Development and Performance of Dengue Diagnostic Clinical Algorithms in Colombia
Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases. Fir...
Saved in:
Published in | The American journal of tropical medicine and hygiene Vol. 102; no. 6; pp. 1226 - 1236 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Institute of Tropical Medicine
01.06.2020
The American Society of Tropical Medicine and Hygiene |
Subjects | |
Online Access | Get full text |
ISSN | 0002-9637 1476-1645 1476-1645 |
DOI | 10.4269/ajtmh.19-0722 |
Cover
Abstract | Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases. First, diagnostic algorithms were developed using a database of 1,130 dengue and 918 non-dengue patients, expert opinion, and literature review. Algorithms with > 70% sensitivity were prospectively validated in a single-group quasi-experimental trial with an adaptive Bayesian design. In the first phase, the algorithms that were developed with the continuous Bayes formula and included leukocytes and platelet counts, in addition to selected signs and symptoms, showed the highest sensitivities (> 80%). In the second phase, the algorithms were applied on admission to 1,039 consecutive febrile subjects in three endemic areas in Colombia of whom 25 were laboratory-confirmed dengue, 307 non-dengue, 514 probable dengue, and 193 undetermined. Including parameters of the hemogram consistently improved specificity without affecting sensitivity. In the final analysis, considering only confirmed dengue and non-dengue cases, an algorithm with a sensitivity and specificity of 65.4% (95% credibility interval 50-83) and 40.1% (34.7-45.7) was identified. All tested algorithms had likelihood ratios close to 1, and hence, they are not useful to confirm or rule out dengue in endemic areas. The findings support the use of hemograms to aid dengue diagnosis and highlight the challenges of clinical diagnosis of dengue. |
---|---|
AbstractList | Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases. First, diagnostic algorithms were developed using a database of 1,130 dengue and 918 non-dengue patients, expert opinion, and literature review. Algorithms with > 70% sensitivity were prospectively validated in a single-group quasi-experimental trial with an adaptive Bayesian design. In the first phase, the algorithms that were developed with the continuous Bayes formula and included leukocytes and platelet counts, in addition to selected signs and symptoms, showed the highest sensitivities (> 80%). In the second phase, the algorithms were applied on admission to 1,039 consecutive febrile subjects in three endemic areas in Colombia of whom 25 were laboratory-confirmed dengue, 307 non-dengue, 514 probable dengue, and 193 undetermined. Including parameters of the hemogram consistently improved specificity without affecting sensitivity. In the final analysis, considering only confirmed dengue and non-dengue cases, an algorithm with a sensitivity and specificity of 65.4% (95% credibility interval 50–83) and 40.1% (34.7–45.7) was identified. All tested algorithms had likelihood ratios close to 1, and hence, they are not useful to confirm or rule out dengue in endemic areas. The findings support the use of hemograms to aid dengue diagnosis and highlight the challenges of clinical diagnosis of dengue. Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases. First, diagnostic algorithms were developed using a database of 1,130 dengue and 918 non-dengue patients, expert opinion, and literature review. Algorithms with > 70% sensitivity were prospectively validated in a single-group quasi-experimental trial with an adaptive Bayesian design. In the first phase, the algorithms that were developed with the continuous Bayes formula and included leukocytes and platelet counts, in addition to selected signs and symptoms, showed the highest sensitivities (> 80%). In the second phase, the algorithms were applied on admission to 1,039 consecutive febrile subjects in three endemic areas in Colombia of whom 25 were laboratory-confirmed dengue, 307 non-dengue, 514 probable dengue, and 193 undetermined. Including parameters of the hemogram consistently improved specificity without affecting sensitivity. In the final analysis, considering only confirmed dengue and non-dengue cases, an algorithm with a sensitivity and specificity of 65.4% (95% credibility interval 50-83) and 40.1% (34.7-45.7) was identified. All tested algorithms had likelihood ratios close to 1, and hence, they are not useful to confirm or rule out dengue in endemic areas. The findings support the use of hemograms to aid dengue diagnosis and highlight the challenges of clinical diagnosis of dengue.Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases. First, diagnostic algorithms were developed using a database of 1,130 dengue and 918 non-dengue patients, expert opinion, and literature review. Algorithms with > 70% sensitivity were prospectively validated in a single-group quasi-experimental trial with an adaptive Bayesian design. In the first phase, the algorithms that were developed with the continuous Bayes formula and included leukocytes and platelet counts, in addition to selected signs and symptoms, showed the highest sensitivities (> 80%). In the second phase, the algorithms were applied on admission to 1,039 consecutive febrile subjects in three endemic areas in Colombia of whom 25 were laboratory-confirmed dengue, 307 non-dengue, 514 probable dengue, and 193 undetermined. Including parameters of the hemogram consistently improved specificity without affecting sensitivity. In the final analysis, considering only confirmed dengue and non-dengue cases, an algorithm with a sensitivity and specificity of 65.4% (95% credibility interval 50-83) and 40.1% (34.7-45.7) was identified. All tested algorithms had likelihood ratios close to 1, and hence, they are not useful to confirm or rule out dengue in endemic areas. The findings support the use of hemograms to aid dengue diagnosis and highlight the challenges of clinical diagnosis of dengue. |
Author | Osorio, Lyda Villegas, Liliana Tovar, José Rafael Caicedo-Borrero, Diana María Bonelo, Anilza Méndez, Andrés Collazos, Constanza Celis, Jairo Parra, Beatriz |
Author_xml | – sequence: 1 givenname: Diana María surname: Caicedo-Borrero fullname: Caicedo-Borrero, Diana María organization: Grupo de Investigación en Economía, Gestión y Salud, Department of Public Health and Epidemiology, Pontificia Universidad Javeriana Seccional Cali, Cali, Colombia;, Grupo Epidemiología y Salud Poblacional GESP, School of Public Health, Universidad del Valle, Cali, Colombia – sequence: 2 givenname: José Rafael surname: Tovar fullname: Tovar, José Rafael organization: School of Statistics, Universidad del Valle, Cali, Colombia – sequence: 3 givenname: Andrés surname: Méndez fullname: Méndez, Andrés organization: School of Statistics, Universidad del Valle, Cali, Colombia – sequence: 4 givenname: Beatriz surname: Parra fullname: Parra, Beatriz organization: Department of Microbiology, Grupo de Investigación en Virus Emergentes VIREM, School of Basic Sciences, Universidad del Valle, Cali, Colombia – sequence: 5 givenname: Anilza surname: Bonelo fullname: Bonelo, Anilza organization: Department of Microbiology, Grupo de Investigación en Virus Emergentes VIREM, School of Basic Sciences, Universidad del Valle, Cali, Colombia – sequence: 6 givenname: Jairo surname: Celis fullname: Celis, Jairo organization: Grupo de Investigación en Evaluación de Servicios de Salud, COMFANDI, Cali, Colombia – sequence: 7 givenname: Liliana surname: Villegas fullname: Villegas, Liliana organization: Grupo de Investigación en Evaluación de Servicios de Salud, COMFANDI, Cali, Colombia – sequence: 8 givenname: Constanza surname: Collazos fullname: Collazos, Constanza organization: Grupo de Investigación en Evaluación de Servicios de Salud, COMFANDI, Cali, Colombia – sequence: 9 givenname: Lyda surname: Osorio fullname: Osorio, Lyda organization: Grupo Epidemiología y Salud Poblacional GESP, School of Public Health, Universidad del Valle, Cali, Colombia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32342839$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1P3DAQxa2KqiwfR67IEpdeQm2PY8cXJLRbaCWkcmjPluM4u1459mInSPz3zRaKClJPc5jfPL037wgdxBQdQmeUXHIm1BezHYfNJVUVkYx9QAvKpaio4PUBWhBCWKUEyEN0VMqWENowSj-hQ2DAWQNqge5X7tGFtBtcHLGJHb53uU95MNE6nHq8cnE9ObzyZh1TGb3Fy-Cjtybg67BO2Y-boWAf8TKFNLTenKCPvQnFnb7MY_Tr5uvP5bfq7sft9-X1XWU5rccKrCGgbGtYS_qu4ZK3PaheUNW5mjUCmGLQccWlYnUDDSeW8lqCI0aqllA4RlfPurupHVxnZ__ZBL3LfjD5SSfj9dtN9Bu9To9ashpIw2aBzy8COT1Mrox68MW6EEx0aSqagaoFASLFjF68Q7dpynGOpxmnQGshFZ-p838dvVr5--wZqJ4Bm1Mp2fWvCCV6X6b-U6amSu_LnHl4x1s_mtGnfSAf_nP1GzZQoxk |
CitedBy_id | crossref_primary_10_3389_fitd_2023_1118774 crossref_primary_10_1186_s40249_023_01141_9 crossref_primary_10_1016_S2214_109X_22_00514_9 crossref_primary_10_3390_v13071401 crossref_primary_10_3390_diagnostics14050533 crossref_primary_10_1093_ofid_ofad373 crossref_primary_10_1371_journal_pntd_0010832 crossref_primary_10_1371_journal_pone_0295260 crossref_primary_10_1007_s10729_022_09611_6 crossref_primary_10_14295_idonline_v17i65_3707 crossref_primary_10_1515_em_2021_0020 |
Cites_doi | 10.1186/s12878-018-0116-1 10.1371/journal.pone.0094655 10.1007/s11908-018-0633-x 10.7705/biomedica.v26i1.1391 10.4269/ajtmh.1958.7.561 10.4269/ajtmh.2010.09-0552 10.1186/1423-0127-20-75 10.1186/1743-422X-7-361 10.1371/journal.pmed.1001363 10.1371/journal.pone.0050765 10.1007/978-0-387-72825-4 10.1371/journal.pntd.0001191 10.1109/TITB.2011.2171978 10.1016/j.jcv.2005.06.002 10.1157/13089916 10.1016/S0929-6646(09)60420-4 10.7705/biomedica.v39i1.3990 10.1128/JCM.30.3.545-551.1992 10.1002/bimj.200710415 10.1016/S1473-3099(16)30473-X 10.1186/s12879-016-2024-y 10.1017/S0950268805005753 10.1038/nrd1927 10.1186/1750-1172-3-11 10.1016/j.trstmh.2008.11.009 10.1371/journal.pntd.0000196 10.1016/j.jcv.2004.03.005 10.1093/cid/cix672 10.1056/NEJMra1110265 10.2307/3001968 10.1111/j.2517-6161.1979.tb01052.x 10.1038/nrmicro2459 10.1016/0166-0934(91)90011-N 10.1093/biomet/92.3.633 10.1590/S0103-40142008000300004 10.4269/ajtmh.2011.10-0316 10.1590/0074-0276140384 10.1016/S1473-3099(16)30545-X 10.1371/journal.pntd.0002385 10.1371/journal.pone.0096314 10.1088/1757-899X/434/1/012070 10.1016/S1473-3099(16)00026-8 10.1201/b16018 10.1002/9781118033197 10.1002/9780470317105.ch4 10.1371/journal.pntd.0006573 10.1186/1471-2334-13-77 10.1080/10543400701668274 10.1016/j.jclinepi.2008.04.007 10.1371/journal.pntd.0003638 10.1186/s12879-016-1368-7 10.3390/diagnostics1010001 10.1111/j.1365-3156.2011.02793.x 10.1371/journal.pntd.0001760 |
ContentType | Journal Article |
Copyright | Copyright Institute of Tropical Medicine Jun 2020 The American Society of Tropical Medicine and Hygiene 2020 |
Copyright_xml | – notice: Copyright Institute of Tropical Medicine Jun 2020 – notice: The American Society of Tropical Medicine and Hygiene 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.4269/ajtmh.19-0722 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1476-1645 |
EndPage | 1236 |
ExternalDocumentID | PMC7253082 32342839 10_4269_ajtmh_19_0722 |
Genre | Journal Article |
GeographicLocations | Colombia |
GeographicLocations_xml | – name: Colombia |
GroupedDBID | --- 23M 2WC 34G 36B 53G 5GY 5RE 5VS 6J9 AAYXX ABCQX ABPPZ ACGFO ADBBV ADTPD AENEX AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION DIK E3Z EBD EBS EJD EMB EMOBN F5P GX1 H13 HYE K-O KQ8 L7B MV1 OK1 P2P PQQKQ RHI RPM SV3 TR2 TST UPT W8F WH7 WOQ WOW ~KM .55 .GJ 1CY 3O- ABTNK AFFNX AGCDD AI. CGR CUY CVF ECM EIF NEJ NPM OHT PKN RHF VH1 X7M XOL ZGI ZKB ZXP 7X8 5PM |
ID | FETCH-LOGICAL-c415t-3ca039cba2b0fd8474bf39f619de528632923d494792583840c14573e0a79b013 |
ISSN | 0002-9637 1476-1645 |
IngestDate | Thu Aug 21 18:32:26 EDT 2025 Fri Jul 11 11:23:15 EDT 2025 Mon Jun 30 06:38:47 EDT 2025 Wed Feb 19 02:29:14 EST 2025 Tue Jul 01 03:04:10 EDT 2025 Thu Apr 24 23:05:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-3ca039cba2b0fd8474bf39f619de528632923d494792583840c14573e0a79b013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Financial support: This work was partially supported by Colombian Science, Technology and Innovation Fund of Sistema General de Regalías, Santander, Casanare, Valle del Cauca. BPIN 2013000100011, Universidad del Valle, and Caja de Compensación Familiar del Valle del Cauca COMFANDI. Authors’ addresses: Diana María Caicedo-Borrero, Grupo de Investigación en Epidemiología y Salud Poblacional GESP, School of Public Health, Universidad del Valle, Cali, Colombia, and Department of Public Health and Epidemiology, Pontificia Universidad Javeriana Cali, Cali, Colombia, E-mail: diana.maria.caicedo@correounivalle.edu.co. José Rafael Tovar and Andrés Méndez, School of Statistics, Universidad del Valle, Cali, Colombia, E-mails: jose.r.tovar@correounivalle.edu.co and andres.mendez@correounivalle.edu.co. Beatriz Parra and Anilza Bonelo, Department of Microbiology, Grupo de Investigación en Virus Emergentes VIREM, School of Basic Sciences, Universidad del Valle, Cali, Colombia, E-mails: beatriz.parra@correounivalle.edu.co and anilza.bonelo@correounivalle.edu.co. Jairo Celis, Liliana Villegas, and Constanza Collazos, Grupo de Investigación en Evaluación de Servicios de Salud, COMFANDI, Cali, Colombia, E-mails: jairoc3@hotmail.com, lilivibal@yahoo.com, and epidemioinvestiga@comfandi.com.co. Lyda Osorio, Grupo de Investigación en Epidemiología y Salud Poblacional GESP, School of Public Health, Universidad del Valle, Cali, Colombia, E-mail: lyda.osorio@correounivalle.edu.co. |
OpenAccessLink | https://www.ajtmh.org/downloadpdf/journals/tpmd/102/6/article-p1226.pdf |
PMID | 32342839 |
PQID | 2413156794 |
PQPubID | 105381 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7253082 proquest_miscellaneous_2395603076 proquest_journals_2413156794 pubmed_primary_32342839 crossref_primary_10_4269_ajtmh_19_0722 crossref_citationtrail_10_4269_ajtmh_19_0722 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Deerfield, Illinois |
PublicationTitle | The American journal of tropical medicine and hygiene |
PublicationTitleAlternate | Am J Trop Med Hyg |
PublicationYear | 2020 |
Publisher | Institute of Tropical Medicine The American Society of Tropical Medicine and Hygiene |
Publisher_xml | – name: Institute of Tropical Medicine – name: The American Society of Tropical Medicine and Hygiene |
References | Castro (b2) 2017; 17 Kuno (b41) 1991; 33 Tuan (b29) 2015; 9 Cucunawangsih (b31) 2015; 6 Simmons (b3) 2012; 366 Ramos (b21) 2009; 103 Farooqi (b66) 2013; 1 Free (b71) 2013; 10 Hari Rao (b33) 2012; 16 Méndez (b55) 2019 (b38) 1993 Padilla (b34) 2012 Villar (b39) 2013; 33 Fienberg (b52) 2007 Shaukat Dar (b67) 2015; 6 Peeling (b14) 2010; 8 Tsai (b60) 2017; 65 Martínez Torres (b4) 2008; 22 Díaz (b20) 2006; 64 Chang (b25) 2009; 108 Costa (b15) 2014; 9 Press (b44) 2002 Ho (b24) 2013; 20 (b73) 2016 Chanama (b62) 2004; 31 Pennello (b51) 2008; 18 Panerai (b69) 1990 Katzelnick (b5) 2017; 17 Tovar (b47) 2015; 21 Chaloemwong (b59) 2018; 18 Cavalcanti (b11) 2014; 109 Chaterji (b9) 2011; 84 Pan-ngum (b17) 2013; 8 Tanner (b27) 2008; 2 (b56) 2011 Rodriguez-Manzano (b13) 2018; 20 Chow (b72) 2008; 3 Chadwick (b22) 2006; 35 (b57) 2013 Fernández (b30) 2016; 16 Alexander (b12) 2011; 16 Buonora (b16) 2016; 16 Brady (b50) 2012; 6 Kumar (b32) 2013 Acosta Torres (b28) 2016; 88 Sa-Ngasang (b61) 2006; 134 Caicedo (b40) 2019; 39 (b70) 2010 Vega Riverón (b26) 2012; 64 Leeflang (b68) 2009; 62 Wilcoxon (b53) 1945; 1 Ruopp (b49) 2008; 50 Stanaway (b1) 2016; 16 Box (b48) 1992 (b6) 2009 (b37) 2010 Diaz (b19) 2006; 26 Daumas (b23) 2013; 13 Gelman (b46) 2013 Broemeling (b63) 2011; 1 Low (b8) 2011; 5 Macedo (b10) 2014; 9 Berry (b36) 2006; 5 Lanciotti (b42) 1992; 30 Osorio (b18) 2010; 7 Chang (b54) 2019 Gutiérrez (b7) 2013; 7 Cheng (b35) 2005; 92 Gregory (b58) 2010; 82 Sa-ngamuang (b64) 2018; 12 Clarke (b43) 1958; 7 Dawid (b45) 1979; 41 Arafiyah (b65) 2018; 434 |
References_xml | – volume-title: Shiny: Web Application Framework for R. R package version 1.3.2 year: 2019 ident: b54 – volume: 18 start-page: 1 year: 2018 ident: b59 article-title: Useful clinical features and hematological parameters for the diagnosis of dengue infection in patients with acute febrile illness: a retrospective study publication-title: BMC Hematol doi: 10.1186/s12878-018-0116-1 – volume: 9 start-page: e94655 year: 2014 ident: b15 article-title: A Meta-analysis of the diagnostic accuracy of two commercial NS1 antigen ELISA tests for early dengue virus detection publication-title: PLoS One doi: 10.1371/journal.pone.0094655 – volume: 88 start-page: 441 year: 2016 ident: b28 article-title: Técnica árboles de decisión aplicada al método clínico en el diagnóstico del dengue publication-title: Rev Cubana de Pediatr – volume: 20 start-page: 25 year: 2018 ident: b13 article-title: Improving dengue diagnostics and management through innovative technology publication-title: Curr Infect Dis Rep doi: 10.1007/s11908-018-0633-x – volume: 26 start-page: 22 year: 2006 ident: b19 article-title: Criterios clínicos para diagnosticar el dengue en los primeros días de enfermedad publication-title: Biomédica doi: 10.7705/biomedica.v26i1.1391 – volume: 7 start-page: 561 year: 1958 ident: b43 article-title: Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1958.7.561 – volume-title: Innovative Technologies that Address Global Health Concerns, Outcome of the Call: Global Initiative on Health Technologies year: 2010 ident: b70 – volume: 82 start-page: 922 year: 2010 ident: b58 article-title: Clinical and laboratory features that differentiate dengue from other febrile illnesses in an endemic area-Puerto Rico, 2007–2008 publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2010.09-0552 – volume: 20 start-page: 75 year: 2013 ident: b24 article-title: Clinical and laboratory predictive markers for acute dengue infection publication-title: J Biomed Sci doi: 10.1186/1423-0127-20-75 – volume: 7 start-page: 361 year: 2010 ident: b18 article-title: Comparison of the diagnostic accuracy of commercial NS1-based diagnostic tests for early dengue infection publication-title: Virol J doi: 10.1186/1743-422X-7-361 – volume: 10 start-page: e1001363 year: 2013 ident: b71 article-title: The effectiveness of mobile-health technologies to improve health care service delivery processes: a systematic review and meta-analysis publication-title: PLoS Med doi: 10.1371/journal.pmed.1001363 – volume-title: Guidance for Industry and Food and Drug Administration Staff year: 2016 ident: b73 article-title: Adaptive designs for medical device clinical studies – volume: 8 start-page: e50765 year: 2013 ident: b17 article-title: Estimating the true accuracy of diagnostic tests for dengue infection using Bayesian latent class models publication-title: PLoS One doi: 10.1371/journal.pone.0050765 – volume-title: Dengue en Colombia: Epidemiología de la Reemergencia a la Hiperendemia year: 2012 ident: b34 – volume-title: The Analysis of Cross-Classified Categorical Data year: 2007 ident: b52 doi: 10.1007/978-0-387-72825-4 – volume-title: Stata Statistical Software: 11 year: 2011 ident: b56 – volume: 5 start-page: e1191 year: 2011 ident: b8 article-title: The early clinical features of dengue in adults: challenges for early clinical diagnosis publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001191 – volume: 16 start-page: 112 year: 2012 ident: b33 article-title: New Intelligence-based approach for computer-aided diagnosis of dengue fever publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2011.2171978 – volume: 35 start-page: 147 year: 2006 ident: b22 article-title: Distinguishing dengue fever from other infections on the basis of simple clinical and laboratory features: application of logistic regression analysis publication-title: J Clin Virol doi: 10.1016/j.jcv.2005.06.002 – volume: 64 start-page: 523 year: 2006 ident: b20 article-title: Indicadores tempranos de infección por dengue en niños publication-title: An Pediatr doi: 10.1157/13089916 – volume: 108 start-page: 879 year: 2009 ident: b25 article-title: Dengue fever scoring system: new strategy for the early detection of acute dengue virus infection in Taiwan publication-title: J Formos Med Assoc doi: 10.1016/S0929-6646(09)60420-4 – volume: 6 start-page: 181 year: 2015 ident: b67 article-title: Dengue fever prediction: a data mining problem publication-title: J Data Min Genom Proteomics – volume: 39 start-page: 170 year: 2019 ident: b40 article-title: Desarrollo de algoritmos clínicos para el diagnóstico del dengue en Colombia publication-title: Biomédica doi: 10.7705/biomedica.v39i1.3990 – volume: 30 start-page: 545 year: 1992 ident: b42 article-title: Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction publication-title: J Clin Microbiol doi: 10.1128/JCM.30.3.545-551.1992 – volume-title: Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials. Guidance for Industry and FDA Staff year: 2010 ident: b37 – volume: 50 start-page: 419 year: 2008 ident: b49 article-title: Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection publication-title: Biom J doi: 10.1002/bimj.200710415 – year: 2013 ident: b32 article-title: Alternating decision trees for early diagnosis of dengue fever – volume-title: Resolución No 008430 de Octubre 1993 year: 1993 ident: b38 – volume: 1 start-page: 140 volume-title: A Critical Study of Selected Classification Algorithms for Dengue Fever and Dengue Hemorrhagic Fever year: 2013 ident: b66 – volume: 17 start-page: e88 year: 2017 ident: b5 article-title: Dengue: knowledge gaps, unmet needs, and research priorities publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(16)30473-X – volume: 16 start-page: 694 year: 2016 ident: b30 article-title: A predictive model to differentiate dengue from other febrile illness publication-title: BMC Infect Dis doi: 10.1186/s12879-016-2024-y – volume: 33 start-page: 108 year: 2013 ident: b39 article-title: Biomarcadores pronósticos de gravedad del dengue publication-title: Biomédica – volume: 134 start-page: 820 year: 2006 ident: b61 article-title: Specific IgM and IgG responses in primary and secondary dengue virus infections determined by enzyme-linked immunosorbent assay publication-title: Epidemiol Infect doi: 10.1017/S0950268805005753 – volume: 5 start-page: 27 year: 2006 ident: b36 article-title: Bayesian clinical trials publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1927 – volume: 3 start-page: 1 year: 2008 ident: b72 article-title: Adaptive design methods in clinical trials–a review publication-title: Orphanet J Rare Dis doi: 10.1186/1750-1172-3-11 – volume: 103 start-page: 878 year: 2009 ident: b21 article-title: Early clinical features of dengue infection in Puerto Rico publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/j.trstmh.2008.11.009 – volume: 6 start-page: 2 year: 2015 ident: b31 article-title: Scoring model to predict dengue infection in the early phase of illness in primary health care centre publication-title: Arch Clin Microbiol – volume: 2 start-page: e196 year: 2008 ident: b27 article-title: Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000196 – volume: 31 start-page: 185 year: 2004 ident: b62 article-title: Analysis of specific IgM responses in secondary dengue virus infections: levels and positive rates in comparison with primary infections publication-title: J Clin Virol doi: 10.1016/j.jcv.2004.03.005 – volume: 65 start-page: 1829 year: 2017 ident: b60 article-title: Distinguishing secondary dengue virus infection from Zika virus infection with previous dengue by a combination of 3 simple serological tests publication-title: Clin Infect Dis doi: 10.1093/cid/cix672 – volume: 366 start-page: 1423 year: 2012 ident: b3 article-title: Dengue publication-title: N Engl J Med doi: 10.1056/NEJMra1110265 – volume: 1 start-page: 80 year: 1945 ident: b53 article-title: Individual comparisons by ranking methods publication-title: Biometr Bull doi: 10.2307/3001968 – volume: 41 start-page: 1 year: 1979 ident: b45 article-title: Conditional independence in statistical theory publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.2517-6161.1979.tb01052.x – volume: 21 start-page: 9 year: 2015 ident: b47 article-title: Inferencia bayesiana e investigación en salud: un caso de aplicación en diagnóstico clínico publication-title: Rev Méd Risaralda – volume: 8 start-page: S30 year: 2010 ident: b14 article-title: Evaluation of diagnostic tests: dengue publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2459 – volume-title: Bayesian Classifier for Discrete Data Using the Beta Distribution (BetaBsClassifier) year: 2019 ident: b55 – volume-title: Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control year: 2009 ident: b6 – volume: 33 start-page: 101 year: 1991 ident: b41 article-title: An ELISA procedure for the diagnosis of dengue infections publication-title: J Virol Methods doi: 10.1016/0166-0934(91)90011-N – volume: 92 start-page: 633 year: 2005 ident: b35 article-title: Bayesian adaptive designs for clinical trials publication-title: Biometrika doi: 10.1093/biomet/92.3.633 – volume-title: Evaluación de Tecnologías en salud, Metodología para PaÍses en Desarrollo year: 1990 ident: b69 – volume: 22 start-page: 33 year: 2008 ident: b4 article-title: Dengue publication-title: Estud Av doi: 10.1590/S0103-40142008000300004 – volume: 84 start-page: 224 year: 2011 ident: b9 article-title: Evaluation of the NS1 rapid test and the WHO dengue classification schemes for use as bedside diagnosis of acute dengue fever in adults publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2011.10-0316 – volume: 109 start-page: 93 year: 2014 ident: b11 article-title: Evaluation of the WHO classification of dengue disease severity during an epidemic in 2011 in the State of Ceará, Brazil publication-title: Mem Inst Oswaldo Cruz doi: 10.1590/0074-0276140384 – volume: 17 start-page: e70 year: 2017 ident: b2 article-title: Disease and economic burdens of dengue publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(16)30545-X – volume: 7 start-page: e2385 year: 2013 ident: b7 article-title: Evaluation of the diagnostic utility of the traditional and revised WHO dengue case definitions publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0002385 – volume: 9 start-page: e96314 year: 2014 ident: b10 article-title: Sensitivity and specificity of the World Health Organization dengue classification schemes for severe dengue assessment in children in Rio de Janeiro publication-title: PLoS One doi: 10.1371/journal.pone.0096314 – volume: 434 start-page: 012070 year: 2018 ident: b65 article-title: Classification of dengue haemorrhagic fever (DHF) using SVM, naive bayes and random forest publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/434/1/012070 – volume: 64 start-page: 35 year: 2012 ident: b26 article-title: Clasificación de dengue hemorrágico utilizando árboles de decisión en la fase temprana de la enfermedad publication-title: Rev Cubana Med Trop – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: b57 – volume: 16 start-page: 712 year: 2016 ident: b1 article-title: The global burden of dengue: an analysis from the Global Burden of Disease Study 2013 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(16)00026-8 – volume-title: Bayesian Data Analysis year: 2013 ident: b46 doi: 10.1201/b16018 – volume-title: Bayesian Inference in Statistical Analysis year: 1992 ident: b48 doi: 10.1002/9781118033197 – start-page: 41 volume-title: Subjective and Objective Bayesian Statistics year: 2002 ident: b44 article-title: Bayes’ Theorem doi: 10.1002/9780470317105.ch4 – volume: 12 start-page: e0006573 year: 2018 ident: b64 article-title: Accuracy of dengue clinical diagnosis with and without NS1 antigen rapid test: comparison between human and Bayesian network model decision publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0006573 – volume: 13 start-page: 77 year: 2013 ident: b23 article-title: Clinical and laboratory features that discriminate dengue from other febrile illnesses: a diagnostic accuracy study in Rio de Janeiro, Brazil publication-title: BMC Infect Dis doi: 10.1186/1471-2334-13-77 – volume: 18 start-page: 81 year: 2008 ident: b51 article-title: Experience with reviewing Bayesian medical device trials publication-title: J Biopharm Stat doi: 10.1080/10543400701668274 – volume: 62 start-page: 5 year: 2009 ident: b68 article-title: Diagnostic test accuracy may vary with prevalence: implications for evidence-based diagnosis publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2008.04.007 – volume: 9 start-page: e0003638 year: 2015 ident: b29 article-title: Sensitivity and specificity of a novel classifier for the early diagnosis of dengue publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0003638 – volume: 16 start-page: 37 year: 2016 ident: b16 article-title: Accuracy of clinical criteria and an immunochromatographic strip test for dengue diagnosis in a DENV-4 epidemic publication-title: BMC Infect Dis doi: 10.1186/s12879-016-1368-7 – volume: 1 start-page: 1 year: 2011 ident: b63 article-title: Bayesian methods for medical test accuracy publication-title: Diagnostics doi: 10.3390/diagnostics1010001 – volume: 16 start-page: 936 year: 2011 ident: b12 article-title: Multicentre prospective study on dengue classification in four south-east Asian and three Latin American countries publication-title: Trop Med Int Health doi: 10.1111/j.1365-3156.2011.02793.x – volume: 6 start-page: e1760 year: 2012 ident: b50 article-title: Refining the global spatial limits of dengue virus transmission by evidence-based consensus publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001760 |
SSID | ssj0018211 |
Score | 2.3733015 |
Snippet | Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1226 |
SubjectTerms | Adolescent Adult Aged Aged, 80 and over Algorithms Child Child, Preschool Colombia - epidemiology Dengue - diagnosis Dengue - epidemiology Dengue fever Endemic Diseases Female Humans Infant Male Middle Aged Reproducibility of Results Young Adult |
Title | Development and Performance of Dengue Diagnostic Clinical Algorithms in Colombia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32342839 https://www.proquest.com/docview/2413156794 https://www.proquest.com/docview/2395603076 https://pubmed.ncbi.nlm.nih.gov/PMC7253082 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkKa9IL4pDGQkxAukJHY-msfRgapJRRXqpL5FTuK0RW1Stemk7V_nhbu4dlwYEuwlqhw3jn2_nO_s-50JeZf6ufSyvud4fdd3fMmZI1IpnCx2w8J3hSc5spFH38LhpX8xDaadzk8ramlXp73s5lZeyV2kCmUgV2TJ_odkzUOhAH6DfOEKEobrP8nYivhRUf8WCwCMwHNZznYStFoTTYeZWQeaB3m2nFWbRT1fbRXtb1mt0oWwLdVJSzkp7fwS9aZaN4_Qu_JNy_PrGegIA5KBAP2TV85nPPtDMWngLUqB1KBma_7czAaT6krFeF9UW7Vr_-G7KHQkP0JBleq1bozAVCXGGxiLzUadIC3xwIEbeyWDuW3EVU9z4Uy_dMwq9Gui-zWy-zW0-tXqdlAnavqWSp37UeiAQxgc6HuXWcC2tbfHWGhZApiY5rZZBtm_OIX-qFfzXsMBU9RqC3HrVQM5zjgmtIvbydaEQI5Hg4gFmCzoHrnPIjD8kKk-NfFJ4Pd5nvbdsFsqQSy2_emg5RNyrJs5tK3-cJh-j_u1DKnJQ_Jg7wHRMwXnR6Qjy8fkWI_6EzK2UE1BBtRCNa0KqlBNW1RTjWraopouSqpR_ZRcfv0yGQyd_bkfTgbmZO3wTLg8zlLBUrfIwXzy04LHBbj6uQxYP-QMvJLcj_0oZrjr77uZ5wcRl66IYlzXf0aOyqqULwgNPFmgW1DgoTos6qdZKGK0yfp5xCMedslHPWJJtk-Kj2ezLBNwjnGsk2asEy9OcKy75L2pvlbZYP5W8VQPf7L_RLcJbmF7QQgzYJe8NbdBneMenShltYM6HBcsYOKFV3uupGVa0mLukuhAjqYCpoo_vFMu5k3K-D3UXt75n6_ISfvJnpKjerOTr8Ecr9M3DWx_Actq4XQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Performance+of+Dengue+Diagnostic+Clinical+Algorithms+in+Colombia&rft.jtitle=The+American+journal+of+tropical+medicine+and+hygiene&rft.au=Caicedo-Borrero%2C+Diana+Mar%C3%ADa&rft.au=Tovar%2C+Jos%C3%A9+Rafael&rft.au=M%C3%A9ndez%2C+Andr%C3%A9s&rft.au=Parra%2C+Beatriz&rft.date=2020-06-01&rft.pub=The+American+Society+of+Tropical+Medicine+and+Hygiene&rft.issn=0002-9637&rft.eissn=1476-1645&rft.volume=102&rft.issue=6&rft.spage=1226&rft.epage=1236&rft_id=info:doi/10.4269%2Fajtmh.19-0722&rft_id=info%3Apmid%2F32342839&rft.externalDocID=PMC7253082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9637&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9637&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9637&client=summon |