Spike Timing or Rate? Neurons Learn to Make Decisions for Both Through Threshold-Driven Plasticity
Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most algorithms studied how to train spiking neurons to process patterns encoded with a sole assumption of either a rate or a temporal code. Is there a...
Saved in:
| Published in | IEEE transactions on cybernetics Vol. 49; no. 6; pp. 2178 - 2189 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2267 2168-2275 2168-2275 |
| DOI | 10.1109/TCYB.2018.2821692 |
Cover
| Abstract | Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most algorithms studied how to train spiking neurons to process patterns encoded with a sole assumption of either a rate or a temporal code. Is there a general learning algorithm capable of processing both codes regardless of the intense debate on them within neuroscience community? In this paper, we propose several threshold-driven plasticity algorithms to address the above question. In addition to formulating the algorithms, we also provide proofs with respect to several properties, such as robustness and convergence. The experimental results illustrate that our algorithms are simple, effective and yet efficient for training neurons to learn spike patterns. Due to their simplicity and high efficiency, our algorithms would be potentially beneficial for both software and hardware implementations. Neurons with our algorithms can also detect and recognize embedded features from a background sensory activity. With the as-proposed algorithms, a single neuron can successfully perform multicategory classifications by making decisions based on its output spike number in response to each category. Spike patterns being processed can be encoded with both spike rates and precise timings. When afferent spike timings matter, neurons will automatically extract temporal features without being explicitly instructed as to which point to fire. |
|---|---|
| AbstractList | Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most algorithms studied how to train spiking neurons to process patterns encoded with a sole assumption of either a rate or a temporal code. Is there a general learning algorithm capable of processing both codes regardless of the intense debate on them within neuroscience community? In this paper, we propose several threshold-driven plasticity algorithms to address the above question. In addition to formulating the algorithms, we also provide proofs with respect to several properties, such as robustness and convergence. The experimental results illustrate that our algorithms are simple, effective and yet efficient for training neurons to learn spike patterns. Due to their simplicity and high efficiency, our algorithms would be potentially beneficial for both software and hardware implementations. Neurons with our algorithms can also detect and recognize embedded features from a background sensory activity. With the as-proposed algorithms, a single neuron can successfully perform multicategory classifications by making decisions based on its output spike number in response to each category. Spike patterns being processed can be encoded with both spike rates and precise timings. When afferent spike timings matter, neurons will automatically extract temporal features without being explicitly instructed as to which point to fire. Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most algorithms studied how to train spiking neurons to process patterns encoded with a sole assumption of either a rate or a temporal code. Is there a general learning algorithm capable of processing both codes regardless of the intense debate on them within neuroscience community? In this paper, we propose several threshold-driven plasticity algorithms to address the above question. In addition to formulating the algorithms, we also provide proofs with respect to several properties, such as robustness and convergence. The experimental results illustrate that our algorithms are simple, effective and yet efficient for training neurons to learn spike patterns. Due to their simplicity and high efficiency, our algorithms would be potentially beneficial for both software and hardware implementations. Neurons with our algorithms can also detect and recognize embedded features from a background sensory activity. With the as-proposed algorithms, a single neuron can successfully perform multicategory classifications by making decisions based on its output spike number in response to each category. Spike patterns being processed can be encoded with both spike rates and precise timings. When afferent spike timings matter, neurons will automatically extract temporal features without being explicitly instructed as to which point to fire.Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most algorithms studied how to train spiking neurons to process patterns encoded with a sole assumption of either a rate or a temporal code. Is there a general learning algorithm capable of processing both codes regardless of the intense debate on them within neuroscience community? In this paper, we propose several threshold-driven plasticity algorithms to address the above question. In addition to formulating the algorithms, we also provide proofs with respect to several properties, such as robustness and convergence. The experimental results illustrate that our algorithms are simple, effective and yet efficient for training neurons to learn spike patterns. Due to their simplicity and high efficiency, our algorithms would be potentially beneficial for both software and hardware implementations. Neurons with our algorithms can also detect and recognize embedded features from a background sensory activity. With the as-proposed algorithms, a single neuron can successfully perform multicategory classifications by making decisions based on its output spike number in response to each category. Spike patterns being processed can be encoded with both spike rates and precise timings. When afferent spike timings matter, neurons will automatically extract temporal features without being explicitly instructed as to which point to fire. |
| Author | Tan, Kay Chen Yu, Qiang Li, Haizhou |
| Author_xml | – sequence: 1 givenname: Qiang orcidid: 0000-0002-0695-1603 surname: Yu fullname: Yu, Qiang email: yuqiang@tju.edu.cn organization: Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, China – sequence: 2 givenname: Haizhou orcidid: 0000-0001-9158-9401 surname: Li fullname: Li, Haizhou organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore – sequence: 3 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen organization: Department of Computer Science, City University of Hong Kong, Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29993593$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFP3DAQha2KqlDKD0BIyFIvXLLY4zixT1VZCq20FNRuDz1ZTpiwhmy82E4l_n293YUDh_ryrNH3RvZ778nO4Ack5JCzCedMn86nv88mwLiagAJeaXhD9rKqAqCWOy_3qt4lBzHes3xUHmn1juyC1lpILfZI83PlHpDO3dINd9QH-sMm_ES_4xj8EOkMbRho8vTKZuocWxfdet5l8synBZ0vgh_v_inGhe9vi_Pg_uBAb3obk2tdevpA3na2j3iw1X3y6-LLfPq1mF1ffpt-nhVtyWUqyg6ZFqpBKyRIroWtaijRciYb5KxEUTWi1lYwpUA2bQkcdMW5ZpXUnWrFPjnZ7F0F_zhiTGbpYot9bwf0YzTAKiVKKJXM6MdX6L0fw5BfZwByTiCYLDN1vKXGZom3ZhXc0oYn85xeBuoN0AYfY8DO5P_alBNKwbrecGbWVZl1VWZdldlWlZ38lfN5-f88RxuPQ8QXXomclarFX50am3c |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3200699 crossref_primary_10_1016_j_patcog_2025_111525 crossref_primary_10_1109_TCYB_2022_3188015 crossref_primary_10_1109_TNNLS_2020_3040969 crossref_primary_10_1109_TNNLS_2023_3300514 crossref_primary_10_1109_MCAS_2022_3166331 crossref_primary_10_1109_TCYB_2021_3079097 crossref_primary_10_1007_s12293_023_00391_2 crossref_primary_10_1016_j_optcom_2023_130207 crossref_primary_10_1109_TCYB_2021_3068300 crossref_primary_10_1109_TNNLS_2021_3052804 crossref_primary_10_3389_fnins_2022_1012964 crossref_primary_10_1016_j_neunet_2020_02_011 crossref_primary_10_1109_TCDS_2021_3073846 crossref_primary_10_3389_fnins_2019_00559 crossref_primary_10_1145_3304103 crossref_primary_10_1002_lpor_202300424 crossref_primary_10_1016_j_neucom_2023_02_026 crossref_primary_10_1007_s11063_023_11348_4 crossref_primary_10_1109_TETCI_2022_3228538 crossref_primary_10_1109_TNNLS_2022_3165527 crossref_primary_10_1109_TETCI_2024_3406725 crossref_primary_10_3389_fnins_2018_00836 crossref_primary_10_1109_TNNLS_2020_2978764 crossref_primary_10_1109_TCYB_2020_2984888 crossref_primary_10_1109_TNNLS_2023_3240176 crossref_primary_10_1109_TNNLS_2023_3306749 crossref_primary_10_1109_TNNLS_2023_3337176 crossref_primary_10_18632_aging_203555 crossref_primary_10_1016_j_neunet_2022_07_010 crossref_primary_10_1109_JSTSP_2020_2983547 crossref_primary_10_1016_j_neunet_2021_05_002 crossref_primary_10_1109_TNNLS_2021_3110991 crossref_primary_10_3389_fnins_2021_654786 crossref_primary_10_1109_TNNLS_2020_3043415 |
| Cites_doi | 10.1109/MCI.2016.2532268 10.1007/978-3-7908-2604-3_16 10.3389/neuro.01.026.2009 10.1007/978-3-319-55310-8 10.1038/nn1643 10.1109/TCYB.2015.2423295 10.1016/j.conb.2014.01.004 10.1038/nature06105 10.1103/PhysRevLett.97.048104 10.1162/neco.2007.19.11.2881 10.1038/nature02116 10.1016/S0893-6080(97)00011-7 10.1126/science.aab4113 10.1113/jphysiol.1926.sp002273 10.1103/PhysRevLett.105.218102 10.1103/PhysRevLett.88.248101 10.1162/neco.2009.11-08-901 10.1109/TNNLS.2015.2416771 10.1109/TNNLS.2013.2245677 10.4249/scholarpedia.1430 10.1016/j.neuron.2014.03.026 10.1371/journal.pone.0040233 10.1152/jn.01171.2003 10.1038/384564a0 10.3389/fnsys.2015.00151 10.1038/376033a0 10.1126/science.275.5306.1593 10.1016/j.tins.2009.12.001 10.1109/TCYB.2015.2464106 10.1371/journal.pone.0078318 10.1016/S0896-6273(03)00761-X 10.1038/nature14539 10.1038/nature09086 10.1126/science.1149639 10.1523/JNEUROSCI.20-14-05392.2000 10.1016/j.neunet.2009.04.003 10.1073/pnas.94.24.12740 10.1142/S0129065712500128 10.1371/journal.pcbi.1002092 10.7551/mitpress/7209.001.0001 10.1038/nrn1668 10.1017/CBO9780511815706 10.1016/S0925-2312(01)00658-0 10.1152/jn.00293.2003 10.1037/h0042519 10.1109/TSMCB.2012.2200674 10.1038/14731 10.1126/science.7770778 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2018.2821692 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 2189 |
| ExternalDocumentID | 29993593 10_1109_TCYB_2018_2821692 8351987 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61806139; 61771333; U1736219 funderid: 10.13039/501100001809 – fundername: City University of Hong Kong grantid: 9610397 funderid: 10.13039/100007567 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c415t-4fe0938bea3525193a6724ea105be104e36b379a308825bc4212961190659f8c3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 06:19:50 EDT 2025 Mon Jun 30 06:19:19 EDT 2025 Mon Jul 21 05:59:17 EDT 2025 Wed Oct 01 01:36:34 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Wed Aug 27 02:48:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-4fe0938bea3525193a6724ea105be104e36b379a308825bc4212961190659f8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6802-2463 0000-0001-9158-9401 0000-0002-0695-1603 |
| PMID | 29993593 |
| PQID | 2200823054 |
| PQPubID | 85422 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2068342485 crossref_citationtrail_10_1109_TCYB_2018_2821692 proquest_journals_2200823054 ieee_primary_8351987 crossref_primary_10_1109_TCYB_2018_2821692 pubmed_primary_29993593 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 butts (ref23) 2007; 449 ref53 ref52 ref54 ref10 dayan (ref7) 2001; 806 ref17 ref16 bishop (ref2) 2006 von eckardt (ref1) 1995 ref19 london (ref15) 2010; 466 ref51 ref46 ref45 gollisch (ref18) 2008; 319 ref42 ref44 kempter (ref24) 1998 ref43 tuckwell (ref48) 2005; 8 ref49 ref8 yu (ref40) 2013; 24 ref9 ref3 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 yu (ref11) 2017 ref38 lecun (ref6) 2015; 521 schultz (ref50) 1997; 275 kandel (ref4) 2000; 4 ref25 ref20 ref22 ref21 vapnik (ref47) 2013 hopfield (ref26) 1995; 376 ref28 gütig (ref41) 2016; 351 ref27 ref29 |
| References_xml | – ident: ref53 doi: 10.1109/MCI.2016.2532268 – ident: ref46 doi: 10.1007/978-3-7908-2604-3_16 – ident: ref42 doi: 10.3389/neuro.01.026.2009 – year: 2017 ident: ref11 publication-title: Neuromorphic Cognitive Systems A Learning and Memory Centered Approach doi: 10.1007/978-3-319-55310-8 – ident: ref31 doi: 10.1038/nn1643 – ident: ref39 doi: 10.1109/TCYB.2015.2423295 – ident: ref9 doi: 10.1016/j.conb.2014.01.004 – volume: 449 start-page: 92 year: 2007 ident: ref23 article-title: Temporal precision in the neural code and the timescales of natural vision publication-title: Nature doi: 10.1038/nature06105 – ident: ref45 doi: 10.1103/PhysRevLett.97.048104 – volume: 8 year: 2005 ident: ref48 publication-title: Introduction to Theoretical Neurobiology Nonlinear and Stochastic Theories – ident: ref30 doi: 10.1162/neco.2007.19.11.2881 – year: 2006 ident: ref2 publication-title: Pattern Recognition and Machine Learning – volume: 806 year: 2001 ident: ref7 publication-title: Theoretical Neuroscience – ident: ref22 doi: 10.1038/nature02116 – ident: ref29 doi: 10.1016/S0893-6080(97)00011-7 – volume: 351 year: 2016 ident: ref41 article-title: Spiking neurons can discover predictive features by aggregate-label learning publication-title: Science doi: 10.1126/science.aab4113 – ident: ref13 doi: 10.1113/jphysiol.1926.sp002273 – start-page: 125 year: 1998 ident: ref24 article-title: Spike-based compared to rate-based Hebbian learning publication-title: Proc NIPS – ident: ref38 doi: 10.1103/PhysRevLett.105.218102 – ident: ref12 doi: 10.1103/PhysRevLett.88.248101 – ident: ref37 doi: 10.1162/neco.2009.11-08-901 – ident: ref54 doi: 10.1109/TNNLS.2015.2416771 – volume: 24 start-page: 1539 year: 2013 ident: ref40 article-title: Rapid feedforward computation by temporal encoding and learning with spiking neurons publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2245677 – ident: ref43 doi: 10.4249/scholarpedia.1430 – ident: ref34 doi: 10.1016/j.neuron.2014.03.026 – ident: ref35 doi: 10.1371/journal.pone.0040233 – ident: ref17 doi: 10.1152/jn.01171.2003 – ident: ref21 doi: 10.1038/384564a0 – ident: ref10 doi: 10.3389/fnsys.2015.00151 – volume: 376 start-page: 33 year: 1995 ident: ref26 article-title: Pattern recognition computation using action potential timing for stimulus representation publication-title: Nature doi: 10.1038/376033a0 – volume: 275 start-page: 1593 year: 1997 ident: ref50 article-title: A neural substrate of prediction and reward publication-title: Science doi: 10.1126/science.275.5306.1593 – ident: ref8 doi: 10.1016/j.tins.2009.12.001 – ident: ref28 doi: 10.1109/TCYB.2015.2464106 – ident: ref36 doi: 10.1371/journal.pone.0078318 – ident: ref44 doi: 10.1016/S0896-6273(03)00761-X – volume: 521 start-page: 436 year: 2015 ident: ref6 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 466 start-page: 123 year: 2010 ident: ref15 article-title: Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex publication-title: Nature doi: 10.1038/nature09086 – volume: 319 start-page: 1108 year: 2008 ident: ref18 article-title: Rapid neural coding in the retina with relative spike latencies publication-title: Science doi: 10.1126/science.1149639 – ident: ref19 doi: 10.1523/JNEUROSCI.20-14-05392.2000 – ident: ref33 doi: 10.1016/j.neunet.2009.04.003 – year: 2013 ident: ref47 publication-title: The Nature of Statistical Learning Theory – ident: ref16 doi: 10.1073/pnas.94.24.12740 – ident: ref52 doi: 10.1142/S0129065712500128 – ident: ref51 doi: 10.1371/journal.pcbi.1002092 – year: 1995 ident: ref1 publication-title: What is Cognitive Science doi: 10.7551/mitpress/7209.001.0001 – ident: ref14 doi: 10.1038/nrn1668 – ident: ref27 doi: 10.1017/CBO9780511815706 – ident: ref32 doi: 10.1016/S0925-2312(01)00658-0 – ident: ref49 doi: 10.1152/jn.00293.2003 – ident: ref5 doi: 10.1037/h0042519 – volume: 4 year: 2000 ident: ref4 publication-title: Principles of Neural Science – ident: ref3 doi: 10.1109/TSMCB.2012.2200674 – ident: ref25 doi: 10.1038/14731 – ident: ref20 doi: 10.1126/science.7770778 |
| SSID | ssj0000816898 |
| Score | 2.4079595 |
| Snippet | Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2178 |
| SubjectTerms | Algorithms Central nervous system Coding Decisions Encoding Feature extraction Feature recognition Machine learning multispike learning Neurons pattern recognition Plastic properties Software algorithms spiking neuron Timing Training |
| Title | Spike Timing or Rate? Neurons Learn to Make Decisions for Both Through Threshold-Driven Plasticity |
| URI | https://ieeexplore.ieee.org/document/8351987 https://www.ncbi.nlm.nih.gov/pubmed/29993593 https://www.proquest.com/docview/2200823054 https://www.proquest.com/docview/2068342485 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGBPnikLZWROADC22zsJPYJ0ZaqQipCsJXKKbIdB6FWSbXJHuDXM-N4I4EAcYqlTBxHY2e-8YznA3iOFm4ujK5505icy9opbqXLuXFCNq4h4tGQ5fuhuLiS76_z6w14PZ2F8d6H5DM_o2aI5dedW9FW2bEiNjlVbsJmqYrxrNa0nxIIJAL1bYYNjqiijEHMeaqPF6dfTiiPS83QxZgXmkhs8EdMx1LFLxYpUKz8HW0Gq3P-AC7X4x2TTW5mq8HO3I_fSjn-7wdtw_0IP9nbcb7swIZvd2EnLvCevYhVqF_ugf189-3GswWxfn1l3ZJ9QlT6hoViHm3PQl1WNnTs0qDUWWTq6RliYHaC2meLkQCIrr6nGBc_W9KflX1EvE6p3MP3h3B1_m5xesEjIQN3aOcHLhufaqGsN1REFaGfKcpMeoMYzXr067worCi1EYTbc-so2qyLOWKOIteNcuIRbLVd658Aq22psQOhmtxht0bJ2tbCCfTv0FxmTQLpWimVi9XKiTTjtgpeS6orUmlFKq2iShN4NT1yN5bq-JfwHqljEoyaSOBwrfkqLua-yrIxHpnLBJ5Nt3EZUmzFtL5boUxaKCGpPlwCj8cZM_W9nmj7f37nAdzDkekx_-wQtoblyj9FpDPYozDFfwKYAvTV |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALbSmPlAJG4gCIbLOx8_Cpoi3VAt0KQSq1p8h2HFS1SqpN9gC_nhnHGwkEiFMsZeI4GjvzjWc8H8BLtHBTrmQV1rVKQlGZPNTCJKEyXNSmJuJRl-V7ms7OxMfz5HwN3o5nYay1LvnMTqjpYvlVa5a0VbaXE5tcnt2C24kQIhlOa407Ko5CwpHfxtgIEVdkPow5jeRecXhxQJlc-QSdjGkqicYGf8V0MJX_YpMcycrf8aazO8cbMF-NeEg3uZosez0xP34r5vi_n7QJ9zwAZe-GGbMFa7a5D1t-iXfsla9D_Xob9NebyyvLCuL9-sbaBfuCuHSfuXIeTcdcZVbWt2yuUOrIc_V0DFEwO0D9s2KgAKKr7SjKFR4t6N_KPiNip2Tu_vsDODt-XxzOQk_JEBq09H0oahtJnmurqIwqgj-VZrGwClGatujZWZ5qnknFCbkn2lC8WaZTRB1pIuvc8Iew3rSNfQys0pnEDnheJwa7VbmodMUNRw8PDWZcBxCtlFIaX6-caDOuS-e3RLIklZak0tKrNIA34yM3Q7GOfwlvkzpGQa-JAHZXmi_9cu7KOB4ikokI4MV4GxciRVdUY9slykRpzgVViAvg0TBjxr5XE23nz-98DndmxfykPPlw-ukJ3MVRyiEbbRfW-8XSPkXc0-tnbrr_BJLT-CI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spike+Timing+or+Rate%3F+Neurons+Learn+to+Make+Decisions+for+Both+Through+Threshold-Driven+Plasticity&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yu%2C+Qiang&rft.au=Li%2C+Haizhou&rft.au=Tan%2C+Kay+Chen&rft.date=2019-06-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=49&rft.issue=6&rft.spage=2178&rft.epage=2189&rft_id=info:doi/10.1109%2FTCYB.2018.2821692&rft_id=info%3Apmid%2F29993593&rft.externalDocID=8351987 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |