Gut Microbiota-Derived Butyrate Induces Epigenetic and Metabolic Reprogramming in Myeloid-Derived Suppressor Cells to Alleviate Primary Biliary Cholangitis

Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. We measured fecal short-chain fa...

Full description

Saved in:
Bibliographic Details
Published inGastroenterology (New York, N.Y. 1943) Vol. 167; no. 4; pp. 733 - 749.e3
Main Authors Wang, Rui, Li, Bo, Huang, Bingyuan, Li, Yikang, Liu, Qiaoyan, Lyu, Zhuwan, Chen, Ruiling, Qian, Qiwei, Liang, Xueying, Pu, Xiting, Wu, Yi, Chen, Yu, Miao, Qi, Wang, Qixia, Lian, Min, Xiao, Xiao, Leung, Patrick S.C., Gershwin, M. Eric, You, Zhengrui, Ma, Xiong, Tang, Ruqi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2024
Subjects
Online AccessGet full text
ISSN0016-5085
1528-0012
1528-0012
DOI10.1053/j.gastro.2024.05.014

Cover

Abstract Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. We measured fecal short-chain fatty acids levels using targeted gas chromatography–mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation–quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography–mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin–induced cholangitis murine model. Decreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid β-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate. We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC. [Display omitted] Gut microbiota-derived butyrate promotes the expansion and immunosuppressive function of myeloid-derived suppressor cells, presenting promising avenues for immune-based therapeutic strategies in primary biliary cholangitis.
AbstractList Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. We measured fecal short-chain fatty acids levels using targeted gas chromatography–mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation–quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography–mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin–induced cholangitis murine model. Decreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid β-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate. We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC. [Display omitted] Gut microbiota-derived butyrate promotes the expansion and immunosuppressive function of myeloid-derived suppressor cells, presenting promising avenues for immune-based therapeutic strategies in primary biliary cholangitis.
Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. We measured fecal short-chain fatty acids levels using targeted gas chromatography-mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation-quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography-mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin-induced cholangitis murine model. Decreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid β-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate. We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC.
Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC.BACKGROUND & AIMSGut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC.We measured fecal short-chain fatty acids levels using targeted gas chromatography-mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation-quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography-mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin-induced cholangitis murine model.METHODSWe measured fecal short-chain fatty acids levels using targeted gas chromatography-mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation-quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography-mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin-induced cholangitis murine model.Decreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid β-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate.RESULTSDecreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid β-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate.We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC.CONCLUSIONSWe identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC.
Author Liu, Qiaoyan
Wang, Qixia
Li, Yikang
Pu, Xiting
Xiao, Xiao
Leung, Patrick S.C.
Miao, Qi
Gershwin, M. Eric
Chen, Yu
Lian, Min
Wang, Rui
Ma, Xiong
Li, Bo
Chen, Ruiling
Liang, Xueying
Qian, Qiwei
Wu, Yi
Huang, Bingyuan
You, Zhengrui
Lyu, Zhuwan
Tang, Ruqi
Author_xml – sequence: 1
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 2
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 3
  givenname: Bingyuan
  surname: Huang
  fullname: Huang, Bingyuan
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 4
  givenname: Yikang
  surname: Li
  fullname: Li, Yikang
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 5
  givenname: Qiaoyan
  surname: Liu
  fullname: Liu, Qiaoyan
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 6
  givenname: Zhuwan
  surname: Lyu
  fullname: Lyu, Zhuwan
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 7
  givenname: Ruiling
  surname: Chen
  fullname: Chen, Ruiling
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 8
  givenname: Qiwei
  surname: Qian
  fullname: Qian, Qiwei
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 9
  givenname: Xueying
  surname: Liang
  fullname: Liang, Xueying
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 10
  givenname: Xiting
  surname: Pu
  fullname: Pu, Xiting
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 11
  givenname: Yi
  surname: Wu
  fullname: Wu, Yi
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 12
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 13
  givenname: Qi
  surname: Miao
  fullname: Miao, Qi
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 14
  givenname: Qixia
  surname: Wang
  fullname: Wang, Qixia
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 15
  givenname: Min
  surname: Lian
  fullname: Lian, Min
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 16
  givenname: Xiao
  surname: Xiao
  fullname: Xiao, Xiao
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 17
  givenname: Patrick S.C.
  surname: Leung
  fullname: Leung, Patrick S.C.
  organization: Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California
– sequence: 18
  givenname: M. Eric
  surname: Gershwin
  fullname: Gershwin, M. Eric
  organization: Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California
– sequence: 19
  givenname: Zhengrui
  surname: You
  fullname: You, Zhengrui
  email: youzhengrui@126.com
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 20
  givenname: Xiong
  orcidid: 0000-0001-9616-4672
  surname: Ma
  fullname: Ma, Xiong
  email: maxiongmd@hotmail.com
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
– sequence: 21
  givenname: Ruqi
  surname: Tang
  fullname: Tang, Ruqi
  email: ruqi.tang@gmail.com
  organization: Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38810839$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vEzEQxS1URNPCN0DIRy672N71doMQUhtKqdQIxJ-z5dizYYJjp7Y3Uj4LXxZHaTn0ktNopPd-mnnvjJz44IGQ15zVnMnm3ape6pRjqAUTbc1kzXj7jEy4FH3FGBcnZFJGV0nWy1NyltKKMTZtev6CnDZ9z1nfTCfk782Y6RxNDAsMWVefIOIWLL0a8y7qDPTW29FAotcbXIKHjIZqb-kcsl4EV7bvsIlhGfV6jX5J0dP5DlxA-x_1Y9xsIqQUIp2Bc4nmQC-dgy3u-d8irnXc0St0uJ-z38Fpv8SM6SV5PmiX4NXDPCe_Pl__nH2p7r7e3M4u7yrTcpkrbqetWEjOhkWv-27o9CA6K4Vo-DAVbdPZwfS8vKw1K1kZEBdNb6YXRjMptLbNOXl74JZH7kdIWa0xmXKq9hDGpBrWiZIql7JI3zxIx8UarNocrlePgRbB-4OgJJpShEEZzDpj8DlqdIoztW9PrdShPbVvTzGpSnvF3D4xP_KP2D4ebFBC2iJElQyCN2AxgsnKBjwG-PAEYBx6NNr9gd1x-z8IBc0y
CitedBy_id crossref_primary_10_1016_j_phrs_2025_107642
crossref_primary_10_3389_fmicb_2024_1495170
crossref_primary_10_3389_fimmu_2024_1518779
crossref_primary_10_1016_j_plipres_2024_101291
crossref_primary_10_3390_cells13181580
crossref_primary_10_1016_j_ijbiomac_2025_142015
crossref_primary_10_1111_liv_16060
crossref_primary_10_1186_s12943_024_02208_3
crossref_primary_10_1177_1721727X251327293
Cites_doi 10.1007/s00253-015-7039-6
10.1038/s41467-022-31312-5
10.1016/j.chom.2022.09.004
10.1038/s41423-022-00943-5
10.3389/fimmu.2019.01399
10.1158/2159-8290.CD-17-1134
10.4049/jimmunol.2200914
10.1038/ni.3713
10.1038/nature12726
10.1016/j.cmet.2020.03.003
10.1056/NEJMoa1714519
10.1016/j.it.2010.10.002
10.1038/s41579-020-0438-4
10.1038/s41467-019-13668-3
10.1038/s41467-021-24331-1
10.1016/j.cmet.2018.06.002
10.1038/s41577-020-00490-y
10.1016/j.celrep.2016.10.012
10.1016/j.celrep.2021.109883
10.1056/NEJMoa1509840
10.1002/hep.29418
10.1016/j.immuni.2019.06.002
10.1136/gutjnl-2020-322362
10.1016/j.cmet.2018.06.001
10.1093/nar/gks1219
10.1016/j.immuni.2013.12.007
10.1136/gutjnl-2021-326500
10.1016/j.metabol.2020.154338
10.1038/s41586-019-1118-2
10.1002/hep.22428
10.1038/s41571-023-00846-y
10.1038/nmeth.2604
10.1111/1462-2920.13401
10.1093/cvr/cvac121
10.1002/hep.32405
10.1002/hep.30145
10.1016/j.jhep.2017.03.022
10.1016/j.tem.2020.12.003
10.1016/j.immuni.2024.01.002
10.1016/j.tim.2021.02.001
10.1016/j.cmet.2020.09.004
10.1016/j.ebiom.2020.102913
10.1136/gutjnl-2016-313332
10.1016/j.immuni.2018.12.018
10.1016/j.cgh.2023.02.005
10.1186/s40164-022-00334-6
10.1080/19490976.2021.1946366
10.4049/jimmunol.2000731
ContentType Journal Article
Copyright 2024 AGA Institute
Copyright © 2024 AGA Institute. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 AGA Institute
– notice: Copyright © 2024 AGA Institute. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1053/j.gastro.2024.05.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1528-0012
EndPage 749.e3
ExternalDocumentID 38810839
10_1053_j_gastro_2024_05_014
S0016508524049369
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Municipal Science and Technology Committee of Shanghai
  grantid: #20XD1422500
– fundername: Shanghai Municipal Education Commission
  grantid: #18SG17
  funderid: https://doi.org/10.13039/501100003395
– fundername: National Natural Science Foundation of China
  grantid: #81922010; 82270554; 81873561; #82200595; #82130017; 81830016; 82330018; #82270553
  funderid: https://doi.org/10.13039/501100001809
– fundername: Shanghai Sailing Program
  grantid: #18YF1412900; #22YF1423700
– fundername: Innovative Research Team of High-level Local Universities in Shanghai
  grantid: #SHSMU-ZDCX20210301; #SHSMU-ZLCX20211600
  funderid: https://doi.org/10.13039/100020732
– fundername: Shanghai Education Development Foundation
  funderid: https://doi.org/10.13039/501100003024
– fundername: Shanghai Municipal Education Commission-Gaofeng Clinical Medicine
  grantid: #20161311
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
1B1
1CY
1P~
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
AAEDT
AAEDW
AAFWJ
AAIKJ
AALRI
AAQFI
AAQOH
AAQQT
AAQXK
AAXUO
ABCQX
ABDPE
ABJNI
ABLJU
ABMAC
ABOCM
ABWVN
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
AENEX
AEVXI
AFFNX
AFHKK
AFJKZ
AFRHN
AFTJW
AGCQF
AGHFR
AGQPQ
AI.
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BELOY
BR6
C5W
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FD8
FDB
FEDTE
FGOYB
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
NQ-
O9-
OC.
OHT
ON0
P2P
PC.
QTD
R2-
ROL
RPZ
SEL
SES
SJN
SSZ
UDS
UGJ
UV1
VH1
WH7
X7M
XH2
Y6R
YQJ
Z5R
ZGI
ZXP
AAYOK
ADPAM
AFCTW
RIG
TWZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c415t-1d942b510fb8a86f6af26d52231f92436dfc81388aa0202ce2738c97ca052aad3
ISSN 0016-5085
1528-0012
IngestDate Sat Sep 27 19:21:58 EDT 2025
Mon Jul 21 06:04:39 EDT 2025
Wed Oct 01 04:43:27 EDT 2025
Thu Apr 24 22:55:08 EDT 2025
Sat Nov 16 15:56:27 EST 2024
Tue Aug 26 18:39:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords MDSC
2OA
ALP
GPR
OXPHOS
UDCA
BM
Microbial Metabolite
Myeloid Cells
PBC
BSA
PPAR
GM-CSF
Fatty Acid Oxidation
iNOS
H3K27ac
Treg
Autoimmune Liver Disease
PBMC
SCFA
PMN
IL6
FAO
ROS
HC
ATP
HDAC
Language English
License Copyright © 2024 AGA Institute. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-1d942b510fb8a86f6af26d52231f92436dfc81388aa0202ce2738c97ca052aad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9616-4672
PMID 38810839
PQID 3062528155
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3062528155
pubmed_primary_38810839
crossref_citationtrail_10_1053_j_gastro_2024_05_014
crossref_primary_10_1053_j_gastro_2024_05_014
elsevier_sciencedirect_doi_10_1053_j_gastro_2024_05_014
elsevier_clinicalkey_doi_10_1053_j_gastro_2024_05_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
2024-Sep
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastroenterology (New York, N.Y. 1943)
PublicationTitleAlternate Gastroenterology
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wei, Peng, Deng (bib36) 2022; 19
Singh, Gurav, Sivaprakasam (bib37) 2014; 40
Eshleman, Rice, Potter (bib30) 2024; 57
Bachem, Makhlouf, Binger (bib39) 2019; 51
Corpechot, Chazouillères, Rousseau (bib43) 2018; 378
Divakaruni, Hsieh, Minarrieta (bib27) 2018; 28
Corpechot, Abenavoli, Rabahi (bib24) 2008; 48
Yan, Adeshakin, Xu (bib25) 2019; 10
Arpaia, Campbell, Fan (bib38) 2013; 504
Zhang, Zheng, Chen (bib33) 2022; 11
Condamine, Gabrilovich (bib45) 2011; 32
Zhang, Liu, Jiang (bib16) 2021; 32
Rosser, Piper, Matei (bib18) 2020; 31
Mariño, Richards, McLeod (bib22) 2017; 18
Christofides, Konstantinidou, Jani (bib28) 2021; 114
Li, Zhang, Chen (bib14) 2021; 13
Lasser, Ozbay Kurt, Arkhypov (bib46) 2024; 21
(bib2) 2017; 67
Veglia, Tyurin, Blasi (bib5) 2019; 569
Trivedi, Hirschfield (bib1) 2021; 70
Luu, Riester, Baldrich (bib17) 2021; 12
Mayo (bib44) 2022; 76
Tian, Zhang, Zheng (bib19) 2022; 30
Alpdundar Bulut, Bayyurt Kocabas, Yazar (bib32) 2020; 205
Veglia, Sanseviero, Gabrilovich (bib4) 2021; 21
Takahashi, Hoshina, Kabumoto (bib21) 2020; 58
Zhang, Lian, Zhang (bib8) 2018; 67
Lindor, Bowlus, Boyer (bib23) 2019; 69
Awoniyi, Wang, Ngo (bib29) 2023; 72
Nevens, Andreone, Mazzella (bib42) 2016; 375
Levy, Manns, Hirschfield (bib3) 2023; 21
McDonnell, Crown, Fox (bib41) 2016; 17
Ostrand-Rosenberg, Lamb, Pawelec (bib7) 2023; 210
Pushalkar, Hundeyin, Daley (bib35) 2018; 8
Martínez-Reyes, Chandel (bib40) 2020; 11
Michaudel, Sokol (bib10) 2020; 32
Raud, Roy, Divakaruni (bib26) 2018; 28
van der Hee, Wells (bib15) 2021; 29
Schneider, Mohs, Gui (bib31) 2022; 13
Krautkramer, Fan, Bäckhed (bib9) 2021; 19
Schulthess, Pandey, Capitani (bib20) 2019; 50
Mohammadpour, MacDonald, McCarthy (bib6) 2021; 37
Tang, Wei, Li (bib12) 2018; 67
Zhou, Ying, Dong (bib13) 2023; 14
Lv, Fang, Shi (bib11) 2016; 18
Avery, Bartolomaeus, Rauch (bib34) 2023; 119
Levy (10.1053/j.gastro.2024.05.014_bib3) 2023; 21
Singh (10.1053/j.gastro.2024.05.014_bib37) 2014; 40
Alpdundar Bulut (10.1053/j.gastro.2024.05.014_bib32) 2020; 205
Edgar (10.1053/j.gastro.2024.05.014_bib48) 2013; 10
Tian (10.1053/j.gastro.2024.05.014_bib19) 2022; 30
Rosser (10.1053/j.gastro.2024.05.014_bib18) 2020; 31
Raud (10.1053/j.gastro.2024.05.014_bib26) 2018; 28
Li (10.1053/j.gastro.2024.05.014_bib14) 2021; 13
Zhang (10.1053/j.gastro.2024.05.014_bib16) 2021; 32
Zhang (10.1053/j.gastro.2024.05.014_bib33) 2022; 11
Nevens (10.1053/j.gastro.2024.05.014_bib42) 2016; 375
Schulthess (10.1053/j.gastro.2024.05.014_bib20) 2019; 50
Zhou (10.1053/j.gastro.2024.05.014_bib13) 2023; 14
Martínez-Reyes (10.1053/j.gastro.2024.05.014_bib40) 2020; 11
Lindor (10.1053/j.gastro.2024.05.014_bib23) 2019; 69
Ostrand-Rosenberg (10.1053/j.gastro.2024.05.014_bib7) 2023; 210
Tang (10.1053/j.gastro.2024.05.014_bib12) 2018; 67
Mayo (10.1053/j.gastro.2024.05.014_bib44) 2022; 76
Lv (10.1053/j.gastro.2024.05.014_bib11) 2016; 18
Luu (10.1053/j.gastro.2024.05.014_bib17) 2021; 12
Bachem (10.1053/j.gastro.2024.05.014_bib39) 2019; 51
Divakaruni (10.1053/j.gastro.2024.05.014_bib27) 2018; 28
Schneider (10.1053/j.gastro.2024.05.014_bib31) 2022; 13
van der Hee (10.1053/j.gastro.2024.05.014_bib15) 2021; 29
Liu (10.1053/j.gastro.2024.05.014_bib47) 2016; 100
Takahashi (10.1053/j.gastro.2024.05.014_bib21) 2020; 58
Arpaia (10.1053/j.gastro.2024.05.014_bib38) 2013; 504
Mohammadpour (10.1053/j.gastro.2024.05.014_bib6) 2021; 37
Quast (10.1053/j.gastro.2024.05.014_bib49) 2013; 41
Yan (10.1053/j.gastro.2024.05.014_bib25) 2019; 10
Awoniyi (10.1053/j.gastro.2024.05.014_bib29) 2023; 72
Michaudel (10.1053/j.gastro.2024.05.014_bib10) 2020; 32
Veglia (10.1053/j.gastro.2024.05.014_bib4) 2021; 21
(10.1053/j.gastro.2024.05.014_bib2) 2017; 67
Christofides (10.1053/j.gastro.2024.05.014_bib28) 2021; 114
Veglia (10.1053/j.gastro.2024.05.014_bib5) 2019; 569
Condamine (10.1053/j.gastro.2024.05.014_bib45) 2011; 32
Zhang (10.1053/j.gastro.2024.05.014_bib8) 2018; 67
Krautkramer (10.1053/j.gastro.2024.05.014_bib9) 2021; 19
Avery (10.1053/j.gastro.2024.05.014_bib34) 2023; 119
Corpechot (10.1053/j.gastro.2024.05.014_bib43) 2018; 378
Mariño (10.1053/j.gastro.2024.05.014_bib22) 2017; 18
Wei (10.1053/j.gastro.2024.05.014_bib36) 2022; 19
Lasser (10.1053/j.gastro.2024.05.014_bib46) 2024; 21
Trivedi (10.1053/j.gastro.2024.05.014_bib1) 2021; 70
Pushalkar (10.1053/j.gastro.2024.05.014_bib35) 2018; 8
McDonnell (10.1053/j.gastro.2024.05.014_bib41) 2016; 17
Eshleman (10.1053/j.gastro.2024.05.014_bib30) 2024; 57
Corpechot (10.1053/j.gastro.2024.05.014_bib24) 2008; 48
References_xml – volume: 375
  start-page: 631
  year: 2016
  end-page: 643
  ident: bib42
  article-title: A placebo-controlled trial of obeticholic acid in primary biliary cholangitis
  publication-title: N Engl J Med
– volume: 50
  start-page: 432
  year: 2019
  end-page: 445
  ident: bib20
  article-title: The short chain fatty acid butyrate imprints an antimicrobial program in macrophages
  publication-title: Immunity
– volume: 48
  start-page: 871
  year: 2008
  end-page: 877
  ident: bib24
  article-title: Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis
  publication-title: Hepatology
– volume: 19
  start-page: 1361
  year: 2022
  end-page: 1372
  ident: bib36
  article-title: Aryl hydrocarbon receptor activation drives polymorphonuclear myeloid-derived suppressor cell response and efficiently attenuates experimental Sjögren's syndrome
  publication-title: Cell Mol Immunol
– volume: 67
  start-page: 145
  year: 2017
  end-page: 172
  ident: bib2
  article-title: EASL Clinical Practice Guidelines: the diagnosis and management of patients with primary biliary cholangitis
  publication-title: J Hepatol
– volume: 32
  start-page: 159
  year: 2021
  end-page: 169
  ident: bib16
  article-title: Butyrate in energy metabolism: there is still more to learn
  publication-title: Trends Endocrinol Metab
– volume: 31
  start-page: 837
  year: 2020
  end-page: 851
  ident: bib18
  article-title: Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells
  publication-title: Cell Metab
– volume: 210
  start-page: 1183
  year: 2023
  end-page: 1197
  ident: bib7
  article-title: Here, there, and everywhere: myeloid-derived suppressor cells in immunology
  publication-title: J Immunol
– volume: 69
  start-page: 394
  year: 2019
  end-page: 419
  ident: bib23
  article-title: Primary biliary cholangitis: 2018 Practice Guidance from the American Association for the Study of Liver Diseases
  publication-title: Hepatology
– volume: 37
  year: 2021
  ident: bib6
  article-title: β2-adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the TME
  publication-title: Cell Rep
– volume: 19
  start-page: 77
  year: 2021
  end-page: 94
  ident: bib9
  article-title: Gut microbial metabolites as multi-kingdom intermediates
  publication-title: Nat Rev Microbiol
– volume: 57
  start-page: 319
  year: 2024
  end-page: 332
  ident: bib30
  article-title: Microbiota-derived butyrate restricts tuft cell differentiation via histone deacetylase 3 to modulate intestinal type 2 immunity
  publication-title: Immunity
– volume: 14
  year: 2023
  ident: bib13
  article-title: Gut microbial profile of treatment-naive patients with primary biliary cholangitis
  publication-title: Front Immunol
– volume: 205
  start-page: 2707
  year: 2020
  end-page: 2718
  ident: bib32
  article-title: Human gut commensal membrane vesicles modulate inflammation by generating M2-like macrophages and myeloid-derived suppressor cells
  publication-title: J Immunol
– volume: 76
  start-page: 518
  year: 2022
  end-page: 531
  ident: bib44
  article-title: Mechanisms and molecules: what are the treatment targets for primary biliary cholangitis?
  publication-title: Hepatology
– volume: 11
  start-page: 102
  year: 2020
  ident: bib40
  article-title: Mitochondrial TCA cycle metabolites control physiology and disease
  publication-title: Nat Commun
– volume: 10
  start-page: 1399
  year: 2019
  ident: bib25
  article-title: Lipid metabolic pathways confer the immunosuppressive function of myeloid-derived suppressor cells in tumor
  publication-title: Front Immunol
– volume: 13
  year: 2021
  ident: bib14
  article-title: Alterations in microbiota and their metabolites are associated with beneficial effects of bile acid sequestrant on icteric primary biliary Cholangitis
  publication-title: Gut Microbes
– volume: 70
  start-page: 1989
  year: 2021
  end-page: 2003
  ident: bib1
  article-title: Recent advances in clinical practice: epidemiology of autoimmune liver diseases
  publication-title: Gut
– volume: 21
  start-page: 2076
  year: 2023
  end-page: 2087
  ident: bib3
  article-title: New treatment paradigms in primary biliary cholangitis
  publication-title: Clin Gastroenterol Hepatol
– volume: 28
  start-page: 490
  year: 2018
  end-page: 503
  ident: bib27
  article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis
  publication-title: Cell Metab
– volume: 13
  start-page: 3964
  year: 2022
  ident: bib31
  article-title: Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment
  publication-title: Nat Commun
– volume: 569
  start-page: 73
  year: 2019
  end-page: 78
  ident: bib5
  article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer
  publication-title: Nature
– volume: 11
  start-page: 88
  year: 2022
  ident: bib33
  article-title: Gut fungi enhances immunosuppressive function of myeloid-derived suppressor cells by activating PKM2-dependent glycolysis to promote colorectal tumorigenesis
  publication-title: Exp Hematol Oncol
– volume: 67
  start-page: 534
  year: 2018
  end-page: 541
  ident: bib12
  article-title: Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy
  publication-title: Gut
– volume: 32
  start-page: 19
  year: 2011
  end-page: 25
  ident: bib45
  article-title: Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function
  publication-title: Trends Immunol
– volume: 40
  start-page: 128
  year: 2014
  end-page: 139
  ident: bib37
  article-title: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
  publication-title: Immunity
– volume: 17
  start-page: 1463
  year: 2016
  end-page: 1472
  ident: bib41
  article-title: Lipids reprogram metabolism to become a major carbon source for histone acetylation
  publication-title: Cell Rep
– volume: 67
  start-page: 232
  year: 2018
  end-page: 246
  ident: bib8
  article-title: A functional characteristic of cysteine-rich protein 61: modulation of myeloid-derived suppressor cells in liver inflammation
  publication-title: Hepatology
– volume: 29
  start-page: 700
  year: 2021
  end-page: 712
  ident: bib15
  article-title: Microbial regulation of host physiology by short-chain fatty acids
  publication-title: Trends Microbiol
– volume: 51
  start-page: 285
  year: 2019
  end-page: 297
  ident: bib39
  article-title: Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8
  publication-title: Immunity
– volume: 32
  start-page: 514
  year: 2020
  end-page: 523
  ident: bib10
  article-title: The gut microbiota at the service of immunometabolism
  publication-title: Cell Metab
– volume: 119
  year: 2023
  ident: bib34
  article-title: Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage
  publication-title: Cardiovasc Res
– volume: 58
  year: 2020
  ident: bib21
  article-title: Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells
  publication-title: EBioMedicine
– volume: 12
  start-page: 4077
  year: 2021
  ident: bib17
  article-title: Microbial short-chain fatty acids modulate CD8
  publication-title: Nat Commun
– volume: 21
  start-page: 147
  year: 2024
  end-page: 164
  ident: bib46
  article-title: Myeloid-derived suppressor cells in cancer and cancer therapy
  publication-title: Nat Rev Clin Oncol
– volume: 18
  start-page: 2272
  year: 2016
  end-page: 2286
  ident: bib11
  article-title: Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis
  publication-title: Environ Microbiol
– volume: 504
  start-page: 451
  year: 2013
  end-page: 455
  ident: bib38
  article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
  publication-title: Nature
– volume: 18
  start-page: 552
  year: 2017
  end-page: 562
  ident: bib22
  article-title: Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes
  publication-title: Nat Immunol
– volume: 21
  start-page: 485
  year: 2021
  end-page: 498
  ident: bib4
  article-title: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity
  publication-title: Nat Rev Immunol
– volume: 114
  year: 2021
  ident: bib28
  article-title: The role of peroxisome proliferator-activated receptors (PPAR) in immune responses
  publication-title: Metabolism
– volume: 28
  start-page: 504
  year: 2018
  end-page: 515
  ident: bib26
  article-title: Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation
  publication-title: Cell Metab
– volume: 378
  start-page: 2171
  year: 2018
  end-page: 2181
  ident: bib43
  article-title: A placebo-controlled trial of bezafibrate in primary biliary cholangitis
  publication-title: N Engl J Med
– volume: 30
  start-page: 1450
  year: 2022
  end-page: 1463
  ident: bib19
  article-title: Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation
  publication-title: Cell Host Microbe
– volume: 72
  start-page: 671
  year: 2023
  end-page: 685
  ident: bib29
  article-title: Protective and aggressive bacterial subsets and metabolites modify hepatobiliary inflammation and fibrosis in a murine model of PSC
  publication-title: Gut
– volume: 8
  start-page: 403
  year: 2018
  end-page: 416
  ident: bib35
  article-title: The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression
  publication-title: Cancer Discov
– volume: 100
  start-page: 1421
  year: 2016
  ident: 10.1053/j.gastro.2024.05.014_bib47
  article-title: Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-015-7039-6
– volume: 13
  start-page: 3964
  year: 2022
  ident: 10.1053/j.gastro.2024.05.014_bib31
  article-title: Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-31312-5
– volume: 30
  start-page: 1450
  year: 2022
  ident: 10.1053/j.gastro.2024.05.014_bib19
  article-title: Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2022.09.004
– volume: 19
  start-page: 1361
  year: 2022
  ident: 10.1053/j.gastro.2024.05.014_bib36
  article-title: Aryl hydrocarbon receptor activation drives polymorphonuclear myeloid-derived suppressor cell response and efficiently attenuates experimental Sjögren's syndrome
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-022-00943-5
– volume: 10
  start-page: 1399
  year: 2019
  ident: 10.1053/j.gastro.2024.05.014_bib25
  article-title: Lipid metabolic pathways confer the immunosuppressive function of myeloid-derived suppressor cells in tumor
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.01399
– volume: 8
  start-page: 403
  year: 2018
  ident: 10.1053/j.gastro.2024.05.014_bib35
  article-title: The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-1134
– volume: 210
  start-page: 1183
  year: 2023
  ident: 10.1053/j.gastro.2024.05.014_bib7
  article-title: Here, there, and everywhere: myeloid-derived suppressor cells in immunology
  publication-title: J Immunol
  doi: 10.4049/jimmunol.2200914
– volume: 18
  start-page: 552
  year: 2017
  ident: 10.1053/j.gastro.2024.05.014_bib22
  article-title: Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes
  publication-title: Nat Immunol
  doi: 10.1038/ni.3713
– volume: 504
  start-page: 451
  year: 2013
  ident: 10.1053/j.gastro.2024.05.014_bib38
  article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
  publication-title: Nature
  doi: 10.1038/nature12726
– volume: 31
  start-page: 837
  year: 2020
  ident: 10.1053/j.gastro.2024.05.014_bib18
  article-title: Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2020.03.003
– volume: 378
  start-page: 2171
  year: 2018
  ident: 10.1053/j.gastro.2024.05.014_bib43
  article-title: A placebo-controlled trial of bezafibrate in primary biliary cholangitis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1714519
– volume: 32
  start-page: 19
  year: 2011
  ident: 10.1053/j.gastro.2024.05.014_bib45
  article-title: Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2010.10.002
– volume: 19
  start-page: 77
  year: 2021
  ident: 10.1053/j.gastro.2024.05.014_bib9
  article-title: Gut microbial metabolites as multi-kingdom intermediates
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-020-0438-4
– volume: 14
  year: 2023
  ident: 10.1053/j.gastro.2024.05.014_bib13
  article-title: Gut microbial profile of treatment-naive patients with primary biliary cholangitis
  publication-title: Front Immunol
– volume: 11
  start-page: 102
  year: 2020
  ident: 10.1053/j.gastro.2024.05.014_bib40
  article-title: Mitochondrial TCA cycle metabolites control physiology and disease
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13668-3
– volume: 12
  start-page: 4077
  year: 2021
  ident: 10.1053/j.gastro.2024.05.014_bib17
  article-title: Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24331-1
– volume: 28
  start-page: 504
  year: 2018
  ident: 10.1053/j.gastro.2024.05.014_bib26
  article-title: Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.06.002
– volume: 21
  start-page: 485
  year: 2021
  ident: 10.1053/j.gastro.2024.05.014_bib4
  article-title: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-020-00490-y
– volume: 17
  start-page: 1463
  year: 2016
  ident: 10.1053/j.gastro.2024.05.014_bib41
  article-title: Lipids reprogram metabolism to become a major carbon source for histone acetylation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.10.012
– volume: 37
  year: 2021
  ident: 10.1053/j.gastro.2024.05.014_bib6
  article-title: β2-adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the TME
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.109883
– volume: 375
  start-page: 631
  year: 2016
  ident: 10.1053/j.gastro.2024.05.014_bib42
  article-title: A placebo-controlled trial of obeticholic acid in primary biliary cholangitis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1509840
– volume: 67
  start-page: 232
  year: 2018
  ident: 10.1053/j.gastro.2024.05.014_bib8
  article-title: A functional characteristic of cysteine-rich protein 61: modulation of myeloid-derived suppressor cells in liver inflammation
  publication-title: Hepatology
  doi: 10.1002/hep.29418
– volume: 51
  start-page: 285
  year: 2019
  ident: 10.1053/j.gastro.2024.05.014_bib39
  article-title: Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.06.002
– volume: 70
  start-page: 1989
  year: 2021
  ident: 10.1053/j.gastro.2024.05.014_bib1
  article-title: Recent advances in clinical practice: epidemiology of autoimmune liver diseases
  publication-title: Gut
  doi: 10.1136/gutjnl-2020-322362
– volume: 28
  start-page: 490
  year: 2018
  ident: 10.1053/j.gastro.2024.05.014_bib27
  article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.06.001
– volume: 41
  start-page: D590
  year: 2013
  ident: 10.1053/j.gastro.2024.05.014_bib49
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1219
– volume: 40
  start-page: 128
  year: 2014
  ident: 10.1053/j.gastro.2024.05.014_bib37
  article-title: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.12.007
– volume: 72
  start-page: 671
  year: 2023
  ident: 10.1053/j.gastro.2024.05.014_bib29
  article-title: Protective and aggressive bacterial subsets and metabolites modify hepatobiliary inflammation and fibrosis in a murine model of PSC
  publication-title: Gut
  doi: 10.1136/gutjnl-2021-326500
– volume: 114
  year: 2021
  ident: 10.1053/j.gastro.2024.05.014_bib28
  article-title: The role of peroxisome proliferator-activated receptors (PPAR) in immune responses
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2020.154338
– volume: 569
  start-page: 73
  year: 2019
  ident: 10.1053/j.gastro.2024.05.014_bib5
  article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer
  publication-title: Nature
  doi: 10.1038/s41586-019-1118-2
– volume: 48
  start-page: 871
  year: 2008
  ident: 10.1053/j.gastro.2024.05.014_bib24
  article-title: Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis
  publication-title: Hepatology
  doi: 10.1002/hep.22428
– volume: 21
  start-page: 147
  year: 2024
  ident: 10.1053/j.gastro.2024.05.014_bib46
  article-title: Myeloid-derived suppressor cells in cancer and cancer therapy
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-023-00846-y
– volume: 10
  start-page: 996
  year: 2013
  ident: 10.1053/j.gastro.2024.05.014_bib48
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2604
– volume: 18
  start-page: 2272
  year: 2016
  ident: 10.1053/j.gastro.2024.05.014_bib11
  article-title: Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13401
– volume: 119
  year: 2023
  ident: 10.1053/j.gastro.2024.05.014_bib34
  article-title: Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvac121
– volume: 76
  start-page: 518
  year: 2022
  ident: 10.1053/j.gastro.2024.05.014_bib44
  article-title: Mechanisms and molecules: what are the treatment targets for primary biliary cholangitis?
  publication-title: Hepatology
  doi: 10.1002/hep.32405
– volume: 69
  start-page: 394
  year: 2019
  ident: 10.1053/j.gastro.2024.05.014_bib23
  article-title: Primary biliary cholangitis: 2018 Practice Guidance from the American Association for the Study of Liver Diseases
  publication-title: Hepatology
  doi: 10.1002/hep.30145
– volume: 67
  start-page: 145
  year: 2017
  ident: 10.1053/j.gastro.2024.05.014_bib2
  article-title: EASL Clinical Practice Guidelines: the diagnosis and management of patients with primary biliary cholangitis
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2017.03.022
– volume: 32
  start-page: 159
  year: 2021
  ident: 10.1053/j.gastro.2024.05.014_bib16
  article-title: Butyrate in energy metabolism: there is still more to learn
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2020.12.003
– volume: 57
  start-page: 319
  year: 2024
  ident: 10.1053/j.gastro.2024.05.014_bib30
  article-title: Microbiota-derived butyrate restricts tuft cell differentiation via histone deacetylase 3 to modulate intestinal type 2 immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2024.01.002
– volume: 29
  start-page: 700
  year: 2021
  ident: 10.1053/j.gastro.2024.05.014_bib15
  article-title: Microbial regulation of host physiology by short-chain fatty acids
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2021.02.001
– volume: 32
  start-page: 514
  year: 2020
  ident: 10.1053/j.gastro.2024.05.014_bib10
  article-title: The gut microbiota at the service of immunometabolism
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2020.09.004
– volume: 58
  year: 2020
  ident: 10.1053/j.gastro.2024.05.014_bib21
  article-title: Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.102913
– volume: 67
  start-page: 534
  year: 2018
  ident: 10.1053/j.gastro.2024.05.014_bib12
  article-title: Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy
  publication-title: Gut
  doi: 10.1136/gutjnl-2016-313332
– volume: 50
  start-page: 432
  year: 2019
  ident: 10.1053/j.gastro.2024.05.014_bib20
  article-title: The short chain fatty acid butyrate imprints an antimicrobial program in macrophages
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.12.018
– volume: 21
  start-page: 2076
  year: 2023
  ident: 10.1053/j.gastro.2024.05.014_bib3
  article-title: New treatment paradigms in primary biliary cholangitis
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2023.02.005
– volume: 11
  start-page: 88
  year: 2022
  ident: 10.1053/j.gastro.2024.05.014_bib33
  article-title: Gut fungi enhances immunosuppressive function of myeloid-derived suppressor cells by activating PKM2-dependent glycolysis to promote colorectal tumorigenesis
  publication-title: Exp Hematol Oncol
  doi: 10.1186/s40164-022-00334-6
– volume: 13
  year: 2021
  ident: 10.1053/j.gastro.2024.05.014_bib14
  article-title: Alterations in microbiota and their metabolites are associated with beneficial effects of bile acid sequestrant on icteric primary biliary Cholangitis
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2021.1946366
– volume: 205
  start-page: 2707
  year: 2020
  ident: 10.1053/j.gastro.2024.05.014_bib32
  article-title: Human gut commensal membrane vesicles modulate inflammation by generating M2-like macrophages and myeloid-derived suppressor cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.2000731
SSID ssj0009381
Score 2.579006
Snippet Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 733
SubjectTerms Animals
Autoimmune Liver Disease
Butyrates - metabolism
Butyrates - pharmacology
Cellular Reprogramming - drug effects
Disease Models, Animal
Dysbiosis
Epigenesis, Genetic - drug effects
Fatty Acid Oxidation
Feces - chemistry
Feces - microbiology
Female
Gastrointestinal Microbiome - drug effects
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Humans
Liver Cirrhosis, Biliary - drug therapy
Liver Cirrhosis, Biliary - genetics
Liver Cirrhosis, Biliary - immunology
Liver Cirrhosis, Biliary - metabolism
Liver Cirrhosis, Biliary - microbiology
Male
Metabolic Reprogramming
Mice
Mice, Inbred C57BL
Microbial Metabolite
Myeloid Cells
Myeloid-Derived Suppressor Cells - drug effects
Myeloid-Derived Suppressor Cells - immunology
Myeloid-Derived Suppressor Cells - metabolism
Ursodeoxycholic Acid - pharmacology
Title Gut Microbiota-Derived Butyrate Induces Epigenetic and Metabolic Reprogramming in Myeloid-Derived Suppressor Cells to Alleviate Primary Biliary Cholangitis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0016508524049369
https://dx.doi.org/10.1053/j.gastro.2024.05.014
https://www.ncbi.nlm.nih.gov/pubmed/38810839
https://www.proquest.com/docview/3062528155
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1528-0012
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009381
  issn: 0016-5085
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELVKV0K8IO5bbjISb1VKYzsXP7Zl6QpRhGAXlqfISRwUCM2qTZCWX-FT-DlmEidNoatd9iWtothxPCeeGWfmDCHPkQJFelJZXPihJUJuW6FSymIyZGGoxl5c0Rcv3rqHx-L1iXPS6_3uRC2VRTiKfu7MK7mKVOEcyBWzZP9Dsm2ncAL-g3zhCBKG46VkPC8LjHuvqJQKZb2Ee_4AA3JaFmfIADHEuhwYcXVwipybuuFmXegCRJ9VIfQmPuu7SW1ZnOksT-O2Kyz6iQ55vhrOdJZVdBCTDFPSsf93hqpimmYp_s7QUcYCSOm6a_TO1bpY5Uj-uaoZn3ZUABraUnQ3fT-Zfez3ZdrGDFWBB9N8g0RzzRQGf1Z2gouqCz-n35RRy2ZXg4k2bMtstTXpNlvRoGifWmBROlvLd13Ow-BUdBZjr6bYMHrdE3Kk-U6tMa5Kf3wdfammY4TjqelcxUZLtrGLH3AUOAiwhQSWQ7xG9pjnuqxP9ubTNx8nG85n7tcFG82om8xNh7_Yda_zLKPzPJ_KAjq6RW4a14VOahzeJj29vEOuL0xwxl3yC-BI_4UjbeBIDRzpBo4U4EhbONItONJ0Sf-CI93AkVZwpEVOWzhSA0dq4Eg7cLxHjl8dHM0OLVP7w4rApCwsO5aChaAwktBXvpu4KmFuDM4CtxPJBHfjJPJt7vtKgcPDIo0pZpH0IjV2mFIxv0_6y3yp9wlloXKl8CJbJFw4XMtIwUrk22D82lJpPSC8mfcgMsT4WJ8lC6oADYeDg1xLK0BpBWMnAGkNiNW2Oq0f74LrnUakQZP0DGo6AAxe0M5r2xmjuDZ2L9HyWYOcAHQGfghUS52X64CPXeYwH1yJAXlQQ6p9BphSmBkuH175vo_Ijc0b_Zj0i1Wpn4DlXoRPzRvyB3KX8uo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+Microbiota-Derived+Butyrate+Induces+Epigenetic+and+Metabolic+Reprogramming+in+Myeloid-Derived+Suppressor+Cells+to+Alleviate+Primary+Biliary+Cholangitis&rft.jtitle=Gastroenterology+%28New+York%2C+N.Y.+1943%29&rft.au=Wang%2C+Rui&rft.au=Li%2C+Bo&rft.au=Huang%2C+Bingyuan&rft.au=Li%2C+Yikang&rft.date=2024-09-01&rft.pub=Elsevier+Inc&rft.issn=0016-5085&rft.volume=167&rft.issue=4&rft.spage=733&rft.epage=749.e3&rft_id=info:doi/10.1053%2Fj.gastro.2024.05.014&rft.externalDocID=S0016508524049369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5085&client=summon