Performance of a deep neural network in teledermatology: a single‐centre prospective diagnostic study
Background The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real‐life conditions. Objective To assess the diagnostic performance and potential clinical utility of a 174‐multiclass AI algori...
        Saved in:
      
    
          | Published in | Journal of the European Academy of Dermatology and Venereology Vol. 35; no. 2; pp. 546 - 553 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
        
        01.02.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0926-9959 1468-3083 1468-3083  | 
| DOI | 10.1111/jdv.16979 | 
Cover
| Abstract | Background
The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real‐life conditions.
Objective
To assess the diagnostic performance and potential clinical utility of a 174‐multiclass AI algorithm in a real‐life telemedicine setting.
Methods
Prospective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow‐up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed.
Results
A total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real‐time diagnosis in 0.6% (n = 2) of cases. The overall top‐1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top‐1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality.
Conclusions
A 174‐disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient‐taken photographs via telemedicine. | 
    
|---|---|
| AbstractList | The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real-life conditions.
To assess the diagnostic performance and potential clinical utility of a 174-multiclass AI algorithm in a real-life telemedicine setting.
Prospective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow-up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed.
A total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real-time diagnosis in 0.6% (n = 2) of cases. The overall top-1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top-1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality.
A 174-disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient-taken photographs via telemedicine. Background The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real‐life conditions. Objective To assess the diagnostic performance and potential clinical utility of a 174‐multiclass AI algorithm in a real‐life telemedicine setting. Methods Prospective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow‐up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed. Results A total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real‐time diagnosis in 0.6% (n = 2) of cases. The overall top‐1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top‐1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality. Conclusions A 174‐disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient‐taken photographs via telemedicine. The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real-life conditions.BACKGROUNDThe use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real-life conditions.To assess the diagnostic performance and potential clinical utility of a 174-multiclass AI algorithm in a real-life telemedicine setting.OBJECTIVETo assess the diagnostic performance and potential clinical utility of a 174-multiclass AI algorithm in a real-life telemedicine setting.Prospective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow-up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed.METHODSProspective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow-up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed.A total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real-time diagnosis in 0.6% (n = 2) of cases. The overall top-1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top-1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality.RESULTSA total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real-time diagnosis in 0.6% (n = 2) of cases. The overall top-1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top-1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality.A 174-disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient-taken photographs via telemedicine.CONCLUSIONSA 174-disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient-taken photographs via telemedicine.  | 
    
| Author | Muñoz‐López, C. Araneda‐Ortega, P. Marchetti, M.A. Nuñez‐Mora, M. Reyes‐Baraona, F. Liopyris, K. Navarrete‐Dechent, C. Uribe, P. Vera‐Kellet, C. Jaque, A. Parra‐Cares, J. Millán‐Apablaza, R. Curi, M. Ramírez‐Cornejo, C. Majerson, D. Guzmán, M. Meza‐Romero, R. Han, S. S. Del Puerto, C. Del Barrio‐Díaz, P.  | 
    
| AuthorAffiliation | 1 Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile 2 Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA 3 Dermatology Clinic, Seoul, Korea 4 Department of Dermatology, University of Athens, Andreas Syggros Hospital of Skin and Venereal Diseases, Athens, Greece 5 Melanoma and Skin Cancer Unit, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile  | 
    
| AuthorAffiliation_xml | – name: 4 Department of Dermatology, University of Athens, Andreas Syggros Hospital of Skin and Venereal Diseases, Athens, Greece – name: 5 Melanoma and Skin Cancer Unit, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile – name: 1 Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile – name: 3 Dermatology Clinic, Seoul, Korea – name: 2 Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA  | 
    
| Author_xml | – sequence: 1 givenname: C. surname: Muñoz‐López fullname: Muñoz‐López, C. organization: Pontificia Universidad Católica de Chile – sequence: 2 givenname: C. surname: Ramírez‐Cornejo fullname: Ramírez‐Cornejo, C. organization: Pontificia Universidad Católica de Chile – sequence: 3 givenname: M.A. surname: Marchetti fullname: Marchetti, M.A. organization: Memorial Sloan Kettering Cancer Center – sequence: 4 givenname: S. S. surname: Han fullname: Han, S. S. – sequence: 5 givenname: P. surname: Del Barrio‐Díaz fullname: Del Barrio‐Díaz, P. organization: Pontificia Universidad Católica de Chile – sequence: 6 givenname: A. surname: Jaque fullname: Jaque, A. organization: Pontificia Universidad Católica de Chile – sequence: 7 givenname: P. surname: Uribe fullname: Uribe, P. organization: Pontificia Universidad Católica de Chile – sequence: 8 givenname: D. surname: Majerson fullname: Majerson, D. organization: Pontificia Universidad Católica de Chile – sequence: 9 givenname: M. surname: Curi fullname: Curi, M. organization: Pontificia Universidad Católica de Chile – sequence: 10 givenname: C. orcidid: 0000-0003-4667-1873 surname: Del Puerto fullname: Del Puerto, C. organization: Pontificia Universidad Católica de Chile – sequence: 11 givenname: F. surname: Reyes‐Baraona fullname: Reyes‐Baraona, F. organization: Pontificia Universidad Católica de Chile – sequence: 12 givenname: R. orcidid: 0000-0003-3863-4386 surname: Meza‐Romero fullname: Meza‐Romero, R. organization: Pontificia Universidad Católica de Chile – sequence: 13 givenname: J. surname: Parra‐Cares fullname: Parra‐Cares, J. organization: Pontificia Universidad Católica de Chile – sequence: 14 givenname: P. surname: Araneda‐Ortega fullname: Araneda‐Ortega, P. organization: Pontificia Universidad Católica de Chile – sequence: 15 givenname: M. surname: Guzmán fullname: Guzmán, M. organization: Pontificia Universidad Católica de Chile – sequence: 16 givenname: R. surname: Millán‐Apablaza fullname: Millán‐Apablaza, R. organization: Pontificia Universidad Católica de Chile – sequence: 17 givenname: M. surname: Nuñez‐Mora fullname: Nuñez‐Mora, M. organization: Pontificia Universidad Católica de Chile – sequence: 18 givenname: K. orcidid: 0000-0001-9566-8238 surname: Liopyris fullname: Liopyris, K. organization: Andreas Syggros Hospital of Skin and Venereal Diseases – sequence: 19 givenname: C. surname: Vera‐Kellet fullname: Vera‐Kellet, C. organization: Pontificia Universidad Católica de Chile – sequence: 20 givenname: C. orcidid: 0000-0003-4040-3640 surname: Navarrete‐Dechent fullname: Navarrete‐Dechent, C. email: ctnavarr@gmail.com organization: Pontificia Universidad Católica de Chile  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33037709$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kc1u1DAUhS1URKeFBS-AvASktP6Jk5gFEir_qgQLYGs5yU1w8dip7cwoOx6BZ-RJcDvDrwBv7sLfOcf3-AgdOO8AobuUnNB8Ti_6zQmtZC1voBUtq6bgpOEHaEUkqwophTxERzFeEEIoFc0tdMg54XVN5AqNbyEMPqy16wD7AWvcA0zYwRy0zSNtffiEjcMJLPSQweStH5dHmYzGjRa-fv7SgUsB8BR8nKBLZgO4N3p0PibT4ZjmfrmNbg7aRrizn8fo_fNn785eFudvXrw6e3JedCUVsqhE34m2FRXQodZlw9qBDA2Hhlak0pL1DAhhnEqqG0YG2QLVjNWtbIWWuhb8GD3c-c5u0stWW6umYNY6LIoSddWWym2p67Yy_HgHT3O7hv56Df1T4LVRv98481GNfqMaVpdckGxwf28Q_OUMMam1iR1Yqx34OSpWllJWTDKe0Xu_Zv0I-f4VGTjdAV2uMQYYVGeSTsZfRRv71-c_-EPxv1X37ltjYfk3qF4__bBTfAM_1Lu0 | 
    
| CitedBy_id | crossref_primary_10_1038_s41746_024_01031_w crossref_primary_10_3390_diagnostics13233506 crossref_primary_10_1038_s41598_022_20632_7 crossref_primary_10_1007_s00403_023_02734_y crossref_primary_10_1038_s41467_023_43095_4 crossref_primary_10_1111_jdv_20286 crossref_primary_10_1111_jdv_20462 crossref_primary_10_3390_jcm11226826 crossref_primary_10_25208_vdv16746 crossref_primary_10_1016_j_jdermsci_2023_01_005 crossref_primary_10_1007_s40257_021_00601_y crossref_primary_10_1097_MD_0000000000035993 crossref_primary_10_1177_20552076241257087 crossref_primary_10_3390_cancers16071443 crossref_primary_10_1002_jvc2_546 crossref_primary_10_1186_s12875_023_02024_6 crossref_primary_10_1111_dth_14630 crossref_primary_10_1111_jdv_17442 crossref_primary_10_1111_jdv_17464 crossref_primary_10_1016_j_jaad_2022_10_038 crossref_primary_10_1186_s40708_022_00153_9 crossref_primary_10_1089_tmj_2023_0703 crossref_primary_10_1016_j_cmpb_2022_106888 crossref_primary_10_3390_ijerph20105810 crossref_primary_10_1007_s40257_023_00826_z crossref_primary_10_3389_fmed_2021_757538 crossref_primary_10_3389_fmed_2021_670300 crossref_primary_10_1016_S2589_7500_22_00023_1 crossref_primary_10_1016_j_jid_2022_02_003 crossref_primary_10_3390_diagnostics11030451 crossref_primary_10_1089_tmj_2023_0101 crossref_primary_10_1371_journal_pone_0260895 crossref_primary_10_3390_healthcare12121192 crossref_primary_10_1038_s41598_023_31340_1 crossref_primary_10_1038_s41746_024_01103_x  | 
    
| Cites_doi | 10.1016/j.jaad.2017.08.016 10.1038/s41591‐020‐0942‐0 10.1097/CMR.0b013e32832a1e41 10.1056/NEJMp2003539 10.2196/18810 10.1093/annonc/mdy166 10.1016/j.jid.2020.01.019 10.1001/jamadermatol.2016.6214 10.1111/jdv.16855 10.1016/S0140-6736(20)30818-7 10.1111/ijd.14511 10.1684/ejd.2019.3538 10.1080/09546634.2020.1750557 10.1016/j.ejca.2019.02.005 10.1007/s40257-017-0317-6 10.1111/bjd.15695 10.1016/j.jaad.2014.07.061 10.1001/jamadermatol.2019.1375 10.1038/nature21056 10.1016/j.jid.2018.04.040 10.1001/jamadermatol.2018.2348 10.1038/s41591-020-0842-3  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 European Academy of Dermatology and Venereology 2020 European Academy of Dermatology and Venereology.  | 
    
| Copyright_xml | – notice: 2020 European Academy of Dermatology and Venereology – notice: 2020 European Academy of Dermatology and Venereology.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1111/jdv.16979 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1468-3083 | 
    
| EndPage | 553 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:8274350 PMC8274350 33037709 10_1111_jdv_16979 JDV16979  | 
    
| Genre | article Journal Article  | 
    
| GrantInformation_xml | – fundername: National Cancer Institute funderid: P30 CA008748 – fundername: NCI NIH HHS grantid: P30 CA008748  | 
    
| GroupedDBID | --- --K .3N .GA .Y3 05W 0R~ 10A 1B1 1OB 1OC 1~5 29L 31~ 33P 36B 3SF 4.4 4G. 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AAHQN AAIPD AALRI AAMNL AANHP AANLZ AAONW AAQFI AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABQWH ABWVN ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMUD ADNMO ADOZA ADZMN AE3 AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFTJW AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG CO8 COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX EX3 F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 NF~ NQ- O66 O9- OIG OVD OZT P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K R2- RIG RIWAO RJQFR ROL RPZ RX1 SAMSI SEW SUPJJ TEORI UB1 UHS W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAMMB AAYXX ACVFH ADCNI AEFGJ AEUPX AEYWJ AFPUW AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIGII AIQQE CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4159-65dc5bb56e1f7a482bf0f83e81606a92d2e0023191a820f9be1a227b9b5a9a753 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0926-9959 1468-3083  | 
    
| IngestDate | Sun Oct 26 04:15:47 EDT 2025 Thu Aug 21 18:18:53 EDT 2025 Fri Jul 11 15:49:59 EDT 2025 Mon Jul 21 05:58:35 EDT 2025 Thu Apr 24 22:59:00 EDT 2025 Wed Oct 01 04:49:44 EDT 2025 Wed Jan 22 16:31:40 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | 2020 European Academy of Dermatology and Venereology. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4159-65dc5bb56e1f7a482bf0f83e81606a92d2e0023191a820f9be1a227b9b5a9a753 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-senior authors.  | 
    
| ORCID | 0000-0003-3863-4386 0000-0001-9566-8238 0000-0003-4040-3640 0000-0003-4667-1873  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8274350 | 
    
| PMID | 33037709 | 
    
| PQID | 2449962923 | 
    
| PQPubID | 23479 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1111_jdv_16979 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8274350 proquest_miscellaneous_2449962923 pubmed_primary_33037709 crossref_citationtrail_10_1111_jdv_16979 crossref_primary_10_1111_jdv_16979 wiley_primary_10_1111_jdv_16979_JDV16979  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2021 | 
    
| PublicationDateYYYYMMDD | 2021-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2021 text: February 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Journal of the European Academy of Dermatology and Venereology | 
    
| PublicationTitleAlternate | J Eur Acad Dermatol Venereol | 
    
| PublicationYear | 2021 | 
    
| References | 2018; 19 2020; 6 2018; 29 2018; 154 2020; 31 2020; 140 2018; 138 2020; 382 2015; 72 2020; 395 2015; 351 2019; 58 2020; 26 2019; 29 2019; 2020 2020; 34 2017; 153 2017; 177 2018; 78 2009; 19 2017; 542 2019; 155 2019; 111 e_1_2_7_6_1 Aractingi S (e_1_2_7_3_1) 2019; 29 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_9_1 Gomolin A (e_1_2_7_2_1) 2020; 31 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Smith AC (e_1_2_7_7_1) 2019; 2020 Bossuyt PM (e_1_2_7_13_1) 2015; 351  | 
    
| References_xml | – volume: 177 start-page: 867 year: 2017 end-page: 869 article-title: A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions publication-title: Br J Dermatol – volume: 542 start-page: 115 year: 2017 end-page: 118 article-title: Dermatologist‐level classification of skin cancer with deep neural networks publication-title: Nature – volume: 140 start-page: 1753 issue: 9 year: 2020 end-page: 1761 article-title: Augmented intelligence dermatology: deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders publication-title: J Invest Dermatol – volume: 29 start-page: 4 year: 2019 end-page: 7 article-title: Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology? publication-title: Eur J Dermatol – volume: 154 start-page: 1247 year: 2018 end-page: 1248 article-title: Machine learning and health care disparities in dermatology publication-title: JAMA Dermatol – volume: 2020 start-page: 2019 year: 2019 article-title: Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID‐19) publication-title: J Telemed Telecare – volume: 382 start-page: 1679 issue: 18 year: 2020 end-page: 1681 article-title: Virtually Perfect? Telemedicine for Covid‐19 publication-title: N Engl J Med – volume: 155 start-page: 1291 year: 2019 end-page: 1299 article-title: Accuracy of computer‐aided diagnosis of melanoma: a meta‐analysis publication-title: JAMA Dermatology. – volume: 29 start-page: 1836 year: 2018 end-page: 1842 article-title: Man against Machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists publication-title: Ann Oncol – volume: 34 start-page: 2659 year: 2020 end-page: 2663 article-title: Human surface anatomy terminology for dermatology: a Delphi consensus from the International Skin Imaging Collaboration publication-title: J Eur Acad Dermatol Venereol – volume: 19 start-page: 180 year: 2009 end-page: 184 article-title: Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial publication-title: Melanoma Res – volume: 58 start-page: 989 year: 2019 end-page: 990 article-title: Artificial intelligence in dermato‐oncology: a joint clinical and data science perspective publication-title: Int J Dermatol – volume: 31 start-page: 7 year: 2020 article-title: Artificial intelligence applications in dermatology: where do we stand? publication-title: Front Med – volume: 31 start-page: 325 issue: 4 year: 2020 article-title: Teledermatology: a useful tool to fight COVID‐19 publication-title: J Dermatolog Treat – volume: 19 start-page: 253 year: 2018 end-page: 260 article-title: Teledermatology: a review and update publication-title: Am J Clin Dermatol – volume: 26 start-page: 1229 issue: 8 year: 2020 end-page: 1234 article-title: Human – computer collaboration for skin cancer recognition publication-title: Nat Med – volume: 72 start-page: 563 year: 2015 end-page: 574 article-title: Teledermatology: From historical perspective to emerging techniques of the modern era: Part I: History, rationale, and current practice publication-title: J Am Acad Dermatol – volume: 138 start-page: 2277 year: 2018 end-page: 2279 article-title: Automated dermatological diagnosis: Hype or reality? publication-title: J Invest Dermatol. – volume: 26 start-page: 900 issue: 6 year: 2020 end-page: 908 article-title: A deep learning system for differential diagnosis of skin diseases publication-title: Nat Med – volume: 78 start-page: 270 year: 2018 end-page: 277.e1 article-title: Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images publication-title: J Am Acad Dermatol – volume: 6 year: 2020 article-title: Global telemedicine implementation and integration within health systems to fight the COVID‐19 pandemic: a call to action publication-title: JMIR Public Heal Surveill – volume: 351 start-page: 1 year: 2015 end-page: 9 article-title: STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies publication-title: BMJ – volume: 395 start-page: 1180 year: 2020 end-page: 1181 article-title: Virtual health care in the era of COVID‐19 publication-title: The Lancet – volume: 153 start-page: 453 year: 2017 end-page: 457 article-title: Proposed technical guidelines for the acquisition of clinical images of skin‐related conditions publication-title: JAMA Dermatology – volume: 111 start-page: 148 year: 2019 end-page: 154 article-title: A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task publication-title: Eur J Cancer – ident: e_1_2_7_18_1 doi: 10.1016/j.jaad.2017.08.016 – ident: e_1_2_7_19_1 doi: 10.1038/s41591‐020‐0942‐0 – ident: e_1_2_7_6_1 doi: 10.1097/CMR.0b013e32832a1e41 – ident: e_1_2_7_25_1 doi: 10.1056/NEJMp2003539 – ident: e_1_2_7_9_1 doi: 10.2196/18810 – ident: e_1_2_7_16_1 doi: 10.1093/annonc/mdy166 – ident: e_1_2_7_12_1 doi: 10.1016/j.jid.2020.01.019 – volume: 31 start-page: 7 year: 2020 ident: e_1_2_7_2_1 article-title: Artificial intelligence applications in dermatology: where do we stand? publication-title: Front Med – volume: 2020 start-page: 2019 year: 2019 ident: e_1_2_7_7_1 article-title: Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID‐19) publication-title: J Telemed Telecare – ident: e_1_2_7_20_1 doi: 10.1001/jamadermatol.2016.6214 – ident: e_1_2_7_24_1 doi: 10.1111/jdv.16855 – ident: e_1_2_7_26_1 doi: 10.1016/S0140-6736(20)30818-7 – ident: e_1_2_7_21_1 doi: 10.1111/ijd.14511 – volume: 29 start-page: 4 year: 2019 ident: e_1_2_7_3_1 article-title: Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology? publication-title: Eur J Dermatol doi: 10.1684/ejd.2019.3538 – ident: e_1_2_7_8_1 doi: 10.1080/09546634.2020.1750557 – ident: e_1_2_7_5_1 doi: 10.1016/j.ejca.2019.02.005 – ident: e_1_2_7_10_1 doi: 10.1007/s40257-017-0317-6 – ident: e_1_2_7_15_1 doi: 10.1111/bjd.15695 – volume: 351 start-page: 1 year: 2015 ident: e_1_2_7_13_1 article-title: STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies publication-title: BMJ – ident: e_1_2_7_11_1 doi: 10.1016/j.jaad.2014.07.061 – ident: e_1_2_7_4_1 doi: 10.1001/jamadermatol.2019.1375 – ident: e_1_2_7_17_1 doi: 10.1038/nature21056 – ident: e_1_2_7_23_1 doi: 10.1016/j.jid.2018.04.040 – ident: e_1_2_7_22_1 doi: 10.1001/jamadermatol.2018.2348 – ident: e_1_2_7_14_1 doi: 10.1038/s41591-020-0842-3  | 
    
| SSID | ssj0001158 | 
    
| Score | 2.4837708 | 
    
| Snippet | Background
The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been... The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 546 | 
    
| SubjectTerms | Adult Artificial Intelligence Dermatology Female Humans Male Neural Networks, Computer Prospective Studies Skin Diseases - diagnosis Telemedicine  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VWwm4lHdZXjKPQy9J104cJ9wqoKoqtaoQi8op8ivtitS7KrtF5dSf0N_IL2HsPGApILhF8sRxNI7nG-ebzwAvbUVzy7WNKFNVhKukiQrDk4jmKk2FSLTQfh9ybz_bGae7h_xwBWhXCxNI-1pNYlefxG5yHLiVsxO92fHENnPMoxKfpa9mHOH3AFbH-wdbH4OmHssir5_VVRQliC9aNaHA3jFnMc0Kz9r6OQZdAZZX-ZHXF24mz7_Iul7GsCEIbd-Ed93wG-7Jp3gxV7H--ouy43-93y1YayEp2WqabsOKdXfg2l770_0uHB38KC4g04pIYqydEa-Eibe5hkdOJo7MMYQZv9KHM3HPX6Gl34mo7beLy_CSluDIu9pOYhqWHz6VBJHbezDefvv-9U7Uns8QaQz7njVjNFeKZ5ZWQqY5entU5YnNKWZFsmCGWQ8JMCOUiDOqQlkqGROqUFwWEvOk-zBwU2cfAGE65yqVokoQb1hsprQaWS81wzFdLvQQNjqPlboVL_dnaNRln8SYszI4dwjPe9NZo9jxO6NnndtL_J78TxLp7HTxuUS4gykgQ9w7hPVmGvTdJBjvhRjh3WJpgvQGXqt7uQVdHDS7W68O4UU_lf42uo0wyf5sUe6--RAuHv5Th4_gBvNcnMA2fwyD-enCPkEwNVdP28_nO0ZpIK0 priority: 102 providerName: Unpaywall  | 
    
| Title | Performance of a deep neural network in teledermatology: a single‐centre prospective diagnostic study | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjdv.16979 https://www.ncbi.nlm.nih.gov/pubmed/33037709 https://www.proquest.com/docview/2449962923 https://pubmed.ncbi.nlm.nih.gov/PMC8274350 https://www.ncbi.nlm.nih.gov/pmc/articles/8274350  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 35 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0926-9959 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1468-3083 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001158 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQIutLzKlrYyj0MvWa2dOE7gVBWqqlKrCrGoSEiRH5O2YpVd0d2icuIn8Bv5JYydR7stIMQtUsZJJp6xv7FnPgO8xJJnKC1GXJgyolHSRbmTccQzkyRKxVZZvw65f5DuDpO9I3m0AK_bWpiaH6JbcPOeEcZr7-DanF11cnfe52mufPEej9MQTr27pI4ipBNG4VykkefUaliFQhZP23J-LroBMG_mSd6ZVRN98VWPRvNYNkxGO0vwqVWjzkH53J9NTd9-u8bw-J96LsO9BqSyrdqq7sMCVg_g9n6zDf8Qjg8vyw3YuGSaOcQJ89yY1KyqM8vZacWmNKk5P_aHU3IvXpGkX5sY4c_vP4K6yEiHttqTuTrvj97KAu3tIxjuvH2_vRs1JzZEloCAz6NxVhojU-Sl0klG_T8osxgzTnGSzoUT6EECxYiakEeZG-RaCGVyI3WuKXJ6DIvVuMInwITNpEm0KmNCIEi3OS8H6MlnJAXQue3BZtt3hW3ozP2pGqOiC2vceRF-XA-ed6KTmsPjd0LPWgMoyMP8tomucDw7KwgAUVAoCAn3YKU2iO4xMSEApQbUWs2ZSifg2bvn71SnJ4HFOxME3uSgBy86o_rb120GG_mzRLH35kO4WP130adwV_gUnZCEvgaL0y8zXCeMNTUbwZk24Nbw4HDr4y8tcydT | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKhUu0Ccs9OE-DlyyWjtxHKNeqrZoS1lUVVBxqSK_AohVdgW7VPTUn9DfyC_p2HnQLW1V9RbJ4ySTzIy_scefAV64gmaOGxdRposIo6SNpOVxRDOdJELERhg_DznYTfv7yfYBP5iDl81emIofop1w854R4rV3cD8h_bOX2_MuTaWQN-BmkmKe4iHRxyvyKMQ6IQ5LlkaeVavmFQp1PE3X2dHoGsS8Xim5MC3H6uKLGg5n0WwYjraW4XOjSFWFctKdTnTXfP2F4_F_Nb0NSzVOJa8qw7oDc668C7cG9Ur8PTj8cLXjgIwKooh1bkw8PSZ2K6vicnJckgmOa9aH_3BQ7sUmSvrpiaG7_PY96OsIKtFs-CS2Kv3Dp5LAfHsf9rfe7r3uR_WhDZFBLOBLaazhWvPU0UKoJEMT6BVZ7DKKqZKSzDLncQKmiQrBRyG1o4oxoaXmSipMnh7AfDkq3SoQZjKuEyWKGEGIw2ZKi57z_DMcc2hpOrDR_Lzc1Izm_mCNYd5mNvY8Dx-uA89a0XFF4_E7oaeNBeToZH7lRJVuND3LEQNhXsgQDHdgpbKI9jYxggAhethbzNhKK-AJvGdbyuOjQOSdMcRvvNeB561V_e3tNoKR_Fki337zKVys_bvoE1jo7w128p13u-_XYZH5ip1Qk_4Q5ienU_cIIddEPw6e9QM9qCnE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhUuvB_L0zwOvWS1duJ1jLggllUptKoQRb2gyI9JW7HKrmC3qJz4CfxGfglj51GWAkLcInmcxMmM_Y39-TPAYyx5jtJhwoUtE-olfaK9TBOe2yxTKnXKhXnIre3hxm62uSf3VuBpuxem1ofoJtxCZMT-OgQ4znz5c5T7oz4faqXPwNlM6jwQ-kZvTsSjCOvEfliLYRJUtRpdocjjaasuj0anIOZppuS5RTUzx5_NZLKMZuNwNL4I79uG1CyUD_3F3Pbdl180Hv-3pZfgQoNT2bPasS7DClZXYG2rWYm_Cvs7JzsO2LRkhnnEGQvymFStqsnl7LBicxrXfOj-40G5x0_IMkxPTPD712-xvcioEe2GT-Zr6h89lUXl22uwO37x9vlG0hzakDjCAoFK4520Vg6Rl8pkObnAoMxTzDmlSkYLLzDgBEoTDYGPUlvkRghltZVGG0qersNqNa3wJjDhcmkzo8qUQAhSMeflAIP-jKQcWrserLc_r3CNonk4WGNSdJmNPyrih-vBw850Vst4_M7oQesBBQVZWDkxFU4XnwrCQJQXCgLDPbhRe0R3m5RAgFIDqq2WfKUzCALeyyXV4UEU8s4F4Tc56MGjzqv-9nbr0Un-bFFsjt7Fi1v_bnof1nZG4-L1y-1Xt-G8CISdSEm_A6vzjwu8S4hrbu_FwPoBsAspSA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VWwm4lHdZXjKPQy9J104cJ9wqoKoqtaoQi8op8ivtitS7KrtF5dSf0N_IL2HsPGApILhF8sRxNI7nG-ebzwAvbUVzy7WNKFNVhKukiQrDk4jmKk2FSLTQfh9ybz_bGae7h_xwBWhXCxNI-1pNYlefxG5yHLiVsxO92fHENnPMoxKfpa9mHOH3AFbH-wdbH4OmHssir5_VVRQliC9aNaHA3jFnMc0Kz9r6OQZdAZZX-ZHXF24mz7_Iul7GsCEIbd-Ed93wG-7Jp3gxV7H--ouy43-93y1YayEp2WqabsOKdXfg2l770_0uHB38KC4g04pIYqydEa-Eibe5hkdOJo7MMYQZv9KHM3HPX6Gl34mo7beLy_CSluDIu9pOYhqWHz6VBJHbezDefvv-9U7Uns8QaQz7njVjNFeKZ5ZWQqY5entU5YnNKWZFsmCGWQ8JMCOUiDOqQlkqGROqUFwWEvOk-zBwU2cfAGE65yqVokoQb1hsprQaWS81wzFdLvQQNjqPlboVL_dnaNRln8SYszI4dwjPe9NZo9jxO6NnndtL_J78TxLp7HTxuUS4gykgQ9w7hPVmGvTdJBjvhRjh3WJpgvQGXqt7uQVdHDS7W68O4UU_lf42uo0wyf5sUe6--RAuHv5Th4_gBvNcnMA2fwyD-enCPkEwNVdP28_nO0ZpIK0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+a+deep+neural+network+in+teledermatology%3A+a+single-centre+prospective+diagnostic+study&rft.jtitle=Journal+of+the+European+Academy+of+Dermatology+and+Venereology&rft.au=Mu%C3%B1oz-L%C3%B3pez%2C+C.&rft.au=Ram%C3%ADrez-Cornejo%2C+C.&rft.au=Marchetti%2C+M.A.&rft.au=Han%2C+S.+S.&rft.date=2021-02-01&rft.issn=0926-9959&rft.eissn=1468-3083&rft.volume=35&rft.issue=2&rft.spage=546&rft.epage=553&rft_id=info:doi/10.1111%2Fjdv.16979&rft_id=info%3Apmid%2F33037709&rft.externalDocID=PMC8274350 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9959&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9959&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9959&client=summon |