Energy Efficient CH Selection Scheme Based on ABC and Q-Learning Approaches for IoUT Applications

Nowadays, the Internet of Underwater Things (IoUT) provides many marine 5G applications. However, it has some issues with energy efficiency and network lifetime. The network clustering approach is efficient for optimizing energy consumption, especially for underwater acoustic communications. Recentl...

Full description

Saved in:
Bibliographic Details
Published inSystems (Basel) Vol. 11; no. 11; p. 529
Main Authors Sayed Ali, Elmustafa, Saeed, Rashid A., Eltahir, Ibrahim Khider, Abdelhaq, Maha, Alsaqour, Raed, Mokhtar, Rania A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text
ISSN2079-8954
2079-8954
DOI10.3390/systems11110529

Cover

Abstract Nowadays, the Internet of Underwater Things (IoUT) provides many marine 5G applications. However, it has some issues with energy efficiency and network lifetime. The network clustering approach is efficient for optimizing energy consumption, especially for underwater acoustic communications. Recently, many algorithms have been developed related to clustering-based underwater communications for energy efficiency. However, these algorithms have drawbacks when considered for heterogeneous IoUT applications. Clustering efficiency in heterogeneous IoUT is influenced by the uniform distribution of cluster heads (CHs). As a result, conventional schemes are inefficient when CHs are arranged in large and dense nodes since they are unable to optimize the right number of CHs. Consequently, the clustering approach cannot improve the IoUT network, and many underwater nodes will rapidly consume their energies and be exhausted because of the large number of clusters. In this paper, we developed an efficient clustering scheme to effectively select the best CHs based on artificial bee colony (ABC) and Q-learning optimization approaches. The proposed scheme enables an effective selection of the CHs based on four factors, the residual energy level, the depth and the distance from the base station, and the signal quality. We first evaluate the most suitable swarm algorithms and their impact on improving the CH selection mechanism. The evaluated algorithms are generic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), and ABC. Then, the ABC algorithm process is improved by using the Q-learning approach to improve the process of ABC and its fitness function to optimize the CH selection. We observed from the simulation performance result that an improved ABC-QL scheme enables efficient selection of the best CHs to increase the network lifetime and reduce average energy consumption by 40% compared to the conventional ABC.
AbstractList Nowadays, the Internet of Underwater Things (IoUT) provides many marine 5G applications. However, it has some issues with energy efficiency and network lifetime. The network clustering approach is efficient for optimizing energy consumption, especially for underwater acoustic communications. Recently, many algorithms have been developed related to clustering-based underwater communications for energy efficiency. However, these algorithms have drawbacks when considered for heterogeneous IoUT applications. Clustering efficiency in heterogeneous IoUT is influenced by the uniform distribution of cluster heads (CHs). As a result, conventional schemes are inefficient when CHs are arranged in large and dense nodes since they are unable to optimize the right number of CHs. Consequently, the clustering approach cannot improve the IoUT network, and many underwater nodes will rapidly consume their energies and be exhausted because of the large number of clusters. In this paper, we developed an efficient clustering scheme to effectively select the best CHs based on artificial bee colony (ABC) and Q-learning optimization approaches. The proposed scheme enables an effective selection of the CHs based on four factors, the residual energy level, the depth and the distance from the base station, and the signal quality. We first evaluate the most suitable swarm algorithms and their impact on improving the CH selection mechanism. The evaluated algorithms are generic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), and ABC. Then, the ABC algorithm process is improved by using the Q-learning approach to improve the process of ABC and its fitness function to optimize the CH selection. We observed from the simulation performance result that an improved ABC-QL scheme enables efficient selection of the best CHs to increase the network lifetime and reduce average energy consumption by 40% compared to the conventional ABC.
Audience Academic
Author Abdelhaq, Maha
Eltahir, Ibrahim Khider
Sayed Ali, Elmustafa
Saeed, Rashid A.
Alsaqour, Raed
Mokhtar, Rania A.
Author_xml – sequence: 1
  givenname: Elmustafa
  orcidid: 0000-0003-4738-3216
  surname: Sayed Ali
  fullname: Sayed Ali, Elmustafa
– sequence: 2
  givenname: Rashid A.
  orcidid: 0000-0002-9872-081X
  surname: Saeed
  fullname: Saeed, Rashid A.
– sequence: 3
  givenname: Ibrahim Khider
  surname: Eltahir
  fullname: Eltahir, Ibrahim Khider
– sequence: 4
  givenname: Maha
  surname: Abdelhaq
  fullname: Abdelhaq, Maha
– sequence: 5
  givenname: Raed
  orcidid: 0000-0003-2350-5661
  surname: Alsaqour
  fullname: Alsaqour, Raed
– sequence: 6
  givenname: Rania A.
  surname: Mokhtar
  fullname: Mokhtar, Rania A.
BookMark eNqNUcFqGzEQXUoKTdOcexX0vIm00q6ko2PcxmAIJcl5mZVGrsxacqU1xX9fOVtKCBQ6Omg0vPc08-ZjdRFiwKr6zOgN55re5lOecJ9ZCdo2-l112VCpa6VbcfEq_1Bd57yjJTTjqhOXFawCpu2JrJzzxmOYyPKePOKIZvIxkEfzA_dI7iCjJeW9uFsSCJZ8rzcIKfiwJYvDIUUouExcTGQdn5_OtdEbOEvkT9V7B2PG6z_3VfX8dfW0vK83D9_Wy8WmNoK1U92C1abhYJqWcsE6NwzWWAQuVNMJlFSj0wydk5JRqRrBTTO4zqhu6ERnBn5VrWddG2HXH5LfQzr1EXz_Uohp20OavBmxdwKtQmPVoEBIw5SRFFu02oF2jaZFi85ax3CA0y8Yx7-CjPZnx_s3jhfKl5lS3Ph5xDz1u3hMoUzcN0rzMoZksqBuZtQWSh8-uDglMOVY3HtTdup8qS-kFFzKtmOFcDsTTIo5J3T_0Uj7hmH89LKK8pUf_8n7DXCptTo
CitedBy_id crossref_primary_10_1016_j_jksuci_2024_102128
crossref_primary_10_3390_electronics13030474
Cites_doi 10.1002/dac.5283
10.1155/2022/3578002
10.3390/s22020415
10.1002/dac.5560
10.1109/ACCESS.2017.2713640
10.3390/s23125759
10.3390/s20051420
10.3390/s19102351
10.3390/a13100250
10.3390/photonics9050282
10.1007/s11590-009-0168-z
10.1016/j.jnca.2023.103594
10.3390/app13148174
10.3390/s21134514
10.3390/electronics12153300
10.3390/a16090397
10.1109/COMST.2021.3134955
10.1109/ACCESS.2023.3325311
10.1038/s41598-023-37952-x
10.1007/978-3-030-05873-9_16
10.3390/s22041618
10.1016/j.engappai.2019.04.007
10.1016/j.adhoc.2022.102953
10.1109/JIOT.2021.3055857
10.3389/fmars.2023.1117787
10.1371/journal.pone.0154080
10.1109/COMST.2021.3053118
10.1109/ACCESS.2022.3188654
10.3390/s19020256
10.7717/peerj-cs.696
10.1016/j.simpat.2021.102304
10.3390/electronics11142158
10.3390/s23136025
10.3390/app11010312
10.1016/j.comnet.2021.108309
10.1109/JIOT.2022.3195223
10.1109/ACCESS.2021.3093113
10.3390/s23104844
10.1155/2022/6837780
10.1007/978-981-19-7615-5
10.1016/j.jnca.2021.103295
10.1016/j.advengsoft.2022.103319
10.3390/systems10050177
10.1186/s13638-019-1533-y
10.3390/s20041025
10.3390/s17020283
10.3390/s16020212
10.1155/2019/6470359
10.3390/electronics11193015
10.1002/dac.5147
10.3390/s22186945
10.1177/15501329221117118
10.1007/s11277-020-07418-8
10.1002/cpe.7815
10.1371/journal.pone.0200738
10.1109/ACCESS.2019.2897872
10.1109/ACCESS.2022.3177722
10.3390/s20185393
10.1016/j.adhoc.2020.102317
10.3390/electronics12153321
10.1016/j.adhoc.2019.101912
10.4018/IJITWE.2020070105
10.1109/DeSE58274.2023.10100062
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/systems11110529
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Business
EISSN 2079-8954
ExternalDocumentID oai_doaj_org_article_f4ed8ecd8b8a47c18c70e5ed9fa9f290
10.3390/systems11110529
A774377561
10_3390_systems11110529
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c415t-5ad9c23ac2503416fbbdcdea348264e709ef91eff771078243c2bf6c86b646cb3
IEDL.DBID DOA
ISSN 2079-8954
IngestDate Fri Oct 03 12:43:51 EDT 2025
Sun Sep 07 10:59:14 EDT 2025
Sun Jul 13 04:11:25 EDT 2025
Mon Oct 20 16:54:52 EDT 2025
Thu Oct 16 04:42:43 EDT 2025
Thu Apr 24 23:10:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-5ad9c23ac2503416fbbdcdea348264e709ef91eff771078243c2bf6c86b646cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4738-3216
0000-0002-9872-081X
0000-0003-2350-5661
OpenAccessLink https://doaj.org/article/f4ed8ecd8b8a47c18c70e5ed9fa9f290
PQID 2893348717
PQPubID 2032325
ParticipantIDs doaj_primary_oai_doaj_org_article_f4ed8ecd8b8a47c18c70e5ed9fa9f290
unpaywall_primary_10_3390_systems11110529
proquest_journals_2893348717
gale_infotracacademiconefile_A774377561
crossref_primary_10_3390_systems11110529
crossref_citationtrail_10_3390_systems11110529
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Systems (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Maheshwari (ref_48) 2021; 110
Feng (ref_19) 2019; 2019
Chinnasamy (ref_43) 2022; 10
Figueiredo (ref_13) 2019; 82
Mohan (ref_20) 2022; 22
Ullah (ref_32) 2023; 11
ref_54
Sandeep (ref_10) 2017; 5
ref_52
Jahanbakht (ref_12) 2021; 23
Singh (ref_30) 2023; 36
ref_59
Lilhore (ref_42) 2022; 18
Sun (ref_64) 2022; 136
Kamalika (ref_1) 2021; 109
Gupta (ref_28) 2022; 35
Vijay (ref_65) 2023; 13
Zehra (ref_50) 2021; 116
Qawqzeh (ref_39) 2021; 7
Mukhtar (ref_58) 2022; 2022
ref_61
ref_60
ref_24
ref_23
ref_22
Gola (ref_6) 2023; 35
ref_21
ref_63
Awan (ref_16) 2019; 2019
ref_62
ref_29
ref_27
Ghoreyshi (ref_11) 2019; 7
Khan (ref_26) 2021; 197
Ghorpade (ref_53) 2021; 9
Shah (ref_8) 2023; 23
ref_34
ref_33
Islam (ref_15) 2022; 198
Nain (ref_55) 2022; 35
ref_38
ref_37
Salil (ref_31) 2023; 10
Felemban (ref_4) 2015; 2015
Faheem (ref_57) 2019; 93
Kamal (ref_18) 2023; 175
Sivakumar (ref_56) 2022; 2022
ref_47
ref_46
Alsaqour (ref_36) 2022; 10
ref_45
ref_44
ref_41
ref_40
ref_3
ref_2
Khan (ref_5) 2021; 21
ref_49
Elmustafa (ref_14) 2023; 213
Natesan (ref_35) 2020; 15
Wei (ref_17) 2022; 24
Hou (ref_25) 2022; 9
Xing (ref_9) 2021; 8
Kim (ref_51) 2020; 4
ref_7
References_xml – volume: 35
  start-page: e5283
  year: 2022
  ident: ref_28
  article-title: Energy hole mitigation through optimized cluster head selection and strategic routing in Internet of Underwater Things
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.5283
– volume: 2022
  start-page: 3578002
  year: 2022
  ident: ref_56
  article-title: Energy-Efficient Markov-Based Lifetime Enhancement Approach for Underwater Acoustic Sensor Network
  publication-title: J. Sens.
  doi: 10.1155/2022/3578002
– ident: ref_29
  doi: 10.3390/s22020415
– volume: 36
  start-page: e5560
  year: 2023
  ident: ref_30
  article-title: Energy-optimized cluster head selection based on enhanced remora optimization algorithm in underwater wireless sensor network
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.5560
– volume: 5
  start-page: 11176
  year: 2017
  ident: ref_10
  article-title: Review on Clustering, Coverage and Connectivity in Underwater Wireless Sensor Networks: A Communication Techniques Perspective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2713640
– ident: ref_37
  doi: 10.3390/s23125759
– ident: ref_54
  doi: 10.3390/s20051420
– ident: ref_24
  doi: 10.3390/s19102351
– ident: ref_47
  doi: 10.3390/a13100250
– ident: ref_27
  doi: 10.3390/photonics9050282
– volume: 2015
  start-page: 1
  year: 2015
  ident: ref_4
  article-title: Underwater Sensor Network Applications: A Comprehensive Survey
  publication-title: Int. J. Distrib. Sens. Netw.
– volume: 4
  start-page: 383
  year: 2020
  ident: ref_51
  article-title: Minimum average routing path clustering problem in multi-hop 2-D underwater sensor networks
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-009-0168-z
– volume: 213
  start-page: 103594
  year: 2023
  ident: ref_14
  article-title: A systematic review on energy efficiency in the internet of underwater things (IoUT): Recent approaches and research gaps
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2023.103594
– ident: ref_34
  doi: 10.3390/app13148174
– volume: 21
  start-page: 4514
  year: 2021
  ident: ref_5
  article-title: Adaptive Node Clustering for Underwater Sensor Networks
  publication-title: Sensors
  doi: 10.3390/s21134514
– ident: ref_59
  doi: 10.3390/electronics12153300
– ident: ref_60
  doi: 10.3390/a16090397
– volume: 24
  start-page: 404
  year: 2022
  ident: ref_17
  article-title: Reliable Data Collection Techniques in Underwater Wireless Sensor Networks: A Survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3134955
– volume: 11
  start-page: 116932
  year: 2023
  ident: ref_32
  article-title: Reliable and Delay Aware Routing Protocol for Underwater Wireless Sensor Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3325311
– volume: 13
  start-page: 10810
  year: 2023
  ident: ref_65
  article-title: Underwater wireless sensor network-based multihop data transmission using hybrid cat cheetah optimization algorithm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-37952-x
– ident: ref_2
  doi: 10.1007/978-3-030-05873-9_16
– volume: 22
  start-page: 1618
  year: 2022
  ident: ref_20
  article-title: Improved Metaheuristics-Based Clustering with Multihop Routing Protocol for Underwater Wireless Sensor Networks
  publication-title: Sensors
  doi: 10.3390/s22041618
– volume: 82
  start-page: 313
  year: 2019
  ident: ref_13
  article-title: Swarm intelligence for clustering—A systematic review with new perspectives on data mining
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.04.007
– volume: 136
  start-page: 102953
  year: 2022
  ident: ref_64
  article-title: Adaptive clustering routing protocol for underwater sensor networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2022.102953
– volume: 8
  start-page: 9005
  year: 2021
  ident: ref_9
  article-title: Game-Theory-Based Clustering Scheme for Energy Balancing in Underwater Acoustic Sensor Networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3055857
– volume: 10
  start-page: 1117787
  year: 2023
  ident: ref_31
  article-title: Energy-efficient clustering protocol for underwater wireless sensor networks using optimized glowworm swarm optimization
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2023.1117787
– ident: ref_49
  doi: 10.1371/journal.pone.0154080
– volume: 23
  start-page: 904
  year: 2021
  ident: ref_12
  article-title: Internet of Underwater Things and Big Marine Data Analytics—A Comprehensive Survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3053118
– volume: 10
  start-page: 72907
  year: 2022
  ident: ref_36
  article-title: Efficient Energy Mechanism in Heterogeneous WSNs for Underground Mining Monitoring Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3188654
– ident: ref_63
  doi: 10.3390/s19020256
– volume: 7
  start-page: e696
  year: 2021
  ident: ref_39
  article-title: A review of swarm intelligence algorithms deployment for scheduling and optimization in cloud computing environments
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.696
– volume: 109
  start-page: 102304
  year: 2021
  ident: ref_1
  article-title: IoUT: Modelling and simulation of Edge-Drone-based Software-Defined smart Internet of Underwater Things
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2021.102304
– ident: ref_45
  doi: 10.3390/electronics11142158
– volume: 23
  start-page: 6025
  year: 2023
  ident: ref_8
  article-title: Advancements in Neighboring-Based Energy-Efficient Routing Protocol (NBEER) for Underwater Wireless Sensor Networks
  publication-title: Sensors
  doi: 10.3390/s23136025
– ident: ref_40
  doi: 10.3390/app11010312
– volume: 197
  start-page: 108309
  year: 2021
  ident: ref_26
  article-title: Q-learning based energy-efficient and void avoidance routing protocol for underwater acoustic sensor networks
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108309
– volume: 9
  start-page: 25027
  year: 2022
  ident: ref_25
  article-title: An Unequal Clustering Method Based on Particle Swarm Optimization in Underwater Acoustic Sensor Networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3195223
– volume: 9
  start-page: 93831
  year: 2021
  ident: ref_53
  article-title: Enhanced Differential Crossover and Quantum Particle Swarm Optimization for IoT Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3093113
– ident: ref_23
  doi: 10.3390/s23104844
– volume: 2022
  start-page: 6837780
  year: 2022
  ident: ref_58
  article-title: Performance Evaluation of Downlink Coordinated Multipoint Joint Transmission under Heavy IoT Traffic Load
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2022/6837780
– ident: ref_41
  doi: 10.1007/978-981-19-7615-5
– volume: 198
  start-page: 103295
  year: 2022
  ident: ref_15
  article-title: A survey on energy efficiency in underwater wireless communications
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.103295
– volume: 175
  start-page: 103319
  year: 2023
  ident: ref_18
  article-title: An empirical study on underwater acoustic sensor networks based on localization and routing approaches
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103319
– ident: ref_7
  doi: 10.3390/systems10050177
– volume: 2019
  start-page: 228
  year: 2019
  ident: ref_19
  article-title: Improved energy-balanced algorithm for underwater wireless sensor network based on depth threshold and energy level partition
  publication-title: J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-019-1533-y
– ident: ref_62
  doi: 10.3390/s20041025
– ident: ref_3
  doi: 10.3390/s17020283
– ident: ref_46
  doi: 10.3390/s16020212
– volume: 2019
  start-page: 6470359
  year: 2019
  ident: ref_16
  article-title: Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2019/6470359
– ident: ref_33
  doi: 10.3390/electronics11193015
– volume: 35
  start-page: e5147
  year: 2022
  ident: ref_55
  article-title: A range based node localization scheme with hybrid optimization for underwater wireless sensor network
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.5147
– ident: ref_38
  doi: 10.3390/s22186945
– volume: 18
  start-page: 1
  year: 2022
  ident: ref_42
  article-title: A depth-controlled and energy-efficient routing protocol for underwater wireless sensor networks
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/15501329221117118
– volume: 116
  start-page: 1311
  year: 2021
  ident: ref_50
  article-title: Comparative Analysis of Bio-Inspired Algorithms for Underwater Wireless Sensor Networks
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-020-07418-8
– volume: 35
  start-page: e7815
  year: 2023
  ident: ref_6
  article-title: Underwater acoustic sensor networks: Taxonomy on applications, architectures, localization methods, deployment techniques, routing techniques, and threats: A systematic review
  publication-title: Concurr. Comput. Pract. Exper.
  doi: 10.1002/cpe.7815
– ident: ref_61
  doi: 10.1371/journal.pone.0200738
– volume: 7
  start-page: 21118
  year: 2019
  ident: ref_11
  article-title: Mobile Data Gathering with Hop-Constrained Clustering in Underwater Sensor Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897872
– volume: 10
  start-page: 55868
  year: 2022
  ident: ref_43
  article-title: Energy-Aware Multilevel Clustering Scheme for Underwater Wireless Sensor Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3177722
– ident: ref_21
  doi: 10.3390/s20185393
– volume: 110
  start-page: 102317
  year: 2021
  ident: ref_48
  article-title: Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2020.102317
– ident: ref_22
– ident: ref_52
  doi: 10.3390/electronics12153321
– volume: 93
  start-page: 101912
  year: 2019
  ident: ref_57
  article-title: Energy efficient multi-objective evolutionary routing scheme for reliable data gathering in Internet of underwater acoustic sensor networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2019.101912
– volume: 15
  start-page: 76
  year: 2020
  ident: ref_35
  article-title: FLCEER: Fuzzy Logic Cluster-Based Energy Efficient Routing Protocol for Underwater Acoustic Sensor Network
  publication-title: Int. J. Inf. Technol. Web Eng. IJITWE
  doi: 10.4018/IJITWE.2020070105
– ident: ref_44
  doi: 10.1109/DeSE58274.2023.10100062
SSID ssj0000913864
Score 2.3152785
Snippet Nowadays, the Internet of Underwater Things (IoUT) provides many marine 5G applications. However, it has some issues with energy efficiency and network...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 529
SubjectTerms ABC
ACO
Algorithms
Ant colony optimization
CH selection optimization
Clustering
Communication
Energy consumption
Energy efficiency
Energy levels
Energy resources
Engineering research
heterogeneous IoUT
Internet of Things
Localization
Mathematical optimization
Methods
Nodes
Optimization
Particle swarm optimization
PSO
Residual energy
Sensors
Signal quality
Swarm intelligence
Underwater acoustics
Underwater communication
Underwater construction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VVIL2UEEB1VDQHpCAg6mfa-8BISdKFZCIgDZSb9Y-ewlO2qSq-PfM2Os0gICjrbW19szOfPuY7wN4FZVauqSwocPcEWYqlaEwloeJsqWOIqtjQ7XDn6d8Mss-XeQXOzDta2HoWGUfE9tAbRaa1shPEtKFR3QdFx-WVyGpRtHuai-hIb20gnnfUozdg92EmLEGsDscT79826y6EAtmybOO4yfF-f5JR5i8oshBm16_pKeWxf_PWL0PD26apfxxK-fzrWR0-hAOPIpkVWf2R7Bjm0O43x9iP4T9LZrBxyDHbYEfG7d0EZhl2GjCzloBHLQKO0O7fbdsiPnMMLyuhiMmG8O-hp589ZJVnnncrhiCXPZxMTtn1dbW9xOYnY7PR5PQSyuEGjP2OsylETpJpUYEhHmMO6WMNlYS1Q3PbBEJ60RsnSsQgSCIyFKdKMd1yRXPuFbpUxg0i8YeAXMil3lcmFgbjra2SjhudZSYVJQ433QBvOv_aK097zjJX8xrnH-QCerfTBDAm80Dy45y4-9Nh2SiTTPiym5vLK4vaz_0apdZU1ptSlXKrNBxqYvI5tYIJ4VLRBTAazJwTSMaO6alL0zAzyNurLpChJwWBQLNAI57H6j9UF_Vd44ZwNuNX_yv58_-_arnsEe69l3R4zEM1tc39gWin7V66V36J91TBic
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BKgE98CggFgryAQk4bLpPr33cRKkCEhWojVROKz_GHAjbiiRC9Nd3vOtEobQCjmvZ0qxnxvON7PkG4HUijHJZhbGj2BEXOlextMjjTKMwSYImtb52-OMRn86KD6flaSBJ8rUwW_f3OaXjBz2f8cI7tr-Tug07vCTQPYCd2dGn-otvHZdUMhayLHrinutW_RZzOmr-Pw_gXbi7as_Vr59qPt-KMIcPYLqWrX9Y8m24WuqhubhC2_gPwj-E-wFlsro3i0dwC9s9uLN-5L4Hu1s0hI9BTboCQDbp6CQoCrHxlB13DXJIa-yY9Pod2YjinWX0XY_GTLWWfY4DOetXVgdmclwwAsHs_dnshNVbV-NPYHY4ORlP49B6ITYU0Zdxqaw0Wa4MISSKc9xpbY1F5alweIFVItHJFJ2rCKEQyChyk2nHjeCaF9zo_CkM2rMWnwFzslRlWtnUWE62gFo6jibJbC4F5aMuguFaOY0JvOS-Pca8ofzEb2NzZRsjeLtZcN5Tctw8deS1vZnmubS7AdJSE1yzcQVagcYKLVRRmVSYKsESrXRKukwmEbzxttJ4jyfBjAqFC_R7njurqQlB51VFQDSC_bU5NeEoWDSU0fpqZ0qbI3i3MbG_Sf78P-a-gHsZQa--QnIfBssfK3xJUGmpXwU3uQSLjxJM
  priority: 102
  providerName: Unpaywall
Title Energy Efficient CH Selection Scheme Based on ABC and Q-Learning Approaches for IoUT Applications
URI https://www.proquest.com/docview/2893348717
https://doi.org/10.3390/systems11110529
https://doaj.org/article/f4ed8ecd8b8a47c18c70e5ed9fa9f290
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-8954
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913864
  issn: 2079-8954
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2079-8954
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913864
  issn: 2079-8954
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-8954
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913864
  issn: 2079-8954
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: PROQUEST
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-8954
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913864
  issn: 2079-8954
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-8954
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913864
  issn: 2079-8954
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BkYAeEBQqUsrKByTgEJpPxz5mV7ssSKwK7UrlZPljzGVJK3Yr1H_POMmuAgj1wjGRI008Y897sucNwKtEWO2zCmNPuSMuTK5j6ZDHmUFhkwRt6kLt8KcFny-LjxflxaDVV7gT1skDdxN34gt0Aq0TRuiisqmwVYIlOum19Jls2Xoi5IBMtXuwTHPBi07LJydef9IJI6_DDhEOt35LQ61a_9978j48uG6u9M1PvVoNks7sMTzq0SKrOyufwB1sDuD-9rL6AewP5ASfgp62hXxs2spCUDZhkzk7axvd0OyzM_LPd2RjyluO0XM9njDdOPY57kVWv7G6VxjHNSMwyz5cLs9ZPTjifgbL2fR8Mo_7Fgqxpcy8iUvtpM1ybQnpUL7i3hhnHeogacMLrBKJXqbofUVIg8BCkdvMeG4FN7zg1uSHsNdcNvgcmJelLtPKpdZx8ika6TnaJHO5FMQrfQTvtjOqbK8vHtpcrBTxjOAC9YcLIniz--Cqk9b499BxcNFuWNDEbl9QpKg-UtRtkRLB6-BgFVYuGWZ1X4BAvxc0sFRNSDivKgKUERxvY0D1S3qtiJmGqmWivxG83cXFbZYf_Q_LX8DD0OW-K4E8hr3Nj2t8SVhoY0ZwV8zej-DeeLo4_TJqFwE9LRen9ddfVL8OBg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLsAcEAkTHADyDgIVs-nfhhQmnp1LKtAtZKezOOP_bSpWXtNO2f42_jnDilgICnPSZyLMd3vt-d7fsdwKsgl8JEmfYNYoeflLHwmdLUj0qdyyDQMlQ2d_hkSPvj5ONZerYG39tcGHutsrWJtaFWU2n3yPcjWxceveswez_75tuqUfZ0tS2hIVxpBXVQU4y5xI4jfXONIdz8YPAB5f06ig57o27fd1UGfIngtfBToZiMYiHRGUCTTk1ZKqm0sKwvNNFZwLRhoTYmQzBGPE1iGZWGypyWNKGyjLHfO7CRxAnD4G-j0xt--rLc5bGsmzlNGk6hOGbBfkPQPLeWyh6y_QKHddWAP7FhCzavqpm4uRaTyQr4HT6A-85rJUWjZg9hTVfbcLe9NL8NWyu0ho9A9OqEQtKr6SkQ1Ui3T07rgjuoBeQU9eRCkw7ipyL4XHS6RFSKfPYd2es5KRzTuZ4TdKrJYDoekWLlqP0xjG9lkp_AejWt9FMghqUiDTMVSkVRt3TJDNUyiFTMcoxvjQd77Yxy6XjObbmNCcd4x4qA_yYCD94uP5g1FB9_b9qxIlo2s9zc9Yvp5Tl3S52bRKtcS5WXuUgyGeYyC3SqFTOCmYgFHryxAubWguDApHCJEPh7louLF-iRx1mGjq0Hu60OcGda5vznQvDg3VIv_jfynX939RI2-6OTY348GB49g3sRenJNwuUurC8ur_Rz9LwW5Qun3gS-3vaK-gHznkOl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIpX2gKCAMBTYAwg4mNhre9d7QChJExIKFaiN1Nuy3kcvqROaVFX_Gr-OWT9CAAGnHm2tV-udxzf7mG8Anke5Vo5yGzrEjjAtEhUKY1lIC5vrKLI6Nj53-NMhG03SDyfZyQZ8b3Nh_LXK1idWjtrMtN8j71BfFx6j65h3XHMt4vP-8N38W-grSPmT1racRq0iB_bqEpdvi7fjfZT1C0qHg-P-KGwqDIQagWsZZsoITROlMRBAd85cURhtrPKMLyy1PBLWidg6xxGIEUvTRNPCMZ2zgqVMFwn2ewNucs_i7rPUh-9X-zuebzNnac0mlCQi6tTUzAvvo_zx2i9AWNUL-BMVduDWRTlXV5dqOl2DveEduN3Eq6RbK9hd2LDlLmy11-V3YWeN0PAeqEGVSkgGFTEF4hnpj8hRVWoH5U-OUEPOLOkhchqCz91en6jSkC9hQ_N6SroNx7ldEAynyXg2OSbdtUP2-zC5lil-AJvlrLQPgTiRqSzmJtaGoVbZQjhmdURNInJc2boA3rQzKnXDcO4LbUwlrnS8CORvIgjg1eqDeU3u8femPS-iVTPPyl29mJ2fysbIpUutya02eZGrlOs41zyymTXCKeGoiAJ46QUsve_AgWnVpEDg73kWLtnFWDzhHEPaAPZaHZCNU1nInyYQwOuVXvxv5I_-3dUz2EI7kh_HhwePYZtiCFdnWu7B5vL8wj7BkGtZPK10m8DX6zamHyIhQT8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BKgE98CggFgryAQk4bLpPr33cRKkCEhWojVROKz_GHAjbiiRC9Nd3vOtEobQCjmvZ0qxnxvON7PkG4HUijHJZhbGj2BEXOlextMjjTKMwSYImtb52-OMRn86KD6flaSBJ8rUwW_f3OaXjBz2f8cI7tr-Tug07vCTQPYCd2dGn-otvHZdUMhayLHrinutW_RZzOmr-Pw_gXbi7as_Vr59qPt-KMIcPYLqWrX9Y8m24WuqhubhC2_gPwj-E-wFlsro3i0dwC9s9uLN-5L4Hu1s0hI9BTboCQDbp6CQoCrHxlB13DXJIa-yY9Pod2YjinWX0XY_GTLWWfY4DOetXVgdmclwwAsHs_dnshNVbV-NPYHY4ORlP49B6ITYU0Zdxqaw0Wa4MISSKc9xpbY1F5alweIFVItHJFJ2rCKEQyChyk2nHjeCaF9zo_CkM2rMWnwFzslRlWtnUWE62gFo6jibJbC4F5aMuguFaOY0JvOS-Pca8ofzEb2NzZRsjeLtZcN5Tctw8deS1vZnmubS7AdJSE1yzcQVagcYKLVRRmVSYKsESrXRKukwmEbzxttJ4jyfBjAqFC_R7njurqQlB51VFQDSC_bU5NeEoWDSU0fpqZ0qbI3i3MbG_Sf78P-a-gHsZQa--QnIfBssfK3xJUGmpXwU3uQSLjxJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Efficient+CH+Selection+Scheme+Based+on+ABC+and+Q-Learning+Approaches+for+IoUT+Applications&rft.jtitle=Systems+%28Basel%29&rft.au=Sayed+Ali%2C+Elmustafa&rft.au=Saeed%2C+Rashid+A.&rft.au=Eltahir%2C+Ibrahim+Khider&rft.au=Abdelhaq%2C+Maha&rft.date=2023-11-01&rft.issn=2079-8954&rft.eissn=2079-8954&rft.volume=11&rft.issue=11&rft.spage=529&rft_id=info:doi/10.3390%2Fsystems11110529&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_systems11110529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-8954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-8954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-8954&client=summon