Detection of pseudosinusoidal epileptic seizure segments in the neonatal EEG by cascading a rule-based algorithm with a neural network
This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoid...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 53; no. 4; pp. 633 - 641 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 |
| DOI | 10.1109/TBME.2006.870249 |
Cover
| Abstract | This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development. |
|---|---|
| AbstractList | This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development. This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development.This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development. |
| Author | Karayiannis, N.B. Mukherjee, A. Hrachovy, R.A. Glover, J.R. Ktonas, P.Y. Mizrahi, E.M. Frost, J.D. |
| Author_xml | – sequence: 1 givenname: N.B. surname: Karayiannis fullname: Karayiannis, N.B. email: karayiannis@uh.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA – sequence: 2 givenname: A. surname: Mukherjee fullname: Mukherjee, A. organization: Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA – sequence: 3 givenname: J.R. surname: Glover fullname: Glover, J.R. organization: Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA – sequence: 4 givenname: P.Y. surname: Ktonas fullname: Ktonas, P.Y. organization: Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA – sequence: 5 givenname: J.D. surname: Frost fullname: Frost, J.D. – sequence: 6 givenname: R.A. surname: Hrachovy fullname: Hrachovy, R.A. – sequence: 7 givenname: E.M. surname: Mizrahi fullname: Mizrahi, E.M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16602569$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk9rFDEYh4NU7LZ6FwQJHvQ0a978m-Soda1CxUs9D5mZd7aps5k1yVDqB_Bzm2WrSEHXS15Cnt-PJDwn5ChMAQl5CmwJwOzry7efVkvOmF6amnFpH5AFKGUqrgQckQVjYCrLrTwmJyldl600Uj8ix6A140rbBfnxDjN22U-BTgPdJpz7Kfkwp8n3bqS49SNus-9oQv99jljmeoMhJ-oDzVdIA07B5YKuVue0vaWdS53rfVhTR-M8YtW6hD1143qKPl9t6E1Zy1nAOZZUwHwzxa-PycPBjQmf3M1T8uX96vLsQ3Xx-fzj2ZuLqpOgciWlgcG01nBrlbKitwwYiBZtX4McUJqhbzvTDUPdynbQVjIrQKAB0zo-1OKUvNr3buP0bcaUm41PHY6jK--YU2NqCYYrEIV8-U9S10YKIfVBkBsGmpvDjZwZKxio_wCF0ErJgyBYKWsmeQFf3AOvpzmG8tON0Qrqmlko0PM7aG432Dfb6Dcu3ja_ZCmA3gNdnFKKODSdz27nTo7Ojw2wZmdls7Oy2VnZ7K0sQXYv-Lv775Fn-4hHxD-uwowCLn4C3PDr0A |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1007_s10309_021_00423_2 crossref_primary_10_1109_TBME_2012_2190601 crossref_primary_10_1016_j_asoc_2011_07_004 crossref_primary_10_1016_j_asoc_2016_12_009 crossref_primary_10_1016_j_eswa_2013_09_022 crossref_primary_10_1109_TBME_2012_2215609 crossref_primary_10_1186_1687_6180_2012_215 crossref_primary_10_1016_j_clinph_2007_08_012 crossref_primary_10_1186_1475_925X_10_29 crossref_primary_10_1080_00207720802083018 crossref_primary_10_1097_00004691_200612000_00004 crossref_primary_10_1097_WNP_0000000000000767 crossref_primary_10_1097_WNP_0b013e3181b2f29d crossref_primary_10_1109_RBME_2016_2543683 crossref_primary_10_1016_j_clinph_2005_12_030 crossref_primary_10_1097_WNP_0000000000000295 crossref_primary_10_1007_s10439_012_0675_4 crossref_primary_10_1016_j_siny_2013_04_004 crossref_primary_10_1111_j_1528_1167_2006_00571_x crossref_primary_10_3103_S1060992X08030016 crossref_primary_10_29252_nirp_bcn_8_6_479 |
| Cites_doi | 10.1097/00004691-199903000-00005 10.1016/s0013-4694(97)00005-2 10.1093/oso/9780198538493.001.0001 10.1016/0013-4694(92)90179-L 10.1007/s00500-005-0498-4 10.1088/0967-3334/25/4/012 10.1016/S0013-4694(97)00003-9 10.1159/000423846 10.1109/10.995684 10.1080/00029238.1986.11080191 10.1109/IEMBS.2002.1134392 10.1109/TBME.2002.1001970 10.1109/72.572106 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TBME.2006.870249 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database Technology Research Database Engineering Research Database Engineering Research Database MEDLINE - Academic MEDLINE Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 641 |
| ExternalDocumentID | 2340539681 16602569 10_1109_TBME_2006_870249 1608512 |
| Genre | orig-research Evaluation Studies Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: 1 R01 NS040577 – fundername: NINDS NIH HHS grantid: N01-NS-2316 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c415t-4481f8b982995593d901013be9d714fe48fdbc8cff7b4bf69409313e818ba2f73 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 |
| IngestDate | Tue Oct 07 09:13:34 EDT 2025 Tue Sep 30 23:21:54 EDT 2025 Sat Sep 27 20:56:16 EDT 2025 Tue Oct 07 09:22:50 EDT 2025 Tue Oct 07 09:42:21 EDT 2025 Mon Oct 06 18:08:28 EDT 2025 Mon Jun 30 03:18:22 EDT 2025 Wed Feb 19 01:49:09 EST 2025 Thu Apr 24 23:06:32 EDT 2025 Wed Oct 01 06:38:57 EDT 2025 Wed Aug 27 02:53:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-4481f8b982995593d901013be9d714fe48fdbc8cff7b4bf69409313e818ba2f73 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Undefined-1 ObjectType-Feature-3 |
| PMID | 16602569 |
| PQID | 865177091 |
| PQPubID | 23462 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_874182513 crossref_citationtrail_10_1109_TBME_2006_870249 crossref_primary_10_1109_TBME_2006_870249 ieee_primary_1608512 proquest_miscellaneous_67843346 proquest_journals_865177091 proquest_miscellaneous_28016283 proquest_miscellaneous_19447042 proquest_miscellaneous_20893015 proquest_miscellaneous_20336554 pubmed_primary_16602569 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2006-04-00 |
| PublicationDateYYYYMMDD | 2006-04-01 |
| PublicationDate_xml | – month: 04 year: 2006 text: 2006-04-00 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2006 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref10 Haykin (ref11) 1999 ref2 Bezdek (ref1) 1992 ref17 Shastry (ref25) ref16 Hrachovy (ref12) 1990 Pal (ref21) 1999 Mukherjee (ref20) Purushothaman (ref23) 1998; 1 Gotman (ref7) 1997; 103 Karayiannis (ref13) 2006; 10 Kellaway (ref14) 1985 Purushothaman (ref24) 1995; 5 ref22 Thitai-Kumar (ref26) Volpe (ref27) 1995 ref8 Mizrahi (ref18) 2001; 42 Mizrahi (ref19) 1984; 16 ref9 ref4 ref3 ref6 Fenichel (ref5) 1990 Liu (ref15) 1992; 82 |
| References_xml | – volume-title: Neurology of the Newborn year: 1995 ident: ref27 – ident: ref9 doi: 10.1097/00004691-199903000-00005 – volume: 5 start-page: 253 volume-title: Intelligent Engineering Systems Through Artificial Neural Networks year: 1995 ident: ref24 article-title: On the capacity of feed-forward neural networks for fuzzy classification – ident: ref8 doi: 10.1016/s0013-4694(97)00005-2 – volume-title: 18th Annu. Houston Conf. Biomedical Engineering Research ident: ref25 article-title: Automated detection of complex epileptic seizure waveforms in the neonatal EEG – volume-title: Neuro-Fuzzy Pattern Recognition year: 1999 ident: ref21 – volume-title: Neural Networks: A Comprehensive Foundation year: 1999 ident: ref11 – ident: ref2 doi: 10.1093/oso/9780198538493.001.0001 – volume: 82 start-page: 363 year: 1992 ident: ref15 article-title: Detection of neonatal seizures through computerized EEG analysis publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(92)90179-L – volume: 10 start-page: 382 issue: 4 year: 2006 ident: ref13 article-title: An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram publication-title: Soft Computing J. doi: 10.1007/s00500-005-0498-4 – ident: ref10 doi: 10.1088/0967-3334/25/4/012 – start-page: 193 volume-title: Proc. 21st Annu. Houston Conf. Biomedical Engineering Research ident: ref20 article-title: Improvement of narrowband epileptic seizure detection in neonates using neural networks – volume: 1 start-page: 163 year: 1998 ident: ref23 article-title: Feed-forward neural architectures for membership estimation and fuzzy classification publication-title: Int. J. Smart Eng. Syst. Design – volume: 103 start-page: 356 year: 1997 ident: ref7 article-title: Automated seizure detection in the newborn: Methods and initial evaluation publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00003-9 – ident: ref17 doi: 10.1159/000423846 – ident: ref3 doi: 10.1109/10.995684 – ident: ref16 doi: 10.1080/00029238.1986.11080191 – volume-title: 20th Annu. Houston Conf. Biomedical Engineering Research ident: ref26 article-title: Automated detection of epileptic seizure segments in the neonatal EEG – ident: ref6 doi: 10.1109/IEMBS.2002.1134392 – volume: 16 start-page: 383 year: 1984 ident: ref19 article-title: Characterization of seizures in neonates and young infants by time-synchronized electroencephalographic/polygraphic/video monitoring publication-title: Ann. Neurol. – start-page: 403 volume-title: Long-Term Monitoring in Epilepsy year: 1985 ident: ref14 article-title: Monitoring at the Baylor College of Medicine, Houston – start-page: 201 volume-title: Current Practice of Clinical Electroencephalography year: 1990 ident: ref12 article-title: Electroencephalography of the newborn – ident: ref4 doi: 10.1109/TBME.2002.1001970 – ident: ref22 doi: 10.1109/72.572106 – volume-title: Fuzzy Models for Pattern Recognition: Models That Search for Structures in Data year: 1992 ident: ref1 – volume-title: Neonatal Neurology year: 1990 ident: ref5 – volume: 42 start-page: 102 issue: suppl. 7 year: 2001 ident: ref18 article-title: Neurologic impairment, developmental delay, and postneonatal seizures 2 years after EEG-video documented seizures in near-term and term neonates: Report of the clinical research centers for neonatal seizures publication-title: Epilepsia |
| SSID | ssj0014846 |
| Score | 1.9888744 |
| Snippet | This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 633 |
| SubjectTerms | Algorithms Biological neural networks Brain - physiopathology Detectors Diagnosis, Computer-Assisted - methods Electroencephalography Electroencephalography - methods Epilepsy Epilepsy, Benign Neonatal - diagnosis Epilepsy, Benign Neonatal - physiopathology epileptic seizure segment feedforward neural network (FFNN) Feedforward neural networks Frequency Humans Infant, Newborn Intelligent networks Morphology neonatal seizure Neural networks Neural Networks (Computer) Pattern Recognition, Automated - methods Pediatrics quantum neural network (QNN) Reproducibility of Results Retrospective Studies Sensitivity and Specificity |
| Title | Detection of pseudosinusoidal epileptic seizure segments in the neonatal EEG by cascading a rule-based algorithm with a neural network |
| URI | https://ieeexplore.ieee.org/document/1608512 https://www.ncbi.nlm.nih.gov/pubmed/16602569 https://www.proquest.com/docview/865177091 https://www.proquest.com/docview/19447042 https://www.proquest.com/docview/20336554 https://www.proquest.com/docview/20893015 https://www.proquest.com/docview/28016283 https://www.proquest.com/docview/67843346 https://www.proquest.com/docview/874182513 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOPFoeoTx84IJEdpO148RHHlsqpOXUSr1FfpaIJVltkgP9AfxuZuLsUhC74pRIHluJxzPzjWc8JuS1zozJEp_GJvVZzLVisdKJjHMjHFpI6xVGdBdfxNkF_3yZXR6Qt9uzMM65IfnMTfB1iOXbxvS4VTZNBQIEULi38kKEs1rbiAEvwqGcJAUBnkm-CUkmcnr-fjEPYQdYnOBuYKFQIdDYyz-s0XC9ym6kOVic0_tksfnWkGjybdJ3emKu_yrj-L8_84DcG6EnfRfWykNy4OojcvdGQcIjcnsxhtqPyc-PrhvStGraeLpqXW-btqr7tqksjOJWoE5A3Rjauuq6Xzt4Xg3H5WhVU0CVtHa4MQ-k8_knqn9Qo1ozJOxTRdf90sVoQC1Vy6tmXXVfv1PcEoY2rLAJveqQn_6IXJzOzz-cxeOlDbEBLNDF4O6lvtCyADsH3gqzmP-RMu2kzVPuHS-81aYw3ueaay8kOJgsZQ6Ag1Yzn7PH5LBuaveUUOV8wrw0llvAOYnSM5vpQnlrLOrGJCLTDfNKM1Y0x4s1luXg2SSyRM7jRZuiDJyPyJttj1Wo5rGH9hiZ9psu8CsiJ5v1UY7i3paFyNI8B-gVkVfbVpBTDL4omO6-LVPJeQ4acjfFLGFMALrbRwHoEvDbHgoAHAIQ424KACecMS4iQndQFFjQCGAvDPIkrP8bcxDE5tm_5-aE3Ak7VJjY9JwcduvevQDM1umXg7D-Ag02Pkg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIvE48GgphAL1gQsS2Y3XjpMceWxZoOlpK_UW-VkilmS1SQ70B_C7GcfZpSB2xSmRPLYSj2fmG894jNArGSsVR5aEitg4ZFLQUMgoCxPFjbOQ2goX0c3P-eyCfb6ML_fQm81ZGGNMn3xmRu61j-XrWnVuq2xMuAMIoHBvxYyx2J_W2sQMWOqP5UQERHiSsXVQMsrG83f51AceYHmCw-FKhXLuzH32hz3qL1jZjjV7m3P6AOXrr_WpJt9GXStH6vqvQo7_-zsP0f0BfOK3frU8QnumOkD3bpQkPEC38yHYfoh-fjBtn6hV4driZWM6XTdl1TV1qWEUswSFAgpH4caU193KwPOqPzCHywoDrsSVcVvzQDqdfsTyB1aiUX3KPhZ41S1M6EyoxmJxVa_K9ut37DaFoc3V2IRelc9Qf4wuTqfz97NwuLYhVIAG2hAcPmJTmaVg6cBfodplgBAqTaYTwqxhqdVSpcraRDJpeQYuJiXUAHSQYmITeoT2q7oyTxEWxkbUZkozDUgnEnKiY5kKq5V22jEK0HjNvEINNc3d1RqLovdtoqxwnHdXbfLCcz5Arzc9lr6exw7aQ8e033SeXwE6Xq-PYhD4pkh5TJIEwFeATjatIKku_CJgurumIBljCejI7RSTiFIO-G4XBeBLQHA7KABycMCM2ykAnjBKGQ8Q3kKRupJGAHxhkCd-_d-YAy82z_49NyfozmyenxVnn86_HKO7fr_KpTk9R_vtqjMvAMG18mUvuL8Ax2JBlQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+pseudosinusoidal+epileptic+seizure+segments+in+the+neonatal+EEG+by+cascading+a+rule-based+algorithm+with+a+neural+network&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Karayiannis%2C+Nicolaos+B&rft.au=Mukherjee%2C+Amit&rft.au=Glover%2C+John+R&rft.au=Ktonas%2C+Periklis+Y&rft.date=2006-04-01&rft.issn=0018-9294&rft.volume=53&rft.issue=4&rft.spage=633&rft_id=info:doi/10.1109%2FTBME.2006.870249&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |