math></inline-formula> pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of <inline-formula><tex-math notation="LaTeX">21.9\pm 16.1\%</tex-math></inline-formula> and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of <inline-formula><tex-math notation="LaTeX">4.4\pm 6.9\%</tex-math></inline-formula>. Results : We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of <inline-formula><tex-math notation="LaTeX">\sim 5\%</tex-math></inline-formula> and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance : We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable protocol to characterize cellular properties and predict tissue electrophysiological function.
Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s -s pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable.
OBJECTIVEComputational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements.METHODSWe propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s1-s2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%.RESULTSWe demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases.CONCLUSION AND SIGNIFICANCEWe have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable.
Author O'Neill, Mark D.
Gill, Jaswinder
Niederer, Steven A.
Corrado, Cesare
Chubb, Henry
Whitaker, John
Wright, Matthew
Williams, Steven
Author_xml – sequence: 1
  givenname: Cesare
  orcidid: 0000-0002-8914-8735
  surname: Corrado
  fullname: Corrado, Cesare
  email: cesare.corrado@kcl.ac.uk
  organization: Department of Biomedical Engineering, King's College London, London, U.K
– sequence: 2
  givenname: John
  surname: Whitaker
  fullname: Whitaker, John
  organization: Department of Biomedical EngineeringKing's College London
– sequence: 3
  givenname: Henry
  surname: Chubb
  fullname: Chubb, Henry
  organization: Department of Biomedical EngineeringKing's College London
– sequence: 4
  givenname: Steven
  surname: Williams
  fullname: Williams, Steven
  organization: Department of Biomedical EngineeringKing's College London
– sequence: 5
  givenname: Matthew
  surname: Wright
  fullname: Wright, Matthew
  organization: Department of Biomedical EngineeringKing's College London
– sequence: 6
  givenname: Jaswinder
  surname: Gill
  fullname: Gill, Jaswinder
  organization: Department of Biomedical EngineeringKing's College London
– sequence: 7
  givenname: Mark D.
  surname: O'Neill
  fullname: O'Neill, Mark D.
  organization: Department of Biomedical EngineeringKing's College London
– sequence: 8
  givenname: Steven A.
  surname: Niederer
  fullname: Niederer, Steven A.
  organization: Department of Biomedical EngineeringKing's College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28207381$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFEEQhhuJmE30B4ggA168zNrV05_HJG6MkKCHePLQdHpqY4ee6bV7Rlh_vb3sRiQHT0XB8xRV9Z6QozGNSMhroEsAaj7cnt-sloyCXDKhuATzjCxACN0y0cERWVAKujXM8GNyUspDbbnm8gU5ZppR1WlYkO9fMZc0uhh-Y9_cpB5jadK6uZoHNzZnUw4uNquIfspp82NbQorpftt8xBx-VeEyp6FZjX3yLvf_oPfZDeUleb52seCrQz0l3y5XtxdX7fWXT58vzq5bz0FMrTTeKEAq1ooK4ZzRPRWdVA7BdZLpO-bRsw6gUsYzrLtT1nMmehQehOtOyfv93E1OP2cskx1C8RijGzHNxYKWxkijOavouyfoQ5pzPb9YBop3TDDVVertgZrvBuztJofB5a19fFsF1B7wOZWScW19mNwU0jhlF6IFancB2V1AdheQPQRUTXhiPg7_n_Nm7wRE_MsrrqmW0P0BsMqZ2w
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2904707
crossref_primary_10_3389_fphys_2017_01113
crossref_primary_10_1007_s12265_018_9792_2
crossref_primary_10_1152_physrev_00017_2023
crossref_primary_10_3390_bios14100513
crossref_primary_10_1002_wsbm_1482
crossref_primary_10_1093_europace_euy232
crossref_primary_10_1007_s11517_022_02621_0
crossref_primary_10_1109_ACCESS_2020_3005898
crossref_primary_10_1371_journal_pone_0257935
crossref_primary_10_1038_s41569_018_0104_y
crossref_primary_10_1093_europace_euae215
crossref_primary_10_1016_j_hrthm_2023_10_019
crossref_primary_10_1098_rsif_2017_0340
crossref_primary_10_1098_rsta_2019_0345
crossref_primary_10_3389_fphys_2021_673047
crossref_primary_10_1038_s41598_022_20745_z
crossref_primary_10_1002_wsbm_1508
crossref_primary_10_1016_j_media_2019_101626
crossref_primary_10_3389_fphys_2021_693015
crossref_primary_10_1098_rsta_2019_0558
crossref_primary_10_1007_s00366_024_02094_9
crossref_primary_10_1016_j_media_2025_103484
Cites_doi 10.1109/TBME.2006.880875
10.3389/fphys.2011.00106
10.1007/88-470-0396-2_6
10.1152/ajpheart.1998.275.1.H301
10.1016/j.jcp.2014.11.041
10.1371/journal.pcbi.0030189
10.1016/0033-0620(91)90002-4
10.1111/jce.12559
10.1016/0960-0779(95)00089-5
10.1016/j.hrthm.2012.03.055
10.1109/ICASSP.1990.115702
10.1007/s11538-006-9116-6
10.1007/s10840-006-9045-1
10.1051/m2an/2012054
10.1016/j.jacc.2003.12.054
10.1161/01.CIR.0000157153.30978.67
10.1093/europace/euv073
10.1016/j.amjcard.2008.04.058
10.1137/070680503
10.1103/PhysRevE.68.021904
10.1161/CIRCULATIONAHA.104.498758
10.1161/hc4601.098517
10.1109/TBME.2011.2160453
10.1161/hc0902.104712
10.1111/jce.12474
10.1098/rsfs.2010.0041
10.1161/01.CIR.102.20.2463
10.1001/jama.2014.3
10.1016/j.amjcard.2013.05.063
10.1016/S0092-8240(03)00041-7
10.1073/pnas.1304382110
10.1103/PhysRevLett.97.150601
10.1016/j.jacc.2009.03.061
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2016.2574619
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 742
ExternalDocumentID 28207381
10_1109_TBME_2016_2574619
7480861
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG 13 37 30280
  funderid: 10.13039/501100000274
– fundername: Department of Health via the National Institute for Health Research Comprehensive Biomedical Research Centre Award to Guy's & St Thomas’ NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust
– fundername: Office of Science and Technology through EPSRC's High End Computing Programme
– fundername: British Heart Foundation
  grantid: PG 13 37 30280
– fundername: British Heart Foundation
  grantid: PG/13/37/30280
– fundername: Department of Health
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c415t-69c971e05f7055aa98d05367ae1a3628b2cec23119719c2e82002d425de5c15a3
IEDL.DBID RIE
ISSN 0018-9294
IngestDate Sun Sep 28 08:07:33 EDT 2025
Mon Jun 30 08:42:20 EDT 2025
Mon Jul 21 06:02:36 EDT 2025
Wed Oct 01 05:53:02 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Wed Aug 27 01:47:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-69c971e05f7055aa98d05367ae1a3628b2cec23119719c2e82002d425de5c15a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8914-8735
PMID 28207381
PQID 2174325273
PQPubID 85474
PageCount 8
ParticipantIDs proquest_miscellaneous_1869969842
proquest_journals_2174325273
crossref_citationtrail_10_1109_TBME_2016_2574619
ieee_primary_7480861
pubmed_primary_28207381
crossref_primary_10_1109_TBME_2016_2574619
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
(ref27) 1998; 275
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref16
ref19
ref18
tung (ref12) 1978
mitra (ref17) 2006; 2
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/TBME.2006.880875
– ident: ref31
  doi: 10.3389/fphys.2011.00106
– ident: ref10
  doi: 10.1007/88-470-0396-2_6
– volume: 275
  start-page: 301h
  year: 1998
  ident: ref27
  article-title: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.1998.275.1.H301
– ident: ref24
  doi: 10.1016/j.jcp.2014.11.041
– year: 1978
  ident: ref12
  article-title: A bi-domain model for describing ischemic myocardial DC potentials
– volume: 2
  year: 2006
  ident: ref17
  publication-title: Digital Signal Processing A Computer-Based Approach
– ident: ref20
  doi: 10.1371/journal.pcbi.0030189
– ident: ref25
  doi: 10.1016/0033-0620(91)90002-4
– ident: ref7
  doi: 10.1111/jce.12559
– ident: ref14
  doi: 10.1016/0960-0779(95)00089-5
– ident: ref23
  doi: 10.1016/j.hrthm.2012.03.055
– ident: ref16
  doi: 10.1109/ICASSP.1990.115702
– ident: ref28
  doi: 10.1007/s11538-006-9116-6
– ident: ref9
  doi: 10.1007/s10840-006-9045-1
– ident: ref19
  doi: 10.1051/m2an/2012054
– ident: ref6
  doi: 10.1016/j.jacc.2003.12.054
– ident: ref5
  doi: 10.1161/01.CIR.0000157153.30978.67
– ident: ref34
  doi: 10.1093/europace/euv073
– ident: ref35
  doi: 10.1016/j.amjcard.2008.04.058
– ident: ref13
  doi: 10.1137/070680503
– ident: ref22
  doi: 10.1103/PhysRevE.68.021904
– ident: ref29
  doi: 10.1161/CIRCULATIONAHA.104.498758
– ident: ref3
  doi: 10.1161/hc4601.098517
– ident: ref26
  doi: 10.1109/TBME.2011.2160453
– ident: ref4
  doi: 10.1161/hc0902.104712
– ident: ref8
  doi: 10.1111/jce.12474
– ident: ref18
  doi: 10.1098/rsfs.2010.0041
– ident: ref2
  doi: 10.1161/01.CIR.102.20.2463
– ident: ref33
  doi: 10.1001/jama.2014.3
– ident: ref1
  doi: 10.1016/j.amjcard.2013.05.063
– ident: ref15
  doi: 10.1016/S0092-8240(03)00041-7
– ident: ref32
  doi: 10.1073/pnas.1304382110
– ident: ref21
  doi: 10.1103/PhysRevLett.97.150601
– ident: ref30
  doi: 10.1016/j.jacc.2009.03.061
SSID ssj0014846
Score 2.3929453
Snippet Objective : Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for...
Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and...
Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for...
OBJECTIVEComputational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 735
SubjectTerms Algorithms
Atria
Atrial fibrillation (AF)
Atrial Fibrillation - diagnosis
Atrial Fibrillation - physiopathology
Atrial Function
Atrium
Biological system modeling
Body Surface Potential Mapping - methods
catheter measurements
Catheters
computational model
Computational modeling
Computer applications
Computer Simulation
Conduction
conduction velocity
Customization
Diagnosis, Computer-Assisted - methods
Dimensional stability
effective refractory periods
Electric potential
Electrodes
electrograms
Electrophysiologic Techniques, Cardiac - methods
Electrophysiology
Endocardium - physiopathology
Errors
Fibrillation
Heart Conduction System - physiopathology
Humans
Mathematical models
Measurement methods
Medical instruments
model personalization
Models, Cardiovascular
Numerical models
Parameter estimation
Parameter identification
Parameterization
Properties (attributes)
Protocols
Refractory period
Reproducibility of Results
restitution curves
Sensitivity and Specificity
Sheet modelling
Two dimensional models
Velocity
Title Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms
URI https://ieeexplore.ieee.org/document/7480861
https://www.ncbi.nlm.nih.gov/pubmed/28207381
https://www.proquest.com/docview/2174325273
https://www.proquest.com/docview/1869969842
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JSsVALKgH0YP7UjdG8CT22WW6zNHlPUR44kFB8FA6Sy8-W_G958GvN5kuqKh4KzQznZJksicAR5IXPAmldmWhuIvymONTFKKpEkoUmInQHlUjD2_iq3t-_RA9zMBJVwtjjLHJZ6ZHjzaWrys1JVfZacJT1MDR1plN0riu1eoiBjyti3I8Hxk4ELyJYPqeOL07H_YpiSvuIX1ytBioAzBKviRM_S_iyM5X-V3VtCJnsAzD9rB1pslTbzqRPfX-rY_jf_9mBZYa3ZOd1cSyCjOmXIPFTx0J12B-2MTa1-HxttXT341mNDNtNGZVwazbn53ZcR-sX0_Rsf4R66Bnl7jTGy4YvFbPrF_iOSwNdqCUDTbegPtB_-7iym1GMbgKJfzEjYUSiW-8qKDuO3kuUo3cGye58XMUgakMlFGoKvoIJVRgUsr90HgfaBMpP8rDTZgrq9JsAzN4N6sQrSwTSq6Ull4R5RIVu8gLikRpB7wWI5lq-pTTuIxRZu0VT2SEz4zwmTX4dOC4W_JSN-n4C3idcNEBNmhwYK9Fe9aw8Tiz9lpAPeocOOxeIwNSVCUvTTUdZzTTS8Qi5YEDWzW5dHu3VLbz8zd3YSEgLcEmAu3B3OR1avZRx5nIA0vcHx-09EQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFQVqdADj5ZHoBQjcUJkm4edxMc-drVAU3HYSpU4WPEjF0pSdXc59OuZcR4qFaDeImXsOJoZz3sG4IPmNc9TbUNdGx6iPOb4JFI0VVKNAjOXNqJq5PIsm5_zLxfiYgM-jbUwzjmffOYm9Ohj-bY1a3KVHeS8QA0cbZ0HgnMuumqtMWbAi64sJ4qRhRPJ-xhmHMmDxVE5pTSubIIUytFmoB7AKPvytIj_EEh-wsq_lU0vdGZPoByO2-Wa_JisV3pibu50crzv_zyFx732yQ47cnkGG67Zge1bPQl3YKvso-278P3boKnfOMtoatrlkrU1845_dugHfrBpN0fHe0i8i56d4E6_cMHsuv3Jpg2ew1PhCEr5YMvncD6bLo7nYT-MITQo41dhJo3MYxeJmvrvVJUsLPJvllcurlAIFjoxzqCyGCOUNIkrKPvD4o1gnTCxqNIXsNm0jXsFzOHtbFK0s1yquTFWR7WoNKp2Ikrq3NgAogEjyvSdymlgxqXyFkskFeFTET5Vj88APo5Lrro2Hf8D3iVcjIA9GgLYG9CuekZeKm-xJdSlLoD342tkQYqrVI1r10tFU71kJgueBPCyI5dx74HKXv_9m-_g4XxRnqrTz2df38CjhHQGnxa0B5ur67V7ixrPSu97Qv8NEK_3kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Models+of+Human+Atrial+Electrophysiology+Derived+From+Endocardial+Electrograms&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Corrado%2C+Cesare&rft.au=Whitaker%2C+John&rft.au=Chubb%2C+Henry&rft.au=Williams%2C+Steven&rft.date=2017-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=64&rft.issue=4&rft.spage=735&rft_id=info:doi/10.1109%2FTBME.2016.2574619&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon