Comparative study on carbon nanotube- and reduced graphene oxide-reinforced alumina ceramic composites
Single wall carbon nanotube (SWCNT) and reduced graphene oxide (RGO) reinforced alumina ceramic composites were fabricated, and their microstructure, interface between matrix and reinforcement, electrical, mechanical, and thermal properties were comparatively investigated. The homogeneous dispersion...
Saved in:
Published in | Ceramics international Vol. 44; no. 7; pp. 8350 - 8357 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-8842 |
DOI | 10.1016/j.ceramint.2018.02.024 |
Cover
Abstract | Single wall carbon nanotube (SWCNT) and reduced graphene oxide (RGO) reinforced alumina ceramic composites were fabricated, and their microstructure, interface between matrix and reinforcement, electrical, mechanical, and thermal properties were comparatively investigated. The homogeneous dispersion of SWCNT and RGO and nearly full densification (> 96% of theoretical density) were achieved by dimethylformamide (DMF) solvent and spark plasma sintering (SPS), respectively. The chemical bonding between alumina and reinforcements was examined by high resolution transmission electron microscopy (HRTEM) with electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS). Elastic modulus and hardness of Al2O3 composites decreased, but fracture toughness and flexural strength increased with addition of SWCNT and RGO. SWCNT outperformed RGO in flexural strength whereas RGO was better than SWCNT to improve the fracture toughness. SWCNT was more effective for high electrical conductivity and low percolation threshold than RGO. The thermal conductivity of both composites decreased compared to monolithic Al2O3 possibly due to the reduced phonon mean free path by defects and carbon contamination. |
---|---|
AbstractList | Single wall carbon nanotube (SWCNT) and reduced graphene oxide (RGO) reinforced alumina ceramic composites were fabricated, and their microstructure, interface between matrix and reinforcement, electrical, mechanical, and thermal properties were comparatively investigated. The homogeneous dispersion of SWCNT and RGO and nearly full densification (> 96% of theoretical density) were achieved by dimethylformamide (DMF) solvent and spark plasma sintering (SPS), respectively. The chemical bonding between alumina and reinforcements was examined by high resolution transmission electron microscopy (HRTEM) with electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS). Elastic modulus and hardness of Al2O3 composites decreased, but fracture toughness and flexural strength increased with addition of SWCNT and RGO. SWCNT outperformed RGO in flexural strength whereas RGO was better than SWCNT to improve the fracture toughness. SWCNT was more effective for high electrical conductivity and low percolation threshold than RGO. The thermal conductivity of both composites decreased compared to monolithic Al2O3 possibly due to the reduced phonon mean free path by defects and carbon contamination. |
Author | Kim, Miyoung Hong, Seong-Hyeon Shin, Jung-Hoo Choi, Jonghyun |
Author_xml | – sequence: 1 givenname: Jung-Hoo surname: Shin fullname: Shin, Jung-Hoo – sequence: 2 givenname: Jonghyun surname: Choi fullname: Choi, Jonghyun – sequence: 3 givenname: Miyoung surname: Kim fullname: Kim, Miyoung – sequence: 4 givenname: Seong-Hyeon surname: Hong fullname: Hong, Seong-Hyeon email: shhong@snu.ac.kr |
BookMark | eNqFkMtKQzEQhrOoYFt9BckLnJrk5NzAhVK8QcGNrkMuE01pk5LkFPv2plQ3bgoD_2Lm_2fmm6GJDx4QuqFkQQltb9cLDVFunc8LRmi_IKwUn6ApYR2r-p6zSzRLaU3K8MDJFNll2O5klNntAac8mgMOHmsZVREvfcijggpLb3AEM2ow-DPK3Rd4wOHbGagiOG9DPHbkZiyrJT7doLEu2SG5DOkKXVi5SXD9q3P08fT4vnypVm_Pr8uHVaU5bXLFezVYDmxgrKW86ezQdUqVVlv33dAZ1RvJFPC2q7nsVaOtVpo1tWWGEtnTeo7aU66OIaUIVuyi28p4EJSIIyGxFn-ExJGQIKwUL8a7f0btcqESfI7Sbc7b7092KM_tHUSRtANfoLgIOgsT3LmIHwW-jWU |
CitedBy_id | crossref_primary_10_1515_ntrev_2020_0017 crossref_primary_10_1016_j_ceramint_2020_05_081 crossref_primary_10_1186_s11671_019_3061_4 crossref_primary_10_1007_s13762_019_02419_y crossref_primary_10_1080_21870764_2022_2073646 crossref_primary_10_1016_j_ceramint_2022_02_270 crossref_primary_10_1021_acsmaterialslett_3c00302 crossref_primary_10_1016_j_ceramint_2022_02_122 crossref_primary_10_1016_j_ceramint_2024_10_398 crossref_primary_10_1016_j_ceramint_2019_01_013 crossref_primary_10_1016_j_mechmat_2019_103126 crossref_primary_10_3390_ceramics7040112 crossref_primary_10_1016_j_jeurceramsoc_2022_10_043 crossref_primary_10_1166_sam_2022_4335 crossref_primary_10_1016_j_apsusc_2019_143786 crossref_primary_10_1016_j_ijrmhm_2024_106907 crossref_primary_10_1016_j_bsecv_2025_01_005 crossref_primary_10_1016_j_ceramint_2022_12_241 crossref_primary_10_3390_nano9010086 crossref_primary_10_1016_j_ijhydene_2024_10_241 crossref_primary_10_1088_1757_899X_511_1_012001 crossref_primary_10_1016_j_ceramint_2022_09_237 crossref_primary_10_1016_j_jeurceramsoc_2021_09_025 crossref_primary_10_3390_jcs4040155 crossref_primary_10_3390_nano14231881 crossref_primary_10_1007_s10853_019_04258_1 crossref_primary_10_1016_j_compositesa_2022_106871 crossref_primary_10_1016_j_seppur_2021_120234 crossref_primary_10_1007_s11172_023_3804_4 crossref_primary_10_1111_ijac_13999 crossref_primary_10_3390_ma15093080 crossref_primary_10_1016_j_cplett_2021_138978 crossref_primary_10_1016_j_rinma_2024_100571 crossref_primary_10_1016_j_ceramint_2021_08_304 crossref_primary_10_1016_j_jeurceramsoc_2025_117260 crossref_primary_10_1007_s12161_018_01428_w crossref_primary_10_1016_j_jeurceramsoc_2019_06_035 crossref_primary_10_1016_j_physb_2022_414450 crossref_primary_10_1021_acsami_3c15359 crossref_primary_10_1016_j_ceramint_2019_05_183 crossref_primary_10_1016_j_pmatsci_2022_100966 crossref_primary_10_1098_rsta_2022_0006 crossref_primary_10_1088_2053_1591_ab7c23 crossref_primary_10_1007_s10854_021_05944_0 crossref_primary_10_1016_j_enganabound_2022_06_023 crossref_primary_10_1016_j_ceramint_2024_07_154 |
Cites_doi | 10.1016/j.carbon.2010.11.013 10.1179/174367613X13764308970581 10.1126/science.1157996 10.1016/j.jeurceramsoc.2010.10.020 10.1021/nn200319d 10.1016/S0043-1648(03)00216-3 10.1016/j.ceramint.2016.01.160 10.1063/1.2357920 10.1016/j.scriptamat.2011.05.023 10.1016/j.matdes.2012.07.065 10.1016/j.jeurceramsoc.2012.04.022 10.1016/j.carbon.2014.09.027 10.1039/b503444b 10.1016/j.jeurceramsoc.2013.11.034 10.1007/s10853-014-8419-5 10.1111/j.1151-2916.1981.tb10320.x 10.1016/0043-1648(94)07043-1 10.1016/j.actamat.2011.10.002 10.1016/j.jeurceramsoc.2016.06.034 10.1016/j.jeurceramsoc.2013.08.035 10.1088/0957-4484/16/6/001 10.1016/j.jeurceramsoc.2013.08.039 10.1111/j.1151-2916.1995.tb08401.x 10.1016/j.actamat.2003.10.038 10.1007/s003390201277 10.1016/j.compscitech.2010.03.007 10.1103/PhysRevLett.84.5552 10.1007/s10973-015-4694-x 10.1016/j.msea.2009.05.014 10.1021/jp991659y 10.1016/j.cplett.2011.06.047 10.1002/adfm.201200632 10.1016/j.msea.2009.04.035 10.1021/jp710931h 10.1016/j.jeurceramsoc.2014.08.043 10.1021/nn1006368 10.1039/c0nr00111b 10.1016/j.scriptamat.2012.02.009 10.1016/j.carbon.2015.04.029 10.1063/1.1600511 10.1088/0957-4484/19/19/195710 10.1021/nl801384y 10.1016/j.jiec.2014.03.022 10.1021/la801744a 10.1111/j.1744-7402.2004.tb00166.x 10.1080/09506608.2016.1219481 10.1039/b303857b 10.1103/PhysRevB.66.165440 10.1016/j.actamat.2008.04.029 10.1063/1.3671675 10.1111/j.1551-2916.2011.04689.x 10.1016/j.msea.2012.07.001 10.1103/PhysRevB.63.165408 10.1007/s10853-014-8327-8 10.1016/j.jeurceramsoc.2012.01.026 10.1016/j.carbon.2010.01.017 10.1016/j.jeurceramsoc.2009.09.032 10.1103/PhysRevB.75.205407 10.1063/1.3573490 10.3390/nano5010090 10.1111/j.1151-2916.1999.tb02069.x 10.1557/jmr.2016.390 10.1016/j.ceramint.2017.02.015 10.1016/j.jeurceramsoc.2016.02.032 10.1142/S0217984911025961 10.1016/j.carbon.2010.01.063 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd and Techna Group S.r.l. |
Copyright_xml | – notice: 2018 Elsevier Ltd and Techna Group S.r.l. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2018.02.024 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 8357 |
ExternalDocumentID | 10_1016_j_ceramint_2018_02_024 S0272884218303201 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFFNX AFJKZ AFPUW AFRZQ AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K WUQ XPP ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c415t-48b9f4e292261457f977bb415638797db8da2be46734a8b5cfcbc253f2d10a813 |
IEDL.DBID | AIKHN |
ISSN | 0272-8842 |
IngestDate | Wed Sep 10 05:28:41 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Sat Sep 06 17:17:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Carbon nanotube Spark plasma sintering Ceramic composite Reduced graphene oxide Alumina |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-48b9f4e292261457f977bb415638797db8da2be46734a8b5cfcbc253f2d10a813 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_ceramint_2018_02_024 crossref_citationtrail_10_1016_j_ceramint_2018_02_024 elsevier_sciencedirect_doi_10_1016_j_ceramint_2018_02_024 |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Ceramics international |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Paredes, Villar-Rodil, Martínez-Alonso, Tascón (bib18) 2008; 24 Zhang, Li, Zhang, Yao, Liu, Wang (bib63) 2007; 75 Mukhopadhyay, Otieno, Chu, Wallwork, Green, Todd (bib70) 2011; 65 Kvetkova, Duszova, Hvizdosˇ, Dusza, Kun, Bala´zsi (bib50) 2012; 66 Ago, Kugler, Cacialli, Salaneck, Shaffer, Windle, Friend (bib36) 1999; 103 Peigney, Garcia, Estourne`s, Weibel, Laurent (bib49) 2010; 48 Gallardo-Lo´pez, Poyato, Morales-Rodrı´guez, Ferna´ndez-Serrano, Munoz, Domı´nguez-Rodrı´guez (bib47) 2014; 49 Anstis, Chantikul, Lawn, Marshall (bib19) 1981; 64 Wang, Yang, Park, Gou, Wang, Liu, Yao (bib21) 2008; 112 Yu, Files, Arepalli, Ruoff (bib41) 2000; 84 Ahmad, Yazdani, Zhu (bib5) 2015; 5 Sarkar, Das (bib1) 2014; 37 Zhan, Kuntz, Garay, Mukherjee (bib58) 2003; 83 Porwal, Grasso, Reece (bib8) 2013; 112 Du, Zhao, Zeng, Zhang, Li, Liu, Liu (bib12) 2011; 49 Pan, Weng, Meguid, Bao, Zhu, Hamouda (bib62) 2011; 110 Shan, Gao (bib20) 2005; 16 Warner, Bachmatiuk, Rummeli, Schaffel (bib3) 2013 Fan, Igarashi, Jiang, Wang, Kawasaki (bib30) 2015; 90 Dörre, Hübner (bib15) 1984 Suenaga, Sandre, Colliex, Pickard, Kataura, Iijima (bib34) 2001; 63 Inam, Yan, Reece, Peijs (bib17) 2008; 19 Dassios (bib7) 2014 Fan, Kang, Zhou, Jiang, Wang, Kawasaki (bib29) 2005; 81 Ramirez, Miranzo, Belmonte, Osendi, Poza, Vega-Diaz, Terrones (bib33) 2014; 34 Rao, Subrahmanyam, Ramakrishna Matte, Govindaraj (bib2) 2011; 25 Rutkowski, Klimczyk, Jaworska, Stobierski, Dubie (bib65) 2015; 122 Ahmad, Wei, Wan (bib38) 2014; 49 Fan, Wang, Li, Li, Sun, Chen, Chen, Jiang (bib60) 2010; 48 Porwal, Saggar, Tatarkoa, Grasso, Saunders, Dlouhý, Reece (bib51) 2016; 42 Nieto, Bisht, Lahiri, Zhang, Agarwal (bib10) 2017; 62 Ahmad, Unwin, Cao, Chen, Zhao, Kennedy, Zhu (bib31) 2010; 70 Zhan, Mukherjee (bib57) 2004; 1 Mittal, Dhand, Rhee, Park, Lee (bib4) 2015; 21 Corral, Wang, Garay, Munir, Barrera (bib71) 2011; 31 Rul, Lefevre-schlick, Capria, Laurent, Peigney (bib59) 2004; 52 Huang, Gao (bib37) 2003; 13 Lee, Mo, Park, Hong (bib56) 2011; 94 Huang, Gao, Liu, Sun (bib66) 2005; 15 Hone1, Llaguno, Biercuk, Johnson, Batlogg, Benes, Fischer (bib64) 2002; 74 Achaby, Qaiss (bib13) 2013; 44 Gómez-Navarro, Burghard, Kern (bib42) 2008; 8 Kostecki, Grybczuk, Klimczyk, Cygan, Wozniak, Wejrzanowski, Jaworska, Morgiel, Olszyna (bib25) 2016; 36 Guenette, Tucker, Ionescu, Bilek, McKenzie (bib72) 2011; 109 Shin, Hong (bib23) 2012; 556 Shin, Hong (bib24) 2014; 34 Cygan, Wozniak, Kostecki, Petrus, Jastrzębska, Ziemkowska, Olszyn (bib27) 2017; 43 Dusza, Morgiel, Duszová, Kvetková, Nosko, Kun, Balázsi (bib32) 2012; 32 Yazdani, Xia, Ahmad, Zhu (bib22) 2015; 35 Zhou, Gong, Yuan, Wu, Chen, Li, Liang (bib46) 2009; 520 Fan, Jiang, Kawasaki (bib61) 2012; 22 Fan, Estili, Igarashi, Jiang, Kawasaki (bib39) 2014; 34 Ahmad, Pan, Shi (bib55) 2006; 89 Markandan, Chin, Tan (bib9) 2017; 32 Sharma, Kar (bib6) 2016 Estili, Kawasaki, Sakamoto, Mekuchi, Kuno, Tsukada (bib28) 2008; 56 Walker, Marotto, Rafiee, Koratkar, Corral (bib48) 2011; 5 Hah, Fischer, Gruffel, Carry (bib44) 1995; 181–183 Munro, Freiman (bib52) 1999; 82 Tapasztó, Tapasztó, Markó, Kern, Gadow, Balázsi (bib11) 2011; 511 Nanjangud, Brezny, Green (bib40) 1995; 78 An, You, Lim (bib45) 2003; 255 Ahmad, Cao, Chen, Zhao, Kennedy, Zhu (bib26) 2010; 30 Castrucci, Scarselli, De Crescenzi, Khakani, Rosei (bib35) 2010; 2 Thomson, Jiang, Yao, Ritchie, Mukherjee (bib53) 2012; 60 Kim, Chung, Sohn, Son, Lee (bib54) 2009; 517 Lee, Wei, Kysar, Hone (bib43) 2008; 321 Yang, Zhang, Chen, Yoon, Ahn, Wang, Zhou, Wang, Li (bib69) 2002; 66 Miranzo, García, Ramírez, González-Julián, Belmonte, Osendi (bib68) 2012; 32 Gitzen (bib14) 1970 Celik, Celika, Flahaut, Suvaci (bib67) 2016; 36 Marcano, Kosynkin, Berlin, Sinitskii, Sun, Slesarev, Alemany, Lu, Tour (bib16) 2010; 4 Corral (10.1016/j.ceramint.2018.02.024_bib71) 2011; 31 Lee (10.1016/j.ceramint.2018.02.024_bib56) 2011; 94 Dassios (10.1016/j.ceramint.2018.02.024_bib7) 2014 Shan (10.1016/j.ceramint.2018.02.024_bib20) 2005; 16 Gómez-Navarro (10.1016/j.ceramint.2018.02.024_bib42) 2008; 8 Ahmad (10.1016/j.ceramint.2018.02.024_bib55) 2006; 89 Yu (10.1016/j.ceramint.2018.02.024_bib41) 2000; 84 Mukhopadhyay (10.1016/j.ceramint.2018.02.024_bib70) 2011; 65 Fan (10.1016/j.ceramint.2018.02.024_bib39) 2014; 34 Ahmad (10.1016/j.ceramint.2018.02.024_bib5) 2015; 5 Kostecki (10.1016/j.ceramint.2018.02.024_bib25) 2016; 36 Kim (10.1016/j.ceramint.2018.02.024_bib54) 2009; 517 Warner (10.1016/j.ceramint.2018.02.024_bib3) 2013 Zhang (10.1016/j.ceramint.2018.02.024_bib63) 2007; 75 Suenaga (10.1016/j.ceramint.2018.02.024_bib34) 2001; 63 Rutkowski (10.1016/j.ceramint.2018.02.024_bib65) 2015; 122 Tapasztó (10.1016/j.ceramint.2018.02.024_bib11) 2011; 511 Zhou (10.1016/j.ceramint.2018.02.024_bib46) 2009; 520 Cygan (10.1016/j.ceramint.2018.02.024_bib27) 2017; 43 Kvetkova (10.1016/j.ceramint.2018.02.024_bib50) 2012; 66 Zhan (10.1016/j.ceramint.2018.02.024_bib57) 2004; 1 Anstis (10.1016/j.ceramint.2018.02.024_bib19) 1981; 64 Shin (10.1016/j.ceramint.2018.02.024_bib24) 2014; 34 Ahmad (10.1016/j.ceramint.2018.02.024_bib26) 2010; 30 An (10.1016/j.ceramint.2018.02.024_bib45) 2003; 255 Markandan (10.1016/j.ceramint.2018.02.024_bib9) 2017; 32 Celik (10.1016/j.ceramint.2018.02.024_bib67) 2016; 36 Miranzo (10.1016/j.ceramint.2018.02.024_bib68) 2012; 32 Paredes (10.1016/j.ceramint.2018.02.024_bib18) 2008; 24 Pan (10.1016/j.ceramint.2018.02.024_bib62) 2011; 110 Nanjangud (10.1016/j.ceramint.2018.02.024_bib40) 1995; 78 Guenette (10.1016/j.ceramint.2018.02.024_bib72) 2011; 109 Du (10.1016/j.ceramint.2018.02.024_bib12) 2011; 49 Peigney (10.1016/j.ceramint.2018.02.024_bib49) 2010; 48 Estili (10.1016/j.ceramint.2018.02.024_bib28) 2008; 56 Dusza (10.1016/j.ceramint.2018.02.024_bib32) 2012; 32 Ramirez (10.1016/j.ceramint.2018.02.024_bib33) 2014; 34 Lee (10.1016/j.ceramint.2018.02.024_bib43) 2008; 321 Gitzen (10.1016/j.ceramint.2018.02.024_bib14) 1970 Sarkar (10.1016/j.ceramint.2018.02.024_bib1) 2014; 37 Castrucci (10.1016/j.ceramint.2018.02.024_bib35) 2010; 2 Mittal (10.1016/j.ceramint.2018.02.024_bib4) 2015; 21 Thomson (10.1016/j.ceramint.2018.02.024_bib53) 2012; 60 Dörre (10.1016/j.ceramint.2018.02.024_bib15) 1984 Porwal (10.1016/j.ceramint.2018.02.024_bib51) 2016; 42 Rao (10.1016/j.ceramint.2018.02.024_bib2) 2011; 25 Ahmad (10.1016/j.ceramint.2018.02.024_bib31) 2010; 70 Marcano (10.1016/j.ceramint.2018.02.024_bib16) 2010; 4 Huang (10.1016/j.ceramint.2018.02.024_bib66) 2005; 15 Gallardo-Lo´pez (10.1016/j.ceramint.2018.02.024_bib47) 2014; 49 Hone1 (10.1016/j.ceramint.2018.02.024_bib64) 2002; 74 Huang (10.1016/j.ceramint.2018.02.024_bib37) 2003; 13 Inam (10.1016/j.ceramint.2018.02.024_bib17) 2008; 19 Nieto (10.1016/j.ceramint.2018.02.024_bib10) 2017; 62 Ahmad (10.1016/j.ceramint.2018.02.024_bib38) 2014; 49 Fan (10.1016/j.ceramint.2018.02.024_bib30) 2015; 90 Rul (10.1016/j.ceramint.2018.02.024_bib59) 2004; 52 Walker (10.1016/j.ceramint.2018.02.024_bib48) 2011; 5 Munro (10.1016/j.ceramint.2018.02.024_bib52) 1999; 82 Hah (10.1016/j.ceramint.2018.02.024_bib44) 1995; 181–183 Yazdani (10.1016/j.ceramint.2018.02.024_bib22) 2015; 35 Sharma (10.1016/j.ceramint.2018.02.024_bib6) 2016 Fan (10.1016/j.ceramint.2018.02.024_bib29) 2005; 81 Wang (10.1016/j.ceramint.2018.02.024_bib21) 2008; 112 Ago (10.1016/j.ceramint.2018.02.024_bib36) 1999; 103 Yang (10.1016/j.ceramint.2018.02.024_bib69) 2002; 66 Fan (10.1016/j.ceramint.2018.02.024_bib60) 2010; 48 Fan (10.1016/j.ceramint.2018.02.024_bib61) 2012; 22 Achaby (10.1016/j.ceramint.2018.02.024_bib13) 2013; 44 Zhan (10.1016/j.ceramint.2018.02.024_bib58) 2003; 83 Porwal (10.1016/j.ceramint.2018.02.024_bib8) 2013; 112 Shin (10.1016/j.ceramint.2018.02.024_bib23) 2012; 556 |
References_xml | – volume: 181–183 start-page: 165 year: 1995 end-page: 177 ident: bib44 article-title: Effect of grain boundary dopants and mean grain size on tribomechanical behavior of highly purified a-alumina in the mild wear regime publication-title: Wear – volume: 78 start-page: 266 year: 1995 end-page: 268 ident: bib40 article-title: Strength and young's modulus behavior of a partially sintered porous alumina publication-title: J. Am. Ceram. Soc. – volume: 48 start-page: 1743 year: 2010 end-page: 1749 ident: bib60 article-title: Preparation and electrical properties of graphene nanosheet/Al publication-title: Carbon – volume: 15 start-page: 1995 year: 2005 end-page: 2001 ident: bib66 article-title: Sintering and thermal properties of multiwalled carbon nanotube–BaTiO publication-title: J. Mater. Chem. – volume: 48 start-page: 1952 year: 2010 end-page: 1960 ident: bib49 article-title: Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites publication-title: Carbon – volume: 2 start-page: 1611 year: 2010 end-page: 1625 ident: bib35 article-title: Probing the electronic structure of carbon nanotubes by nanoscale spectroscopy publication-title: Nanoscale – volume: 34 start-page: 443 year: 2014 end-page: 451 ident: bib39 article-title: The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al publication-title: J. Eur. Ceram. Soc. – volume: 517 start-page: 293 year: 2009 end-page: 299 ident: bib54 article-title: Improvement of flexure strength and fracture toughness in alumina matrix composites reinforced with carbon nanotubes publication-title: Mater. Sci. Eng. A – year: 2013 ident: bib3 publication-title: Graphene: Fundamentals and Emergent Applications – volume: 65 start-page: 408 year: 2011 end-page: 411 ident: bib70 article-title: Thermal and electrical properties of aluminoborosilicate glass–ceramics containing multiwalled carbon nanotubes publication-title: Scr. Mater. – volume: 62 start-page: 241 year: 2017 end-page: 302 ident: bib10 article-title: Graphene reinforced metal and ceramic matrix composites: a review publication-title: Int. Mater. Rev. – volume: 36 start-page: 2075 year: 2016 end-page: 2086 ident: bib67 article-title: Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites publication-title: J. Eur. Ceram. Soc. – volume: 49 start-page: 1094 year: 2011 end-page: 1100 ident: bib12 article-title: Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure publication-title: Carbon – volume: 112 start-page: 8192 year: 2008 end-page: 8195 ident: bib21 article-title: Facile synthesis and characterization of graphene nanosheets publication-title: J. Phys. Chem. C – volume: 110 start-page: 123715 year: 2011 ident: bib62 article-title: Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions publication-title: J. Appl. Phys. – year: 1970 ident: bib14 article-title: Alumina as a Ceramic Material – volume: 56 start-page: 4070 year: 2008 end-page: 4079 ident: bib28 article-title: The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in a-alumina ceramics for structural reinforcement publication-title: Acta Mater. – volume: 511 start-page: 340 year: 2011 end-page: 343 ident: bib11 article-title: Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites publication-title: Chem. Phys. Lett. – volume: 1 start-page: 161 year: 2004 end-page: 171 ident: bib57 article-title: Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties publication-title: Int. J. Appl. Ceram. Technol. – volume: 556 start-page: 382 year: 2012 end-page: 387 ident: bib23 article-title: Microstructure and mechanical properties of single wall carbon nanotube reinforced yttria stabilized zircona ceramics publication-title: Mater. Sci. Eng. A – volume: 83 start-page: 1228 year: 2003 end-page: 1230 ident: bib58 article-title: Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes publication-title: Appl. Phys. Lett. – volume: 66 start-page: 165440 year: 2002 ident: bib69 article-title: Thermal conductivity of multiwalled carbon nanotubes publication-title: Phys. Rev. B – volume: 321 start-page: 385 year: 2008 end-page: 388 ident: bib43 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science – volume: 31 start-page: 391 year: 2011 end-page: 400 ident: bib71 article-title: Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering publication-title: J. Eur. Ceram. Soc. – volume: 81 start-page: 83 year: 2005 end-page: 90 ident: bib29 article-title: Control of doping by matrix in few-layer graphene/metal oxide composites with highly enhanced electrical conductivity publication-title: Carbon – volume: 109 start-page: 083503 year: 2011 ident: bib72 article-title: Carbon diffusion in alumina from carbon and Ti publication-title: J. Appl. Phys. – volume: 44 start-page: 81 year: 2013 end-page: 89 ident: bib13 article-title: Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes publication-title: Mater. Des. – volume: 112 start-page: 443 year: 2013 end-page: 454 ident: bib8 article-title: Review of graphene-ceramic matrix composites publication-title: Adv. Appl. Ceram. – volume: 90 start-page: 274 year: 2015 end-page: 283 ident: bib30 article-title: Highly strain tolerant and tough ceramic composite by incorporation of graphene publication-title: Carbon – start-page: 133 year: 2014 end-page: 158 ident: bib7 article-title: Carbon nanotube-reinforced ceramic matrix composites: processing and properties publication-title: High Temperature Ceramic Matrix Composites 8, Ceramic Transactions 248 – volume: 49 start-page: 6048 year: 2014 end-page: 6055 ident: bib38 article-title: Thermal conductivities of alumina-based multiwall carbon nanotube ceramic composites publication-title: J. Mater. Sci. – volume: 24 start-page: 10560 year: 2008 end-page: 10564 ident: bib18 article-title: Graphene oxide dispersions in organic solvents publication-title: Langmuir – start-page: 599 year: 2016 end-page: 625 ident: bib6 article-title: Carbon nanotube-/graphene-reinforced ceramics composites publication-title: Composite Materials: Processing, Applications, Characterization – volume: 32 start-page: 84 year: 2017 end-page: 106 ident: bib9 article-title: Recent progress in graphene based ceramic composites: a review publication-title: J. Mater. Res. – volume: 70 start-page: 1199 year: 2010 end-page: 1206 ident: bib31 article-title: Multi-walled carbon nanotubes reinforced Al publication-title: Comp. Sci. Technol. – volume: 34 start-page: 1297 year: 2014 end-page: 1302 ident: bib24 article-title: Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics publication-title: J. Eur. Ceram. Soc. – volume: 84 start-page: 5552 year: 2000 end-page: 5555 ident: bib41 article-title: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties publication-title: Phys. Rev. Lett. – volume: 89 start-page: 133122 year: 2006 ident: bib55 article-title: Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites publication-title: Appl. Phys. Lett. – volume: 52 start-page: 1061 year: 2004 end-page: 1067 ident: bib59 article-title: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites publication-title: Acta Mater. – volume: 94 start-page: 3774 year: 2011 end-page: 3779 ident: bib56 article-title: Mechanical and electrical properties of multiwalled CNT-alumina nanocomposites prepared by a sequential two-step processing of ultrasonic spray pyrolysis and spark plasma sintering publication-title: J. Am. Ceram. Soc. – volume: 122 start-page: 105 year: 2015 end-page: 114 ident: bib65 article-title: Thermal properties of pressure sintered alumina–graphene composites publication-title: J. Therm. Anal. Calorim. – volume: 36 start-page: 4171 year: 2016 end-page: 4179 ident: bib25 article-title: Structural and mechanical aspects of multilayer graphene addition in alumina matrix composites–validation of computer simulation model publication-title: J. Eur. Ceram. Soc. – volume: 22 start-page: 3882 year: 2012 end-page: 3889 ident: bib61 article-title: Highly conductive few-layer graphene/Al publication-title: Adv. Funct. Mater. – volume: 16 start-page: 625 year: 2005 end-page: 630 ident: bib20 article-title: Synthesis and characterization of phase controllable ZrO publication-title: Nanotechnology – year: 1984 ident: bib15 article-title: Alumina: Processing, Properties, and Applications – volume: 21 start-page: 11 year: 2015 end-page: 25 ident: bib4 article-title: A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites publication-title: J. Ind. Eng. Chem. – volume: 43 start-page: 6180 year: 2017 end-page: 6186 ident: bib27 article-title: Mechanical properties of graphene oxide reinforced alumina matrix composites publication-title: Ceram. Int. – volume: 19 start-page: 195710 year: 2008 ident: bib17 article-title: Dimethylformamide: an effective dispersant for making ceramic–carbon nanotube composites publication-title: Nanotechnology – volume: 66 start-page: 793 year: 2012 end-page: 796 ident: bib50 article-title: Fracture toughness and toughening mechanisms in graphene platelet reinforced Si publication-title: Scr. Mater. – volume: 5 start-page: 90 year: 2015 end-page: 114 ident: bib5 article-title: Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites publication-title: Nanomaterials – volume: 32 start-page: 3389 year: 2012 end-page: 3397 ident: bib32 article-title: Microstructure and fracture toughness of Si publication-title: J. Eur. Ceram. Soc. – volume: 49 start-page: 7116 year: 2014 end-page: 7123 ident: bib47 article-title: Hardness and flexural strength of single-walled carbon nanotube/alumina composites publication-title: J. Mater. Sci. – volume: 520 start-page: 153 year: 2009 end-page: 157 ident: bib46 article-title: The effects of multiwalled carbon nanotubes on the hot-pressed 3 mol% yttria stabilized zirconia ceramic publication-title: Mater. Sci. Eng. A – volume: 35 start-page: 179 year: 2015 end-page: 186 ident: bib22 article-title: Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites publication-title: J. Eur. Ceram. Soc. – volume: 5 start-page: 3182 year: 2011 end-page: 3190 ident: bib48 article-title: Toughening in graphene ceramic composites publication-title: ACS Nano – volume: 4 start-page: 4806 year: 2010 end-page: 4814 ident: bib16 article-title: Improved synthesis of graphene oxide publication-title: ACS Nano – volume: 103 start-page: 8116 year: 1999 end-page: 8121 ident: bib36 article-title: Work functions and surface functional groups of multiwall carbon nanotubes publication-title: J. Phys. Chem. B – volume: 13 start-page: 1517 year: 2003 end-page: 1519 ident: bib37 article-title: Immobilization of rutile TiO publication-title: J. Mater. Chem. – volume: 60 start-page: 622 year: 2012 end-page: 632 ident: bib53 article-title: Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering publication-title: Acta Mater. – volume: 34 start-page: 161 year: 2014 end-page: 167 ident: bib33 article-title: Extraordinary toughening enhancement and flexural strength in Si publication-title: J. Eur. Ceram. Soc. – volume: 8 start-page: 2045 year: 2008 end-page: 2049 ident: bib42 article-title: Elastic properties of chemically derived single graphene sheets publication-title: Nano Lett. – volume: 30 start-page: 865 year: 2010 end-page: 873 ident: bib26 article-title: Carbon nanotube toughened aluminium oxide nanocomposite publication-title: J. Eur. Ceram. Soc. – volume: 255 start-page: 677 year: 2003 end-page: 681 ident: bib45 article-title: Tribological properties of hot-pressed alumina–CNT composites publication-title: Wear – volume: 75 start-page: 205407 year: 2007 ident: bib63 article-title: Electrical and thermal properties of carbon nanotube bulk materials: experimental studies for the 328–958 K temperature range publication-title: Phys. Rev. B – volume: 32 start-page: 1847 year: 2012 end-page: 1854 ident: bib68 article-title: Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures publication-title: J. Eur. Ceram. Soc. – volume: 64 start-page: 533 year: 1981 end-page: 538 ident: bib19 article-title: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements publication-title: J. Am. Ceram. Soc. – volume: 37 start-page: 53 year: 2014 end-page: 82 ident: bib1 article-title: Processing and properties of carbon nanotube/alumina nanocomposites: a review publication-title: Rev. Adv. Mater. Sci. – volume: 74 start-page: 339 year: 2002 end-page: 343 ident: bib64 article-title: Thermal properties of carbon nanotubes and nanotube-based materials publication-title: Appl. Phys. A – volume: 42 start-page: 7533 year: 2016 end-page: 7542 ident: bib51 article-title: Effect of lateral size of graphene nano-sheets on the mechanical properties and machinability of alumina nano-composites publication-title: Ceram. Int. – volume: 25 start-page: 427 year: 2011 end-page: 451 ident: bib2 article-title: Graphene: synthesis, functionalization and properties publication-title: Mod. Phys. Lett. B – volume: 82 start-page: 2246 year: 1999 end-page: 2248 ident: bib52 article-title: Correlation of fracture toughness and strength publication-title: J. Am. Ceram. Soc. – volume: 63 start-page: 165408 year: 2001 ident: bib34 article-title: Electron energy-loss spectroscopy of electron states in isolated carbon nanostructures publication-title: Phys. Rev. B – volume: 49 start-page: 1094 year: 2011 ident: 10.1016/j.ceramint.2018.02.024_bib12 article-title: Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure publication-title: Carbon doi: 10.1016/j.carbon.2010.11.013 – year: 1984 ident: 10.1016/j.ceramint.2018.02.024_bib15 – volume: 112 start-page: 443 year: 2013 ident: 10.1016/j.ceramint.2018.02.024_bib8 article-title: Review of graphene-ceramic matrix composites publication-title: Adv. Appl. Ceram. doi: 10.1179/174367613X13764308970581 – volume: 321 start-page: 385 year: 2008 ident: 10.1016/j.ceramint.2018.02.024_bib43 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science doi: 10.1126/science.1157996 – volume: 31 start-page: 391 year: 2011 ident: 10.1016/j.ceramint.2018.02.024_bib71 article-title: Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2010.10.020 – volume: 5 start-page: 3182 year: 2011 ident: 10.1016/j.ceramint.2018.02.024_bib48 article-title: Toughening in graphene ceramic composites publication-title: ACS Nano doi: 10.1021/nn200319d – volume: 255 start-page: 677 year: 2003 ident: 10.1016/j.ceramint.2018.02.024_bib45 article-title: Tribological properties of hot-pressed alumina–CNT composites publication-title: Wear doi: 10.1016/S0043-1648(03)00216-3 – volume: 42 start-page: 7533 year: 2016 ident: 10.1016/j.ceramint.2018.02.024_bib51 article-title: Effect of lateral size of graphene nano-sheets on the mechanical properties and machinability of alumina nano-composites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.01.160 – volume: 89 start-page: 133122 year: 2006 ident: 10.1016/j.ceramint.2018.02.024_bib55 article-title: Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites publication-title: Appl. Phys. Lett. doi: 10.1063/1.2357920 – volume: 65 start-page: 408 year: 2011 ident: 10.1016/j.ceramint.2018.02.024_bib70 article-title: Thermal and electrical properties of aluminoborosilicate glass–ceramics containing multiwalled carbon nanotubes publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.05.023 – volume: 44 start-page: 81 year: 2013 ident: 10.1016/j.ceramint.2018.02.024_bib13 article-title: Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes publication-title: Mater. Des. doi: 10.1016/j.matdes.2012.07.065 – volume: 32 start-page: 3389 year: 2012 ident: 10.1016/j.ceramint.2018.02.024_bib32 article-title: Microstructure and fracture toughness of Si3N4 + graphene platelet composites publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2012.04.022 – volume: 81 start-page: 83 year: 2005 ident: 10.1016/j.ceramint.2018.02.024_bib29 article-title: Control of doping by matrix in few-layer graphene/metal oxide composites with highly enhanced electrical conductivity publication-title: Carbon doi: 10.1016/j.carbon.2014.09.027 – volume: 15 start-page: 1995 year: 2005 ident: 10.1016/j.ceramint.2018.02.024_bib66 article-title: Sintering and thermal properties of multiwalled carbon nanotube–BaTiO3 composites publication-title: J. Mater. Chem. doi: 10.1039/b503444b – volume: 37 start-page: 53 year: 2014 ident: 10.1016/j.ceramint.2018.02.024_bib1 article-title: Processing and properties of carbon nanotube/alumina nanocomposites: a review publication-title: Rev. Adv. Mater. Sci. – volume: 34 start-page: 1297 year: 2014 ident: 10.1016/j.ceramint.2018.02.024_bib24 article-title: Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2013.11.034 – volume: 49 start-page: 7116 year: 2014 ident: 10.1016/j.ceramint.2018.02.024_bib47 article-title: Hardness and flexural strength of single-walled carbon nanotube/alumina composites publication-title: J. Mater. Sci. doi: 10.1007/s10853-014-8419-5 – volume: 64 start-page: 533 year: 1981 ident: 10.1016/j.ceramint.2018.02.024_bib19 article-title: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1981.tb10320.x – volume: 181–183 start-page: 165 year: 1995 ident: 10.1016/j.ceramint.2018.02.024_bib44 article-title: Effect of grain boundary dopants and mean grain size on tribomechanical behavior of highly purified a-alumina in the mild wear regime publication-title: Wear doi: 10.1016/0043-1648(94)07043-1 – volume: 60 start-page: 622 year: 2012 ident: 10.1016/j.ceramint.2018.02.024_bib53 article-title: Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.10.002 – volume: 36 start-page: 4171 year: 2016 ident: 10.1016/j.ceramint.2018.02.024_bib25 article-title: Structural and mechanical aspects of multilayer graphene addition in alumina matrix composites–validation of computer simulation model publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.06.034 – volume: 34 start-page: 443 year: 2014 ident: 10.1016/j.ceramint.2018.02.024_bib39 article-title: The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2013.08.035 – volume: 16 start-page: 625 year: 2005 ident: 10.1016/j.ceramint.2018.02.024_bib20 article-title: Synthesis and characterization of phase controllable ZrO2–carbon nanotube nanocomposites publication-title: Nanotechnology doi: 10.1088/0957-4484/16/6/001 – volume: 34 start-page: 161 year: 2014 ident: 10.1016/j.ceramint.2018.02.024_bib33 article-title: Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2013.08.039 – volume: 78 start-page: 266 year: 1995 ident: 10.1016/j.ceramint.2018.02.024_bib40 article-title: Strength and young's modulus behavior of a partially sintered porous alumina publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1995.tb08401.x – volume: 52 start-page: 1061 year: 2004 ident: 10.1016/j.ceramint.2018.02.024_bib59 article-title: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.10.038 – volume: 74 start-page: 339 year: 2002 ident: 10.1016/j.ceramint.2018.02.024_bib64 article-title: Thermal properties of carbon nanotubes and nanotube-based materials publication-title: Appl. Phys. A doi: 10.1007/s003390201277 – volume: 70 start-page: 1199 year: 2010 ident: 10.1016/j.ceramint.2018.02.024_bib31 article-title: Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations publication-title: Comp. Sci. Technol. doi: 10.1016/j.compscitech.2010.03.007 – year: 1970 ident: 10.1016/j.ceramint.2018.02.024_bib14 – year: 2013 ident: 10.1016/j.ceramint.2018.02.024_bib3 – volume: 84 start-page: 5552 issue: 24 year: 2000 ident: 10.1016/j.ceramint.2018.02.024_bib41 article-title: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.5552 – start-page: 599 year: 2016 ident: 10.1016/j.ceramint.2018.02.024_bib6 article-title: Carbon nanotube-/graphene-reinforced ceramics composites – volume: 122 start-page: 105 year: 2015 ident: 10.1016/j.ceramint.2018.02.024_bib65 article-title: Thermal properties of pressure sintered alumina–graphene composites publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-015-4694-x – start-page: 133 year: 2014 ident: 10.1016/j.ceramint.2018.02.024_bib7 article-title: Carbon nanotube-reinforced ceramic matrix composites: processing and properties – volume: 520 start-page: 153 year: 2009 ident: 10.1016/j.ceramint.2018.02.024_bib46 article-title: The effects of multiwalled carbon nanotubes on the hot-pressed 3 mol% yttria stabilized zirconia ceramic publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2009.05.014 – volume: 103 start-page: 8116 year: 1999 ident: 10.1016/j.ceramint.2018.02.024_bib36 article-title: Work functions and surface functional groups of multiwall carbon nanotubes publication-title: J. Phys. Chem. B doi: 10.1021/jp991659y – volume: 511 start-page: 340 year: 2011 ident: 10.1016/j.ceramint.2018.02.024_bib11 article-title: Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.06.047 – volume: 22 start-page: 3882 year: 2012 ident: 10.1016/j.ceramint.2018.02.024_bib61 article-title: Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200632 – volume: 517 start-page: 293 year: 2009 ident: 10.1016/j.ceramint.2018.02.024_bib54 article-title: Improvement of flexure strength and fracture toughness in alumina matrix composites reinforced with carbon nanotubes publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2009.04.035 – volume: 112 start-page: 8192 year: 2008 ident: 10.1016/j.ceramint.2018.02.024_bib21 article-title: Facile synthesis and characterization of graphene nanosheets publication-title: J. Phys. Chem. C doi: 10.1021/jp710931h – volume: 35 start-page: 179 year: 2015 ident: 10.1016/j.ceramint.2018.02.024_bib22 article-title: Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.08.043 – volume: 4 start-page: 4806 year: 2010 ident: 10.1016/j.ceramint.2018.02.024_bib16 article-title: Improved synthesis of graphene oxide publication-title: ACS Nano doi: 10.1021/nn1006368 – volume: 2 start-page: 1611 year: 2010 ident: 10.1016/j.ceramint.2018.02.024_bib35 article-title: Probing the electronic structure of carbon nanotubes by nanoscale spectroscopy publication-title: Nanoscale doi: 10.1039/c0nr00111b – volume: 66 start-page: 793 year: 2012 ident: 10.1016/j.ceramint.2018.02.024_bib50 article-title: Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.02.009 – volume: 90 start-page: 274 year: 2015 ident: 10.1016/j.ceramint.2018.02.024_bib30 article-title: Highly strain tolerant and tough ceramic composite by incorporation of graphene publication-title: Carbon doi: 10.1016/j.carbon.2015.04.029 – volume: 83 start-page: 1228 issue: 6 year: 2003 ident: 10.1016/j.ceramint.2018.02.024_bib58 article-title: Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes publication-title: Appl. Phys. Lett. doi: 10.1063/1.1600511 – volume: 19 start-page: 195710 year: 2008 ident: 10.1016/j.ceramint.2018.02.024_bib17 article-title: Dimethylformamide: an effective dispersant for making ceramic–carbon nanotube composites publication-title: Nanotechnology doi: 10.1088/0957-4484/19/19/195710 – volume: 8 start-page: 2045 year: 2008 ident: 10.1016/j.ceramint.2018.02.024_bib42 article-title: Elastic properties of chemically derived single graphene sheets publication-title: Nano Lett. doi: 10.1021/nl801384y – volume: 21 start-page: 11 year: 2015 ident: 10.1016/j.ceramint.2018.02.024_bib4 article-title: A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2014.03.022 – volume: 24 start-page: 10560 year: 2008 ident: 10.1016/j.ceramint.2018.02.024_bib18 article-title: Graphene oxide dispersions in organic solvents publication-title: Langmuir doi: 10.1021/la801744a – volume: 1 start-page: 161 year: 2004 ident: 10.1016/j.ceramint.2018.02.024_bib57 article-title: Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties publication-title: Int. J. Appl. Ceram. Technol. doi: 10.1111/j.1744-7402.2004.tb00166.x – volume: 62 start-page: 241 year: 2017 ident: 10.1016/j.ceramint.2018.02.024_bib10 article-title: Graphene reinforced metal and ceramic matrix composites: a review publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2016.1219481 – volume: 13 start-page: 1517 year: 2003 ident: 10.1016/j.ceramint.2018.02.024_bib37 article-title: Immobilization of rutile TiO2 on multiwalled carbon nanotubes publication-title: J. Mater. Chem. doi: 10.1039/b303857b – volume: 66 start-page: 165440 year: 2002 ident: 10.1016/j.ceramint.2018.02.024_bib69 article-title: Thermal conductivity of multiwalled carbon nanotubes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.165440 – volume: 56 start-page: 4070 year: 2008 ident: 10.1016/j.ceramint.2018.02.024_bib28 article-title: The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in a-alumina ceramics for structural reinforcement publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.04.029 – volume: 110 start-page: 123715 year: 2011 ident: 10.1016/j.ceramint.2018.02.024_bib62 article-title: Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions publication-title: J. Appl. Phys. doi: 10.1063/1.3671675 – volume: 94 start-page: 3774 year: 2011 ident: 10.1016/j.ceramint.2018.02.024_bib56 article-title: Mechanical and electrical properties of multiwalled CNT-alumina nanocomposites prepared by a sequential two-step processing of ultrasonic spray pyrolysis and spark plasma sintering publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04689.x – volume: 556 start-page: 382 year: 2012 ident: 10.1016/j.ceramint.2018.02.024_bib23 article-title: Microstructure and mechanical properties of single wall carbon nanotube reinforced yttria stabilized zircona ceramics publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.07.001 – volume: 63 start-page: 165408 year: 2001 ident: 10.1016/j.ceramint.2018.02.024_bib34 article-title: Electron energy-loss spectroscopy of electron states in isolated carbon nanostructures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.165408 – volume: 49 start-page: 6048 year: 2014 ident: 10.1016/j.ceramint.2018.02.024_bib38 article-title: Thermal conductivities of alumina-based multiwall carbon nanotube ceramic composites publication-title: J. Mater. Sci. doi: 10.1007/s10853-014-8327-8 – volume: 32 start-page: 1847 year: 2012 ident: 10.1016/j.ceramint.2018.02.024_bib68 article-title: Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2012.01.026 – volume: 48 start-page: 1743 year: 2010 ident: 10.1016/j.ceramint.2018.02.024_bib60 article-title: Preparation and electrical properties of graphene nanosheet/Al2O3 composites publication-title: Carbon doi: 10.1016/j.carbon.2010.01.017 – volume: 30 start-page: 865 year: 2010 ident: 10.1016/j.ceramint.2018.02.024_bib26 article-title: Carbon nanotube toughened aluminium oxide nanocomposite publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2009.09.032 – volume: 75 start-page: 205407 year: 2007 ident: 10.1016/j.ceramint.2018.02.024_bib63 article-title: Electrical and thermal properties of carbon nanotube bulk materials: experimental studies for the 328–958 K temperature range publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.205407 – volume: 109 start-page: 083503 year: 2011 ident: 10.1016/j.ceramint.2018.02.024_bib72 article-title: Carbon diffusion in alumina from carbon and Ti2AlC thin films publication-title: J. Appl. Phys. doi: 10.1063/1.3573490 – volume: 5 start-page: 90 year: 2015 ident: 10.1016/j.ceramint.2018.02.024_bib5 article-title: Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites publication-title: Nanomaterials doi: 10.3390/nano5010090 – volume: 82 start-page: 2246 year: 1999 ident: 10.1016/j.ceramint.2018.02.024_bib52 article-title: Correlation of fracture toughness and strength publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb02069.x – volume: 32 start-page: 84 year: 2017 ident: 10.1016/j.ceramint.2018.02.024_bib9 article-title: Recent progress in graphene based ceramic composites: a review publication-title: J. Mater. Res. doi: 10.1557/jmr.2016.390 – volume: 43 start-page: 6180 year: 2017 ident: 10.1016/j.ceramint.2018.02.024_bib27 article-title: Mechanical properties of graphene oxide reinforced alumina matrix composites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.02.015 – volume: 36 start-page: 2075 year: 2016 ident: 10.1016/j.ceramint.2018.02.024_bib67 article-title: Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.02.032 – volume: 25 start-page: 427 year: 2011 ident: 10.1016/j.ceramint.2018.02.024_bib2 article-title: Graphene: synthesis, functionalization and properties publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984911025961 – volume: 48 start-page: 1952 year: 2010 ident: 10.1016/j.ceramint.2018.02.024_bib49 article-title: Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites publication-title: Carbon doi: 10.1016/j.carbon.2010.01.063 |
SSID | ssj0016940 |
Score | 2.4048092 |
Snippet | Single wall carbon nanotube (SWCNT) and reduced graphene oxide (RGO) reinforced alumina ceramic composites were fabricated, and their microstructure, interface... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 8350 |
SubjectTerms | Alumina Carbon nanotube Ceramic composite Reduced graphene oxide Spark plasma sintering |
Title | Comparative study on carbon nanotube- and reduced graphene oxide-reinforced alumina ceramic composites |
URI | https://dx.doi.org/10.1016/j.ceramint.2018.02.024 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66XvQgPnF9LDl4rbvNo02Oy6KsintRwVtJ0gQqml1qFzz52530oSsIHoRCactAmKbfN5NOvkHonDoBUTdREXU6DwmKixTVJkqpZJzz1DbrkHezZPrIbp740xqadHthQllli_0Nptdo3d4Ztt4cLopieA8JFRGCBY4PXcAhBdogwPaihzbG17fT2dfPhESyZqklhY8fDFY2Cj9fGFuq18KHsspY1PKdhP3OUSu8c7WDttuAEY-bMe2iNev30NaKjOA-cpNvCW9c68XiucdGlRpOXvl5tdQ2wsrnuAxKrTbHtU41wByevxe5jUpbC6iGJwrQqvAKNyM2ONSch8Iu-3aAHq8uHybTqO2fEBmg5SpiQkvHLJEQYsWMpw5iPa1DxkZFKtNci1wRbQEqKVNCc-OMNoRTR_J4pERMD1HPz709QlgKmdiRiWNqDEsck8pAosOJcnlqeSL6iHcey0wrLh56XLxkXRXZc9Z5OguezkYEDtZHwy-7RSOv8aeF7F5I9mOiZMABf9ge_8P2BG2Gq6bW8RT1qnJpzyAeqfQArV98xIN21n0CfaLhaA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6ye1AP4hPXZw5ea7d5tMlRFmV1HxdX8FaSNIGKpkut4M836WNdQfAgFAoNA2GafjOTfvkGgCtsmMu6kQiwkZkvUEwgsFRBgjmhlCa62YeczePxE3l4ps8bYNSdhfG0yhb7G0yv0bp9ErbeDJd5Hj66ggoxRnyM913AXQnUJ76pdQ_0b-4n4_nqZ0LMSbPVkriP3xmsHRR-uVa6FG-59bTKiNXynYj8HqPW4s7dLthpE0Z408xpD2xouw-212QED4AZfUt4w1ovFhYWKlFKd7PCFtWH1AEUNoOlV2rVGax1qh3MweIzz3RQ6lpA1Y8Ih1a5FbCZsYKec-6JXfr9EDzd3S5G46DtnxAoF5argDDJDdGIuxQrIjQxLteT0ldsmCU8ySTLBJLaQSUmgkmqjJIKUWxQFg0Fi_AR6NnC6mMAOeOxHqoowkqR2BAulCt0KBImSzSN2QDQzmOpasXFfY-L17Rjkb2knadT7-l0iNxFBiBc2S0beY0_LXj3QtIfCyV1MeAP25N_2F6CzfFiNk2n9_PJKdjyIw3v8Qz0qvJDn7vcpJIX7dr7AtAJ404 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+on+carbon+nanotube-+and+reduced+graphene+oxide-reinforced+alumina+ceramic+composites&rft.jtitle=Ceramics+international&rft.au=Shin%2C+Jung-Hoo&rft.au=Choi%2C+Jonghyun&rft.au=Kim%2C+Miyoung&rft.au=Hong%2C+Seong-Hyeon&rft.date=2018-05-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.volume=44&rft.issue=7&rft.spage=8350&rft.epage=8357&rft_id=info:doi/10.1016%2Fj.ceramint.2018.02.024&rft.externalDocID=S0272884218303201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |