Energy Efficient CH Selection Scheme Based on ABC and Q-Learning Approaches for IoUT Applications
Nowadays, the Internet of Underwater Things (IoUT) provides many marine 5G applications. However, it has some issues with energy efficiency and network lifetime. The network clustering approach is efficient for optimizing energy consumption, especially for underwater acoustic communications. Recentl...
        Saved in:
      
    
          | Published in | Systems (Basel) Vol. 11; no. 11; p. 529 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.11.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2079-8954 2079-8954  | 
| DOI | 10.3390/systems11110529 | 
Cover
| Abstract | Nowadays, the Internet of Underwater Things (IoUT) provides many marine 5G applications. However, it has some issues with energy efficiency and network lifetime. The network clustering approach is efficient for optimizing energy consumption, especially for underwater acoustic communications. Recently, many algorithms have been developed related to clustering-based underwater communications for energy efficiency. However, these algorithms have drawbacks when considered for heterogeneous IoUT applications. Clustering efficiency in heterogeneous IoUT is influenced by the uniform distribution of cluster heads (CHs). As a result, conventional schemes are inefficient when CHs are arranged in large and dense nodes since they are unable to optimize the right number of CHs. Consequently, the clustering approach cannot improve the IoUT network, and many underwater nodes will rapidly consume their energies and be exhausted because of the large number of clusters. In this paper, we developed an efficient clustering scheme to effectively select the best CHs based on artificial bee colony (ABC) and Q-learning optimization approaches. The proposed scheme enables an effective selection of the CHs based on four factors, the residual energy level, the depth and the distance from the base station, and the signal quality. We first evaluate the most suitable swarm algorithms and their impact on improving the CH selection mechanism. The evaluated algorithms are generic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), and ABC. Then, the ABC algorithm process is improved by using the Q-learning approach to improve the process of ABC and its fitness function to optimize the CH selection. We observed from the simulation performance result that an improved ABC-QL scheme enables efficient selection of the best CHs to increase the network lifetime and reduce average energy consumption by 40% compared to the conventional ABC. | 
    
|---|---|
| AbstractList | Nowadays, the Internet of Underwater Things (IoUT) provides many marine 5G applications. However, it has some issues with energy efficiency and network lifetime. The network clustering approach is efficient for optimizing energy consumption, especially for underwater acoustic communications. Recently, many algorithms have been developed related to clustering-based underwater communications for energy efficiency. However, these algorithms have drawbacks when considered for heterogeneous IoUT applications. Clustering efficiency in heterogeneous IoUT is influenced by the uniform distribution of cluster heads (CHs). As a result, conventional schemes are inefficient when CHs are arranged in large and dense nodes since they are unable to optimize the right number of CHs. Consequently, the clustering approach cannot improve the IoUT network, and many underwater nodes will rapidly consume their energies and be exhausted because of the large number of clusters. In this paper, we developed an efficient clustering scheme to effectively select the best CHs based on artificial bee colony (ABC) and Q-learning optimization approaches. The proposed scheme enables an effective selection of the CHs based on four factors, the residual energy level, the depth and the distance from the base station, and the signal quality. We first evaluate the most suitable swarm algorithms and their impact on improving the CH selection mechanism. The evaluated algorithms are generic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), and ABC. Then, the ABC algorithm process is improved by using the Q-learning approach to improve the process of ABC and its fitness function to optimize the CH selection. We observed from the simulation performance result that an improved ABC-QL scheme enables efficient selection of the best CHs to increase the network lifetime and reduce average energy consumption by 40% compared to the conventional ABC. | 
    
| Audience | Academic | 
    
| Author | Abdelhaq, Maha Eltahir, Ibrahim Khider Sayed Ali, Elmustafa Saeed, Rashid A. Alsaqour, Raed Mokhtar, Rania A.  | 
    
| Author_xml | – sequence: 1 givenname: Elmustafa orcidid: 0000-0003-4738-3216 surname: Sayed Ali fullname: Sayed Ali, Elmustafa – sequence: 2 givenname: Rashid A. orcidid: 0000-0002-9872-081X surname: Saeed fullname: Saeed, Rashid A. – sequence: 3 givenname: Ibrahim Khider surname: Eltahir fullname: Eltahir, Ibrahim Khider – sequence: 4 givenname: Maha surname: Abdelhaq fullname: Abdelhaq, Maha – sequence: 5 givenname: Raed orcidid: 0000-0003-2350-5661 surname: Alsaqour fullname: Alsaqour, Raed – sequence: 6 givenname: Rania A. surname: Mokhtar fullname: Mokhtar, Rania A.  | 
    
| BookMark | eNqNUcFqGzEQXUoKTdOcexX0vIm00q6ko2PcxmAIJcl5mZVGrsxacqU1xX9fOVtKCBQ6Omg0vPc08-ZjdRFiwKr6zOgN55re5lOecJ9ZCdo2-l112VCpa6VbcfEq_1Bd57yjJTTjqhOXFawCpu2JrJzzxmOYyPKePOKIZvIxkEfzA_dI7iCjJeW9uFsSCJZ8rzcIKfiwJYvDIUUouExcTGQdn5_OtdEbOEvkT9V7B2PG6z_3VfX8dfW0vK83D9_Wy8WmNoK1U92C1abhYJqWcsE6NwzWWAQuVNMJlFSj0wydk5JRqRrBTTO4zqhu6ERnBn5VrWddG2HXH5LfQzr1EXz_Uohp20OavBmxdwKtQmPVoEBIw5SRFFu02oF2jaZFi85ax3CA0y8Yx7-CjPZnx_s3jhfKl5lS3Ph5xDz1u3hMoUzcN0rzMoZksqBuZtQWSh8-uDglMOVY3HtTdup8qS-kFFzKtmOFcDsTTIo5J3T_0Uj7hmH89LKK8pUf_8n7DXCptTo | 
    
| CitedBy_id | crossref_primary_10_1016_j_jksuci_2024_102128 crossref_primary_10_3390_electronics13030474  | 
    
| Cites_doi | 10.1002/dac.5283 10.1155/2022/3578002 10.3390/s22020415 10.1002/dac.5560 10.1109/ACCESS.2017.2713640 10.3390/s23125759 10.3390/s20051420 10.3390/s19102351 10.3390/a13100250 10.3390/photonics9050282 10.1007/s11590-009-0168-z 10.1016/j.jnca.2023.103594 10.3390/app13148174 10.3390/s21134514 10.3390/electronics12153300 10.3390/a16090397 10.1109/COMST.2021.3134955 10.1109/ACCESS.2023.3325311 10.1038/s41598-023-37952-x 10.1007/978-3-030-05873-9_16 10.3390/s22041618 10.1016/j.engappai.2019.04.007 10.1016/j.adhoc.2022.102953 10.1109/JIOT.2021.3055857 10.3389/fmars.2023.1117787 10.1371/journal.pone.0154080 10.1109/COMST.2021.3053118 10.1109/ACCESS.2022.3188654 10.3390/s19020256 10.7717/peerj-cs.696 10.1016/j.simpat.2021.102304 10.3390/electronics11142158 10.3390/s23136025 10.3390/app11010312 10.1016/j.comnet.2021.108309 10.1109/JIOT.2022.3195223 10.1109/ACCESS.2021.3093113 10.3390/s23104844 10.1155/2022/6837780 10.1007/978-981-19-7615-5 10.1016/j.jnca.2021.103295 10.1016/j.advengsoft.2022.103319 10.3390/systems10050177 10.1186/s13638-019-1533-y 10.3390/s20041025 10.3390/s17020283 10.3390/s16020212 10.1155/2019/6470359 10.3390/electronics11193015 10.1002/dac.5147 10.3390/s22186945 10.1177/15501329221117118 10.1007/s11277-020-07418-8 10.1002/cpe.7815 10.1371/journal.pone.0200738 10.1109/ACCESS.2019.2897872 10.1109/ACCESS.2022.3177722 10.3390/s20185393 10.1016/j.adhoc.2020.102317 10.3390/electronics12153321 10.1016/j.adhoc.2019.101912 10.4018/IJITWE.2020070105 10.1109/DeSE58274.2023.10100062  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/systems11110529 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Business  | 
    
| EISSN | 2079-8954 | 
    
| ExternalDocumentID | oai_doaj_org_article_f4ed8ecd8b8a47c18c70e5ed9fa9f290 10.3390/systems11110529 A774377561 10_3390_systems11110529  | 
    
| GeographicLocations | Saudi Arabia | 
    
| GeographicLocations_xml | – name: Saudi Arabia | 
    
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c415t-5ad9c23ac2503416fbbdcdea348264e709ef91eff771078243c2bf6c86b646cb3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2079-8954 | 
    
| IngestDate | Fri Oct 03 12:43:51 EDT 2025 Sun Sep 07 10:59:14 EDT 2025 Sun Jul 13 04:11:25 EDT 2025 Mon Oct 20 16:54:52 EDT 2025 Thu Oct 16 04:42:43 EDT 2025 Thu Apr 24 23:10:26 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c415t-5ad9c23ac2503416fbbdcdea348264e709ef91eff771078243c2bf6c86b646cb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4738-3216 0000-0002-9872-081X 0000-0003-2350-5661  | 
    
| OpenAccessLink | https://doaj.org/article/f4ed8ecd8b8a47c18c70e5ed9fa9f290 | 
    
| PQID | 2893348717 | 
    
| PQPubID | 2032325 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f4ed8ecd8b8a47c18c70e5ed9fa9f290 unpaywall_primary_10_3390_systems11110529 proquest_journals_2893348717 gale_infotracacademiconefile_A774377561 crossref_primary_10_3390_systems11110529 crossref_citationtrail_10_3390_systems11110529  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-11-01 | 
    
| PublicationDateYYYYMMDD | 2023-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Systems (Basel) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Maheshwari (ref_48) 2021; 110 Feng (ref_19) 2019; 2019 Chinnasamy (ref_43) 2022; 10 Figueiredo (ref_13) 2019; 82 Mohan (ref_20) 2022; 22 Ullah (ref_32) 2023; 11 ref_54 Sandeep (ref_10) 2017; 5 ref_52 Jahanbakht (ref_12) 2021; 23 Singh (ref_30) 2023; 36 ref_59 Lilhore (ref_42) 2022; 18 Sun (ref_64) 2022; 136 Kamalika (ref_1) 2021; 109 Gupta (ref_28) 2022; 35 Vijay (ref_65) 2023; 13 Zehra (ref_50) 2021; 116 Qawqzeh (ref_39) 2021; 7 Mukhtar (ref_58) 2022; 2022 ref_61 ref_60 ref_24 ref_23 ref_22 Gola (ref_6) 2023; 35 ref_21 ref_63 Awan (ref_16) 2019; 2019 ref_62 ref_29 ref_27 Ghoreyshi (ref_11) 2019; 7 Khan (ref_26) 2021; 197 Ghorpade (ref_53) 2021; 9 Shah (ref_8) 2023; 23 ref_34 ref_33 Islam (ref_15) 2022; 198 Nain (ref_55) 2022; 35 ref_38 ref_37 Salil (ref_31) 2023; 10 Felemban (ref_4) 2015; 2015 Faheem (ref_57) 2019; 93 Kamal (ref_18) 2023; 175 Sivakumar (ref_56) 2022; 2022 ref_47 ref_46 Alsaqour (ref_36) 2022; 10 ref_45 ref_44 ref_41 ref_40 ref_3 ref_2 Khan (ref_5) 2021; 21 ref_49 Elmustafa (ref_14) 2023; 213 Natesan (ref_35) 2020; 15 Wei (ref_17) 2022; 24 Hou (ref_25) 2022; 9 Xing (ref_9) 2021; 8 Kim (ref_51) 2020; 4 ref_7  | 
    
| References_xml | – volume: 35 start-page: e5283 year: 2022 ident: ref_28 article-title: Energy hole mitigation through optimized cluster head selection and strategic routing in Internet of Underwater Things publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.5283 – volume: 2022 start-page: 3578002 year: 2022 ident: ref_56 article-title: Energy-Efficient Markov-Based Lifetime Enhancement Approach for Underwater Acoustic Sensor Network publication-title: J. Sens. doi: 10.1155/2022/3578002 – ident: ref_29 doi: 10.3390/s22020415 – volume: 36 start-page: e5560 year: 2023 ident: ref_30 article-title: Energy-optimized cluster head selection based on enhanced remora optimization algorithm in underwater wireless sensor network publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.5560 – volume: 5 start-page: 11176 year: 2017 ident: ref_10 article-title: Review on Clustering, Coverage and Connectivity in Underwater Wireless Sensor Networks: A Communication Techniques Perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2713640 – ident: ref_37 doi: 10.3390/s23125759 – ident: ref_54 doi: 10.3390/s20051420 – ident: ref_24 doi: 10.3390/s19102351 – ident: ref_47 doi: 10.3390/a13100250 – ident: ref_27 doi: 10.3390/photonics9050282 – volume: 2015 start-page: 1 year: 2015 ident: ref_4 article-title: Underwater Sensor Network Applications: A Comprehensive Survey publication-title: Int. J. Distrib. Sens. Netw. – volume: 4 start-page: 383 year: 2020 ident: ref_51 article-title: Minimum average routing path clustering problem in multi-hop 2-D underwater sensor networks publication-title: Optim. Lett. doi: 10.1007/s11590-009-0168-z – volume: 213 start-page: 103594 year: 2023 ident: ref_14 article-title: A systematic review on energy efficiency in the internet of underwater things (IoUT): Recent approaches and research gaps publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2023.103594 – ident: ref_34 doi: 10.3390/app13148174 – volume: 21 start-page: 4514 year: 2021 ident: ref_5 article-title: Adaptive Node Clustering for Underwater Sensor Networks publication-title: Sensors doi: 10.3390/s21134514 – ident: ref_59 doi: 10.3390/electronics12153300 – ident: ref_60 doi: 10.3390/a16090397 – volume: 24 start-page: 404 year: 2022 ident: ref_17 article-title: Reliable Data Collection Techniques in Underwater Wireless Sensor Networks: A Survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2021.3134955 – volume: 11 start-page: 116932 year: 2023 ident: ref_32 article-title: Reliable and Delay Aware Routing Protocol for Underwater Wireless Sensor Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3325311 – volume: 13 start-page: 10810 year: 2023 ident: ref_65 article-title: Underwater wireless sensor network-based multihop data transmission using hybrid cat cheetah optimization algorithm publication-title: Sci. Rep. doi: 10.1038/s41598-023-37952-x – ident: ref_2 doi: 10.1007/978-3-030-05873-9_16 – volume: 22 start-page: 1618 year: 2022 ident: ref_20 article-title: Improved Metaheuristics-Based Clustering with Multihop Routing Protocol for Underwater Wireless Sensor Networks publication-title: Sensors doi: 10.3390/s22041618 – volume: 82 start-page: 313 year: 2019 ident: ref_13 article-title: Swarm intelligence for clustering—A systematic review with new perspectives on data mining publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.04.007 – volume: 136 start-page: 102953 year: 2022 ident: ref_64 article-title: Adaptive clustering routing protocol for underwater sensor networks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2022.102953 – volume: 8 start-page: 9005 year: 2021 ident: ref_9 article-title: Game-Theory-Based Clustering Scheme for Energy Balancing in Underwater Acoustic Sensor Networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3055857 – volume: 10 start-page: 1117787 year: 2023 ident: ref_31 article-title: Energy-efficient clustering protocol for underwater wireless sensor networks using optimized glowworm swarm optimization publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2023.1117787 – ident: ref_49 doi: 10.1371/journal.pone.0154080 – volume: 23 start-page: 904 year: 2021 ident: ref_12 article-title: Internet of Underwater Things and Big Marine Data Analytics—A Comprehensive Survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2021.3053118 – volume: 10 start-page: 72907 year: 2022 ident: ref_36 article-title: Efficient Energy Mechanism in Heterogeneous WSNs for Underground Mining Monitoring Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3188654 – ident: ref_63 doi: 10.3390/s19020256 – volume: 7 start-page: e696 year: 2021 ident: ref_39 article-title: A review of swarm intelligence algorithms deployment for scheduling and optimization in cloud computing environments publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.696 – volume: 109 start-page: 102304 year: 2021 ident: ref_1 article-title: IoUT: Modelling and simulation of Edge-Drone-based Software-Defined smart Internet of Underwater Things publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2021.102304 – ident: ref_45 doi: 10.3390/electronics11142158 – volume: 23 start-page: 6025 year: 2023 ident: ref_8 article-title: Advancements in Neighboring-Based Energy-Efficient Routing Protocol (NBEER) for Underwater Wireless Sensor Networks publication-title: Sensors doi: 10.3390/s23136025 – ident: ref_40 doi: 10.3390/app11010312 – volume: 197 start-page: 108309 year: 2021 ident: ref_26 article-title: Q-learning based energy-efficient and void avoidance routing protocol for underwater acoustic sensor networks publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.108309 – volume: 9 start-page: 25027 year: 2022 ident: ref_25 article-title: An Unequal Clustering Method Based on Particle Swarm Optimization in Underwater Acoustic Sensor Networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3195223 – volume: 9 start-page: 93831 year: 2021 ident: ref_53 article-title: Enhanced Differential Crossover and Quantum Particle Swarm Optimization for IoT Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3093113 – ident: ref_23 doi: 10.3390/s23104844 – volume: 2022 start-page: 6837780 year: 2022 ident: ref_58 article-title: Performance Evaluation of Downlink Coordinated Multipoint Joint Transmission under Heavy IoT Traffic Load publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2022/6837780 – ident: ref_41 doi: 10.1007/978-981-19-7615-5 – volume: 198 start-page: 103295 year: 2022 ident: ref_15 article-title: A survey on energy efficiency in underwater wireless communications publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.103295 – volume: 175 start-page: 103319 year: 2023 ident: ref_18 article-title: An empirical study on underwater acoustic sensor networks based on localization and routing approaches publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103319 – ident: ref_7 doi: 10.3390/systems10050177 – volume: 2019 start-page: 228 year: 2019 ident: ref_19 article-title: Improved energy-balanced algorithm for underwater wireless sensor network based on depth threshold and energy level partition publication-title: J. Wirel. Commun. Netw. doi: 10.1186/s13638-019-1533-y – ident: ref_62 doi: 10.3390/s20041025 – ident: ref_3 doi: 10.3390/s17020283 – ident: ref_46 doi: 10.3390/s16020212 – volume: 2019 start-page: 6470359 year: 2019 ident: ref_16 article-title: Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2019/6470359 – ident: ref_33 doi: 10.3390/electronics11193015 – volume: 35 start-page: e5147 year: 2022 ident: ref_55 article-title: A range based node localization scheme with hybrid optimization for underwater wireless sensor network publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.5147 – ident: ref_38 doi: 10.3390/s22186945 – volume: 18 start-page: 1 year: 2022 ident: ref_42 article-title: A depth-controlled and energy-efficient routing protocol for underwater wireless sensor networks publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/15501329221117118 – volume: 116 start-page: 1311 year: 2021 ident: ref_50 article-title: Comparative Analysis of Bio-Inspired Algorithms for Underwater Wireless Sensor Networks publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-07418-8 – volume: 35 start-page: e7815 year: 2023 ident: ref_6 article-title: Underwater acoustic sensor networks: Taxonomy on applications, architectures, localization methods, deployment techniques, routing techniques, and threats: A systematic review publication-title: Concurr. Comput. Pract. Exper. doi: 10.1002/cpe.7815 – ident: ref_61 doi: 10.1371/journal.pone.0200738 – volume: 7 start-page: 21118 year: 2019 ident: ref_11 article-title: Mobile Data Gathering with Hop-Constrained Clustering in Underwater Sensor Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897872 – volume: 10 start-page: 55868 year: 2022 ident: ref_43 article-title: Energy-Aware Multilevel Clustering Scheme for Underwater Wireless Sensor Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3177722 – ident: ref_21 doi: 10.3390/s20185393 – volume: 110 start-page: 102317 year: 2021 ident: ref_48 article-title: Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2020.102317 – ident: ref_22 – ident: ref_52 doi: 10.3390/electronics12153321 – volume: 93 start-page: 101912 year: 2019 ident: ref_57 article-title: Energy efficient multi-objective evolutionary routing scheme for reliable data gathering in Internet of underwater acoustic sensor networks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2019.101912 – volume: 15 start-page: 76 year: 2020 ident: ref_35 article-title: FLCEER: Fuzzy Logic Cluster-Based Energy Efficient Routing Protocol for Underwater Acoustic Sensor Network publication-title: Int. J. Inf. Technol. Web Eng. IJITWE doi: 10.4018/IJITWE.2020070105 – ident: ref_44 doi: 10.1109/DeSE58274.2023.10100062  | 
    
| SSID | ssj0000913864 | 
    
| Score | 2.3152785 | 
    
| Snippet | Nowadays, the Internet of Underwater Things (IoUT) provides many marine 5G applications. However, it has some issues with energy efficiency and network... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 529 | 
    
| SubjectTerms | ABC ACO Algorithms Ant colony optimization CH selection optimization Clustering Communication Energy consumption Energy efficiency Energy levels Energy resources Engineering research heterogeneous IoUT Internet of Things Localization Mathematical optimization Methods Nodes Optimization Particle swarm optimization PSO Residual energy Sensors Signal quality Swarm intelligence Underwater acoustics Underwater communication Underwater construction  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VVIL2UEEB1VDQHpCAg6mfa-8BISdKFZCIgDZSb9Y-ewlO2qSq-PfM2Os0gICjrbW19szOfPuY7wN4FZVauqSwocPcEWYqlaEwloeJsqWOIqtjQ7XDn6d8Mss-XeQXOzDta2HoWGUfE9tAbRaa1shPEtKFR3QdFx-WVyGpRtHuai-hIb20gnnfUozdg92EmLEGsDscT79826y6EAtmybOO4yfF-f5JR5i8oshBm16_pKeWxf_PWL0PD26apfxxK-fzrWR0-hAOPIpkVWf2R7Bjm0O43x9iP4T9LZrBxyDHbYEfG7d0EZhl2GjCzloBHLQKO0O7fbdsiPnMMLyuhiMmG8O-hp589ZJVnnncrhiCXPZxMTtn1dbW9xOYnY7PR5PQSyuEGjP2OsylETpJpUYEhHmMO6WMNlYS1Q3PbBEJ60RsnSsQgSCIyFKdKMd1yRXPuFbpUxg0i8YeAXMil3lcmFgbjra2SjhudZSYVJQ433QBvOv_aK097zjJX8xrnH-QCerfTBDAm80Dy45y4-9Nh2SiTTPiym5vLK4vaz_0apdZU1ptSlXKrNBxqYvI5tYIJ4VLRBTAazJwTSMaO6alL0zAzyNurLpChJwWBQLNAI57H6j9UF_Vd44ZwNuNX_yv58_-_arnsEe69l3R4zEM1tc39gWin7V66V36J91TBic priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BKgE98CggFgryAQk4bLpPr33cRKkCEhWojVROKz_GHAjbiiRC9Nd3vOtEobQCjmvZ0qxnxvON7PkG4HUijHJZhbGj2BEXOlextMjjTKMwSYImtb52-OMRn86KD6flaSBJ8rUwW_f3OaXjBz2f8cI7tr-Tug07vCTQPYCd2dGn-otvHZdUMhayLHrinutW_RZzOmr-Pw_gXbi7as_Vr59qPt-KMIcPYLqWrX9Y8m24WuqhubhC2_gPwj-E-wFlsro3i0dwC9s9uLN-5L4Hu1s0hI9BTboCQDbp6CQoCrHxlB13DXJIa-yY9Pod2YjinWX0XY_GTLWWfY4DOetXVgdmclwwAsHs_dnshNVbV-NPYHY4ORlP49B6ITYU0Zdxqaw0Wa4MISSKc9xpbY1F5alweIFVItHJFJ2rCKEQyChyk2nHjeCaF9zo_CkM2rMWnwFzslRlWtnUWE62gFo6jibJbC4F5aMuguFaOY0JvOS-Pca8ofzEb2NzZRsjeLtZcN5Tctw8deS1vZnmubS7AdJSE1yzcQVagcYKLVRRmVSYKsESrXRKukwmEbzxttJ4jyfBjAqFC_R7njurqQlB51VFQDSC_bU5NeEoWDSU0fpqZ0qbI3i3MbG_Sf78P-a-gHsZQa--QnIfBssfK3xJUGmpXwU3uQSLjxJM priority: 102 providerName: Unpaywall  | 
    
| Title | Energy Efficient CH Selection Scheme Based on ABC and Q-Learning Approaches for IoUT Applications | 
    
| URI | https://www.proquest.com/docview/2893348717 https://doi.org/10.3390/systems11110529 https://doaj.org/article/f4ed8ecd8b8a47c18c70e5ed9fa9f290  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-8954 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913864 issn: 2079-8954 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2079-8954 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913864 issn: 2079-8954 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-8954 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913864 issn: 2079-8954 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: PROQUEST customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-8954 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913864 issn: 2079-8954 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-8954 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913864 issn: 2079-8954 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BkYAeEBQqUsrKByTgEJpPxz5mV7ssSKwK7UrlZPljzGVJK3Yr1H_POMmuAgj1wjGRI008Y897sucNwKtEWO2zCmNPuSMuTK5j6ZDHmUFhkwRt6kLt8KcFny-LjxflxaDVV7gT1skDdxN34gt0Aq0TRuiisqmwVYIlOum19Jls2Xoi5IBMtXuwTHPBi07LJydef9IJI6_DDhEOt35LQ61a_9978j48uG6u9M1PvVoNks7sMTzq0SKrOyufwB1sDuD-9rL6AewP5ASfgp62hXxs2spCUDZhkzk7axvd0OyzM_LPd2RjyluO0XM9njDdOPY57kVWv7G6VxjHNSMwyz5cLs9ZPTjifgbL2fR8Mo_7Fgqxpcy8iUvtpM1ybQnpUL7i3hhnHeogacMLrBKJXqbofUVIg8BCkdvMeG4FN7zg1uSHsNdcNvgcmJelLtPKpdZx8ika6TnaJHO5FMQrfQTvtjOqbK8vHtpcrBTxjOAC9YcLIniz--Cqk9b499BxcNFuWNDEbl9QpKg-UtRtkRLB6-BgFVYuGWZ1X4BAvxc0sFRNSDivKgKUERxvY0D1S3qtiJmGqmWivxG83cXFbZYf_Q_LX8DD0OW-K4E8hr3Nj2t8SVhoY0ZwV8zej-DeeLo4_TJqFwE9LRen9ddfVL8OBg | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLsAcEAkTHADyDgIVs-nfhhQmnp1LKtAtZKezOOP_bSpWXtNO2f42_jnDilgICnPSZyLMd3vt-d7fsdwKsgl8JEmfYNYoeflLHwmdLUj0qdyyDQMlQ2d_hkSPvj5ONZerYG39tcGHutsrWJtaFWU2n3yPcjWxceveswez_75tuqUfZ0tS2hIVxpBXVQU4y5xI4jfXONIdz8YPAB5f06ig57o27fd1UGfIngtfBToZiMYiHRGUCTTk1ZKqm0sKwvNNFZwLRhoTYmQzBGPE1iGZWGypyWNKGyjLHfO7CRxAnD4G-j0xt--rLc5bGsmzlNGk6hOGbBfkPQPLeWyh6y_QKHddWAP7FhCzavqpm4uRaTyQr4HT6A-85rJUWjZg9hTVfbcLe9NL8NWyu0ho9A9OqEQtKr6SkQ1Ui3T07rgjuoBeQU9eRCkw7ipyL4XHS6RFSKfPYd2es5KRzTuZ4TdKrJYDoekWLlqP0xjG9lkp_AejWt9FMghqUiDTMVSkVRt3TJDNUyiFTMcoxvjQd77Yxy6XjObbmNCcd4x4qA_yYCD94uP5g1FB9_b9qxIlo2s9zc9Yvp5Tl3S52bRKtcS5WXuUgyGeYyC3SqFTOCmYgFHryxAubWguDApHCJEPh7louLF-iRx1mGjq0Hu60OcGda5vznQvDg3VIv_jfynX939RI2-6OTY348GB49g3sRenJNwuUurC8ur_Rz9LwW5Qun3gS-3vaK-gHznkOl | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIpX2gKCAMBTYAwg4mNhre9d7QChJExIKFaiN1Nuy3kcvqROaVFX_Gr-OWT9CAAGnHm2tV-udxzf7mG8Anke5Vo5yGzrEjjAtEhUKY1lIC5vrKLI6Nj53-NMhG03SDyfZyQZ8b3Nh_LXK1idWjtrMtN8j71BfFx6j65h3XHMt4vP-8N38W-grSPmT1racRq0iB_bqEpdvi7fjfZT1C0qHg-P-KGwqDIQagWsZZsoITROlMRBAd85cURhtrPKMLyy1PBLWidg6xxGIEUvTRNPCMZ2zgqVMFwn2ewNucs_i7rPUh-9X-zuebzNnac0mlCQi6tTUzAvvo_zx2i9AWNUL-BMVduDWRTlXV5dqOl2DveEduN3Eq6RbK9hd2LDlLmy11-V3YWeN0PAeqEGVSkgGFTEF4hnpj8hRVWoH5U-OUEPOLOkhchqCz91en6jSkC9hQ_N6SroNx7ldEAynyXg2OSbdtUP2-zC5lil-AJvlrLQPgTiRqSzmJtaGoVbZQjhmdURNInJc2boA3rQzKnXDcO4LbUwlrnS8CORvIgjg1eqDeU3u8femPS-iVTPPyl29mJ2fysbIpUutya02eZGrlOs41zyymTXCKeGoiAJ46QUsve_AgWnVpEDg73kWLtnFWDzhHEPaAPZaHZCNU1nInyYQwOuVXvxv5I_-3dUz2EI7kh_HhwePYZtiCFdnWu7B5vL8wj7BkGtZPK10m8DX6zamHyIhQT8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BKgE98CggFgryAQk4bLpPr33cRKkCEhWojVROKz_GHAjbiiRC9Nd3vOtEobQCjmvZ0qxnxvON7PkG4HUijHJZhbGj2BEXOlextMjjTKMwSYImtb52-OMRn86KD6flaSBJ8rUwW_f3OaXjBz2f8cI7tr-Tug07vCTQPYCd2dGn-otvHZdUMhayLHrinutW_RZzOmr-Pw_gXbi7as_Vr59qPt-KMIcPYLqWrX9Y8m24WuqhubhC2_gPwj-E-wFlsro3i0dwC9s9uLN-5L4Hu1s0hI9BTboCQDbp6CQoCrHxlB13DXJIa-yY9Pod2YjinWX0XY_GTLWWfY4DOetXVgdmclwwAsHs_dnshNVbV-NPYHY4ORlP49B6ITYU0Zdxqaw0Wa4MISSKc9xpbY1F5alweIFVItHJFJ2rCKEQyChyk2nHjeCaF9zo_CkM2rMWnwFzslRlWtnUWE62gFo6jibJbC4F5aMuguFaOY0JvOS-Pca8ofzEb2NzZRsjeLtZcN5Tctw8deS1vZnmubS7AdJSE1yzcQVagcYKLVRRmVSYKsESrXRKukwmEbzxttJ4jyfBjAqFC_R7njurqQlB51VFQDSC_bU5NeEoWDSU0fpqZ0qbI3i3MbG_Sf78P-a-gHsZQa--QnIfBssfK3xJUGmpXwU3uQSLjxJM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Efficient+CH+Selection+Scheme+Based+on+ABC+and+Q-Learning+Approaches+for+IoUT+Applications&rft.jtitle=Systems+%28Basel%29&rft.au=Sayed+Ali%2C+Elmustafa&rft.au=Saeed%2C+Rashid+A.&rft.au=Eltahir%2C+Ibrahim+Khider&rft.au=Abdelhaq%2C+Maha&rft.date=2023-11-01&rft.issn=2079-8954&rft.eissn=2079-8954&rft.volume=11&rft.issue=11&rft.spage=529&rft_id=info:doi/10.3390%2Fsystems11110529&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_systems11110529 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-8954&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-8954&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-8954&client=summon |