Detection of pseudosinusoidal epileptic seizure segments in the neonatal EEG by cascading a rule-based algorithm with a neural network

This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoid...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 53; no. 4; pp. 633 - 641
Main Authors Karayiannis, N.B., Mukherjee, A., Glover, J.R., Ktonas, P.Y., Frost, J.D., Hrachovy, R.A., Mizrahi, E.M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
DOI10.1109/TBME.2006.870249

Cover

Abstract This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development.
AbstractList This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development.
This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development.This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development.
Author Karayiannis, N.B.
Mukherjee, A.
Hrachovy, R.A.
Glover, J.R.
Ktonas, P.Y.
Mizrahi, E.M.
Frost, J.D.
Author_xml – sequence: 1
  givenname: N.B.
  surname: Karayiannis
  fullname: Karayiannis, N.B.
  email: karayiannis@uh.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA
– sequence: 2
  givenname: A.
  surname: Mukherjee
  fullname: Mukherjee, A.
  organization: Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA
– sequence: 3
  givenname: J.R.
  surname: Glover
  fullname: Glover, J.R.
  organization: Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA
– sequence: 4
  givenname: P.Y.
  surname: Ktonas
  fullname: Ktonas, P.Y.
  organization: Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA
– sequence: 5
  givenname: J.D.
  surname: Frost
  fullname: Frost, J.D.
– sequence: 6
  givenname: R.A.
  surname: Hrachovy
  fullname: Hrachovy, R.A.
– sequence: 7
  givenname: E.M.
  surname: Mizrahi
  fullname: Mizrahi, E.M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16602569$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9rFDEYh4NU7LZ6FwQJHvQ0a978m-Soda1CxUs9D5mZd7aps5k1yVDqB_Bzm2WrSEHXS15Cnt-PJDwn5ChMAQl5CmwJwOzry7efVkvOmF6amnFpH5AFKGUqrgQckQVjYCrLrTwmJyldl600Uj8ix6A140rbBfnxDjN22U-BTgPdJpz7Kfkwp8n3bqS49SNus-9oQv99jljmeoMhJ-oDzVdIA07B5YKuVue0vaWdS53rfVhTR-M8YtW6hD1143qKPl9t6E1Zy1nAOZZUwHwzxa-PycPBjQmf3M1T8uX96vLsQ3Xx-fzj2ZuLqpOgciWlgcG01nBrlbKitwwYiBZtX4McUJqhbzvTDUPdynbQVjIrQKAB0zo-1OKUvNr3buP0bcaUm41PHY6jK--YU2NqCYYrEIV8-U9S10YKIfVBkBsGmpvDjZwZKxio_wCF0ErJgyBYKWsmeQFf3AOvpzmG8tON0Qrqmlko0PM7aG432Dfb6Dcu3ja_ZCmA3gNdnFKKODSdz27nTo7Ojw2wZmdls7Oy2VnZ7K0sQXYv-Lv775Fn-4hHxD-uwowCLn4C3PDr0A
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s10309_021_00423_2
crossref_primary_10_1109_TBME_2012_2190601
crossref_primary_10_1016_j_asoc_2011_07_004
crossref_primary_10_1016_j_asoc_2016_12_009
crossref_primary_10_1016_j_eswa_2013_09_022
crossref_primary_10_1109_TBME_2012_2215609
crossref_primary_10_1186_1687_6180_2012_215
crossref_primary_10_1016_j_clinph_2007_08_012
crossref_primary_10_1186_1475_925X_10_29
crossref_primary_10_1080_00207720802083018
crossref_primary_10_1097_00004691_200612000_00004
crossref_primary_10_1097_WNP_0000000000000767
crossref_primary_10_1097_WNP_0b013e3181b2f29d
crossref_primary_10_1109_RBME_2016_2543683
crossref_primary_10_1016_j_clinph_2005_12_030
crossref_primary_10_1097_WNP_0000000000000295
crossref_primary_10_1007_s10439_012_0675_4
crossref_primary_10_1016_j_siny_2013_04_004
crossref_primary_10_1111_j_1528_1167_2006_00571_x
crossref_primary_10_3103_S1060992X08030016
crossref_primary_10_29252_nirp_bcn_8_6_479
Cites_doi 10.1097/00004691-199903000-00005
10.1016/s0013-4694(97)00005-2
10.1093/oso/9780198538493.001.0001
10.1016/0013-4694(92)90179-L
10.1007/s00500-005-0498-4
10.1088/0967-3334/25/4/012
10.1016/S0013-4694(97)00003-9
10.1159/000423846
10.1109/10.995684
10.1080/00029238.1986.11080191
10.1109/IEMBS.2002.1134392
10.1109/TBME.2002.1001970
10.1109/72.572106
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2006.870249
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
Technology Research Database
Engineering Research Database
Engineering Research Database
MEDLINE - Academic
MEDLINE

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 641
ExternalDocumentID 2340539681
16602569
10_1109_TBME_2006_870249
1608512
Genre orig-research
Evaluation Studies
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: 1 R01 NS040577
– fundername: NINDS NIH HHS
  grantid: N01-NS-2316
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c415t-4481f8b982995593d901013be9d714fe48fdbc8cff7b4bf69409313e818ba2f73
IEDL.DBID RIE
ISSN 0018-9294
IngestDate Tue Oct 07 09:13:34 EDT 2025
Tue Sep 30 23:21:54 EDT 2025
Sat Sep 27 20:56:16 EDT 2025
Tue Oct 07 09:22:50 EDT 2025
Tue Oct 07 09:42:21 EDT 2025
Mon Oct 06 18:08:28 EDT 2025
Mon Jun 30 03:18:22 EDT 2025
Wed Feb 19 01:49:09 EST 2025
Thu Apr 24 23:06:32 EDT 2025
Wed Oct 01 06:38:57 EDT 2025
Wed Aug 27 02:53:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-4481f8b982995593d901013be9d714fe48fdbc8cff7b4bf69409313e818ba2f73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 16602569
PQID 865177091
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_874182513
crossref_citationtrail_10_1109_TBME_2006_870249
crossref_primary_10_1109_TBME_2006_870249
ieee_primary_1608512
proquest_miscellaneous_67843346
proquest_journals_865177091
proquest_miscellaneous_28016283
proquest_miscellaneous_19447042
proquest_miscellaneous_20893015
proquest_miscellaneous_20336554
pubmed_primary_16602569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-04-00
PublicationDateYYYYMMDD 2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-04-00
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2006
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref10
Haykin (ref11) 1999
ref2
Bezdek (ref1) 1992
ref17
Shastry (ref25)
ref16
Hrachovy (ref12) 1990
Pal (ref21) 1999
Mukherjee (ref20)
Purushothaman (ref23) 1998; 1
Gotman (ref7) 1997; 103
Karayiannis (ref13) 2006; 10
Kellaway (ref14) 1985
Purushothaman (ref24) 1995; 5
ref22
Thitai-Kumar (ref26)
Volpe (ref27) 1995
ref8
Mizrahi (ref18) 2001; 42
Mizrahi (ref19) 1984; 16
ref9
ref4
ref3
ref6
Fenichel (ref5) 1990
Liu (ref15) 1992; 82
References_xml – volume-title: Neurology of the Newborn
  year: 1995
  ident: ref27
– ident: ref9
  doi: 10.1097/00004691-199903000-00005
– volume: 5
  start-page: 253
  volume-title: Intelligent Engineering Systems Through Artificial Neural Networks
  year: 1995
  ident: ref24
  article-title: On the capacity of feed-forward neural networks for fuzzy classification
– ident: ref8
  doi: 10.1016/s0013-4694(97)00005-2
– volume-title: 18th Annu. Houston Conf. Biomedical Engineering Research
  ident: ref25
  article-title: Automated detection of complex epileptic seizure waveforms in the neonatal EEG
– volume-title: Neuro-Fuzzy Pattern Recognition
  year: 1999
  ident: ref21
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1999
  ident: ref11
– ident: ref2
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 82
  start-page: 363
  year: 1992
  ident: ref15
  article-title: Detection of neonatal seizures through computerized EEG analysis
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(92)90179-L
– volume: 10
  start-page: 382
  issue: 4
  year: 2006
  ident: ref13
  article-title: An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram
  publication-title: Soft Computing J.
  doi: 10.1007/s00500-005-0498-4
– ident: ref10
  doi: 10.1088/0967-3334/25/4/012
– start-page: 193
  volume-title: Proc. 21st Annu. Houston Conf. Biomedical Engineering Research
  ident: ref20
  article-title: Improvement of narrowband epileptic seizure detection in neonates using neural networks
– volume: 1
  start-page: 163
  year: 1998
  ident: ref23
  article-title: Feed-forward neural architectures for membership estimation and fuzzy classification
  publication-title: Int. J. Smart Eng. Syst. Design
– volume: 103
  start-page: 356
  year: 1997
  ident: ref7
  article-title: Automated seizure detection in the newborn: Methods and initial evaluation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00003-9
– ident: ref17
  doi: 10.1159/000423846
– ident: ref3
  doi: 10.1109/10.995684
– ident: ref16
  doi: 10.1080/00029238.1986.11080191
– volume-title: 20th Annu. Houston Conf. Biomedical Engineering Research
  ident: ref26
  article-title: Automated detection of epileptic seizure segments in the neonatal EEG
– ident: ref6
  doi: 10.1109/IEMBS.2002.1134392
– volume: 16
  start-page: 383
  year: 1984
  ident: ref19
  article-title: Characterization of seizures in neonates and young infants by time-synchronized electroencephalographic/polygraphic/video monitoring
  publication-title: Ann. Neurol.
– start-page: 403
  volume-title: Long-Term Monitoring in Epilepsy
  year: 1985
  ident: ref14
  article-title: Monitoring at the Baylor College of Medicine, Houston
– start-page: 201
  volume-title: Current Practice of Clinical Electroencephalography
  year: 1990
  ident: ref12
  article-title: Electroencephalography of the newborn
– ident: ref4
  doi: 10.1109/TBME.2002.1001970
– ident: ref22
  doi: 10.1109/72.572106
– volume-title: Fuzzy Models for Pattern Recognition: Models That Search for Structures in Data
  year: 1992
  ident: ref1
– volume-title: Neonatal Neurology
  year: 1990
  ident: ref5
– volume: 42
  start-page: 102
  issue: suppl. 7
  year: 2001
  ident: ref18
  article-title: Neurologic impairment, developmental delay, and postneonatal seizures 2 years after EEG-video documented seizures in near-term and term neonates: Report of the clinical research centers for neonatal seizures
  publication-title: Epilepsia
SSID ssj0014846
Score 1.9888744
Snippet This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 633
SubjectTerms Algorithms
Biological neural networks
Brain - physiopathology
Detectors
Diagnosis, Computer-Assisted - methods
Electroencephalography
Electroencephalography - methods
Epilepsy
Epilepsy, Benign Neonatal - diagnosis
Epilepsy, Benign Neonatal - physiopathology
epileptic seizure segment
feedforward neural network (FFNN)
Feedforward neural networks
Frequency
Humans
Infant, Newborn
Intelligent networks
Morphology
neonatal seizure
Neural networks
Neural Networks (Computer)
Pattern Recognition, Automated - methods
Pediatrics
quantum neural network (QNN)
Reproducibility of Results
Retrospective Studies
Sensitivity and Specificity
Title Detection of pseudosinusoidal epileptic seizure segments in the neonatal EEG by cascading a rule-based algorithm with a neural network
URI https://ieeexplore.ieee.org/document/1608512
https://www.ncbi.nlm.nih.gov/pubmed/16602569
https://www.proquest.com/docview/865177091
https://www.proquest.com/docview/19447042
https://www.proquest.com/docview/20336554
https://www.proquest.com/docview/20893015
https://www.proquest.com/docview/28016283
https://www.proquest.com/docview/67843346
https://www.proquest.com/docview/874182513
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOPFoeoTx84IJEdpO148RHHlsqpOXUSr1FfpaIJVltkgP9AfxuZuLsUhC74pRIHluJxzPzjWc8JuS1zozJEp_GJvVZzLVisdKJjHMjHFpI6xVGdBdfxNkF_3yZXR6Qt9uzMM65IfnMTfB1iOXbxvS4VTZNBQIEULi38kKEs1rbiAEvwqGcJAUBnkm-CUkmcnr-fjEPYQdYnOBuYKFQIdDYyz-s0XC9ym6kOVic0_tksfnWkGjybdJ3emKu_yrj-L8_84DcG6EnfRfWykNy4OojcvdGQcIjcnsxhtqPyc-PrhvStGraeLpqXW-btqr7tqksjOJWoE5A3Rjauuq6Xzt4Xg3H5WhVU0CVtHa4MQ-k8_knqn9Qo1ozJOxTRdf90sVoQC1Vy6tmXXVfv1PcEoY2rLAJveqQn_6IXJzOzz-cxeOlDbEBLNDF4O6lvtCyADsH3gqzmP-RMu2kzVPuHS-81aYw3ueaay8kOJgsZQ6Ag1Yzn7PH5LBuaveUUOV8wrw0llvAOYnSM5vpQnlrLOrGJCLTDfNKM1Y0x4s1luXg2SSyRM7jRZuiDJyPyJttj1Wo5rGH9hiZ9psu8CsiJ5v1UY7i3paFyNI8B-gVkVfbVpBTDL4omO6-LVPJeQ4acjfFLGFMALrbRwHoEvDbHgoAHAIQ424KACecMS4iQndQFFjQCGAvDPIkrP8bcxDE5tm_5-aE3Ak7VJjY9JwcduvevQDM1umXg7D-Ag02Pkg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIvE48GgphAL1gQsS2Y3XjpMceWxZoOlpK_UW-VkilmS1SQ70B_C7GcfZpSB2xSmRPLYSj2fmG894jNArGSsVR5aEitg4ZFLQUMgoCxPFjbOQ2goX0c3P-eyCfb6ML_fQm81ZGGNMn3xmRu61j-XrWnVuq2xMuAMIoHBvxYyx2J_W2sQMWOqP5UQERHiSsXVQMsrG83f51AceYHmCw-FKhXLuzH32hz3qL1jZjjV7m3P6AOXrr_WpJt9GXStH6vqvQo7_-zsP0f0BfOK3frU8QnumOkD3bpQkPEC38yHYfoh-fjBtn6hV4driZWM6XTdl1TV1qWEUswSFAgpH4caU193KwPOqPzCHywoDrsSVcVvzQDqdfsTyB1aiUX3KPhZ41S1M6EyoxmJxVa_K9ut37DaFoc3V2IRelc9Qf4wuTqfz97NwuLYhVIAG2hAcPmJTmaVg6cBfodplgBAqTaYTwqxhqdVSpcraRDJpeQYuJiXUAHSQYmITeoT2q7oyTxEWxkbUZkozDUgnEnKiY5kKq5V22jEK0HjNvEINNc3d1RqLovdtoqxwnHdXbfLCcz5Arzc9lr6exw7aQ8e033SeXwE6Xq-PYhD4pkh5TJIEwFeATjatIKku_CJgurumIBljCejI7RSTiFIO-G4XBeBLQHA7KABycMCM2ykAnjBKGQ8Q3kKRupJGAHxhkCd-_d-YAy82z_49NyfozmyenxVnn86_HKO7fr_KpTk9R_vtqjMvAMG18mUvuL8Ax2JBlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+pseudosinusoidal+epileptic+seizure+segments+in+the+neonatal+EEG+by+cascading+a+rule-based+algorithm+with+a+neural+network&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Karayiannis%2C+Nicolaos+B&rft.au=Mukherjee%2C+Amit&rft.au=Glover%2C+John+R&rft.au=Ktonas%2C+Periklis+Y&rft.date=2006-04-01&rft.issn=0018-9294&rft.volume=53&rft.issue=4&rft.spage=633&rft_id=info:doi/10.1109%2FTBME.2006.870249&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon