Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions

We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations ( c ) that span the fluid, glassy and putative “soft jammed” regimes. In the glassy regime w...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 15; no. 5; pp. 1038 - 1052
Main Authors Ghosh, Ashesh, Chaudhary, Gaurav, Kang, Jin Gu, Braun, Paul V., Ewoldt, Randy H., Schweizer, Kenneth S.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 30.01.2019
Royal Society of Chemistry (RSC)
Subjects
Online AccessGet full text
ISSN1744-683X
1744-6848
1744-6848
DOI10.1039/C8SM02014K

Cover

Abstract We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations ( c ) that span the fluid, glassy and putative “soft jammed” regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G ′ ∼ c 5.64 , a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core–shell family.
AbstractList We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations (c) that span the fluid, glassy and putative "soft jammed" regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G' ∼ c5.64, a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core-shell family.We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations (c) that span the fluid, glassy and putative "soft jammed" regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G' ∼ c5.64, a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core-shell family.
We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations (c) that span the fluid, glassy and putative "soft jammed" regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G' ∼ c5.64, a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core-shell family.
We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations ( c ) that span the fluid, glassy and putative “soft jammed” regimes. In the glassy regime we measure a linear elastic dynamic shear modulus over 3 decades which follows an apparent power law concentration dependence G ′ ∼ c 5.64 , a variation that appears distinct from prior studies of crosslinked ionic microgel suspensions. At very high concentrations there is a sharp crossover to a nearly linear growth of the modulus. To theoretically understand these observations, we formulate an approach to address all three regimes within a single conceptual Brownian dynamics framework. A minimalist single particle description is constructed that allows microgel size to vary with concentration due to steric de-swelling effects. Using a Hertzian repulsion interparticle potential and a suite of statistical mechanical theories, quantitative predictions under quiescent conditions of microgel collective structure, dynamic localization length, elastic modulus, and the structural relaxation time are made. Based on a constant inter-particle repulsion strength parameter which is determined by requiring the theory to reproduce the linear elastic shear modulus over the entire concentration regime, we demonstrate good agreement between theory and experiment. Testable predictions are then made. We also measured nonlinear rheological properties with a focus on the yield stress and strain. A theoretical analysis with no adjustable parameters predicts how the quiescent structural relaxation time changes under deformation, and how the yield stress and strain change as a function of concentration. Reasonable agreement with our observations is obtained. To the best of our knowledge, this is the first attempt to quantitatively understand structure, quiescent relaxation and shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic force based theoretical methods that include activated hopping processes. We expect our approach will be useful for other soft polymeric particle suspensions in the core–shell family.
We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel suspensions over a very wide range of concentrations that span the fluid, glassy and putative “soft jammed” regimes.
Author Ewoldt, Randy H.
Schweizer, Kenneth S.
Ghosh, Ashesh
Kang, Jin Gu
Braun, Paul V.
Chaudhary, Gaurav
Author_xml – sequence: 1
  givenname: Ashesh
  orcidid: 0000-0002-3312-6107
  surname: Ghosh
  fullname: Ghosh, Ashesh
  organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA, Materials Research Laboratory
– sequence: 2
  givenname: Gaurav
  orcidid: 0000-0002-5428-5094
  surname: Chaudhary
  fullname: Chaudhary, Gaurav
  organization: Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, USA, Department of Mechanical Science and Engineering
– sequence: 3
  givenname: Jin Gu
  surname: Kang
  fullname: Kang, Jin Gu
  organization: Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, USA, Department of Materials Science and Engineering
– sequence: 4
  givenname: Paul V.
  orcidid: 0000-0003-4079-8160
  surname: Braun
  fullname: Braun, Paul V.
  organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA, Materials Research Laboratory
– sequence: 5
  givenname: Randy H.
  orcidid: 0000-0003-2720-9712
  surname: Ewoldt
  fullname: Ewoldt, Randy H.
  organization: Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, USA, Department of Mechanical Science and Engineering
– sequence: 6
  givenname: Kenneth S.
  surname: Schweizer
  fullname: Schweizer, Kenneth S.
  organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA, Materials Research Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30657517$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1491277$$D View this record in Osti.gov
BookMark eNptkU1vFSEUhompsR-68QeYiW6MyVUYYGCWzY0fjbdqoibuCJc53HLDwBQYYxf-d2mn1aQxLOCQ530PvOcYHYQYAKGnBL8mmPZv1vLrOW4xYR8foCMiGFt1ksmDv2f64xAd57zHmEpGukfokOKOC07EEfq9cQF0anQYmmrrlypdQPRxd3VznUuaTZmT9k0Cr3_p4mJoXGgGCBmandc5L-RejyNUQbSlotPss_sJzfTp7MvpeTM6k-IOfJPnPFVlNcmP0UOrfYYnt_sJ-v7u7bf1h9Xm8_uz9elmZRjhZUVZXQPfdtJYboF2mrVE2L6XrRVUyh6LFjNqWyHZFmrRCcNJa3szDHRLGD1BzxffmItT2bgC5sLEEMAURVhPWiEq9HKBphQvZ8hFjS4b8F4HiHNWtWVPBeFdX9EX99B9nFOoX7imKBWcc1ypZ7fUvK25qCm5UacrdZd-BfAC1GRyTmBVfdlNvCVp5xXB6nrA6t-Aq-TVPcmd63_gP2T4pMk
CitedBy_id crossref_primary_10_1016_j_foodhyd_2021_106655
crossref_primary_10_1021_acsabm_4c01301
crossref_primary_10_1039_D0SM01505A
crossref_primary_10_1063_5_0179181
crossref_primary_10_1021_acs_macromol_9b00124
crossref_primary_10_1016_j_jcis_2022_11_150
crossref_primary_10_1039_D3MA00495C
crossref_primary_10_1103_PhysRevE_103_012609
crossref_primary_10_1016_j_carbon_2022_11_003
crossref_primary_10_1039_C9SM01451A
crossref_primary_10_1039_D4SM00993B
crossref_primary_10_1039_D0SM01196G
crossref_primary_10_1007_s11814_022_1310_1
crossref_primary_10_1021_acs_jpcb_0c03613
crossref_primary_10_1021_acs_langmuir_4c04528
crossref_primary_10_1016_j_cossms_2019_06_002
crossref_primary_10_1039_D3SM01150J
crossref_primary_10_3390_ijms22084032
crossref_primary_10_1016_j_cis_2023_102983
crossref_primary_10_1122_8_0000138
crossref_primary_10_1080_10837450_2023_2193254
crossref_primary_10_1126_sciadv_adf8106
crossref_primary_10_1016_j_jcis_2024_05_214
crossref_primary_10_1021_acsnano_9b00390
crossref_primary_10_1016_j_ensm_2021_03_028
crossref_primary_10_1016_j_polymer_2024_127107
crossref_primary_10_1021_acs_biomac_2c00046
crossref_primary_10_1039_D0SM02215B
crossref_primary_10_1122_1_5120633
crossref_primary_10_1021_acs_langmuir_4c04604
crossref_primary_10_1021_acs_macromol_4c02240
crossref_primary_10_3390_ma14071782
crossref_primary_10_1063_5_0237526
crossref_primary_10_1016_j_jcis_2021_07_089
crossref_primary_10_1122_8_0000546
crossref_primary_10_1122_8_0000448
crossref_primary_10_3390_polym14071279
crossref_primary_10_1002_marc_201900191
crossref_primary_10_1016_j_jcis_2021_05_111
crossref_primary_10_1021_acs_jpcb_3c02089
crossref_primary_10_1021_acs_langmuir_1c00235
crossref_primary_10_1039_D4SM01103A
crossref_primary_10_1039_D1SM00277E
crossref_primary_10_1021_acs_chemrev_2c00035
crossref_primary_10_1122_8_0000289
crossref_primary_10_1122_8_0000344
crossref_primary_10_1021_acs_macromol_0c01737
Cites_doi 10.1039/C1SM06355C
10.1038/nature07998
10.1063/1.3592563
10.1063/1.1578633
10.1038/320340a0
10.1063/1.3592565
10.1063/1.2137701
10.1021/ma971460o
10.1098/rsta.2009.0166
10.1021/la052740x
10.1021/la0269762
10.1021/la034207s
10.1039/C6SM02408D
10.1039/c2sm27654b
10.1007/12_2010_90
10.1039/b926526k
10.1063/1.4866644
10.1038/nmat3119
10.1063/1.1683077
10.1016/S0001-8686(98)00071-2
10.1103/RevModPhys.89.035005
10.1063/1.1696718
10.1039/C7SM00758B
10.1103/PhysRevLett.105.055702
10.1039/c3sm52454j
10.1063/1.4874843
10.1039/C5SM00047E
10.1021/ma034771+
10.1093/oso/9780195140187.001.0001
10.1063/1.4874842
10.1103/PhysRevLett.59.2083
10.1103/PhysRevLett.76.3017
10.1122/1.2186982
10.1209/0295-5075/90/66001
10.1063/1.2109887
10.1088/0034-4885/75/6/066501
10.1039/C5SM03001C
10.1146/annurev-conmatphys-070909-104110
10.1063/1.3701661
10.1039/c3sm50222h
10.1103/PhysRevE.70.040401
10.1039/C6SM02056A
10.1126/sciadv.1700969
10.1016/j.cocis.2014.09.007
10.1093/oso/9780198520597.001.0001
10.1021/ma5022083
10.1103/PhysRevE.71.021401
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
OTOTI
DOI 10.1039/C8SM02014K
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 1052
ExternalDocumentID 1491277
30657517
10_1039_C8SM02014K
Genre Journal Article
GroupedDBID 0-7
0R~
123
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CITATION
CS3
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
KZ1
L-8
N9A
O9-
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RSCEA
SKA
SLH
VH6
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
-JG
1TJ
AAGNR
ABGFH
AGSTE
OK1
OTOTI
RRC
ID FETCH-LOGICAL-c415t-34343d5b68cf5fe36a4217f9982f73889072043f2784be07267c512f9cdd3b143
ISSN 1744-683X
1744-6848
IngestDate Fri May 19 00:36:16 EDT 2023
Fri Jul 11 01:55:28 EDT 2025
Mon Jun 30 12:03:34 EDT 2025
Mon Jul 21 06:01:51 EDT 2025
Tue Jul 01 03:13:16 EDT 2025
Thu Apr 24 23:08:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-34343d5b68cf5fe36a4217f9982f73889072043f2784be07267c512f9cdd3b143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
FG02-07ER46471
ORCID 0000-0003-4079-8160
0000-0002-3312-6107
0000-0003-2720-9712
0000-0002-5428-5094
0000000254285094
0000000327209712
0000000233126107
0000000340798160
OpenAccessLink https://www.osti.gov/biblio/1491277
PMID 30657517
PQID 2173375550
PQPubID 2047495
PageCount 15
ParticipantIDs osti_scitechconnect_1491277
proquest_miscellaneous_2179371569
proquest_journals_2173375550
pubmed_primary_30657517
crossref_citationtrail_10_1039_C8SM02014K
crossref_primary_10_1039_C8SM02014K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190130
PublicationDateYYYYMMDD 2019-01-30
PublicationDate_xml – month: 01
  year: 2019
  text: 20190130
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
– name: United Kingdom
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2019
Publisher Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Paloli (C8SM02014K-(cit6)/*[position()=1]) 2013; 9
Romeo (C8SM02014K-(cit9)/*[position()=1]) 2013; 9
Kobelev (C8SM02014K-(cit41)/*[position()=3]) 2005; 123
Kobelev (C8SM02014K-(cit37)/*[position()=1]) 2005; 71
Zwanzig (C8SM02014K-(cit48)/*[position()=1]) 1965; 43
Urich (C8SM02014K-(cit29)/*[position()=1]) 2016; 12
Chen (C8SM02014K-(cit41)/*[position()=1]) 2004; 120
Scheffold (C8SM02014K-(cit23)/*[position()=1]) 2013; 25
Mohan (C8SM02014K-(cit47)/*[position()=1]) 2012; 8
Rovigatti (C8SM02014K-(cit30)/*[position()=1]) 2018
Gao (C8SM02014K-(cit15)/*[position()=1]) 2003; 19
Rubinstein (C8SM02014K-(cit20)/*[position()=1]) 2003
Vlassopoulos (C8SM02014K-(cit4)/*[position()=1]) 2014; 19
Seth (C8SM02014K-(cit8)/*[position()=1]) 2011; 10
Yang (C8SM02014K-(cit41)/*[position()=5]) 2010; 90
Pusey (C8SM02014K-(cit1)/*[position()=1]) 1986; 320
Menut (C8SM02014K-(cit5)/*[position()=1]) 2012; 8
Mirigian (C8SM02014K-(cit35)/*[position()=1]) 2014; 140
Schweizer (C8SM02014K-(cit26)/*[position()=1]) 2005; 123
Seth (C8SM02014K-(cit46)/*[position()=1]) 2006; 50
Basu (C8SM02014K-(cit10)/*[position()=1]) 2014; 10
Christopoulou (C8SM02014K-(cit18)/*[position()=1]) 2009; 367
Pellet (C8SM02014K-(cit11)/*[position()=1]) 2016; 12
Yang (C8SM02014K-(cit12)/*[position()=1]) 2011; 134
Mirigian (C8SM02014K-(cit36)/*[position()=1]) 2015; 48
Yang (C8SM02014K-(cit12)/*[position()=2]) 2011; 134
Rao (C8SM02014K-(cit41)/*[position()=4]) 2006; 22
Erwin (C8SM02014K-(cit25)/*[position()=1]) 2010; 6
Pusey (C8SM02014K-(cit2)/*[position()=1]) 1987; 59
Zwanzig (C8SM02014K-(cit32)/*[position()=1]) 2001
Nelson (C8SM02014K-(cit21)/*[position()=1]) 2017; 13
Gao (C8SM02014K-(cit15)/*[position()=2]) 2003; 19
Liu (C8SM02014K-(cit16)/*[position()=1]) 1996; 76
Chatterjee (C8SM02014K-(cit44)/*[position()=1]) 1998; 31
Saunders (C8SM02014K-(cit45)/*[position()=1]) 1999; 80
Chen (C8SM02014K-(cit39)/*[position()=1]) 2010; 1
Kramb (C8SM02014K-(cit41)/*[position()=6]) 2010; 105
Hansen (C8SM02014K-(cit31)/*[position()=1]) 2013
Flory (C8SM02014K-(cit19)/*[position()=1]) 1953
Ramakrishnan (C8SM02014K-(cit41)/*[position()=2]) 2004; 70
Hunter (C8SM02014K-(cit3)/*[position()=1]) 2012; 75
Bachman (C8SM02014K-(cit14)/*[position()=1]) 2015; 11
Li (C8SM02014K-(cit40)/*[position()=1]) 2017; 13
Zhang (C8SM02014K-(cit43)/*[position()=1]) 2009; 459
Berndt (C8SM02014K-(cit27)/*[position()=1]) 2003; 36
Bonnecaze (C8SM02014K-(cit22)/*[position()=1]) 2010; 236
Bonn (C8SM02014K-(cit13)/*[position()=1]) 2017; 89
Conley (C8SM02014K-(cit28)/*[position()=1]) 2017; 3
Zhang (C8SM02014K-(cit38)/*[position()=1]) 2012; 136
Likos (C8SM02014K-(cit24)/*[position()=1]) 2014; 37
Schweizer (C8SM02014K-(cit33)/*[position()=1]) 2005; 123
Saltzman (C8SM02014K-(cit34)/*[position()=1]) 2003; 119
Mirigian (C8SM02014K-(cit42)/*[position()=1]) 2014; 140
Ewoldt (C8SM02014K-(cit17)/*[position()=1]) 2015
Mohanty (C8SM02014K-(cit7)/*[position()=1]) 2014; 140
References_xml – volume: 8
  start-page: 156
  year: 2012
  ident: C8SM02014K-(cit5)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C1SM06355C
– volume: 459
  start-page: 230
  year: 2009
  ident: C8SM02014K-(cit43)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature07998
– volume: 134
  start-page: 204908
  year: 2011
  ident: C8SM02014K-(cit12)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3592563
– volume: 8
  start-page: 421
  year: 2012
  ident: C8SM02014K-(cit47)/*[position()=1]
  publication-title: Soft Matter
– volume: 119
  start-page: 1197
  year: 2003
  ident: C8SM02014K-(cit34)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1578633
– volume: 320
  start-page: 340
  year: 1986
  ident: C8SM02014K-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/320340a0
– volume: 134
  start-page: 204909
  year: 2011
  ident: C8SM02014K-(cit12)/*[position()=2]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3592565
– volume: 123
  start-page: 244501
  year: 2005
  ident: C8SM02014K-(cit26)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2137701
– volume: 31
  start-page: 2353
  year: 1998
  ident: C8SM02014K-(cit44)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma971460o
– volume-title: Complex fluids in biological systems
  year: 2015
  ident: C8SM02014K-(cit17)/*[position()=1]
– volume: 367
  start-page: 5051
  year: 2009
  ident: C8SM02014K-(cit18)/*[position()=1]
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2009.0166
– volume: 37
  start-page: 125
  year: 2014
  ident: C8SM02014K-(cit24)/*[position()=1]
  publication-title: Riv. Nuovo Cimento
– volume: 22
  start-page: 2441
  year: 2006
  ident: C8SM02014K-(cit41)/*[position()=4]
  publication-title: Langmuir
  doi: 10.1021/la052740x
– volume: 19
  start-page: 5212
  year: 2003
  ident: C8SM02014K-(cit15)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0269762
– volume-title: Theory of Simple Liquids
  year: 2013
  ident: C8SM02014K-(cit31)/*[position()=1]
– volume: 19
  start-page: 5217
  year: 2003
  ident: C8SM02014K-(cit15)/*[position()=2]
  publication-title: Langmuir
  doi: 10.1021/la034207s
– volume: 13
  start-page: 1396
  year: 2017
  ident: C8SM02014K-(cit40)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C6SM02408D
– volume: 9
  start-page: 3000
  year: 2013
  ident: C8SM02014K-(cit6)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c2sm27654b
– volume: 236
  start-page: 117
  year: 2010
  ident: C8SM02014K-(cit22)/*[position()=1]
  publication-title: Adv. Polym. Sci.
  doi: 10.1007/12_2010_90
– volume: 6
  start-page: 2825
  year: 2010
  ident: C8SM02014K-(cit25)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/b926526k
– volume: 25
  start-page: 502101
  year: 2013
  ident: C8SM02014K-(cit23)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 140
  start-page: 094901
  year: 2014
  ident: C8SM02014K-(cit7)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4866644
– volume: 10
  start-page: 838
  year: 2011
  ident: C8SM02014K-(cit8)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3119
– volume: 120
  start-page: 7212
  year: 2004
  ident: C8SM02014K-(cit41)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1683077
– volume: 80
  start-page: 1
  year: 1999
  ident: C8SM02014K-(cit45)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(98)00071-2
– volume: 89
  start-page: 035005
  year: 2017
  ident: C8SM02014K-(cit13)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.035005
– volume: 43
  start-page: 4464
  year: 1965
  ident: C8SM02014K-(cit48)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1696718
– volume: 13
  start-page: 7578
  year: 2017
  ident: C8SM02014K-(cit21)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C7SM00758B
– volume: 123
  start-page: 244501
  year: 2005
  ident: C8SM02014K-(cit33)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2137701
– volume: 105
  start-page: 055702
  year: 2010
  ident: C8SM02014K-(cit41)/*[position()=6]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.055702
– volume: 10
  start-page: 3027
  year: 2014
  ident: C8SM02014K-(cit10)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c3sm52454j
– volume: 140
  start-page: 194507
  year: 2014
  ident: C8SM02014K-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4874843
– volume: 11
  start-page: 2018
  year: 2015
  ident: C8SM02014K-(cit14)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C5SM00047E
– volume: 36
  start-page: 8780
  year: 2003
  ident: C8SM02014K-(cit27)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma034771+
– volume-title: Nonequilibrium Statistical Mechanics
  year: 2001
  ident: C8SM02014K-(cit32)/*[position()=1]
  doi: 10.1093/oso/9780195140187.001.0001
– volume: 140
  start-page: 194506
  year: 2014
  ident: C8SM02014K-(cit35)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4874842
– volume: 59
  start-page: 2083
  year: 1987
  ident: C8SM02014K-(cit2)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2083
– volume: 76
  start-page: 3017
  issue: 16
  year: 1996
  ident: C8SM02014K-(cit16)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.3017
– year: 2018
  ident: C8SM02014K-(cit30)/*[position()=1]
– volume: 50
  start-page: 353
  year: 2006
  ident: C8SM02014K-(cit46)/*[position()=1]
  publication-title: J. Rheol.
  doi: 10.1122/1.2186982
– volume: 90
  start-page: 66001
  year: 2010
  ident: C8SM02014K-(cit41)/*[position()=5]
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/90/66001
– volume: 123
  start-page: 164902
  year: 2005
  ident: C8SM02014K-(cit41)/*[position()=3]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2109887
– volume: 75
  start-page: 066501
  year: 2012
  ident: C8SM02014K-(cit3)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/6/066501
– volume: 12
  start-page: 3710
  year: 2016
  ident: C8SM02014K-(cit11)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C5SM03001C
– volume: 1
  start-page: 277
  year: 2010
  ident: C8SM02014K-(cit39)/*[position()=1]
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-070909-104110
– volume: 136
  start-page: 154902
  year: 2012
  ident: C8SM02014K-(cit38)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3701661
– volume: 9
  start-page: 5041
  year: 2013
  ident: C8SM02014K-(cit9)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c3sm50222h
– volume: 70
  start-page: 040401
  year: 2004
  ident: C8SM02014K-(cit41)/*[position()=2]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.70.040401
– volume: 12
  start-page: 9086
  year: 2016
  ident: C8SM02014K-(cit29)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C6SM02056A
– volume: 3
  start-page: e1700969
  year: 2017
  ident: C8SM02014K-(cit28)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700969
– volume-title: Principles of Polymer Chemistry
  year: 1953
  ident: C8SM02014K-(cit19)/*[position()=1]
– volume: 19
  start-page: 561
  year: 2014
  ident: C8SM02014K-(cit4)/*[position()=1]
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2014.09.007
– volume-title: Polymer Physics
  year: 2003
  ident: C8SM02014K-(cit20)/*[position()=1]
  doi: 10.1093/oso/9780198520597.001.0001
– volume: 48
  start-page: 1901
  year: 2015
  ident: C8SM02014K-(cit36)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma5022083
– volume: 71
  start-page: 021401
  year: 2005
  ident: C8SM02014K-(cit37)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.71.021401
SSID ssj0038416
Score 2.501056
Snippet We present an integrated experimental and quantitative theoretical study of the mechanics of self-crosslinked, slightly charged, repulsive pNIPAM microgel...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1038
SubjectTerms Brownian motion
Crosslinking
Crossovers
Deformation mechanisms
Dependence
Localization
Mechanical properties
Parameters
Relaxation time
Rheological properties
Rheology
Shear modulus
Storage modulus
Strain
Strain analysis
Theoretical analysis
Yield strength
Yield stress
Title Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions
URI https://www.ncbi.nlm.nih.gov/pubmed/30657517
https://www.proquest.com/docview/2173375550
https://www.proquest.com/docview/2179371569
https://www.osti.gov/biblio/1491277
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKV0hcEG_KLsgILqgKJHWex6rqdpfdFiRaqbfIceItS18iCUJI_A9-LjN2nASpIOASNa5rOZ0v9jy-GRPyMnRTxpgjLd-NXMt1E2klgsN7xaMINNjADTn6O6Yz_2zhvl16y07nR4u1VBbJa_HtYF7J_0gV2kCumCX7D5KtB4UG-AzyhStIGK5_JWMwJLEOD_q-t7rkBdx9XmVNXSVdHlaV1sCsla_ccBthucmzvtKddc9rdGGjD10WGEgo14rXvp-dvx9O-xuk7V1l635e5nukvBsn37VJ8oVfbXjR4vpOVrtcuWyG-SrLa6fzaMXLdMV18H7CYWZfahIPTGtS9i94tZnqSH-5NQTGio9buSgwK8ox0RbNbUJHiGGhKpZJdZZda-ENXNfyQ3U2MOxL7TZdibNerb0WKr3W0ouV3lvbOOiNg4NbhM2wwqoI8w1oyo77qdkITfB_9i4-XVxexvPxcn6DHA0C0Mq65Gg4np9fml2eYbhWJ9vqeZvStyx604z9i7LT3cGi_XtDRik08zvkdmWJ0KGG1V3Sybb3yE3FCBb5ffJdg4sCNmgNLmrApZobcNEGXPTjlipwUQ0u1VODiyK4aA0uqsFFDbhoC1wPyOJ0PB-dWdVZHZYAFbCwGGYop17ih0J6MmM-d8HYlWDMD2TAwjCy8TQkJjHOnWRw4wcCdE0ZiTRlCSjtD0kXHiZ7TKjj-1HAUtvmjnClL7gtpByEqS-cJLCl3SOvzJ8ai6qQPZ6nso4VoYJF8Sj8MFUCuOiRF3XfvS7fcrDXMcomBqUTKycLpJiJAqziyBkEQY-cGJHF1cufx_BwjAUe2Pc98rz-GlCN8Ta-zXal6oPVJj0_6pFHWtT1JMBSx4hn8OTPgx-TW80LdUK6INfsKWjBRfKsAuRPG8q4Fw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+and+nonlinear+rheology+and+structural+relaxation+in+dense+glassy+and+jammed+soft+repulsive+pNIPAM+microgel+suspensions&rft.jtitle=Soft+matter&rft.au=Ghosh%2C+Ashesh&rft.au=Chaudhary%2C+Gaurav&rft.au=Jin+Gu+Kang&rft.au=Braun%2C+Paul+V&rft.date=2019-01-30&rft.pub=Royal+Society+of+Chemistry&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=15&rft.issue=5&rft.spage=1038&rft.epage=1052&rft_id=info:doi/10.1039%2Fc8sm02014k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon