Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions
We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations ( c ) that span the fluid, glassy and putative “soft jammed” regimes. In the glassy regime w...
Saved in:
Published in | Soft matter Vol. 15; no. 5; pp. 1038 - 1052 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
30.01.2019
Royal Society of Chemistry (RSC) |
Subjects | |
Online Access | Get full text |
ISSN | 1744-683X 1744-6848 1744-6848 |
DOI | 10.1039/C8SM02014K |
Cover
Abstract | We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations (
c
) that span the fluid, glassy and putative “soft jammed” regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence
G
′ ∼
c
5.64
, a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core–shell family. |
---|---|
AbstractList | We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations (c) that span the fluid, glassy and putative "soft jammed" regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G' ∼ c5.64, a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core-shell family.We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations (c) that span the fluid, glassy and putative "soft jammed" regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G' ∼ c5.64, a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core-shell family. We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations (c) that span the fluid, glassy and putative "soft jammed" regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G' ∼ c5.64, a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core-shell family. We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations ( c ) that span the fluid, glassy and putative “soft jammed” regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G ′ ∼ c 5.64 , a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core–shell family. We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations that span the fluid, glassy and putative “soft jammed” regimes. |
Author | Ewoldt, Randy H. Schweizer, Kenneth S. Ghosh, Ashesh Kang, Jin Gu Braun, Paul V. Chaudhary, Gaurav |
Author_xml | – sequence: 1 givenname: Ashesh orcidid: 0000-0002-3312-6107 surname: Ghosh fullname: Ghosh, Ashesh organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA, Materials Research Laboratory – sequence: 2 givenname: Gaurav orcidid: 0000-0002-5428-5094 surname: Chaudhary fullname: Chaudhary, Gaurav organization: Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, USA, Department of Mechanical Science and Engineering – sequence: 3 givenname: Jin Gu surname: Kang fullname: Kang, Jin Gu organization: Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, USA, Department of Materials Science and Engineering – sequence: 4 givenname: Paul V. orcidid: 0000-0003-4079-8160 surname: Braun fullname: Braun, Paul V. organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA, Materials Research Laboratory – sequence: 5 givenname: Randy H. orcidid: 0000-0003-2720-9712 surname: Ewoldt fullname: Ewoldt, Randy H. organization: Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, USA, Department of Mechanical Science and Engineering – sequence: 6 givenname: Kenneth S. surname: Schweizer fullname: Schweizer, Kenneth S. organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA, Materials Research Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30657517$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1491277$$D View this record in Osti.gov |
BookMark | eNptkU1vFSEUhompsR-68QeYiW6MyVUYYGCWzY0fjbdqoibuCJc53HLDwBQYYxf-d2mn1aQxLOCQ530PvOcYHYQYAKGnBL8mmPZv1vLrOW4xYR8foCMiGFt1ksmDv2f64xAd57zHmEpGukfokOKOC07EEfq9cQF0anQYmmrrlypdQPRxd3VznUuaTZmT9k0Cr3_p4mJoXGgGCBmandc5L-RejyNUQbSlotPss_sJzfTp7MvpeTM6k-IOfJPnPFVlNcmP0UOrfYYnt_sJ-v7u7bf1h9Xm8_uz9elmZRjhZUVZXQPfdtJYboF2mrVE2L6XrRVUyh6LFjNqWyHZFmrRCcNJa3szDHRLGD1BzxffmItT2bgC5sLEEMAURVhPWiEq9HKBphQvZ8hFjS4b8F4HiHNWtWVPBeFdX9EX99B9nFOoX7imKBWcc1ypZ7fUvK25qCm5UacrdZd-BfAC1GRyTmBVfdlNvCVp5xXB6nrA6t-Aq-TVPcmd63_gP2T4pMk |
CitedBy_id | crossref_primary_10_1016_j_foodhyd_2021_106655 crossref_primary_10_1021_acsabm_4c01301 crossref_primary_10_1039_D0SM01505A crossref_primary_10_1063_5_0179181 crossref_primary_10_1021_acs_macromol_9b00124 crossref_primary_10_1016_j_jcis_2022_11_150 crossref_primary_10_1039_D3MA00495C crossref_primary_10_1103_PhysRevE_103_012609 crossref_primary_10_1016_j_carbon_2022_11_003 crossref_primary_10_1039_C9SM01451A crossref_primary_10_1039_D4SM00993B crossref_primary_10_1039_D0SM01196G crossref_primary_10_1007_s11814_022_1310_1 crossref_primary_10_1021_acs_jpcb_0c03613 crossref_primary_10_1021_acs_langmuir_4c04528 crossref_primary_10_1016_j_cossms_2019_06_002 crossref_primary_10_1039_D3SM01150J crossref_primary_10_3390_ijms22084032 crossref_primary_10_1016_j_cis_2023_102983 crossref_primary_10_1122_8_0000138 crossref_primary_10_1080_10837450_2023_2193254 crossref_primary_10_1126_sciadv_adf8106 crossref_primary_10_1016_j_jcis_2024_05_214 crossref_primary_10_1021_acsnano_9b00390 crossref_primary_10_1016_j_ensm_2021_03_028 crossref_primary_10_1016_j_polymer_2024_127107 crossref_primary_10_1021_acs_biomac_2c00046 crossref_primary_10_1039_D0SM02215B crossref_primary_10_1122_1_5120633 crossref_primary_10_1021_acs_langmuir_4c04604 crossref_primary_10_1021_acs_macromol_4c02240 crossref_primary_10_3390_ma14071782 crossref_primary_10_1063_5_0237526 crossref_primary_10_1016_j_jcis_2021_07_089 crossref_primary_10_1122_8_0000546 crossref_primary_10_1122_8_0000448 crossref_primary_10_3390_polym14071279 crossref_primary_10_1002_marc_201900191 crossref_primary_10_1016_j_jcis_2021_05_111 crossref_primary_10_1021_acs_jpcb_3c02089 crossref_primary_10_1021_acs_langmuir_1c00235 crossref_primary_10_1039_D4SM01103A crossref_primary_10_1039_D1SM00277E crossref_primary_10_1021_acs_chemrev_2c00035 crossref_primary_10_1122_8_0000289 crossref_primary_10_1122_8_0000344 crossref_primary_10_1021_acs_macromol_0c01737 |
Cites_doi | 10.1039/C1SM06355C 10.1038/nature07998 10.1063/1.3592563 10.1063/1.1578633 10.1038/320340a0 10.1063/1.3592565 10.1063/1.2137701 10.1021/ma971460o 10.1098/rsta.2009.0166 10.1021/la052740x 10.1021/la0269762 10.1021/la034207s 10.1039/C6SM02408D 10.1039/c2sm27654b 10.1007/12_2010_90 10.1039/b926526k 10.1063/1.4866644 10.1038/nmat3119 10.1063/1.1683077 10.1016/S0001-8686(98)00071-2 10.1103/RevModPhys.89.035005 10.1063/1.1696718 10.1039/C7SM00758B 10.1103/PhysRevLett.105.055702 10.1039/c3sm52454j 10.1063/1.4874843 10.1039/C5SM00047E 10.1021/ma034771+ 10.1093/oso/9780195140187.001.0001 10.1063/1.4874842 10.1103/PhysRevLett.59.2083 10.1103/PhysRevLett.76.3017 10.1122/1.2186982 10.1209/0295-5075/90/66001 10.1063/1.2109887 10.1088/0034-4885/75/6/066501 10.1039/C5SM03001C 10.1146/annurev-conmatphys-070909-104110 10.1063/1.3701661 10.1039/c3sm50222h 10.1103/PhysRevE.70.040401 10.1039/C6SM02056A 10.1126/sciadv.1700969 10.1016/j.cocis.2014.09.007 10.1093/oso/9780198520597.001.0001 10.1021/ma5022083 10.1103/PhysRevE.71.021401 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 OTOTI |
DOI | 10.1039/C8SM02014K |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1744-6848 |
EndPage | 1052 |
ExternalDocumentID | 1491277 30657517 10_1039_C8SM02014K |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 123 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AZFZN BLAPV BSQNT C6K CITATION CS3 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N J3I KZ1 L-8 N9A O9- P2P R7B RAOCF RCNCU RNS RPMJG RSCEA SKA SLH VH6 NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 -JG 1TJ AAGNR ABGFH AGSTE OK1 OTOTI RRC |
ID | FETCH-LOGICAL-c415t-34343d5b68cf5fe36a4217f9982f73889072043f2784be07267c512f9cdd3b143 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Fri May 19 00:36:16 EDT 2023 Fri Jul 11 01:55:28 EDT 2025 Mon Jun 30 12:03:34 EDT 2025 Mon Jul 21 06:01:51 EDT 2025 Tue Jul 01 03:13:16 EDT 2025 Thu Apr 24 23:08:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-34343d5b68cf5fe36a4217f9982f73889072043f2784be07267c512f9cdd3b143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) FG02-07ER46471 |
ORCID | 0000-0003-4079-8160 0000-0002-3312-6107 0000-0003-2720-9712 0000-0002-5428-5094 0000000254285094 0000000327209712 0000000233126107 0000000340798160 |
OpenAccessLink | https://www.osti.gov/biblio/1491277 |
PMID | 30657517 |
PQID | 2173375550 |
PQPubID | 2047495 |
PageCount | 15 |
ParticipantIDs | osti_scitechconnect_1491277 proquest_miscellaneous_2179371569 proquest_journals_2173375550 pubmed_primary_30657517 crossref_citationtrail_10_1039_C8SM02014K crossref_primary_10_1039_C8SM02014K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190130 |
PublicationDateYYYYMMDD | 2019-01-30 |
PublicationDate_xml | – month: 01 year: 2019 text: 20190130 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge – name: United Kingdom |
PublicationTitle | Soft matter |
PublicationTitleAlternate | Soft Matter |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry Royal Society of Chemistry (RSC) |
Publisher_xml | – name: Royal Society of Chemistry – name: Royal Society of Chemistry (RSC) |
References | Paloli (C8SM02014K-(cit6)/*[position()=1]) 2013; 9 Romeo (C8SM02014K-(cit9)/*[position()=1]) 2013; 9 Kobelev (C8SM02014K-(cit41)/*[position()=3]) 2005; 123 Kobelev (C8SM02014K-(cit37)/*[position()=1]) 2005; 71 Zwanzig (C8SM02014K-(cit48)/*[position()=1]) 1965; 43 Urich (C8SM02014K-(cit29)/*[position()=1]) 2016; 12 Chen (C8SM02014K-(cit41)/*[position()=1]) 2004; 120 Scheffold (C8SM02014K-(cit23)/*[position()=1]) 2013; 25 Mohan (C8SM02014K-(cit47)/*[position()=1]) 2012; 8 Rovigatti (C8SM02014K-(cit30)/*[position()=1]) 2018 Gao (C8SM02014K-(cit15)/*[position()=1]) 2003; 19 Rubinstein (C8SM02014K-(cit20)/*[position()=1]) 2003 Vlassopoulos (C8SM02014K-(cit4)/*[position()=1]) 2014; 19 Seth (C8SM02014K-(cit8)/*[position()=1]) 2011; 10 Yang (C8SM02014K-(cit41)/*[position()=5]) 2010; 90 Pusey (C8SM02014K-(cit1)/*[position()=1]) 1986; 320 Menut (C8SM02014K-(cit5)/*[position()=1]) 2012; 8 Mirigian (C8SM02014K-(cit35)/*[position()=1]) 2014; 140 Schweizer (C8SM02014K-(cit26)/*[position()=1]) 2005; 123 Seth (C8SM02014K-(cit46)/*[position()=1]) 2006; 50 Basu (C8SM02014K-(cit10)/*[position()=1]) 2014; 10 Christopoulou (C8SM02014K-(cit18)/*[position()=1]) 2009; 367 Pellet (C8SM02014K-(cit11)/*[position()=1]) 2016; 12 Yang (C8SM02014K-(cit12)/*[position()=1]) 2011; 134 Mirigian (C8SM02014K-(cit36)/*[position()=1]) 2015; 48 Yang (C8SM02014K-(cit12)/*[position()=2]) 2011; 134 Rao (C8SM02014K-(cit41)/*[position()=4]) 2006; 22 Erwin (C8SM02014K-(cit25)/*[position()=1]) 2010; 6 Pusey (C8SM02014K-(cit2)/*[position()=1]) 1987; 59 Zwanzig (C8SM02014K-(cit32)/*[position()=1]) 2001 Nelson (C8SM02014K-(cit21)/*[position()=1]) 2017; 13 Gao (C8SM02014K-(cit15)/*[position()=2]) 2003; 19 Liu (C8SM02014K-(cit16)/*[position()=1]) 1996; 76 Chatterjee (C8SM02014K-(cit44)/*[position()=1]) 1998; 31 Saunders (C8SM02014K-(cit45)/*[position()=1]) 1999; 80 Chen (C8SM02014K-(cit39)/*[position()=1]) 2010; 1 Kramb (C8SM02014K-(cit41)/*[position()=6]) 2010; 105 Hansen (C8SM02014K-(cit31)/*[position()=1]) 2013 Flory (C8SM02014K-(cit19)/*[position()=1]) 1953 Ramakrishnan (C8SM02014K-(cit41)/*[position()=2]) 2004; 70 Hunter (C8SM02014K-(cit3)/*[position()=1]) 2012; 75 Bachman (C8SM02014K-(cit14)/*[position()=1]) 2015; 11 Li (C8SM02014K-(cit40)/*[position()=1]) 2017; 13 Zhang (C8SM02014K-(cit43)/*[position()=1]) 2009; 459 Berndt (C8SM02014K-(cit27)/*[position()=1]) 2003; 36 Bonnecaze (C8SM02014K-(cit22)/*[position()=1]) 2010; 236 Bonn (C8SM02014K-(cit13)/*[position()=1]) 2017; 89 Conley (C8SM02014K-(cit28)/*[position()=1]) 2017; 3 Zhang (C8SM02014K-(cit38)/*[position()=1]) 2012; 136 Likos (C8SM02014K-(cit24)/*[position()=1]) 2014; 37 Schweizer (C8SM02014K-(cit33)/*[position()=1]) 2005; 123 Saltzman (C8SM02014K-(cit34)/*[position()=1]) 2003; 119 Mirigian (C8SM02014K-(cit42)/*[position()=1]) 2014; 140 Ewoldt (C8SM02014K-(cit17)/*[position()=1]) 2015 Mohanty (C8SM02014K-(cit7)/*[position()=1]) 2014; 140 |
References_xml | – volume: 8 start-page: 156 year: 2012 ident: C8SM02014K-(cit5)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C1SM06355C – volume: 459 start-page: 230 year: 2009 ident: C8SM02014K-(cit43)/*[position()=1] publication-title: Nature doi: 10.1038/nature07998 – volume: 134 start-page: 204908 year: 2011 ident: C8SM02014K-(cit12)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3592563 – volume: 8 start-page: 421 year: 2012 ident: C8SM02014K-(cit47)/*[position()=1] publication-title: Soft Matter – volume: 119 start-page: 1197 year: 2003 ident: C8SM02014K-(cit34)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1578633 – volume: 320 start-page: 340 year: 1986 ident: C8SM02014K-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/320340a0 – volume: 134 start-page: 204909 year: 2011 ident: C8SM02014K-(cit12)/*[position()=2] publication-title: J. Chem. Phys. doi: 10.1063/1.3592565 – volume: 123 start-page: 244501 year: 2005 ident: C8SM02014K-(cit26)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2137701 – volume: 31 start-page: 2353 year: 1998 ident: C8SM02014K-(cit44)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma971460o – volume-title: Complex fluids in biological systems year: 2015 ident: C8SM02014K-(cit17)/*[position()=1] – volume: 367 start-page: 5051 year: 2009 ident: C8SM02014K-(cit18)/*[position()=1] publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2009.0166 – volume: 37 start-page: 125 year: 2014 ident: C8SM02014K-(cit24)/*[position()=1] publication-title: Riv. Nuovo Cimento – volume: 22 start-page: 2441 year: 2006 ident: C8SM02014K-(cit41)/*[position()=4] publication-title: Langmuir doi: 10.1021/la052740x – volume: 19 start-page: 5212 year: 2003 ident: C8SM02014K-(cit15)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0269762 – volume-title: Theory of Simple Liquids year: 2013 ident: C8SM02014K-(cit31)/*[position()=1] – volume: 19 start-page: 5217 year: 2003 ident: C8SM02014K-(cit15)/*[position()=2] publication-title: Langmuir doi: 10.1021/la034207s – volume: 13 start-page: 1396 year: 2017 ident: C8SM02014K-(cit40)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C6SM02408D – volume: 9 start-page: 3000 year: 2013 ident: C8SM02014K-(cit6)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c2sm27654b – volume: 236 start-page: 117 year: 2010 ident: C8SM02014K-(cit22)/*[position()=1] publication-title: Adv. Polym. Sci. doi: 10.1007/12_2010_90 – volume: 6 start-page: 2825 year: 2010 ident: C8SM02014K-(cit25)/*[position()=1] publication-title: Soft Matter doi: 10.1039/b926526k – volume: 25 start-page: 502101 year: 2013 ident: C8SM02014K-(cit23)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 140 start-page: 094901 year: 2014 ident: C8SM02014K-(cit7)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4866644 – volume: 10 start-page: 838 year: 2011 ident: C8SM02014K-(cit8)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3119 – volume: 120 start-page: 7212 year: 2004 ident: C8SM02014K-(cit41)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1683077 – volume: 80 start-page: 1 year: 1999 ident: C8SM02014K-(cit45)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(98)00071-2 – volume: 89 start-page: 035005 year: 2017 ident: C8SM02014K-(cit13)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.035005 – volume: 43 start-page: 4464 year: 1965 ident: C8SM02014K-(cit48)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1696718 – volume: 13 start-page: 7578 year: 2017 ident: C8SM02014K-(cit21)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C7SM00758B – volume: 123 start-page: 244501 year: 2005 ident: C8SM02014K-(cit33)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2137701 – volume: 105 start-page: 055702 year: 2010 ident: C8SM02014K-(cit41)/*[position()=6] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.055702 – volume: 10 start-page: 3027 year: 2014 ident: C8SM02014K-(cit10)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c3sm52454j – volume: 140 start-page: 194507 year: 2014 ident: C8SM02014K-(cit42)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4874843 – volume: 11 start-page: 2018 year: 2015 ident: C8SM02014K-(cit14)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C5SM00047E – volume: 36 start-page: 8780 year: 2003 ident: C8SM02014K-(cit27)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma034771+ – volume-title: Nonequilibrium Statistical Mechanics year: 2001 ident: C8SM02014K-(cit32)/*[position()=1] doi: 10.1093/oso/9780195140187.001.0001 – volume: 140 start-page: 194506 year: 2014 ident: C8SM02014K-(cit35)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4874842 – volume: 59 start-page: 2083 year: 1987 ident: C8SM02014K-(cit2)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2083 – volume: 76 start-page: 3017 issue: 16 year: 1996 ident: C8SM02014K-(cit16)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.3017 – year: 2018 ident: C8SM02014K-(cit30)/*[position()=1] – volume: 50 start-page: 353 year: 2006 ident: C8SM02014K-(cit46)/*[position()=1] publication-title: J. Rheol. doi: 10.1122/1.2186982 – volume: 90 start-page: 66001 year: 2010 ident: C8SM02014K-(cit41)/*[position()=5] publication-title: Europhys. Lett. doi: 10.1209/0295-5075/90/66001 – volume: 123 start-page: 164902 year: 2005 ident: C8SM02014K-(cit41)/*[position()=3] publication-title: J. Chem. Phys. doi: 10.1063/1.2109887 – volume: 75 start-page: 066501 year: 2012 ident: C8SM02014K-(cit3)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/6/066501 – volume: 12 start-page: 3710 year: 2016 ident: C8SM02014K-(cit11)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C5SM03001C – volume: 1 start-page: 277 year: 2010 ident: C8SM02014K-(cit39)/*[position()=1] publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-070909-104110 – volume: 136 start-page: 154902 year: 2012 ident: C8SM02014K-(cit38)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3701661 – volume: 9 start-page: 5041 year: 2013 ident: C8SM02014K-(cit9)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c3sm50222h – volume: 70 start-page: 040401 year: 2004 ident: C8SM02014K-(cit41)/*[position()=2] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.70.040401 – volume: 12 start-page: 9086 year: 2016 ident: C8SM02014K-(cit29)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C6SM02056A – volume: 3 start-page: e1700969 year: 2017 ident: C8SM02014K-(cit28)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1700969 – volume-title: Principles of Polymer Chemistry year: 1953 ident: C8SM02014K-(cit19)/*[position()=1] – volume: 19 start-page: 561 year: 2014 ident: C8SM02014K-(cit4)/*[position()=1] publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2014.09.007 – volume-title: Polymer Physics year: 2003 ident: C8SM02014K-(cit20)/*[position()=1] doi: 10.1093/oso/9780198520597.001.0001 – volume: 48 start-page: 1901 year: 2015 ident: C8SM02014K-(cit36)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma5022083 – volume: 71 start-page: 021401 year: 2005 ident: C8SM02014K-(cit37)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.71.021401 |
SSID | ssj0038416 |
Score | 2.501056 |
Snippet | We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1038 |
SubjectTerms | Brownian motion Crosslinking Crossovers Deformation mechanisms Dependence Localization Mechanical properties Parameters Relaxation time Rheological properties Rheology Shear modulus Storage modulus Strain Strain analysis Theoretical analysis Yield strength Yield stress |
Title | Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30657517 https://www.proquest.com/docview/2173375550 https://www.proquest.com/docview/2179371569 https://www.osti.gov/biblio/1491277 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKV0hcEG_KLsgILqgKJHWex6rqdpfdFiRaqbfIceItS18iCUJI_A9-LjN2nASpIOASNa5rOZ0v9jy-GRPyMnRTxpgjLd-NXMt1E2klgsN7xaMINNjADTn6O6Yz_2zhvl16y07nR4u1VBbJa_HtYF7J_0gV2kCumCX7D5KtB4UG-AzyhStIGK5_JWMwJLEOD_q-t7rkBdx9XmVNXSVdHlaV1sCsla_ccBthucmzvtKddc9rdGGjD10WGEgo14rXvp-dvx9O-xuk7V1l635e5nukvBsn37VJ8oVfbXjR4vpOVrtcuWyG-SrLa6fzaMXLdMV18H7CYWZfahIPTGtS9i94tZnqSH-5NQTGio9buSgwK8ox0RbNbUJHiGGhKpZJdZZda-ENXNfyQ3U2MOxL7TZdibNerb0WKr3W0ouV3lvbOOiNg4NbhM2wwqoI8w1oyo77qdkITfB_9i4-XVxexvPxcn6DHA0C0Mq65Gg4np9fml2eYbhWJ9vqeZvStyx604z9i7LT3cGi_XtDRik08zvkdmWJ0KGG1V3Sybb3yE3FCBb5ffJdg4sCNmgNLmrApZobcNEGXPTjlipwUQ0u1VODiyK4aA0uqsFFDbhoC1wPyOJ0PB-dWdVZHZYAFbCwGGYop17ih0J6MmM-d8HYlWDMD2TAwjCy8TQkJjHOnWRw4wcCdE0ZiTRlCSjtD0kXHiZ7TKjj-1HAUtvmjnClL7gtpByEqS-cJLCl3SOvzJ8ai6qQPZ6nso4VoYJF8Sj8MFUCuOiRF3XfvS7fcrDXMcomBqUTKycLpJiJAqziyBkEQY-cGJHF1cufx_BwjAUe2Pc98rz-GlCN8Ta-zXal6oPVJj0_6pFHWtT1JMBSx4hn8OTPgx-TW80LdUK6INfsKWjBRfKsAuRPG8q4Fw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+and+nonlinear+rheology+and+structural+relaxation+in+dense+glassy+and+jammed+soft+repulsive+pNIPAM+microgel+suspensions&rft.jtitle=Soft+matter&rft.au=Ghosh%2C+Ashesh&rft.au=Chaudhary%2C+Gaurav&rft.au=Jin+Gu+Kang&rft.au=Braun%2C+Paul+V&rft.date=2019-01-30&rft.pub=Royal+Society+of+Chemistry&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=15&rft.issue=5&rft.spage=1038&rft.epage=1052&rft_id=info:doi/10.1039%2Fc8sm02014k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |