Development and Performance of Dengue Diagnostic Clinical Algorithms in Colombia

Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases. Fir...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of tropical medicine and hygiene Vol. 102; no. 6; pp. 1226 - 1236
Main Authors Caicedo-Borrero, Diana María, Tovar, José Rafael, Méndez, Andrés, Parra, Beatriz, Bonelo, Anilza, Celis, Jairo, Villegas, Liliana, Collazos, Constanza, Osorio, Lyda
Format Journal Article
LanguageEnglish
Published United States Institute of Tropical Medicine 01.06.2020
The American Society of Tropical Medicine and Hygiene
Subjects
Online AccessGet full text
ISSN0002-9637
1476-1645
1476-1645
DOI10.4269/ajtmh.19-0722

Cover

Abstract Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases. First, diagnostic algorithms were developed using a database of 1,130 dengue and 918 non-dengue patients, expert opinion, and literature review. Algorithms with > 70% sensitivity were prospectively validated in a single-group quasi-experimental trial with an adaptive Bayesian design. In the first phase, the algorithms that were developed with the continuous Bayes formula and included leukocytes and platelet counts, in addition to selected signs and symptoms, showed the highest sensitivities (> 80%). In the second phase, the algorithms were applied on admission to 1,039 consecutive febrile subjects in three endemic areas in Colombia of whom 25 were laboratory-confirmed dengue, 307 non-dengue, 514 probable dengue, and 193 undetermined. Including parameters of the hemogram consistently improved specificity without affecting sensitivity. In the final analysis, considering only confirmed dengue and non-dengue cases, an algorithm with a sensitivity and specificity of 65.4% (95% credibility interval 50-83) and 40.1% (34.7-45.7) was identified. All tested algorithms had likelihood ratios close to 1, and hence, they are not useful to confirm or rule out dengue in endemic areas. The findings support the use of hemograms to aid dengue diagnosis and highlight the challenges of clinical diagnosis of dengue.
AbstractList Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases. First, diagnostic algorithms were developed using a database of 1,130 dengue and 918 non-dengue patients, expert opinion, and literature review. Algorithms with > 70% sensitivity were prospectively validated in a single-group quasi-experimental trial with an adaptive Bayesian design. In the first phase, the algorithms that were developed with the continuous Bayes formula and included leukocytes and platelet counts, in addition to selected signs and symptoms, showed the highest sensitivities (> 80%). In the second phase, the algorithms were applied on admission to 1,039 consecutive febrile subjects in three endemic areas in Colombia of whom 25 were laboratory-confirmed dengue, 307 non-dengue, 514 probable dengue, and 193 undetermined. Including parameters of the hemogram consistently improved specificity without affecting sensitivity. In the final analysis, considering only confirmed dengue and non-dengue cases, an algorithm with a sensitivity and specificity of 65.4% (95% credibility interval 50–83) and 40.1% (34.7–45.7) was identified. All tested algorithms had likelihood ratios close to 1, and hence, they are not useful to confirm or rule out dengue in endemic areas. The findings support the use of hemograms to aid dengue diagnosis and highlight the challenges of clinical diagnosis of dengue.
Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases. First, diagnostic algorithms were developed using a database of 1,130 dengue and 918 non-dengue patients, expert opinion, and literature review. Algorithms with > 70% sensitivity were prospectively validated in a single-group quasi-experimental trial with an adaptive Bayesian design. In the first phase, the algorithms that were developed with the continuous Bayes formula and included leukocytes and platelet counts, in addition to selected signs and symptoms, showed the highest sensitivities (> 80%). In the second phase, the algorithms were applied on admission to 1,039 consecutive febrile subjects in three endemic areas in Colombia of whom 25 were laboratory-confirmed dengue, 307 non-dengue, 514 probable dengue, and 193 undetermined. Including parameters of the hemogram consistently improved specificity without affecting sensitivity. In the final analysis, considering only confirmed dengue and non-dengue cases, an algorithm with a sensitivity and specificity of 65.4% (95% credibility interval 50-83) and 40.1% (34.7-45.7) was identified. All tested algorithms had likelihood ratios close to 1, and hence, they are not useful to confirm or rule out dengue in endemic areas. The findings support the use of hemograms to aid dengue diagnosis and highlight the challenges of clinical diagnosis of dengue.Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases. First, diagnostic algorithms were developed using a database of 1,130 dengue and 918 non-dengue patients, expert opinion, and literature review. Algorithms with > 70% sensitivity were prospectively validated in a single-group quasi-experimental trial with an adaptive Bayesian design. In the first phase, the algorithms that were developed with the continuous Bayes formula and included leukocytes and platelet counts, in addition to selected signs and symptoms, showed the highest sensitivities (> 80%). In the second phase, the algorithms were applied on admission to 1,039 consecutive febrile subjects in three endemic areas in Colombia of whom 25 were laboratory-confirmed dengue, 307 non-dengue, 514 probable dengue, and 193 undetermined. Including parameters of the hemogram consistently improved specificity without affecting sensitivity. In the final analysis, considering only confirmed dengue and non-dengue cases, an algorithm with a sensitivity and specificity of 65.4% (95% credibility interval 50-83) and 40.1% (34.7-45.7) was identified. All tested algorithms had likelihood ratios close to 1, and hence, they are not useful to confirm or rule out dengue in endemic areas. The findings support the use of hemograms to aid dengue diagnosis and highlight the challenges of clinical diagnosis of dengue.
Author Osorio, Lyda
Villegas, Liliana
Tovar, José Rafael
Caicedo-Borrero, Diana María
Bonelo, Anilza
Méndez, Andrés
Collazos, Constanza
Celis, Jairo
Parra, Beatriz
Author_xml – sequence: 1
  givenname: Diana María
  surname: Caicedo-Borrero
  fullname: Caicedo-Borrero, Diana María
  organization: Grupo de Investigación en Economía, Gestión y Salud, Department of Public Health and Epidemiology, Pontificia Universidad Javeriana Seccional Cali, Cali, Colombia;, Grupo Epidemiología y Salud Poblacional GESP, School of Public Health, Universidad del Valle, Cali, Colombia
– sequence: 2
  givenname: José Rafael
  surname: Tovar
  fullname: Tovar, José Rafael
  organization: School of Statistics, Universidad del Valle, Cali, Colombia
– sequence: 3
  givenname: Andrés
  surname: Méndez
  fullname: Méndez, Andrés
  organization: School of Statistics, Universidad del Valle, Cali, Colombia
– sequence: 4
  givenname: Beatriz
  surname: Parra
  fullname: Parra, Beatriz
  organization: Department of Microbiology, Grupo de Investigación en Virus Emergentes VIREM, School of Basic Sciences, Universidad del Valle, Cali, Colombia
– sequence: 5
  givenname: Anilza
  surname: Bonelo
  fullname: Bonelo, Anilza
  organization: Department of Microbiology, Grupo de Investigación en Virus Emergentes VIREM, School of Basic Sciences, Universidad del Valle, Cali, Colombia
– sequence: 6
  givenname: Jairo
  surname: Celis
  fullname: Celis, Jairo
  organization: Grupo de Investigación en Evaluación de Servicios de Salud, COMFANDI, Cali, Colombia
– sequence: 7
  givenname: Liliana
  surname: Villegas
  fullname: Villegas, Liliana
  organization: Grupo de Investigación en Evaluación de Servicios de Salud, COMFANDI, Cali, Colombia
– sequence: 8
  givenname: Constanza
  surname: Collazos
  fullname: Collazos, Constanza
  organization: Grupo de Investigación en Evaluación de Servicios de Salud, COMFANDI, Cali, Colombia
– sequence: 9
  givenname: Lyda
  surname: Osorio
  fullname: Osorio, Lyda
  organization: Grupo Epidemiología y Salud Poblacional GESP, School of Public Health, Universidad del Valle, Cali, Colombia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32342839$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1P3DAQxa2KqiwfR67IEpdeQm2PY8cXJLRbaCWkcmjPluM4u1459mInSPz3zRaKClJPc5jfPL037wgdxBQdQmeUXHIm1BezHYfNJVUVkYx9QAvKpaio4PUBWhBCWKUEyEN0VMqWENowSj-hQ2DAWQNqge5X7tGFtBtcHLGJHb53uU95MNE6nHq8cnE9ObzyZh1TGb3Fy-Cjtybg67BO2Y-boWAf8TKFNLTenKCPvQnFnb7MY_Tr5uvP5bfq7sft9-X1XWU5rccKrCGgbGtYS_qu4ZK3PaheUNW5mjUCmGLQccWlYnUDDSeW8lqCI0aqllA4RlfPurupHVxnZ__ZBL3LfjD5SSfj9dtN9Bu9To9ashpIw2aBzy8COT1Mrox68MW6EEx0aSqagaoFASLFjF68Q7dpynGOpxmnQGshFZ-p838dvVr5--wZqJ4Bm1Mp2fWvCCV6X6b-U6amSu_LnHl4x1s_mtGnfSAf_nP1GzZQoxk
CitedBy_id crossref_primary_10_3389_fitd_2023_1118774
crossref_primary_10_1186_s40249_023_01141_9
crossref_primary_10_1016_S2214_109X_22_00514_9
crossref_primary_10_3390_v13071401
crossref_primary_10_3390_diagnostics14050533
crossref_primary_10_1093_ofid_ofad373
crossref_primary_10_1371_journal_pntd_0010832
crossref_primary_10_1371_journal_pone_0295260
crossref_primary_10_1007_s10729_022_09611_6
crossref_primary_10_14295_idonline_v17i65_3707
crossref_primary_10_1515_em_2021_0020
Cites_doi 10.1186/s12878-018-0116-1
10.1371/journal.pone.0094655
10.1007/s11908-018-0633-x
10.7705/biomedica.v26i1.1391
10.4269/ajtmh.1958.7.561
10.4269/ajtmh.2010.09-0552
10.1186/1423-0127-20-75
10.1186/1743-422X-7-361
10.1371/journal.pmed.1001363
10.1371/journal.pone.0050765
10.1007/978-0-387-72825-4
10.1371/journal.pntd.0001191
10.1109/TITB.2011.2171978
10.1016/j.jcv.2005.06.002
10.1157/13089916
10.1016/S0929-6646(09)60420-4
10.7705/biomedica.v39i1.3990
10.1128/JCM.30.3.545-551.1992
10.1002/bimj.200710415
10.1016/S1473-3099(16)30473-X
10.1186/s12879-016-2024-y
10.1017/S0950268805005753
10.1038/nrd1927
10.1186/1750-1172-3-11
10.1016/j.trstmh.2008.11.009
10.1371/journal.pntd.0000196
10.1016/j.jcv.2004.03.005
10.1093/cid/cix672
10.1056/NEJMra1110265
10.2307/3001968
10.1111/j.2517-6161.1979.tb01052.x
10.1038/nrmicro2459
10.1016/0166-0934(91)90011-N
10.1093/biomet/92.3.633
10.1590/S0103-40142008000300004
10.4269/ajtmh.2011.10-0316
10.1590/0074-0276140384
10.1016/S1473-3099(16)30545-X
10.1371/journal.pntd.0002385
10.1371/journal.pone.0096314
10.1088/1757-899X/434/1/012070
10.1016/S1473-3099(16)00026-8
10.1201/b16018
10.1002/9781118033197
10.1002/9780470317105.ch4
10.1371/journal.pntd.0006573
10.1186/1471-2334-13-77
10.1080/10543400701668274
10.1016/j.jclinepi.2008.04.007
10.1371/journal.pntd.0003638
10.1186/s12879-016-1368-7
10.3390/diagnostics1010001
10.1111/j.1365-3156.2011.02793.x
10.1371/journal.pntd.0001760
ContentType Journal Article
Copyright Copyright Institute of Tropical Medicine Jun 2020
The American Society of Tropical Medicine and Hygiene 2020
Copyright_xml – notice: Copyright Institute of Tropical Medicine Jun 2020
– notice: The American Society of Tropical Medicine and Hygiene 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.4269/ajtmh.19-0722
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1476-1645
EndPage 1236
ExternalDocumentID PMC7253082
32342839
10_4269_ajtmh_19_0722
Genre Journal Article
GeographicLocations Colombia
GeographicLocations_xml – name: Colombia
GroupedDBID ---
23M
2WC
34G
36B
53G
5GY
5RE
5VS
6J9
AAYXX
ABCQX
ABPPZ
ACGFO
ADBBV
ADTPD
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
DIK
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
GX1
H13
HYE
K-O
KQ8
L7B
MV1
OK1
P2P
PQQKQ
RHI
RPM
SV3
TR2
TST
UPT
W8F
WH7
WOQ
WOW
~KM
.55
.GJ
1CY
3O-
ABTNK
AFFNX
AGCDD
AI.
CGR
CUY
CVF
ECM
EIF
NEJ
NPM
OHT
PKN
RHF
VH1
X7M
XOL
ZGI
ZKB
ZXP
7X8
5PM
ID FETCH-LOGICAL-c415t-3ca039cba2b0fd8474bf39f619de528632923d494792583840c14573e0a79b013
ISSN 0002-9637
1476-1645
IngestDate Thu Aug 21 18:32:26 EDT 2025
Fri Jul 11 11:23:15 EDT 2025
Mon Jun 30 06:38:47 EDT 2025
Wed Feb 19 02:29:14 EST 2025
Tue Jul 01 03:04:10 EDT 2025
Thu Apr 24 23:05:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-3ca039cba2b0fd8474bf39f619de528632923d494792583840c14573e0a79b013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Financial support: This work was partially supported by Colombian Science, Technology and Innovation Fund of Sistema General de Regalías, Santander, Casanare, Valle del Cauca. BPIN 2013000100011, Universidad del Valle, and Caja de Compensación Familiar del Valle del Cauca COMFANDI.
Authors’ addresses: Diana María Caicedo-Borrero, Grupo de Investigación en Epidemiología y Salud Poblacional GESP, School of Public Health, Universidad del Valle, Cali, Colombia, and Department of Public Health and Epidemiology, Pontificia Universidad Javeriana Cali, Cali, Colombia, E-mail: diana.maria.caicedo@correounivalle.edu.co. José Rafael Tovar and Andrés Méndez, School of Statistics, Universidad del Valle, Cali, Colombia, E-mails: jose.r.tovar@correounivalle.edu.co and andres.mendez@correounivalle.edu.co. Beatriz Parra and Anilza Bonelo, Department of Microbiology, Grupo de Investigación en Virus Emergentes VIREM, School of Basic Sciences, Universidad del Valle, Cali, Colombia, E-mails: beatriz.parra@correounivalle.edu.co and anilza.bonelo@correounivalle.edu.co. Jairo Celis, Liliana Villegas, and Constanza Collazos, Grupo de Investigación en Evaluación de Servicios de Salud, COMFANDI, Cali, Colombia, E-mails: jairoc3@hotmail.com, lilivibal@yahoo.com, and epidemioinvestiga@comfandi.com.co. Lyda Osorio, Grupo de Investigación en Epidemiología y Salud Poblacional GESP, School of Public Health, Universidad del Valle, Cali, Colombia, E-mail: lyda.osorio@correounivalle.edu.co.
OpenAccessLink https://www.ajtmh.org/downloadpdf/journals/tpmd/102/6/article-p1226.pdf
PMID 32342839
PQID 2413156794
PQPubID 105381
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7253082
proquest_miscellaneous_2395603076
proquest_journals_2413156794
pubmed_primary_32342839
crossref_primary_10_4269_ajtmh_19_0722
crossref_citationtrail_10_4269_ajtmh_19_0722
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Deerfield, Illinois
PublicationTitle The American journal of tropical medicine and hygiene
PublicationTitleAlternate Am J Trop Med Hyg
PublicationYear 2020
Publisher Institute of Tropical Medicine
The American Society of Tropical Medicine and Hygiene
Publisher_xml – name: Institute of Tropical Medicine
– name: The American Society of Tropical Medicine and Hygiene
References Castro (b2) 2017; 17
Kuno (b41) 1991; 33
Tuan (b29) 2015; 9
Cucunawangsih (b31) 2015; 6
Simmons (b3) 2012; 366
Ramos (b21) 2009; 103
Farooqi (b66) 2013; 1
Free (b71) 2013; 10
Hari Rao (b33) 2012; 16
Méndez (b55) 2019
(b38) 1993
Padilla (b34) 2012
Villar (b39) 2013; 33
Fienberg (b52) 2007
Shaukat Dar (b67) 2015; 6
Peeling (b14) 2010; 8
Tsai (b60) 2017; 65
Martínez Torres (b4) 2008; 22
Díaz (b20) 2006; 64
Chang (b25) 2009; 108
Costa (b15) 2014; 9
Press (b44) 2002
Ho (b24) 2013; 20
(b73) 2016
Chanama (b62) 2004; 31
Pennello (b51) 2008; 18
Panerai (b69) 1990
Katzelnick (b5) 2017; 17
Tovar (b47) 2015; 21
Chaloemwong (b59) 2018; 18
Cavalcanti (b11) 2014; 109
Chaterji (b9) 2011; 84
Pan-ngum (b17) 2013; 8
Tanner (b27) 2008; 2
(b56) 2011
Rodriguez-Manzano (b13) 2018; 20
Chow (b72) 2008; 3
Chadwick (b22) 2006; 35
(b57) 2013
Fernández (b30) 2016; 16
Alexander (b12) 2011; 16
Buonora (b16) 2016; 16
Brady (b50) 2012; 6
Kumar (b32) 2013
Acosta Torres (b28) 2016; 88
Sa-Ngasang (b61) 2006; 134
Caicedo (b40) 2019; 39
(b70) 2010
Vega Riverón (b26) 2012; 64
Leeflang (b68) 2009; 62
Wilcoxon (b53) 1945; 1
Ruopp (b49) 2008; 50
Stanaway (b1) 2016; 16
Box (b48) 1992
(b6) 2009
(b37) 2010
Diaz (b19) 2006; 26
Daumas (b23) 2013; 13
Gelman (b46) 2013
Broemeling (b63) 2011; 1
Low (b8) 2011; 5
Macedo (b10) 2014; 9
Berry (b36) 2006; 5
Lanciotti (b42) 1992; 30
Osorio (b18) 2010; 7
Chang (b54) 2019
Gutiérrez (b7) 2013; 7
Cheng (b35) 2005; 92
Gregory (b58) 2010; 82
Sa-ngamuang (b64) 2018; 12
Clarke (b43) 1958; 7
Dawid (b45) 1979; 41
Arafiyah (b65) 2018; 434
References_xml – volume-title: Shiny: Web Application Framework for R. R package version 1.3.2
  year: 2019
  ident: b54
– volume: 18
  start-page: 1
  year: 2018
  ident: b59
  article-title: Useful clinical features and hematological parameters for the diagnosis of dengue infection in patients with acute febrile illness: a retrospective study
  publication-title: BMC Hematol
  doi: 10.1186/s12878-018-0116-1
– volume: 9
  start-page: e94655
  year: 2014
  ident: b15
  article-title: A Meta-analysis of the diagnostic accuracy of two commercial NS1 antigen ELISA tests for early dengue virus detection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094655
– volume: 88
  start-page: 441
  year: 2016
  ident: b28
  article-title: Técnica árboles de decisión aplicada al método clínico en el diagnóstico del dengue
  publication-title: Rev Cubana de Pediatr
– volume: 20
  start-page: 25
  year: 2018
  ident: b13
  article-title: Improving dengue diagnostics and management through innovative technology
  publication-title: Curr Infect Dis Rep
  doi: 10.1007/s11908-018-0633-x
– volume: 26
  start-page: 22
  year: 2006
  ident: b19
  article-title: Criterios clínicos para diagnosticar el dengue en los primeros días de enfermedad
  publication-title: Biomédica
  doi: 10.7705/biomedica.v26i1.1391
– volume: 7
  start-page: 561
  year: 1958
  ident: b43
  article-title: Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1958.7.561
– volume-title: Innovative Technologies that Address Global Health Concerns, Outcome of the Call: Global Initiative on Health Technologies
  year: 2010
  ident: b70
– volume: 82
  start-page: 922
  year: 2010
  ident: b58
  article-title: Clinical and laboratory features that differentiate dengue from other febrile illnesses in an endemic area-Puerto Rico, 2007–2008
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2010.09-0552
– volume: 20
  start-page: 75
  year: 2013
  ident: b24
  article-title: Clinical and laboratory predictive markers for acute dengue infection
  publication-title: J Biomed Sci
  doi: 10.1186/1423-0127-20-75
– volume: 7
  start-page: 361
  year: 2010
  ident: b18
  article-title: Comparison of the diagnostic accuracy of commercial NS1-based diagnostic tests for early dengue infection
  publication-title: Virol J
  doi: 10.1186/1743-422X-7-361
– volume: 10
  start-page: e1001363
  year: 2013
  ident: b71
  article-title: The effectiveness of mobile-health technologies to improve health care service delivery processes: a systematic review and meta-analysis
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001363
– volume-title: Guidance for Industry and Food and Drug Administration Staff
  year: 2016
  ident: b73
  article-title: Adaptive designs for medical device clinical studies
– volume: 8
  start-page: e50765
  year: 2013
  ident: b17
  article-title: Estimating the true accuracy of diagnostic tests for dengue infection using Bayesian latent class models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0050765
– volume-title: Dengue en Colombia: Epidemiología de la Reemergencia a la Hiperendemia
  year: 2012
  ident: b34
– volume-title: The Analysis of Cross-Classified Categorical Data
  year: 2007
  ident: b52
  doi: 10.1007/978-0-387-72825-4
– volume-title: Stata Statistical Software: 11
  year: 2011
  ident: b56
– volume: 5
  start-page: e1191
  year: 2011
  ident: b8
  article-title: The early clinical features of dengue in adults: challenges for early clinical diagnosis
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0001191
– volume: 16
  start-page: 112
  year: 2012
  ident: b33
  article-title: New Intelligence-based approach for computer-aided diagnosis of dengue fever
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2011.2171978
– volume: 35
  start-page: 147
  year: 2006
  ident: b22
  article-title: Distinguishing dengue fever from other infections on the basis of simple clinical and laboratory features: application of logistic regression analysis
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2005.06.002
– volume: 64
  start-page: 523
  year: 2006
  ident: b20
  article-title: Indicadores tempranos de infección por dengue en niños
  publication-title: An Pediatr
  doi: 10.1157/13089916
– volume: 108
  start-page: 879
  year: 2009
  ident: b25
  article-title: Dengue fever scoring system: new strategy for the early detection of acute dengue virus infection in Taiwan
  publication-title: J Formos Med Assoc
  doi: 10.1016/S0929-6646(09)60420-4
– volume: 6
  start-page: 181
  year: 2015
  ident: b67
  article-title: Dengue fever prediction: a data mining problem
  publication-title: J Data Min Genom Proteomics
– volume: 39
  start-page: 170
  year: 2019
  ident: b40
  article-title: Desarrollo de algoritmos clínicos para el diagnóstico del dengue en Colombia
  publication-title: Biomédica
  doi: 10.7705/biomedica.v39i1.3990
– volume: 30
  start-page: 545
  year: 1992
  ident: b42
  article-title: Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.30.3.545-551.1992
– volume-title: Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials. Guidance for Industry and FDA Staff
  year: 2010
  ident: b37
– volume: 50
  start-page: 419
  year: 2008
  ident: b49
  article-title: Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection
  publication-title: Biom J
  doi: 10.1002/bimj.200710415
– year: 2013
  ident: b32
  article-title: Alternating decision trees for early diagnosis of dengue fever
– volume-title: Resolución No 008430 de Octubre 1993
  year: 1993
  ident: b38
– volume: 1
  start-page: 140
  volume-title: A Critical Study of Selected Classification Algorithms for Dengue Fever and Dengue Hemorrhagic Fever
  year: 2013
  ident: b66
– volume: 17
  start-page: e88
  year: 2017
  ident: b5
  article-title: Dengue: knowledge gaps, unmet needs, and research priorities
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(16)30473-X
– volume: 16
  start-page: 694
  year: 2016
  ident: b30
  article-title: A predictive model to differentiate dengue from other febrile illness
  publication-title: BMC Infect Dis
  doi: 10.1186/s12879-016-2024-y
– volume: 33
  start-page: 108
  year: 2013
  ident: b39
  article-title: Biomarcadores pronósticos de gravedad del dengue
  publication-title: Biomédica
– volume: 134
  start-page: 820
  year: 2006
  ident: b61
  article-title: Specific IgM and IgG responses in primary and secondary dengue virus infections determined by enzyme-linked immunosorbent assay
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268805005753
– volume: 5
  start-page: 27
  year: 2006
  ident: b36
  article-title: Bayesian clinical trials
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1927
– volume: 3
  start-page: 1
  year: 2008
  ident: b72
  article-title: Adaptive design methods in clinical trials–a review
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/1750-1172-3-11
– volume: 103
  start-page: 878
  year: 2009
  ident: b21
  article-title: Early clinical features of dengue infection in Puerto Rico
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/j.trstmh.2008.11.009
– volume: 6
  start-page: 2
  year: 2015
  ident: b31
  article-title: Scoring model to predict dengue infection in the early phase of illness in primary health care centre
  publication-title: Arch Clin Microbiol
– volume: 2
  start-page: e196
  year: 2008
  ident: b27
  article-title: Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0000196
– volume: 31
  start-page: 185
  year: 2004
  ident: b62
  article-title: Analysis of specific IgM responses in secondary dengue virus infections: levels and positive rates in comparison with primary infections
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2004.03.005
– volume: 65
  start-page: 1829
  year: 2017
  ident: b60
  article-title: Distinguishing secondary dengue virus infection from Zika virus infection with previous dengue by a combination of 3 simple serological tests
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cix672
– volume: 366
  start-page: 1423
  year: 2012
  ident: b3
  article-title: Dengue
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1110265
– volume: 1
  start-page: 80
  year: 1945
  ident: b53
  article-title: Individual comparisons by ranking methods
  publication-title: Biometr Bull
  doi: 10.2307/3001968
– volume: 41
  start-page: 1
  year: 1979
  ident: b45
  article-title: Conditional independence in statistical theory
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.2517-6161.1979.tb01052.x
– volume: 21
  start-page: 9
  year: 2015
  ident: b47
  article-title: Inferencia bayesiana e investigación en salud: un caso de aplicación en diagnóstico clínico
  publication-title: Rev Méd Risaralda
– volume: 8
  start-page: S30
  year: 2010
  ident: b14
  article-title: Evaluation of diagnostic tests: dengue
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2459
– volume-title: Bayesian Classifier for Discrete Data Using the Beta Distribution (BetaBsClassifier)
  year: 2019
  ident: b55
– volume-title: Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control
  year: 2009
  ident: b6
– volume: 33
  start-page: 101
  year: 1991
  ident: b41
  article-title: An ELISA procedure for the diagnosis of dengue infections
  publication-title: J Virol Methods
  doi: 10.1016/0166-0934(91)90011-N
– volume: 92
  start-page: 633
  year: 2005
  ident: b35
  article-title: Bayesian adaptive designs for clinical trials
  publication-title: Biometrika
  doi: 10.1093/biomet/92.3.633
– volume-title: Evaluación de Tecnologías en salud, Metodología para PaÍses en Desarrollo
  year: 1990
  ident: b69
– volume: 22
  start-page: 33
  year: 2008
  ident: b4
  article-title: Dengue
  publication-title: Estud Av
  doi: 10.1590/S0103-40142008000300004
– volume: 84
  start-page: 224
  year: 2011
  ident: b9
  article-title: Evaluation of the NS1 rapid test and the WHO dengue classification schemes for use as bedside diagnosis of acute dengue fever in adults
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2011.10-0316
– volume: 109
  start-page: 93
  year: 2014
  ident: b11
  article-title: Evaluation of the WHO classification of dengue disease severity during an epidemic in 2011 in the State of Ceará, Brazil
  publication-title: Mem Inst Oswaldo Cruz
  doi: 10.1590/0074-0276140384
– volume: 17
  start-page: e70
  year: 2017
  ident: b2
  article-title: Disease and economic burdens of dengue
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(16)30545-X
– volume: 7
  start-page: e2385
  year: 2013
  ident: b7
  article-title: Evaluation of the diagnostic utility of the traditional and revised WHO dengue case definitions
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0002385
– volume: 9
  start-page: e96314
  year: 2014
  ident: b10
  article-title: Sensitivity and specificity of the World Health Organization dengue classification schemes for severe dengue assessment in children in Rio de Janeiro
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096314
– volume: 434
  start-page: 012070
  year: 2018
  ident: b65
  article-title: Classification of dengue haemorrhagic fever (DHF) using SVM, naive bayes and random forest
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/434/1/012070
– volume: 64
  start-page: 35
  year: 2012
  ident: b26
  article-title: Clasificación de dengue hemorrágico utilizando árboles de decisión en la fase temprana de la enfermedad
  publication-title: Rev Cubana Med Trop
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: b57
– volume: 16
  start-page: 712
  year: 2016
  ident: b1
  article-title: The global burden of dengue: an analysis from the Global Burden of Disease Study 2013
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(16)00026-8
– volume-title: Bayesian Data Analysis
  year: 2013
  ident: b46
  doi: 10.1201/b16018
– volume-title: Bayesian Inference in Statistical Analysis
  year: 1992
  ident: b48
  doi: 10.1002/9781118033197
– start-page: 41
  volume-title: Subjective and Objective Bayesian Statistics
  year: 2002
  ident: b44
  article-title: Bayes’ Theorem
  doi: 10.1002/9780470317105.ch4
– volume: 12
  start-page: e0006573
  year: 2018
  ident: b64
  article-title: Accuracy of dengue clinical diagnosis with and without NS1 antigen rapid test: comparison between human and Bayesian network model decision
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0006573
– volume: 13
  start-page: 77
  year: 2013
  ident: b23
  article-title: Clinical and laboratory features that discriminate dengue from other febrile illnesses: a diagnostic accuracy study in Rio de Janeiro, Brazil
  publication-title: BMC Infect Dis
  doi: 10.1186/1471-2334-13-77
– volume: 18
  start-page: 81
  year: 2008
  ident: b51
  article-title: Experience with reviewing Bayesian medical device trials
  publication-title: J Biopharm Stat
  doi: 10.1080/10543400701668274
– volume: 62
  start-page: 5
  year: 2009
  ident: b68
  article-title: Diagnostic test accuracy may vary with prevalence: implications for evidence-based diagnosis
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2008.04.007
– volume: 9
  start-page: e0003638
  year: 2015
  ident: b29
  article-title: Sensitivity and specificity of a novel classifier for the early diagnosis of dengue
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0003638
– volume: 16
  start-page: 37
  year: 2016
  ident: b16
  article-title: Accuracy of clinical criteria and an immunochromatographic strip test for dengue diagnosis in a DENV-4 epidemic
  publication-title: BMC Infect Dis
  doi: 10.1186/s12879-016-1368-7
– volume: 1
  start-page: 1
  year: 2011
  ident: b63
  article-title: Bayesian methods for medical test accuracy
  publication-title: Diagnostics
  doi: 10.3390/diagnostics1010001
– volume: 16
  start-page: 936
  year: 2011
  ident: b12
  article-title: Multicentre prospective study on dengue classification in four south-east Asian and three Latin American countries
  publication-title: Trop Med Int Health
  doi: 10.1111/j.1365-3156.2011.02793.x
– volume: 6
  start-page: e1760
  year: 2012
  ident: b50
  article-title: Refining the global spatial limits of dengue virus transmission by evidence-based consensus
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0001760
SSID ssj0018211
Score 2.3733015
Snippet Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1226
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Child
Child, Preschool
Colombia - epidemiology
Dengue - diagnosis
Dengue - epidemiology
Dengue fever
Endemic Diseases
Female
Humans
Infant
Male
Middle Aged
Reproducibility of Results
Young Adult
Title Development and Performance of Dengue Diagnostic Clinical Algorithms in Colombia
URI https://www.ncbi.nlm.nih.gov/pubmed/32342839
https://www.proquest.com/docview/2413156794
https://www.proquest.com/docview/2395603076
https://pubmed.ncbi.nlm.nih.gov/PMC7253082
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkKa9IL4pDGQkxAukJHY-msfRgapJRRXqpL5FTuK0RW1Stemk7V_nhbu4dlwYEuwlqhw3jn2_nO_s-50JeZf6ufSyvud4fdd3fMmZI1IpnCx2w8J3hSc5spFH38LhpX8xDaadzk8ramlXp73s5lZeyV2kCmUgV2TJ_odkzUOhAH6DfOEKEobrP8nYivhRUf8WCwCMwHNZznYStFoTTYeZWQeaB3m2nFWbRT1fbRXtb1mt0oWwLdVJSzkp7fwS9aZaN4_Qu_JNy_PrGegIA5KBAP2TV85nPPtDMWngLUqB1KBma_7czAaT6krFeF9UW7Vr_-G7KHQkP0JBleq1bozAVCXGGxiLzUadIC3xwIEbeyWDuW3EVU9z4Uy_dMwq9Gui-zWy-zW0-tXqdlAnavqWSp37UeiAQxgc6HuXWcC2tbfHWGhZApiY5rZZBtm_OIX-qFfzXsMBU9RqC3HrVQM5zjgmtIvbydaEQI5Hg4gFmCzoHrnPIjD8kKk-NfFJ4Pd5nvbdsFsqQSy2_emg5RNyrJs5tK3-cJh-j_u1DKnJQ_Jg7wHRMwXnR6Qjy8fkWI_6EzK2UE1BBtRCNa0KqlBNW1RTjWraopouSqpR_ZRcfv0yGQyd_bkfTgbmZO3wTLg8zlLBUrfIwXzy04LHBbj6uQxYP-QMvJLcj_0oZrjr77uZ5wcRl66IYlzXf0aOyqqULwgNPFmgW1DgoTos6qdZKGK0yfp5xCMedslHPWJJtk-Kj2ezLBNwjnGsk2asEy9OcKy75L2pvlbZYP5W8VQPf7L_RLcJbmF7QQgzYJe8NbdBneMenShltYM6HBcsYOKFV3uupGVa0mLukuhAjqYCpoo_vFMu5k3K-D3UXt75n6_ISfvJnpKjerOTr8Ecr9M3DWx_Actq4XQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Performance+of+Dengue+Diagnostic+Clinical+Algorithms+in+Colombia&rft.jtitle=The+American+journal+of+tropical+medicine+and+hygiene&rft.au=Caicedo-Borrero%2C+Diana+Mar%C3%ADa&rft.au=Tovar%2C+Jos%C3%A9+Rafael&rft.au=M%C3%A9ndez%2C+Andr%C3%A9s&rft.au=Parra%2C+Beatriz&rft.date=2020-06-01&rft.pub=The+American+Society+of+Tropical+Medicine+and+Hygiene&rft.issn=0002-9637&rft.eissn=1476-1645&rft.volume=102&rft.issue=6&rft.spage=1226&rft.epage=1236&rft_id=info:doi/10.4269%2Fajtmh.19-0722&rft_id=info%3Apmid%2F32342839&rft.externalDocID=PMC7253082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9637&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9637&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9637&client=summon