Spike Timing or Rate? Neurons Learn to Make Decisions for Both Through Threshold-Driven Plasticity

Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most algorithms studied how to train spiking neurons to process patterns encoded with a sole assumption of either a rate or a temporal code. Is there a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 49; no. 6; pp. 2178 - 2189
Main Authors Yu, Qiang, Li, Haizhou, Tan, Kay Chen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2018.2821692

Cover

Abstract Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most algorithms studied how to train spiking neurons to process patterns encoded with a sole assumption of either a rate or a temporal code. Is there a general learning algorithm capable of processing both codes regardless of the intense debate on them within neuroscience community? In this paper, we propose several threshold-driven plasticity algorithms to address the above question. In addition to formulating the algorithms, we also provide proofs with respect to several properties, such as robustness and convergence. The experimental results illustrate that our algorithms are simple, effective and yet efficient for training neurons to learn spike patterns. Due to their simplicity and high efficiency, our algorithms would be potentially beneficial for both software and hardware implementations. Neurons with our algorithms can also detect and recognize embedded features from a background sensory activity. With the as-proposed algorithms, a single neuron can successfully perform multicategory classifications by making decisions based on its output spike number in response to each category. Spike patterns being processed can be encoded with both spike rates and precise timings. When afferent spike timings matter, neurons will automatically extract temporal features without being explicitly instructed as to which point to fire.
AbstractList Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most algorithms studied how to train spiking neurons to process patterns encoded with a sole assumption of either a rate or a temporal code. Is there a general learning algorithm capable of processing both codes regardless of the intense debate on them within neuroscience community? In this paper, we propose several threshold-driven plasticity algorithms to address the above question. In addition to formulating the algorithms, we also provide proofs with respect to several properties, such as robustness and convergence. The experimental results illustrate that our algorithms are simple, effective and yet efficient for training neurons to learn spike patterns. Due to their simplicity and high efficiency, our algorithms would be potentially beneficial for both software and hardware implementations. Neurons with our algorithms can also detect and recognize embedded features from a background sensory activity. With the as-proposed algorithms, a single neuron can successfully perform multicategory classifications by making decisions based on its output spike number in response to each category. Spike patterns being processed can be encoded with both spike rates and precise timings. When afferent spike timings matter, neurons will automatically extract temporal features without being explicitly instructed as to which point to fire.
Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most algorithms studied how to train spiking neurons to process patterns encoded with a sole assumption of either a rate or a temporal code. Is there a general learning algorithm capable of processing both codes regardless of the intense debate on them within neuroscience community? In this paper, we propose several threshold-driven plasticity algorithms to address the above question. In addition to formulating the algorithms, we also provide proofs with respect to several properties, such as robustness and convergence. The experimental results illustrate that our algorithms are simple, effective and yet efficient for training neurons to learn spike patterns. Due to their simplicity and high efficiency, our algorithms would be potentially beneficial for both software and hardware implementations. Neurons with our algorithms can also detect and recognize embedded features from a background sensory activity. With the as-proposed algorithms, a single neuron can successfully perform multicategory classifications by making decisions based on its output spike number in response to each category. Spike patterns being processed can be encoded with both spike rates and precise timings. When afferent spike timings matter, neurons will automatically extract temporal features without being explicitly instructed as to which point to fire.Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most algorithms studied how to train spiking neurons to process patterns encoded with a sole assumption of either a rate or a temporal code. Is there a general learning algorithm capable of processing both codes regardless of the intense debate on them within neuroscience community? In this paper, we propose several threshold-driven plasticity algorithms to address the above question. In addition to formulating the algorithms, we also provide proofs with respect to several properties, such as robustness and convergence. The experimental results illustrate that our algorithms are simple, effective and yet efficient for training neurons to learn spike patterns. Due to their simplicity and high efficiency, our algorithms would be potentially beneficial for both software and hardware implementations. Neurons with our algorithms can also detect and recognize embedded features from a background sensory activity. With the as-proposed algorithms, a single neuron can successfully perform multicategory classifications by making decisions based on its output spike number in response to each category. Spike patterns being processed can be encoded with both spike rates and precise timings. When afferent spike timings matter, neurons will automatically extract temporal features without being explicitly instructed as to which point to fire.
Author Tan, Kay Chen
Yu, Qiang
Li, Haizhou
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0002-0695-1603
  surname: Yu
  fullname: Yu, Qiang
  email: yuqiang@tju.edu.cn
  organization: Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Haizhou
  orcidid: 0000-0001-9158-9401
  surname: Li
  fullname: Li, Haizhou
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 3
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993593$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAQha2KqlDKD0BIyFIvXLLY4zixT1VZCq20FNRuDz1ZTpiwhmy82E4l_n293YUDh_ryrNH3RvZ778nO4Ack5JCzCedMn86nv88mwLiagAJeaXhD9rKqAqCWOy_3qt4lBzHes3xUHmn1juyC1lpILfZI83PlHpDO3dINd9QH-sMm_ES_4xj8EOkMbRho8vTKZuocWxfdet5l8synBZ0vgh_v_inGhe9vi_Pg_uBAb3obk2tdevpA3na2j3iw1X3y6-LLfPq1mF1ffpt-nhVtyWUqyg6ZFqpBKyRIroWtaijRciYb5KxEUTWi1lYwpUA2bQkcdMW5ZpXUnWrFPjnZ7F0F_zhiTGbpYot9bwf0YzTAKiVKKJXM6MdX6L0fw5BfZwByTiCYLDN1vKXGZom3ZhXc0oYn85xeBuoN0AYfY8DO5P_alBNKwbrecGbWVZl1VWZdldlWlZ38lfN5-f88RxuPQ8QXXomclarFX50am3c
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3200699
crossref_primary_10_1016_j_patcog_2025_111525
crossref_primary_10_1109_TCYB_2022_3188015
crossref_primary_10_1109_TNNLS_2020_3040969
crossref_primary_10_1109_TNNLS_2023_3300514
crossref_primary_10_1109_MCAS_2022_3166331
crossref_primary_10_1109_TCYB_2021_3079097
crossref_primary_10_1007_s12293_023_00391_2
crossref_primary_10_1016_j_optcom_2023_130207
crossref_primary_10_1109_TCYB_2021_3068300
crossref_primary_10_1109_TNNLS_2021_3052804
crossref_primary_10_3389_fnins_2022_1012964
crossref_primary_10_1016_j_neunet_2020_02_011
crossref_primary_10_1109_TCDS_2021_3073846
crossref_primary_10_3389_fnins_2019_00559
crossref_primary_10_1145_3304103
crossref_primary_10_1002_lpor_202300424
crossref_primary_10_1016_j_neucom_2023_02_026
crossref_primary_10_1007_s11063_023_11348_4
crossref_primary_10_1109_TETCI_2022_3228538
crossref_primary_10_1109_TNNLS_2022_3165527
crossref_primary_10_1109_TETCI_2024_3406725
crossref_primary_10_3389_fnins_2018_00836
crossref_primary_10_1109_TNNLS_2020_2978764
crossref_primary_10_1109_TCYB_2020_2984888
crossref_primary_10_1109_TNNLS_2023_3240176
crossref_primary_10_1109_TNNLS_2023_3306749
crossref_primary_10_1109_TNNLS_2023_3337176
crossref_primary_10_18632_aging_203555
crossref_primary_10_1016_j_neunet_2022_07_010
crossref_primary_10_1109_JSTSP_2020_2983547
crossref_primary_10_1016_j_neunet_2021_05_002
crossref_primary_10_1109_TNNLS_2021_3110991
crossref_primary_10_3389_fnins_2021_654786
crossref_primary_10_1109_TNNLS_2020_3043415
Cites_doi 10.1109/MCI.2016.2532268
10.1007/978-3-7908-2604-3_16
10.3389/neuro.01.026.2009
10.1007/978-3-319-55310-8
10.1038/nn1643
10.1109/TCYB.2015.2423295
10.1016/j.conb.2014.01.004
10.1038/nature06105
10.1103/PhysRevLett.97.048104
10.1162/neco.2007.19.11.2881
10.1038/nature02116
10.1016/S0893-6080(97)00011-7
10.1126/science.aab4113
10.1113/jphysiol.1926.sp002273
10.1103/PhysRevLett.105.218102
10.1103/PhysRevLett.88.248101
10.1162/neco.2009.11-08-901
10.1109/TNNLS.2015.2416771
10.1109/TNNLS.2013.2245677
10.4249/scholarpedia.1430
10.1016/j.neuron.2014.03.026
10.1371/journal.pone.0040233
10.1152/jn.01171.2003
10.1038/384564a0
10.3389/fnsys.2015.00151
10.1038/376033a0
10.1126/science.275.5306.1593
10.1016/j.tins.2009.12.001
10.1109/TCYB.2015.2464106
10.1371/journal.pone.0078318
10.1016/S0896-6273(03)00761-X
10.1038/nature14539
10.1038/nature09086
10.1126/science.1149639
10.1523/JNEUROSCI.20-14-05392.2000
10.1016/j.neunet.2009.04.003
10.1073/pnas.94.24.12740
10.1142/S0129065712500128
10.1371/journal.pcbi.1002092
10.7551/mitpress/7209.001.0001
10.1038/nrn1668
10.1017/CBO9780511815706
10.1016/S0925-2312(01)00658-0
10.1152/jn.00293.2003
10.1037/h0042519
10.1109/TSMCB.2012.2200674
10.1038/14731
10.1126/science.7770778
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2018.2821692
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2189
ExternalDocumentID 29993593
10_1109_TCYB_2018_2821692
8351987
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61806139; 61771333; U1736219
  funderid: 10.13039/501100001809
– fundername: City University of Hong Kong
  grantid: 9610397
  funderid: 10.13039/100007567
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c415t-4fe0938bea3525193a6724ea105be104e36b379a308825bc4212961190659f8c3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 06:19:50 EDT 2025
Mon Jun 30 06:19:19 EDT 2025
Mon Jul 21 05:59:17 EDT 2025
Wed Oct 01 01:36:34 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Wed Aug 27 02:48:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-4fe0938bea3525193a6724ea105be104e36b379a308825bc4212961190659f8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6802-2463
0000-0001-9158-9401
0000-0002-0695-1603
PMID 29993593
PQID 2200823054
PQPubID 85422
PageCount 12
ParticipantIDs proquest_miscellaneous_2068342485
crossref_citationtrail_10_1109_TCYB_2018_2821692
proquest_journals_2200823054
ieee_primary_8351987
crossref_primary_10_1109_TCYB_2018_2821692
pubmed_primary_29993593
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
butts (ref23) 2007; 449
ref53
ref52
ref54
ref10
dayan (ref7) 2001; 806
ref17
ref16
bishop (ref2) 2006
von eckardt (ref1) 1995
ref19
london (ref15) 2010; 466
ref51
ref46
ref45
gollisch (ref18) 2008; 319
ref42
ref44
kempter (ref24) 1998
ref43
tuckwell (ref48) 2005; 8
ref49
ref8
yu (ref40) 2013; 24
ref9
ref3
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
yu (ref11) 2017
ref38
lecun (ref6) 2015; 521
schultz (ref50) 1997; 275
kandel (ref4) 2000; 4
ref25
ref20
ref22
ref21
vapnik (ref47) 2013
hopfield (ref26) 1995; 376
ref28
gütig (ref41) 2016; 351
ref27
ref29
References_xml – ident: ref53
  doi: 10.1109/MCI.2016.2532268
– ident: ref46
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref42
  doi: 10.3389/neuro.01.026.2009
– year: 2017
  ident: ref11
  publication-title: Neuromorphic Cognitive Systems A Learning and Memory Centered Approach
  doi: 10.1007/978-3-319-55310-8
– ident: ref31
  doi: 10.1038/nn1643
– ident: ref39
  doi: 10.1109/TCYB.2015.2423295
– ident: ref9
  doi: 10.1016/j.conb.2014.01.004
– volume: 449
  start-page: 92
  year: 2007
  ident: ref23
  article-title: Temporal precision in the neural code and the timescales of natural vision
  publication-title: Nature
  doi: 10.1038/nature06105
– ident: ref45
  doi: 10.1103/PhysRevLett.97.048104
– volume: 8
  year: 2005
  ident: ref48
  publication-title: Introduction to Theoretical Neurobiology Nonlinear and Stochastic Theories
– ident: ref30
  doi: 10.1162/neco.2007.19.11.2881
– year: 2006
  ident: ref2
  publication-title: Pattern Recognition and Machine Learning
– volume: 806
  year: 2001
  ident: ref7
  publication-title: Theoretical Neuroscience
– ident: ref22
  doi: 10.1038/nature02116
– ident: ref29
  doi: 10.1016/S0893-6080(97)00011-7
– volume: 351
  year: 2016
  ident: ref41
  article-title: Spiking neurons can discover predictive features by aggregate-label learning
  publication-title: Science
  doi: 10.1126/science.aab4113
– ident: ref13
  doi: 10.1113/jphysiol.1926.sp002273
– start-page: 125
  year: 1998
  ident: ref24
  article-title: Spike-based compared to rate-based Hebbian learning
  publication-title: Proc NIPS
– ident: ref38
  doi: 10.1103/PhysRevLett.105.218102
– ident: ref12
  doi: 10.1103/PhysRevLett.88.248101
– ident: ref37
  doi: 10.1162/neco.2009.11-08-901
– ident: ref54
  doi: 10.1109/TNNLS.2015.2416771
– volume: 24
  start-page: 1539
  year: 2013
  ident: ref40
  article-title: Rapid feedforward computation by temporal encoding and learning with spiking neurons
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2245677
– ident: ref43
  doi: 10.4249/scholarpedia.1430
– ident: ref34
  doi: 10.1016/j.neuron.2014.03.026
– ident: ref35
  doi: 10.1371/journal.pone.0040233
– ident: ref17
  doi: 10.1152/jn.01171.2003
– ident: ref21
  doi: 10.1038/384564a0
– ident: ref10
  doi: 10.3389/fnsys.2015.00151
– volume: 376
  start-page: 33
  year: 1995
  ident: ref26
  article-title: Pattern recognition computation using action potential timing for stimulus representation
  publication-title: Nature
  doi: 10.1038/376033a0
– volume: 275
  start-page: 1593
  year: 1997
  ident: ref50
  article-title: A neural substrate of prediction and reward
  publication-title: Science
  doi: 10.1126/science.275.5306.1593
– ident: ref8
  doi: 10.1016/j.tins.2009.12.001
– ident: ref28
  doi: 10.1109/TCYB.2015.2464106
– ident: ref36
  doi: 10.1371/journal.pone.0078318
– ident: ref44
  doi: 10.1016/S0896-6273(03)00761-X
– volume: 521
  start-page: 436
  year: 2015
  ident: ref6
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 466
  start-page: 123
  year: 2010
  ident: ref15
  article-title: Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex
  publication-title: Nature
  doi: 10.1038/nature09086
– volume: 319
  start-page: 1108
  year: 2008
  ident: ref18
  article-title: Rapid neural coding in the retina with relative spike latencies
  publication-title: Science
  doi: 10.1126/science.1149639
– ident: ref19
  doi: 10.1523/JNEUROSCI.20-14-05392.2000
– ident: ref33
  doi: 10.1016/j.neunet.2009.04.003
– year: 2013
  ident: ref47
  publication-title: The Nature of Statistical Learning Theory
– ident: ref16
  doi: 10.1073/pnas.94.24.12740
– ident: ref52
  doi: 10.1142/S0129065712500128
– ident: ref51
  doi: 10.1371/journal.pcbi.1002092
– year: 1995
  ident: ref1
  publication-title: What is Cognitive Science
  doi: 10.7551/mitpress/7209.001.0001
– ident: ref14
  doi: 10.1038/nrn1668
– ident: ref27
  doi: 10.1017/CBO9780511815706
– ident: ref32
  doi: 10.1016/S0925-2312(01)00658-0
– ident: ref49
  doi: 10.1152/jn.00293.2003
– ident: ref5
  doi: 10.1037/h0042519
– volume: 4
  year: 2000
  ident: ref4
  publication-title: Principles of Neural Science
– ident: ref3
  doi: 10.1109/TSMCB.2012.2200674
– ident: ref25
  doi: 10.1038/14731
– ident: ref20
  doi: 10.1126/science.7770778
SSID ssj0000816898
Score 2.4079595
Snippet Spikes play an essential role in information transmission in central nervous system, but how neurons learn from them remains a challenging question. Most...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2178
SubjectTerms Algorithms
Central nervous system
Coding
Decisions
Encoding
Feature extraction
Feature recognition
Machine learning
multispike learning
Neurons
pattern recognition
Plastic properties
Software algorithms
spiking neuron
Timing
Training
Title Spike Timing or Rate? Neurons Learn to Make Decisions for Both Through Threshold-Driven Plasticity
URI https://ieeexplore.ieee.org/document/8351987
https://www.ncbi.nlm.nih.gov/pubmed/29993593
https://www.proquest.com/docview/2200823054
https://www.proquest.com/docview/2068342485
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGBPnikLZWROADC22zsJPYJ0ZaqQipCsJXKKbIdB6FWSbXJHuDXM-N4I4EAcYqlTBxHY2e-8YznA3iOFm4ujK5505icy9opbqXLuXFCNq4h4tGQ5fuhuLiS76_z6w14PZ2F8d6H5DM_o2aI5dedW9FW2bEiNjlVbsJmqYrxrNa0nxIIJAL1bYYNjqiijEHMeaqPF6dfTiiPS83QxZgXmkhs8EdMx1LFLxYpUKz8HW0Gq3P-AC7X4x2TTW5mq8HO3I_fSjn-7wdtw_0IP9nbcb7swIZvd2EnLvCevYhVqF_ugf189-3GswWxfn1l3ZJ9QlT6hoViHm3PQl1WNnTs0qDUWWTq6RliYHaC2meLkQCIrr6nGBc_W9KflX1EvE6p3MP3h3B1_m5xesEjIQN3aOcHLhufaqGsN1REFaGfKcpMeoMYzXr067worCi1EYTbc-so2qyLOWKOIteNcuIRbLVd658Aq22psQOhmtxht0bJ2tbCCfTv0FxmTQLpWimVi9XKiTTjtgpeS6orUmlFKq2iShN4NT1yN5bq-JfwHqljEoyaSOBwrfkqLua-yrIxHpnLBJ5Nt3EZUmzFtL5boUxaKCGpPlwCj8cZM_W9nmj7f37nAdzDkekx_-wQtoblyj9FpDPYozDFfwKYAvTV
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALbSmPlAJG4gCIbLOx8_Cpoi3VAt0KQSq1p8h2HFS1SqpN9gC_nhnHGwkEiFMsZeI4GjvzjWc8H8BLtHBTrmQV1rVKQlGZPNTCJKEyXNSmJuJRl-V7ms7OxMfz5HwN3o5nYay1LvnMTqjpYvlVa5a0VbaXE5tcnt2C24kQIhlOa407Ko5CwpHfxtgIEVdkPow5jeRecXhxQJlc-QSdjGkqicYGf8V0MJX_YpMcycrf8aazO8cbMF-NeEg3uZosez0xP34r5vi_n7QJ9zwAZe-GGbMFa7a5D1t-iXfsla9D_Xob9NebyyvLCuL9-sbaBfuCuHSfuXIeTcdcZVbWt2yuUOrIc_V0DFEwO0D9s2KgAKKr7SjKFR4t6N_KPiNip2Tu_vsDODt-XxzOQk_JEBq09H0oahtJnmurqIwqgj-VZrGwClGatujZWZ5qnknFCbkn2lC8WaZTRB1pIuvc8Iew3rSNfQys0pnEDnheJwa7VbmodMUNRw8PDWZcBxCtlFIaX6-caDOuS-e3RLIklZak0tKrNIA34yM3Q7GOfwlvkzpGQa-JAHZXmi_9cu7KOB4ikokI4MV4GxciRVdUY9slykRpzgVViAvg0TBjxr5XE23nz-98DndmxfykPPlw-ukJ3MVRyiEbbRfW-8XSPkXc0-tnbrr_BJLT-CI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spike+Timing+or+Rate%3F+Neurons+Learn+to+Make+Decisions+for+Both+Through+Threshold-Driven+Plasticity&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yu%2C+Qiang&rft.au=Li%2C+Haizhou&rft.au=Tan%2C+Kay+Chen&rft.date=2019-06-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=49&rft.issue=6&rft.spage=2178&rft.epage=2189&rft_id=info:doi/10.1109%2FTCYB.2018.2821692&rft_id=info%3Apmid%2F29993593&rft.externalDocID=8351987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon