Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms
Objective : Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a cha...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 64; no. 4; pp. 735 - 742 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 |
| DOI | 10.1109/TBME.2016.2574619 |
Cover
| Abstract | Objective : Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods : We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a <inline-formula><tex-math notation="LaTeX">s_\text{1}\_ s_\text{2}</tex-math></inline-formula> pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of <inline-formula><tex-math notation="LaTeX">21.9\pm 16.1\%</tex-math></inline-formula> and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of <inline-formula><tex-math notation="LaTeX">4.4\pm 6.9\%</tex-math></inline-formula>. Results : We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of <inline-formula><tex-math notation="LaTeX">\sim 5\%</tex-math></inline-formula> and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance : We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable protocol to characterize cellular properties and predict tissue electrophysiological function. |
|---|---|
| AbstractList | Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods: We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s1-s2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. Results: We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance: We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable Objective : Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods : We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a <inline-formula><tex-math notation="LaTeX">s_\text{1}\_ s_\text{2}</tex-math></inline-formula> pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of <inline-formula><tex-math notation="LaTeX">21.9\pm 16.1\%</tex-math></inline-formula> and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of <inline-formula><tex-math notation="LaTeX">4.4\pm 6.9\%</tex-math></inline-formula>. Results : We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of <inline-formula><tex-math notation="LaTeX">\sim 5\%</tex-math></inline-formula> and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance : We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable protocol to characterize cellular properties and predict tissue electrophysiological function. Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s -s pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable. OBJECTIVEComputational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements.METHODSWe propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s1-s2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%.RESULTSWe demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases.CONCLUSION AND SIGNIFICANCEWe have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable. |
| Author | O'Neill, Mark D. Gill, Jaswinder Niederer, Steven A. Corrado, Cesare Chubb, Henry Whitaker, John Wright, Matthew Williams, Steven |
| Author_xml | – sequence: 1 givenname: Cesare orcidid: 0000-0002-8914-8735 surname: Corrado fullname: Corrado, Cesare email: cesare.corrado@kcl.ac.uk organization: Department of Biomedical Engineering, King's College London, London, U.K – sequence: 2 givenname: John surname: Whitaker fullname: Whitaker, John organization: Department of Biomedical EngineeringKing's College London – sequence: 3 givenname: Henry surname: Chubb fullname: Chubb, Henry organization: Department of Biomedical EngineeringKing's College London – sequence: 4 givenname: Steven surname: Williams fullname: Williams, Steven organization: Department of Biomedical EngineeringKing's College London – sequence: 5 givenname: Matthew surname: Wright fullname: Wright, Matthew organization: Department of Biomedical EngineeringKing's College London – sequence: 6 givenname: Jaswinder surname: Gill fullname: Gill, Jaswinder organization: Department of Biomedical EngineeringKing's College London – sequence: 7 givenname: Mark D. surname: O'Neill fullname: O'Neill, Mark D. organization: Department of Biomedical EngineeringKing's College London – sequence: 8 givenname: Steven A. surname: Niederer fullname: Niederer, Steven A. organization: Department of Biomedical EngineeringKing's College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28207381$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1rFEEQhhuJmE30B4ggA168zNrV05_HJG6MkKCHePLQdHpqY4ee6bV7Rlh_vb3sRiQHT0XB8xRV9Z6QozGNSMhroEsAaj7cnt-sloyCXDKhuATzjCxACN0y0cERWVAKujXM8GNyUspDbbnm8gU5ZppR1WlYkO9fMZc0uhh-Y9_cpB5jadK6uZoHNzZnUw4uNquIfspp82NbQorpftt8xBx-VeEyp6FZjX3yLvf_oPfZDeUleb52seCrQz0l3y5XtxdX7fWXT58vzq5bz0FMrTTeKEAq1ooK4ZzRPRWdVA7BdZLpO-bRsw6gUsYzrLtT1nMmehQehOtOyfv93E1OP2cskx1C8RijGzHNxYKWxkijOavouyfoQ5pzPb9YBop3TDDVVertgZrvBuztJofB5a19fFsF1B7wOZWScW19mNwU0jhlF6IFancB2V1AdheQPQRUTXhiPg7_n_Nm7wRE_MsrrqmW0P0BsMqZ2w |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2904707 crossref_primary_10_3389_fphys_2017_01113 crossref_primary_10_1007_s12265_018_9792_2 crossref_primary_10_1152_physrev_00017_2023 crossref_primary_10_3390_bios14100513 crossref_primary_10_1002_wsbm_1482 crossref_primary_10_1093_europace_euy232 crossref_primary_10_1007_s11517_022_02621_0 crossref_primary_10_1109_ACCESS_2020_3005898 crossref_primary_10_1371_journal_pone_0257935 crossref_primary_10_1038_s41569_018_0104_y crossref_primary_10_1093_europace_euae215 crossref_primary_10_1016_j_hrthm_2023_10_019 crossref_primary_10_1098_rsif_2017_0340 crossref_primary_10_1098_rsta_2019_0345 crossref_primary_10_3389_fphys_2021_673047 crossref_primary_10_1038_s41598_022_20745_z crossref_primary_10_1002_wsbm_1508 crossref_primary_10_1016_j_media_2019_101626 crossref_primary_10_3389_fphys_2021_693015 crossref_primary_10_1098_rsta_2019_0558 crossref_primary_10_1007_s00366_024_02094_9 crossref_primary_10_1016_j_media_2025_103484 |
| Cites_doi | 10.1109/TBME.2006.880875 10.3389/fphys.2011.00106 10.1007/88-470-0396-2_6 10.1152/ajpheart.1998.275.1.H301 10.1016/j.jcp.2014.11.041 10.1371/journal.pcbi.0030189 10.1016/0033-0620(91)90002-4 10.1111/jce.12559 10.1016/0960-0779(95)00089-5 10.1016/j.hrthm.2012.03.055 10.1109/ICASSP.1990.115702 10.1007/s11538-006-9116-6 10.1007/s10840-006-9045-1 10.1051/m2an/2012054 10.1016/j.jacc.2003.12.054 10.1161/01.CIR.0000157153.30978.67 10.1093/europace/euv073 10.1016/j.amjcard.2008.04.058 10.1137/070680503 10.1103/PhysRevE.68.021904 10.1161/CIRCULATIONAHA.104.498758 10.1161/hc4601.098517 10.1109/TBME.2011.2160453 10.1161/hc0902.104712 10.1111/jce.12474 10.1098/rsfs.2010.0041 10.1161/01.CIR.102.20.2463 10.1001/jama.2014.3 10.1016/j.amjcard.2013.05.063 10.1016/S0092-8240(03)00041-7 10.1073/pnas.1304382110 10.1103/PhysRevLett.97.150601 10.1016/j.jacc.2009.03.061 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TBME.2016.2574619 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 742 |
| ExternalDocumentID | 28207381 10_1109_TBME_2016_2574619 7480861 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: British Heart Foundation grantid: PG 13 37 30280 funderid: 10.13039/501100000274 – fundername: Department of Health via the National Institute for Health Research Comprehensive Biomedical Research Centre Award to Guy's & St Thomas’ NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust – fundername: Office of Science and Technology through EPSRC's High End Computing Programme – fundername: British Heart Foundation grantid: PG 13 37 30280 – fundername: British Heart Foundation grantid: PG/13/37/30280 – fundername: Department of Health |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c415t-69c971e05f7055aa98d05367ae1a3628b2cec23119719c2e82002d425de5c15a3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 |
| IngestDate | Sun Sep 28 08:07:33 EDT 2025 Mon Jun 30 08:42:20 EDT 2025 Mon Jul 21 06:02:36 EDT 2025 Wed Oct 01 05:53:02 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Wed Aug 27 01:47:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-69c971e05f7055aa98d05367ae1a3628b2cec23119719c2e82002d425de5c15a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8914-8735 |
| PMID | 28207381 |
| PQID | 2174325273 |
| PQPubID | 85474 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1869969842 proquest_journals_2174325273 crossref_citationtrail_10_1109_TBME_2016_2574619 ieee_primary_7480861 pubmed_primary_28207381 crossref_primary_10_1109_TBME_2016_2574619 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 (ref27) 1998; 275 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref16 ref19 ref18 tung (ref12) 1978 mitra (ref17) 2006; 2 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref11 doi: 10.1109/TBME.2006.880875 – ident: ref31 doi: 10.3389/fphys.2011.00106 – ident: ref10 doi: 10.1007/88-470-0396-2_6 – volume: 275 start-page: 301h year: 1998 ident: ref27 article-title: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.1998.275.1.H301 – ident: ref24 doi: 10.1016/j.jcp.2014.11.041 – year: 1978 ident: ref12 article-title: A bi-domain model for describing ischemic myocardial DC potentials – volume: 2 year: 2006 ident: ref17 publication-title: Digital Signal Processing A Computer-Based Approach – ident: ref20 doi: 10.1371/journal.pcbi.0030189 – ident: ref25 doi: 10.1016/0033-0620(91)90002-4 – ident: ref7 doi: 10.1111/jce.12559 – ident: ref14 doi: 10.1016/0960-0779(95)00089-5 – ident: ref23 doi: 10.1016/j.hrthm.2012.03.055 – ident: ref16 doi: 10.1109/ICASSP.1990.115702 – ident: ref28 doi: 10.1007/s11538-006-9116-6 – ident: ref9 doi: 10.1007/s10840-006-9045-1 – ident: ref19 doi: 10.1051/m2an/2012054 – ident: ref6 doi: 10.1016/j.jacc.2003.12.054 – ident: ref5 doi: 10.1161/01.CIR.0000157153.30978.67 – ident: ref34 doi: 10.1093/europace/euv073 – ident: ref35 doi: 10.1016/j.amjcard.2008.04.058 – ident: ref13 doi: 10.1137/070680503 – ident: ref22 doi: 10.1103/PhysRevE.68.021904 – ident: ref29 doi: 10.1161/CIRCULATIONAHA.104.498758 – ident: ref3 doi: 10.1161/hc4601.098517 – ident: ref26 doi: 10.1109/TBME.2011.2160453 – ident: ref4 doi: 10.1161/hc0902.104712 – ident: ref8 doi: 10.1111/jce.12474 – ident: ref18 doi: 10.1098/rsfs.2010.0041 – ident: ref2 doi: 10.1161/01.CIR.102.20.2463 – ident: ref33 doi: 10.1001/jama.2014.3 – ident: ref1 doi: 10.1016/j.amjcard.2013.05.063 – ident: ref15 doi: 10.1016/S0092-8240(03)00041-7 – ident: ref32 doi: 10.1073/pnas.1304382110 – ident: ref21 doi: 10.1103/PhysRevLett.97.150601 – ident: ref30 doi: 10.1016/j.jacc.2009.03.061 |
| SSID | ssj0014846 |
| Score | 2.3929453 |
| Snippet | Objective : Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for... Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and... Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for... OBJECTIVEComputational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 735 |
| SubjectTerms | Algorithms Atria Atrial fibrillation (AF) Atrial Fibrillation - diagnosis Atrial Fibrillation - physiopathology Atrial Function Atrium Biological system modeling Body Surface Potential Mapping - methods catheter measurements Catheters computational model Computational modeling Computer applications Computer Simulation Conduction conduction velocity Customization Diagnosis, Computer-Assisted - methods Dimensional stability effective refractory periods Electric potential Electrodes electrograms Electrophysiologic Techniques, Cardiac - methods Electrophysiology Endocardium - physiopathology Errors Fibrillation Heart Conduction System - physiopathology Humans Mathematical models Measurement methods Medical instruments model personalization Models, Cardiovascular Numerical models Parameter estimation Parameter identification Parameterization Properties (attributes) Protocols Refractory period Reproducibility of Results restitution curves Sensitivity and Specificity Sheet modelling Two dimensional models Velocity |
| Title | Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms |
| URI | https://ieeexplore.ieee.org/document/7480861 https://www.ncbi.nlm.nih.gov/pubmed/28207381 https://www.proquest.com/docview/2174325273 https://www.proquest.com/docview/1869969842 |
| Volume | 64 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JSsVALKgH0YP7UjdG8CT22WW6zNHlPUR44kFB8FA6Sy8-W_G958GvN5kuqKh4KzQznZJksicAR5IXPAmldmWhuIvymONTFKKpEkoUmInQHlUjD2_iq3t-_RA9zMBJVwtjjLHJZ6ZHjzaWrys1JVfZacJT1MDR1plN0riu1eoiBjyti3I8Hxk4ELyJYPqeOL07H_YpiSvuIX1ytBioAzBKviRM_S_iyM5X-V3VtCJnsAzD9rB1pslTbzqRPfX-rY_jf_9mBZYa3ZOd1cSyCjOmXIPFTx0J12B-2MTa1-HxttXT341mNDNtNGZVwazbn53ZcR-sX0_Rsf4R66Bnl7jTGy4YvFbPrF_iOSwNdqCUDTbegPtB_-7iym1GMbgKJfzEjYUSiW-8qKDuO3kuUo3cGye58XMUgakMlFGoKvoIJVRgUsr90HgfaBMpP8rDTZgrq9JsAzN4N6sQrSwTSq6Ull4R5RIVu8gLikRpB7wWI5lq-pTTuIxRZu0VT2SEz4zwmTX4dOC4W_JSN-n4C3idcNEBNmhwYK9Fe9aw8Tiz9lpAPeocOOxeIwNSVCUvTTUdZzTTS8Qi5YEDWzW5dHu3VLbz8zd3YSEgLcEmAu3B3OR1avZRx5nIA0vcHx-09EQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFQVqdADj5ZHoBQjcUJkm4edxMc-drVAU3HYSpU4WPEjF0pSdXc59OuZcR4qFaDeImXsOJoZz3sG4IPmNc9TbUNdGx6iPOb4JFI0VVKNAjOXNqJq5PIsm5_zLxfiYgM-jbUwzjmffOYm9Ohj-bY1a3KVHeS8QA0cbZ0HgnMuumqtMWbAi64sJ4qRhRPJ-xhmHMmDxVE5pTSubIIUytFmoB7AKPvytIj_EEh-wsq_lU0vdGZPoByO2-Wa_JisV3pibu50crzv_zyFx732yQ47cnkGG67Zge1bPQl3YKvso-278P3boKnfOMtoatrlkrU1845_dugHfrBpN0fHe0i8i56d4E6_cMHsuv3Jpg2ew1PhCEr5YMvncD6bLo7nYT-MITQo41dhJo3MYxeJmvrvVJUsLPJvllcurlAIFjoxzqCyGCOUNIkrKPvD4o1gnTCxqNIXsNm0jXsFzOHtbFK0s1yquTFWR7WoNKp2Ikrq3NgAogEjyvSdymlgxqXyFkskFeFTET5Vj88APo5Lrro2Hf8D3iVcjIA9GgLYG9CuekZeKm-xJdSlLoD342tkQYqrVI1r10tFU71kJgueBPCyI5dx74HKXv_9m-_g4XxRnqrTz2df38CjhHQGnxa0B5ur67V7ixrPSu97Qv8NEK_3kQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Models+of+Human+Atrial+Electrophysiology+Derived+From+Endocardial+Electrograms&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Corrado%2C+Cesare&rft.au=Whitaker%2C+John&rft.au=Chubb%2C+Henry&rft.au=Williams%2C+Steven&rft.date=2017-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=64&rft.issue=4&rft.spage=735&rft_id=info:doi/10.1109%2FTBME.2016.2574619&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |