Simulation Study and Experimental Verification of a Universal Contactless Battery Charging Platform With Localized Charging Features

This paper presents a finite-element (FE) simulation study of a planar contactless battery charging platform for portable consumer electronic equipment. Magnetic field plots of the charging platform are generated under no-load and loaded conditions so that the field distribution of the planar chargi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 22; no. 6; pp. 2202 - 2210
Main Authors Xun Liu, Hui, S.Y.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8993
1941-0107
DOI10.1109/TPEL.2007.909301

Cover

More Information
Summary:This paper presents a finite-element (FE) simulation study of a planar contactless battery charging platform for portable consumer electronic equipment. Magnetic field plots of the charging platform are generated under no-load and loaded conditions so that the field distribution of the planar charging platform can be visualized. Three working modes of the platform have been investigated and compared, including full excitation and two forms of selective excitation. With new results arising from this FE simulation study and practical experiments, the theory of the magnetomotive force (mmf) generation of the multilayer planar printed-circuit-board winding array structure can be further understood. The results obtained in this paper provide a foundation of understanding for future design and optimization of planar contactless charging platforms. In addition, it has been confirmed that an electromagnetic shield structure that has been applied to coreless planar transformer applications, can work equally well for the planar charging platform.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2007.909301