Performance of a deep neural network in teledermatology: a single‐centre prospective diagnostic study

Background The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real‐life conditions. Objective To assess the diagnostic performance and potential clinical utility of a 174‐multiclass AI algori...

Full description

Saved in:
Bibliographic Details
Published inJournal of the European Academy of Dermatology and Venereology Vol. 35; no. 2; pp. 546 - 553
Main Authors Muñoz‐López, C., Ramírez‐Cornejo, C., Marchetti, M.A., Han, S. S., Del Barrio‐Díaz, P., Jaque, A., Uribe, P., Majerson, D., Curi, M., Del Puerto, C., Reyes‐Baraona, F., Meza‐Romero, R., Parra‐Cares, J., Araneda‐Ortega, P., Guzmán, M., Millán‐Apablaza, R., Nuñez‐Mora, M., Liopyris, K., Vera‐Kellet, C., Navarrete‐Dechent, C.
Format Journal Article
LanguageEnglish
Published England 01.02.2021
Subjects
Online AccessGet full text
ISSN0926-9959
1468-3083
1468-3083
DOI10.1111/jdv.16979

Cover

Abstract Background The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real‐life conditions. Objective To assess the diagnostic performance and potential clinical utility of a 174‐multiclass AI algorithm in a real‐life telemedicine setting. Methods Prospective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow‐up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed. Results A total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real‐time diagnosis in 0.6% (n = 2) of cases. The overall top‐1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top‐1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality. Conclusions A 174‐disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient‐taken photographs via telemedicine.
AbstractList The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real-life conditions. To assess the diagnostic performance and potential clinical utility of a 174-multiclass AI algorithm in a real-life telemedicine setting. Prospective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow-up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed. A total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real-time diagnosis in 0.6% (n = 2) of cases. The overall top-1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top-1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality. A 174-disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient-taken photographs via telemedicine.
Background The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real‐life conditions. Objective To assess the diagnostic performance and potential clinical utility of a 174‐multiclass AI algorithm in a real‐life telemedicine setting. Methods Prospective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow‐up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed. Results A total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real‐time diagnosis in 0.6% (n = 2) of cases. The overall top‐1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top‐1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality. Conclusions A 174‐disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient‐taken photographs via telemedicine.
The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real-life conditions.BACKGROUNDThe use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in real-life conditions.To assess the diagnostic performance and potential clinical utility of a 174-multiclass AI algorithm in a real-life telemedicine setting.OBJECTIVETo assess the diagnostic performance and potential clinical utility of a 174-multiclass AI algorithm in a real-life telemedicine setting.Prospective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow-up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed.METHODSProspective, diagnostic accuracy study including consecutive patients who submitted images for teledermatology evaluation. The treating dermatologist chose a single image to upload to a web application during teleconsultation. A follow-up reader study including nine healthcare providers (3 dermatologists, 3 dermatology residents and 3 general practitioners) was performed.A total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real-time diagnosis in 0.6% (n = 2) of cases. The overall top-1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top-1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality.RESULTSA total of 340 cases from 281 patients met study inclusion criteria. The mean (SD) age of patients was 33.7 (17.5) years; 63% (n = 177) were female. Exposure to the AI algorithm results was considered useful in 11.8% of visits (n = 40) and the teledermatologist correctly modified the real-time diagnosis in 0.6% (n = 2) of cases. The overall top-1 accuracy of the algorithm (41.2%) was lower than that of the dermatologists (60.1%), residents (57.8%) and general practitioners (49.3%) (all comparisons P < 0.05, in the reader study). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained, the balanced top-1 accuracy of the algorithm (47.6%) was comparable to the dermatologists (49.7%) and residents (47.7%) but superior to the general practitioners (39.7%; P = 0.049). Algorithm performance was associated with patient skin type and image quality.A 174-disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient-taken photographs via telemedicine.CONCLUSIONSA 174-disease class AI algorithm appears to be a promising tool in the triage and evaluation of lesions with patient-taken photographs via telemedicine.
Author Muñoz‐López, C.
Araneda‐Ortega, P.
Marchetti, M.A.
Nuñez‐Mora, M.
Reyes‐Baraona, F.
Liopyris, K.
Navarrete‐Dechent, C.
Uribe, P.
Vera‐Kellet, C.
Jaque, A.
Parra‐Cares, J.
Millán‐Apablaza, R.
Curi, M.
Ramírez‐Cornejo, C.
Majerson, D.
Guzmán, M.
Meza‐Romero, R.
Han, S. S.
Del Puerto, C.
Del Barrio‐Díaz, P.
AuthorAffiliation 1 Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
2 Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
3 Dermatology Clinic, Seoul, Korea
4 Department of Dermatology, University of Athens, Andreas Syggros Hospital of Skin and Venereal Diseases, Athens, Greece
5 Melanoma and Skin Cancer Unit, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
AuthorAffiliation_xml – name: 4 Department of Dermatology, University of Athens, Andreas Syggros Hospital of Skin and Venereal Diseases, Athens, Greece
– name: 5 Melanoma and Skin Cancer Unit, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
– name: 1 Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
– name: 3 Dermatology Clinic, Seoul, Korea
– name: 2 Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
Author_xml – sequence: 1
  givenname: C.
  surname: Muñoz‐López
  fullname: Muñoz‐López, C.
  organization: Pontificia Universidad Católica de Chile
– sequence: 2
  givenname: C.
  surname: Ramírez‐Cornejo
  fullname: Ramírez‐Cornejo, C.
  organization: Pontificia Universidad Católica de Chile
– sequence: 3
  givenname: M.A.
  surname: Marchetti
  fullname: Marchetti, M.A.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 4
  givenname: S. S.
  surname: Han
  fullname: Han, S. S.
– sequence: 5
  givenname: P.
  surname: Del Barrio‐Díaz
  fullname: Del Barrio‐Díaz, P.
  organization: Pontificia Universidad Católica de Chile
– sequence: 6
  givenname: A.
  surname: Jaque
  fullname: Jaque, A.
  organization: Pontificia Universidad Católica de Chile
– sequence: 7
  givenname: P.
  surname: Uribe
  fullname: Uribe, P.
  organization: Pontificia Universidad Católica de Chile
– sequence: 8
  givenname: D.
  surname: Majerson
  fullname: Majerson, D.
  organization: Pontificia Universidad Católica de Chile
– sequence: 9
  givenname: M.
  surname: Curi
  fullname: Curi, M.
  organization: Pontificia Universidad Católica de Chile
– sequence: 10
  givenname: C.
  orcidid: 0000-0003-4667-1873
  surname: Del Puerto
  fullname: Del Puerto, C.
  organization: Pontificia Universidad Católica de Chile
– sequence: 11
  givenname: F.
  surname: Reyes‐Baraona
  fullname: Reyes‐Baraona, F.
  organization: Pontificia Universidad Católica de Chile
– sequence: 12
  givenname: R.
  orcidid: 0000-0003-3863-4386
  surname: Meza‐Romero
  fullname: Meza‐Romero, R.
  organization: Pontificia Universidad Católica de Chile
– sequence: 13
  givenname: J.
  surname: Parra‐Cares
  fullname: Parra‐Cares, J.
  organization: Pontificia Universidad Católica de Chile
– sequence: 14
  givenname: P.
  surname: Araneda‐Ortega
  fullname: Araneda‐Ortega, P.
  organization: Pontificia Universidad Católica de Chile
– sequence: 15
  givenname: M.
  surname: Guzmán
  fullname: Guzmán, M.
  organization: Pontificia Universidad Católica de Chile
– sequence: 16
  givenname: R.
  surname: Millán‐Apablaza
  fullname: Millán‐Apablaza, R.
  organization: Pontificia Universidad Católica de Chile
– sequence: 17
  givenname: M.
  surname: Nuñez‐Mora
  fullname: Nuñez‐Mora, M.
  organization: Pontificia Universidad Católica de Chile
– sequence: 18
  givenname: K.
  orcidid: 0000-0001-9566-8238
  surname: Liopyris
  fullname: Liopyris, K.
  organization: Andreas Syggros Hospital of Skin and Venereal Diseases
– sequence: 19
  givenname: C.
  surname: Vera‐Kellet
  fullname: Vera‐Kellet, C.
  organization: Pontificia Universidad Católica de Chile
– sequence: 20
  givenname: C.
  orcidid: 0000-0003-4040-3640
  surname: Navarrete‐Dechent
  fullname: Navarrete‐Dechent, C.
  email: ctnavarr@gmail.com
  organization: Pontificia Universidad Católica de Chile
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33037709$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFBS-AvASktP6Jk5gFEir_qgQLYGs5yU1w8dip7cwoOx6BZ-RJcDvDrwBv7sLfOcf3-AgdOO8AobuUnNB8Ti_6zQmtZC1voBUtq6bgpOEHaEUkqwophTxERzFeEEIoFc0tdMg54XVN5AqNbyEMPqy16wD7AWvcA0zYwRy0zSNtffiEjcMJLPSQweStH5dHmYzGjRa-fv7SgUsB8BR8nKBLZgO4N3p0PibT4ZjmfrmNbg7aRrizn8fo_fNn785eFudvXrw6e3JedCUVsqhE34m2FRXQodZlw9qBDA2Hhlak0pL1DAhhnEqqG0YG2QLVjNWtbIWWuhb8GD3c-c5u0stWW6umYNY6LIoSddWWym2p67Yy_HgHT3O7hv56Df1T4LVRv98481GNfqMaVpdckGxwf28Q_OUMMam1iR1Yqx34OSpWllJWTDKe0Xu_Zv0I-f4VGTjdAV2uMQYYVGeSTsZfRRv71-c_-EPxv1X37ltjYfk3qF4__bBTfAM_1Lu0
CitedBy_id crossref_primary_10_1038_s41746_024_01031_w
crossref_primary_10_3390_diagnostics13233506
crossref_primary_10_1038_s41598_022_20632_7
crossref_primary_10_1007_s00403_023_02734_y
crossref_primary_10_1038_s41467_023_43095_4
crossref_primary_10_1111_jdv_20286
crossref_primary_10_1111_jdv_20462
crossref_primary_10_3390_jcm11226826
crossref_primary_10_25208_vdv16746
crossref_primary_10_1016_j_jdermsci_2023_01_005
crossref_primary_10_1007_s40257_021_00601_y
crossref_primary_10_1097_MD_0000000000035993
crossref_primary_10_1177_20552076241257087
crossref_primary_10_3390_cancers16071443
crossref_primary_10_1002_jvc2_546
crossref_primary_10_1186_s12875_023_02024_6
crossref_primary_10_1111_dth_14630
crossref_primary_10_1111_jdv_17442
crossref_primary_10_1111_jdv_17464
crossref_primary_10_1016_j_jaad_2022_10_038
crossref_primary_10_1186_s40708_022_00153_9
crossref_primary_10_1089_tmj_2023_0703
crossref_primary_10_1016_j_cmpb_2022_106888
crossref_primary_10_3390_ijerph20105810
crossref_primary_10_1007_s40257_023_00826_z
crossref_primary_10_3389_fmed_2021_757538
crossref_primary_10_3389_fmed_2021_670300
crossref_primary_10_1016_S2589_7500_22_00023_1
crossref_primary_10_1016_j_jid_2022_02_003
crossref_primary_10_3390_diagnostics11030451
crossref_primary_10_1089_tmj_2023_0101
crossref_primary_10_1371_journal_pone_0260895
crossref_primary_10_3390_healthcare12121192
crossref_primary_10_1038_s41598_023_31340_1
crossref_primary_10_1038_s41746_024_01103_x
Cites_doi 10.1016/j.jaad.2017.08.016
10.1038/s41591‐020‐0942‐0
10.1097/CMR.0b013e32832a1e41
10.1056/NEJMp2003539
10.2196/18810
10.1093/annonc/mdy166
10.1016/j.jid.2020.01.019
10.1001/jamadermatol.2016.6214
10.1111/jdv.16855
10.1016/S0140-6736(20)30818-7
10.1111/ijd.14511
10.1684/ejd.2019.3538
10.1080/09546634.2020.1750557
10.1016/j.ejca.2019.02.005
10.1007/s40257-017-0317-6
10.1111/bjd.15695
10.1016/j.jaad.2014.07.061
10.1001/jamadermatol.2019.1375
10.1038/nature21056
10.1016/j.jid.2018.04.040
10.1001/jamadermatol.2018.2348
10.1038/s41591-020-0842-3
ContentType Journal Article
Copyright 2020 European Academy of Dermatology and Venereology
2020 European Academy of Dermatology and Venereology.
Copyright_xml – notice: 2020 European Academy of Dermatology and Venereology
– notice: 2020 European Academy of Dermatology and Venereology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/jdv.16979
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-3083
EndPage 553
ExternalDocumentID oai:pubmedcentral.nih.gov:8274350
PMC8274350
33037709
10_1111_jdv_16979
JDV16979
Genre article
Journal Article
GrantInformation_xml – fundername: National Cancer Institute
  funderid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID ---
--K
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OB
1OC
1~5
29L
31~
33P
36B
3SF
4.4
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AALRI
AAMNL
AANHP
AANLZ
AAONW
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABQWH
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADZMN
AE3
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFTJW
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CO8
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
EX3
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
NQ-
O66
O9-
OIG
OVD
OZT
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
R2-
RIG
RIWAO
RJQFR
ROL
RPZ
RX1
SAMSI
SEW
SUPJJ
TEORI
UB1
UHS
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAMMB
AAYXX
ACVFH
ADCNI
AEFGJ
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIGII
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4159-65dc5bb56e1f7a482bf0f83e81606a92d2e0023191a820f9be1a227b9b5a9a753
IEDL.DBID DR2
ISSN 0926-9959
1468-3083
IngestDate Sun Oct 26 04:15:47 EDT 2025
Thu Aug 21 18:18:53 EDT 2025
Fri Jul 11 15:49:59 EDT 2025
Mon Jul 21 05:58:35 EDT 2025
Thu Apr 24 22:59:00 EDT 2025
Wed Oct 01 04:49:44 EDT 2025
Wed Jan 22 16:31:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2020 European Academy of Dermatology and Venereology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4159-65dc5bb56e1f7a482bf0f83e81606a92d2e0023191a820f9be1a227b9b5a9a753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-senior authors.
ORCID 0000-0003-3863-4386
0000-0001-9566-8238
0000-0003-4040-3640
0000-0003-4667-1873
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8274350
PMID 33037709
PQID 2449962923
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1111_jdv_16979
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8274350
proquest_miscellaneous_2449962923
pubmed_primary_33037709
crossref_citationtrail_10_1111_jdv_16979
crossref_primary_10_1111_jdv_16979
wiley_primary_10_1111_jdv_16979_JDV16979
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the European Academy of Dermatology and Venereology
PublicationTitleAlternate J Eur Acad Dermatol Venereol
PublicationYear 2021
References 2018; 19
2020; 6
2018; 29
2018; 154
2020; 31
2020; 140
2018; 138
2020; 382
2015; 72
2020; 395
2015; 351
2019; 58
2020; 26
2019; 29
2019; 2020
2020; 34
2017; 153
2017; 177
2018; 78
2009; 19
2017; 542
2019; 155
2019; 111
e_1_2_7_6_1
Aractingi S (e_1_2_7_3_1) 2019; 29
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
Gomolin A (e_1_2_7_2_1) 2020; 31
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Smith AC (e_1_2_7_7_1) 2019; 2020
Bossuyt PM (e_1_2_7_13_1) 2015; 351
References_xml – volume: 177
  start-page: 867
  year: 2017
  end-page: 869
  article-title: A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions
  publication-title: Br J Dermatol
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  article-title: Dermatologist‐level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 140
  start-page: 1753
  issue: 9
  year: 2020
  end-page: 1761
  article-title: Augmented intelligence dermatology: deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders
  publication-title: J Invest Dermatol
– volume: 29
  start-page: 4
  year: 2019
  end-page: 7
  article-title: Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology?
  publication-title: Eur J Dermatol
– volume: 154
  start-page: 1247
  year: 2018
  end-page: 1248
  article-title: Machine learning and health care disparities in dermatology
  publication-title: JAMA Dermatol
– volume: 2020
  start-page: 2019
  year: 2019
  article-title: Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID‐19)
  publication-title: J Telemed Telecare
– volume: 382
  start-page: 1679
  issue: 18
  year: 2020
  end-page: 1681
  article-title: Virtually Perfect? Telemedicine for Covid‐19
  publication-title: N Engl J Med
– volume: 155
  start-page: 1291
  year: 2019
  end-page: 1299
  article-title: Accuracy of computer‐aided diagnosis of melanoma: a meta‐analysis
  publication-title: JAMA Dermatology.
– volume: 29
  start-page: 1836
  year: 2018
  end-page: 1842
  article-title: Man against Machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann Oncol
– volume: 34
  start-page: 2659
  year: 2020
  end-page: 2663
  article-title: Human surface anatomy terminology for dermatology: a Delphi consensus from the International Skin Imaging Collaboration
  publication-title: J Eur Acad Dermatol Venereol
– volume: 19
  start-page: 180
  year: 2009
  end-page: 184
  article-title: Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial
  publication-title: Melanoma Res
– volume: 58
  start-page: 989
  year: 2019
  end-page: 990
  article-title: Artificial intelligence in dermato‐oncology: a joint clinical and data science perspective
  publication-title: Int J Dermatol
– volume: 31
  start-page: 7
  year: 2020
  article-title: Artificial intelligence applications in dermatology: where do we stand?
  publication-title: Front Med
– volume: 31
  start-page: 325
  issue: 4
  year: 2020
  article-title: Teledermatology: a useful tool to fight COVID‐19
  publication-title: J Dermatolog Treat
– volume: 19
  start-page: 253
  year: 2018
  end-page: 260
  article-title: Teledermatology: a review and update
  publication-title: Am J Clin Dermatol
– volume: 26
  start-page: 1229
  issue: 8
  year: 2020
  end-page: 1234
  article-title: Human – computer collaboration for skin cancer recognition
  publication-title: Nat Med
– volume: 72
  start-page: 563
  year: 2015
  end-page: 574
  article-title: Teledermatology: From historical perspective to emerging techniques of the modern era: Part I: History, rationale, and current practice
  publication-title: J Am Acad Dermatol
– volume: 138
  start-page: 2277
  year: 2018
  end-page: 2279
  article-title: Automated dermatological diagnosis: Hype or reality?
  publication-title: J Invest Dermatol.
– volume: 26
  start-page: 900
  issue: 6
  year: 2020
  end-page: 908
  article-title: A deep learning system for differential diagnosis of skin diseases
  publication-title: Nat Med
– volume: 78
  start-page: 270
  year: 2018
  end-page: 277.e1
  article-title: Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images
  publication-title: J Am Acad Dermatol
– volume: 6
  year: 2020
  article-title: Global telemedicine implementation and integration within health systems to fight the COVID‐19 pandemic: a call to action
  publication-title: JMIR Public Heal Surveill
– volume: 351
  start-page: 1
  year: 2015
  end-page: 9
  article-title: STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies
  publication-title: BMJ
– volume: 395
  start-page: 1180
  year: 2020
  end-page: 1181
  article-title: Virtual health care in the era of COVID‐19
  publication-title: The Lancet
– volume: 153
  start-page: 453
  year: 2017
  end-page: 457
  article-title: Proposed technical guidelines for the acquisition of clinical images of skin‐related conditions
  publication-title: JAMA Dermatology
– volume: 111
  start-page: 148
  year: 2019
  end-page: 154
  article-title: A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task
  publication-title: Eur J Cancer
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jaad.2017.08.016
– ident: e_1_2_7_19_1
  doi: 10.1038/s41591‐020‐0942‐0
– ident: e_1_2_7_6_1
  doi: 10.1097/CMR.0b013e32832a1e41
– ident: e_1_2_7_25_1
  doi: 10.1056/NEJMp2003539
– ident: e_1_2_7_9_1
  doi: 10.2196/18810
– ident: e_1_2_7_16_1
  doi: 10.1093/annonc/mdy166
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jid.2020.01.019
– volume: 31
  start-page: 7
  year: 2020
  ident: e_1_2_7_2_1
  article-title: Artificial intelligence applications in dermatology: where do we stand?
  publication-title: Front Med
– volume: 2020
  start-page: 2019
  year: 2019
  ident: e_1_2_7_7_1
  article-title: Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID‐19)
  publication-title: J Telemed Telecare
– ident: e_1_2_7_20_1
  doi: 10.1001/jamadermatol.2016.6214
– ident: e_1_2_7_24_1
  doi: 10.1111/jdv.16855
– ident: e_1_2_7_26_1
  doi: 10.1016/S0140-6736(20)30818-7
– ident: e_1_2_7_21_1
  doi: 10.1111/ijd.14511
– volume: 29
  start-page: 4
  year: 2019
  ident: e_1_2_7_3_1
  article-title: Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology?
  publication-title: Eur J Dermatol
  doi: 10.1684/ejd.2019.3538
– ident: e_1_2_7_8_1
  doi: 10.1080/09546634.2020.1750557
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ejca.2019.02.005
– ident: e_1_2_7_10_1
  doi: 10.1007/s40257-017-0317-6
– ident: e_1_2_7_15_1
  doi: 10.1111/bjd.15695
– volume: 351
  start-page: 1
  year: 2015
  ident: e_1_2_7_13_1
  article-title: STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies
  publication-title: BMJ
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jaad.2014.07.061
– ident: e_1_2_7_4_1
  doi: 10.1001/jamadermatol.2019.1375
– ident: e_1_2_7_17_1
  doi: 10.1038/nature21056
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jid.2018.04.040
– ident: e_1_2_7_22_1
  doi: 10.1001/jamadermatol.2018.2348
– ident: e_1_2_7_14_1
  doi: 10.1038/s41591-020-0842-3
SSID ssj0001158
Score 2.4837708
Snippet Background The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been...
The use of artificial intelligence (AI) algorithms for the diagnosis of skin diseases has shown promise in experimental settings but has not been yet tested in...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 546
SubjectTerms Adult
Artificial Intelligence
Dermatology
Female
Humans
Male
Neural Networks, Computer
Prospective Studies
Skin Diseases - diagnosis
Telemedicine
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VWwm4lHdZXjKPQy9J104cJ9wqoKoqtaoQi8op8ivtitS7KrtF5dSf0N_IL2HsPGApILhF8sRxNI7nG-ebzwAvbUVzy7WNKFNVhKukiQrDk4jmKk2FSLTQfh9ybz_bGae7h_xwBWhXCxNI-1pNYlefxG5yHLiVsxO92fHENnPMoxKfpa9mHOH3AFbH-wdbH4OmHssir5_VVRQliC9aNaHA3jFnMc0Kz9r6OQZdAZZX-ZHXF24mz7_Iul7GsCEIbd-Ed93wG-7Jp3gxV7H--ouy43-93y1YayEp2WqabsOKdXfg2l770_0uHB38KC4g04pIYqydEa-Eibe5hkdOJo7MMYQZv9KHM3HPX6Gl34mo7beLy_CSluDIu9pOYhqWHz6VBJHbezDefvv-9U7Uns8QaQz7njVjNFeKZ5ZWQqY5entU5YnNKWZFsmCGWQ8JMCOUiDOqQlkqGROqUFwWEvOk-zBwU2cfAGE65yqVokoQb1hsprQaWS81wzFdLvQQNjqPlboVL_dnaNRln8SYszI4dwjPe9NZo9jxO6NnndtL_J78TxLp7HTxuUS4gykgQ9w7hPVmGvTdJBjvhRjh3WJpgvQGXqt7uQVdHDS7W68O4UU_lf42uo0wyf5sUe6--RAuHv5Th4_gBvNcnMA2fwyD-enCPkEwNVdP28_nO0ZpIK0
  priority: 102
  providerName: Unpaywall
Title Performance of a deep neural network in teledermatology: a single‐centre prospective diagnostic study
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjdv.16979
https://www.ncbi.nlm.nih.gov/pubmed/33037709
https://www.proquest.com/docview/2449962923
https://pubmed.ncbi.nlm.nih.gov/PMC8274350
https://www.ncbi.nlm.nih.gov/pmc/articles/8274350
UnpaywallVersion submittedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0926-9959
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1468-3083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001158
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQIutLzKlrYyj0MvWa2dOE7gVBWqqlKrCrGoSEiRH5O2YpVd0d2icuIn8Bv5JYydR7stIMQtUsZJJp6xv7FnPgO8xJJnKC1GXJgyolHSRbmTccQzkyRKxVZZvw65f5DuDpO9I3m0AK_bWpiaH6JbcPOeEcZr7-DanF11cnfe52mufPEej9MQTr27pI4ipBNG4VykkefUaliFQhZP23J-LroBMG_mSd6ZVRN98VWPRvNYNkxGO0vwqVWjzkH53J9NTd9-u8bw-J96LsO9BqSyrdqq7sMCVg_g9n6zDf8Qjg8vyw3YuGSaOcQJ89yY1KyqM8vZacWmNKk5P_aHU3IvXpGkX5sY4c_vP4K6yEiHttqTuTrvj97KAu3tIxjuvH2_vRs1JzZEloCAz6NxVhojU-Sl0klG_T8osxgzTnGSzoUT6EECxYiakEeZG-RaCGVyI3WuKXJ6DIvVuMInwITNpEm0KmNCIEi3OS8H6MlnJAXQue3BZtt3hW3ozP2pGqOiC2vceRF-XA-ed6KTmsPjd0LPWgMoyMP8tomucDw7KwgAUVAoCAn3YKU2iO4xMSEApQbUWs2ZSifg2bvn71SnJ4HFOxME3uSgBy86o_rb120GG_mzRLH35kO4WP130adwV_gUnZCEvgaL0y8zXCeMNTUbwZk24Nbw4HDr4y8tcydT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKhUu0Ccs9OE-DlyyWjtxHKNeqrZoS1lUVVBxqSK_AohVdgW7VPTUn9DfyC_p2HnQLW1V9RbJ4ySTzIy_scefAV64gmaOGxdRposIo6SNpOVxRDOdJELERhg_DznYTfv7yfYBP5iDl81emIofop1w854R4rV3cD8h_bOX2_MuTaWQN-BmkmKe4iHRxyvyKMQ6IQ5LlkaeVavmFQp1PE3X2dHoGsS8Xim5MC3H6uKLGg5n0WwYjraW4XOjSFWFctKdTnTXfP2F4_F_Nb0NSzVOJa8qw7oDc668C7cG9Ur8PTj8cLXjgIwKooh1bkw8PSZ2K6vicnJckgmOa9aH_3BQ7sUmSvrpiaG7_PY96OsIKtFs-CS2Kv3Dp5LAfHsf9rfe7r3uR_WhDZFBLOBLaazhWvPU0UKoJEMT6BVZ7DKKqZKSzDLncQKmiQrBRyG1o4oxoaXmSipMnh7AfDkq3SoQZjKuEyWKGEGIw2ZKi57z_DMcc2hpOrDR_Lzc1Izm_mCNYd5mNvY8Dx-uA89a0XFF4_E7oaeNBeToZH7lRJVuND3LEQNhXsgQDHdgpbKI9jYxggAhethbzNhKK-AJvGdbyuOjQOSdMcRvvNeB561V_e3tNoKR_Fki337zKVys_bvoE1jo7w128p13u-_XYZH5ip1Qk_4Q5ienU_cIIddEPw6e9QM9qCnE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhUuvB_L0zwOvWS1duJ1jLggllUptKoQRb2gyI9JW7HKrmC3qJz4CfxGfglj51GWAkLcInmcxMmM_Y39-TPAYyx5jtJhwoUtE-olfaK9TBOe2yxTKnXKhXnIre3hxm62uSf3VuBpuxem1ofoJtxCZMT-OgQ4znz5c5T7oz4faqXPwNlM6jwQ-kZvTsSjCOvEfliLYRJUtRpdocjjaasuj0anIOZppuS5RTUzx5_NZLKMZuNwNL4I79uG1CyUD_3F3Pbdl180Hv-3pZfgQoNT2bPasS7DClZXYG2rWYm_Cvs7JzsO2LRkhnnEGQvymFStqsnl7LBicxrXfOj-40G5x0_IMkxPTPD712-xvcioEe2GT-Zr6h89lUXl22uwO37x9vlG0hzakDjCAoFK4520Vg6Rl8pkObnAoMxTzDmlSkYLLzDgBEoTDYGPUlvkRghltZVGG0qersNqNa3wJjDhcmkzo8qUQAhSMeflAIP-jKQcWrserLc_r3CNonk4WGNSdJmNPyrih-vBw850Vst4_M7oQesBBQVZWDkxFU4XnwrCQJQXCgLDPbhRe0R3m5RAgFIDqq2WfKUzCALeyyXV4UEU8s4F4Tc56MGjzqv-9nbr0Un-bFFsjt7Fi1v_bnof1nZG4-L1y-1Xt-G8CISdSEm_A6vzjwu8S4hrbu_FwPoBsAspSA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VWwm4lHdZXjKPQy9J104cJ9wqoKoqtaoQi8op8ivtitS7KrtF5dSf0N_IL2HsPGApILhF8sRxNI7nG-ebzwAvbUVzy7WNKFNVhKukiQrDk4jmKk2FSLTQfh9ybz_bGae7h_xwBWhXCxNI-1pNYlefxG5yHLiVsxO92fHENnPMoxKfpa9mHOH3AFbH-wdbH4OmHssir5_VVRQliC9aNaHA3jFnMc0Kz9r6OQZdAZZX-ZHXF24mz7_Iul7GsCEIbd-Ed93wG-7Jp3gxV7H--ouy43-93y1YayEp2WqabsOKdXfg2l770_0uHB38KC4g04pIYqydEa-Eibe5hkdOJo7MMYQZv9KHM3HPX6Gl34mo7beLy_CSluDIu9pOYhqWHz6VBJHbezDefvv-9U7Uns8QaQz7njVjNFeKZ5ZWQqY5entU5YnNKWZFsmCGWQ8JMCOUiDOqQlkqGROqUFwWEvOk-zBwU2cfAGE65yqVokoQb1hsprQaWS81wzFdLvQQNjqPlboVL_dnaNRln8SYszI4dwjPe9NZo9jxO6NnndtL_J78TxLp7HTxuUS4gykgQ9w7hPVmGvTdJBjvhRjh3WJpgvQGXqt7uQVdHDS7W68O4UU_lf42uo0wyf5sUe6--RAuHv5Th4_gBvNcnMA2fwyD-enCPkEwNVdP28_nO0ZpIK0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+a+deep+neural+network+in+teledermatology%3A+a+single-centre+prospective+diagnostic+study&rft.jtitle=Journal+of+the+European+Academy+of+Dermatology+and+Venereology&rft.au=Mu%C3%B1oz-L%C3%B3pez%2C+C.&rft.au=Ram%C3%ADrez-Cornejo%2C+C.&rft.au=Marchetti%2C+M.A.&rft.au=Han%2C+S.+S.&rft.date=2021-02-01&rft.issn=0926-9959&rft.eissn=1468-3083&rft.volume=35&rft.issue=2&rft.spage=546&rft.epage=553&rft_id=info:doi/10.1111%2Fjdv.16979&rft_id=info%3Apmid%2F33037709&rft.externalDocID=PMC8274350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9959&client=summon